KR20160038711A - Block copolymer - Google Patents

Block copolymer Download PDF

Info

Publication number
KR20160038711A
KR20160038711A KR1020150079491A KR20150079491A KR20160038711A KR 20160038711 A KR20160038711 A KR 20160038711A KR 1020150079491 A KR1020150079491 A KR 1020150079491A KR 20150079491 A KR20150079491 A KR 20150079491A KR 20160038711 A KR20160038711 A KR 20160038711A
Authority
KR
South Korea
Prior art keywords
block
block copolymer
chain
example
amp
Prior art date
Application number
KR1020150079491A
Other languages
Korean (ko)
Inventor
이정규
오성준
강연주
김정근
윤성수
송인영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR20140131964 priority Critical
Priority to KR1020140131964 priority
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority claimed from CN201580060099.7A external-priority patent/CN107075052B/en
Priority claimed from US15/515,821 external-priority patent/US10703897B2/en
Publication of KR20160038711A publication Critical patent/KR20160038711A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/005Modified block copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/002Processes for applying liquids or other fluent materials the substrate being rotated
    • B05D1/005Spin coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/007After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00388Etch mask forming
    • B81C1/00428Etch mask forming processes not provided for in groups B81C1/00396 - B81C1/0042
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/14Organic medium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • C08F293/005Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/022Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polycondensates with side or terminal unsaturations
    • C08F299/024Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polycondensates with side or terminal unsaturations the unsaturation being in acrylic or methacrylic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F32/00Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F32/02Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having no condensed rings
    • C08F32/06Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having no condensed rings having two or more carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D153/00Coating compositions based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0046Photosensitive materials with perfluoro compounds, e.g. for dry lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/162Coating on a rotating support, e.g. using a whirler or a spinner
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/165Monolayers, e.g. Langmuir-Blodgett
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • H01L21/31055Planarisation of the insulating layers involving a dielectric removal step the removal being a chemical etching step, e.g. dry etching
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • H01L21/31055Planarisation of the insulating layers involving a dielectric removal step the removal being a chemical etching step, e.g. dry etching
    • H01L21/31056Planarisation of the insulating layers involving a dielectric removal step the removal being a chemical etching step, e.g. dry etching the removal being a selective chemical etching step, e.g. selective dry etching through a mask
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers
    • H01L21/3105After-treatment
    • H01L21/31058After-treatment of organic layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0147Film patterning
    • B81C2201/0149Forming nanoscale microstructures using auto-arranging or self-assembling material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/301Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and one oxygen in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/03Use of a di- or tri-thiocarbonylthio compound, e.g. di- or tri-thioester, di- or tri-thiocarbamate, or a xanthate as chain transfer agent, e.g . Reversible Addition Fragmentation chain Transfer [RAFT] or Macromolecular Design via Interchange of Xanthates [MADIX]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1426Side-chains containing oxygen containing carboxy groups (COOH) and/or -C(=O)O-moieties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3324Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from norbornene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/418Ring opening metathesis polymerisation [ROMP]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G
    • C08J2353/00Characterised by the use of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08J2323/00 - C08J2353/00

Abstract

The present application relates to block copolymers and uses thereof. The present application can provide a block copolymer and its use that can be effectively used in various applications because of its excellent self-assembling property.

Description

BLOCK COPOLYMER < RTI ID = 0.0 >

The present application relates to block copolymers and uses thereof.

The block copolymer has a molecular structure in which polymer blocks having different chemical structures are linked through covalent bonds. The block copolymer can form a periodically arranged structure such as a sphere, a cylinder or a lamella by phase separation. The size of the domain of the structure formed by the self-assembling phenomenon of the block copolymer can be widely controlled, and various types of structures can be manufactured. Thus, various next-generation nano-structures such as high density magnetic storage media, nanowire fabrication, And can be applied to pattern formation by devices, magnetic recording media, lithography, or the like.

The present application provides a method of forming a block copolymer, a polymer film, a polymer film, a pattern forming method, and the like.

An exemplary block copolymer may comprise a first block and a second block different from the first block. Each block of the block copolymer may be formed of only one type of monomer, or may be formed of two or more kinds of monomers. The block copolymer may be a diblock copolymer containing only one first block and one second block, or may include at least one of the first and second blocks, or may include at least two blocks other than the first and second blocks, Or a block copolymer of a triblock or more.

Since the block copolymer contains two or more polymer chains linked by covalent bonds, phase separation occurs and forms a so-called self-assembled structure. The present inventors have found that the above-mentioned phase-separation can be effectively performed by satisfying any one or two or more of the conditions described below, thereby forming a nanoscale structure by microphase seperation Respectively. Accordingly, this application is directed to a block copolymer that satisfies at least one of the conditions described below. The shape or size of the nanoscale structure can be controlled, for example, by controlling the size of a block copolymer such as a molecular weight or the relative ratio between blocks. The block copolymer of the present invention can freely form phase separation structures such as spheres, cylinders, gyroids, lamellas and inverted structures in various sizes. The conditions described below are in parallel, and any one condition does not override the other conditions. The block copolymer may satisfy any one of the following conditions, or may satisfy two or more conditions. It has been found that the block copolymer can exhibit the vertical orientation through satisfying any one of the conditions described below. The term vertical orientation in the present application indicates the orientation of the block copolymer, and the orientation of the nanostructure formed by the block copolymer may mean orientation perpendicular to the substrate direction. For example, the orientation of the block copolymer The interface between the domain formed by the first block and the domain formed by the second block may be perpendicular to the surface of the substrate. The term vertical in the present application is an expression in consideration of an error, and may mean an error including, for example, errors within ± 10 degrees, ± 8 degrees, ± 6 degrees, ± 4 degrees, or ± 2 degrees.

The technique of adjusting the self-assembled structure of the block copolymer horizontally or vertically on various substrates occupies a very large proportion in the practical application of the block copolymer. Usually, the orientation of the nanostructure in the film of the block copolymer is determined by which of the blocks forming the block copolymer is exposed to the surface or air. In general, since a plurality of substrates are polar and air is non-polar, a block having a larger polarity among the blocks of the block copolymer contacts the substrate, and a block having a smaller polarity is brought into contact with air. Accordingly, various techniques have been proposed to allow blocks having different characteristics of the block copolymer to contact the substrate at the same time, and the most representative technique is the application of a neutral surface. However, in one aspect of the present application, the following conditions may be suitably adjusted so that even for a substrate on which a known process is not performed, in which the block copolymer is known to achieve vertical alignment including neutral surface treatment or the like, This is possible. For example, a block copolymer according to one aspect of the present application may exhibit vertical orientation both on a hydrophilic surface on which no particular pretreatment has been performed, or on a hydrophobic surface. Further, in a further aspect of the present application, such a vertical orientation may be induced in a short period of time by thermal annealing.

A. Condition 1

As a first condition, the block copolymer of the present application can form a film exhibiting an in-plane diffraction pattern of Grazing Incidence Small Angle X-ray Scattering (GISAXS) on hydrophobic and hydrophilic surfaces. Indicating the diffraction pattern of inflation in GISAXS in the present application may mean that it exhibits a peak perpendicular to the X coordinate in the GISAXS diffraction pattern in the GISAXS analysis. This peak is confirmed by the vertical orientation of the block copolymer. Therefore, the block copolymer exhibiting the inflation-induced diffraction pattern has vertical orientation. In a further example, the peak identified in the X coordinate of the GISAXS diffraction pattern may be at least two or more, and in the presence of a plurality of peaks, the scattering vectors (q values) of the peak may be identified with an integer ratio, In this case, the phase separation efficiency of the block copolymer can be further improved.

A block copolymer capable of forming a film exhibiting a diffraction pattern on inflation on both hydrophilic and hydrophobic surfaces can exhibit vertical orientation characteristics on various surfaces without performing any separate treatment to induce vertical orientation. The term hydrophobic surface in the present application means a surface having a wetting angle with respect to purified water in the range of 5 to 20 degrees. Examples of hydrophobic surfaces include, but are not limited to, surfaces of silicon treated with oxygen plasma, sulfuric acid or pyran solution. The term hydrophilic surface in the present application means a surface having a room temperature wetting angle with respect to purified water in the range of 50 to 70 degrees. Examples of the hydrophilic surface include a surface of PDMS (polydimethylsiloxane) treated with oxygen plasma, a surface of silicon treated with hexamethyldisilazane (HMDS), a surface of silicon treated with hydrofluoric acid (HF), and the like. no.

In the present application, physical properties such as wetting angle or density that can be changed by temperature are values measured at room temperature unless otherwise specified. The term ambient temperature is a natural, non-warming or non-warming temperature and may refer to a temperature of about 10 ° C to 30 ° C, about 25 ° C, or about 23 ° C.

The film exhibiting the inflation impression diffraction pattern on the hydrophilic or hydrophobic surface and on the sagittal incident incidence scattering (GISAXS) may be a thermal annealed film. The film for measuring the fine angle incident incidence scattering (GISAXS) can be obtained, for example, by coating a coating solution prepared by diluting the above block copolymer with a solvent (for example, flourobenzene) at a concentration of about 0.7 wt% (thickness: 1.5 cm, length: 1.5 cm) and a thickness of 2.25 cm < 2 >. The thermal aging can be performed by, for example, The film may be maintained at a temperature of about 160 DEG C for about 1 hour. The grinding angle incident incidence angle scattering (GISAXS) is measured by incidence of X-rays at an incident angle within the range of about 0.12 to 0.23 degrees A diffraction pattern emerging from the film can be obtained with a known measuring device (for example, 2D marCCD). A method of confirming the presence of a diffraction pattern of inflation impression through the diffraction pattern is as follows: Jiyida.

The block copolymer exhibiting the aforementioned peaks in the fine angle incident incidence scattering (GISAXS) can exhibit excellent self-assembling properties, and such properties can be effectively controlled according to the purpose.

B. Condition 2

As a second condition, any one block of the block copolymers of the present application, for example, the first block, may have a scattering in the range of 12 nm -1 to 16 nm -1 of the GIWAXS (Grazing Incident Wide Angle X-ray Scattering) A peak can be observed in both the azimuthal angle in the range of -90 degrees to -70 degrees and the azimuthal angle in the range of 70 degrees to 90 degrees of the diffraction pattern of the vector (scattering vector). In this case, the azimuth angle is an azimuth angle when the angle of the upward direction (out of plane diffraction direction) of the diffraction pattern is 0 degree, which is an azimuth angle measured in the clockwise direction. The full width at half maximum (FWHM) of the peak observed at each azimuth angle may be in the range of 5 to 70 degrees. The half width may be 7 degrees or more or 9 degrees or more in another example. The half width may be 65 degrees or less or 60 degrees or less in other examples. The method for obtaining the GIWAXS spectrum is not particularly limited, and can be obtained according to the method described in the following embodiments. After the profile of the diffraction pattern peak of the obtained spectrum is subjected to Gauss fitting, the half-value width can be obtained from the fitted result. In this case, when the Gaussian fitting result is only half observed, the above half width can be defined as twice the value obtained from the result observed only in the half. The R squared in the Gaussian fitting is in the range of about 0.26 to 0.95. That is, the half width described above may be observed in any R squared of the range. The manner of obtaining such information is known, and a numerical analysis program such as an origin can be applied, for example.

GIWAXS can be measured for a polymer made only of a monomer constituting the first block, wherein the first block is a block including an aromatic structure not containing a halogen atom described below, or a block including a side chain . In the above-mentioned azimuth angle of GIWAXS, the first block having the above-mentioned peaks can be arranged with directionality, and this first block can exhibit good phase separation, self-assembly and vertical alignment with the second block.

C. Condition 3

As a third condition, the block copolymer of the present application can exhibit a unique behavior in DSC (differential scanning calorimetry) analysis. The block copolymer of the present application may exhibit a melting transition peak or an isotropic transition peak within the range of -80 ° C to 200 ° C in the DSC analysis. The block copolymer may show either one of the two peaks, or both of the two peaks. The block copolymer exhibits a crystal phase and a liquid crystal phase in accordance with a change in temperature in a temperature range of -80 ° C to 200 ° C, and thus can exhibit vertical orientation characteristics with excellent phase separation characteristics .

The difference (Ti-Tm) between the temperature (Ti) at which the isotropic transition peak of the block copolymer appears and the temperature (Tm) at which the melting transition peak appears is within a range of 5 占 폚 to 70 占 폚. In another example, the difference (Ti-Tm) is at least 10 ° C, at least 15 ° C, at least 20 ° C, at least 25 ° C, at least 30 ° C, at least 35 ° C, at least 40 ° C, at least 45 ° C, Or 60 < 0 > C or higher. In the DSC analysis, the block copolymer having the difference (Ti-Tm) between the temperature (Ti) of the isotropic transition peak and the temperature (Tm) of the melting transition peak within the above range can be kept excellent in phase separation or self-assembling property.

The ratio (M / I) of the area (I) of the isotropic transition peak of the block copolymer to the area (M) of the melt transition peak may be in the range of 0.1 to 500. In the DSC analysis, the block copolymer having the ratio (M / I) of the area (I) of the isotropic transition peak and the area (M) of the melt transition peak within the above range can be kept excellent in phase separation or self-assembling property. In another example, the ratio M / I can be 0.5 or more, 1 or more, 1.5 or more, 2 or more, 2.5 or more, or 3 or more. In another example, the ratio M / I may be 450 or less, 400 or less, 350 or less, 300 or less, 250 or less, 200 or less, 150 or less, 100 or less, 90 or less or 85 or less.

The manner of performing the DSC analysis is known, and in the present application, the above analysis can be performed by this known method.

The temperature (Tm) at which the melt transition peak of the block copolymer appears may be in the range of -10 ° C to 55 ° C. In another example, the temperature Tm is in the range of 50 占 폚 or less, 45 占 폚 or less, 40 占 폚 or less, 35 占 폚 or less, 30 占 or less, 25 占 or less, 20 占 or 15 占 or 10 占 or 5 占 or It may be 0 ° C or less.

In another example, when any one block of the block copolymer, for example, the first block, has a side-chain chain to be described later, the following formula (1) can be satisfied.

[Equation 1]

10 占 폚 = Tm? 12.25 占 폚 占 n + 149.5 占 폚? 10 占 폚

In the formula (1), Tm is the temperature at which the melting transition peak appears, and n is the number of chain-forming atoms of the sidechain chain.

As used herein, the term " side chain chain " means a chain connected to the main chain of the polymer, and the term " chain forming atom " means an atom forming the side chain chain bonded to the block copolymer, it means. The side chain may be linear or branched, but the number of chain-forming atoms is calculated by the number of atoms forming the longest straight chain, and other atoms bonded to the chain-forming atoms (for example, A hydrogen atom bonded to the carbon atom in the case of a carbon atom, etc.) is not calculated. For example, in the case of a branched chain, the number of chain forming atoms may be calculated as the number of chain forming atoms forming the longest chain region. For example, when the side chain is an n-pentyl group, all of the chain-forming atoms are carbon atoms, and the number of the chain-forming atoms is 5 even when the side chain is a 2-methylpentyl group. The chain-forming atom may be exemplified by carbon, oxygen, sulfur or nitrogen, and a suitable chain-forming atom may be carbon, oxygen or nitrogen, or carbon or oxygen. The number of chain-forming atoms may be 8 or more, 9 or more, 10 or more, 11 or more, or 12 or more. The number of the chain-forming atoms may be 30 or less, 25 or less, 20 or less, or 16 or less.

The block copolymer having a branched chain and the number of chain-forming atoms (n) in the side chain chain satisfying the above formula can have excellent phase separation or self-assembling properties.

Tm-12.25 占 폚 占 n + 149.5 占 폚 in Equation 1 may be -8 占 폚 to 8 占 폚, -6 占 폚 to 6 占 폚, or about -5 占 폚 to 5 占 폚 in another example.

D. Condition 4

As a fourth condition, the block copolymer of the present application may exhibit at least one peak within a predetermined range of scattering vector (q) in XRD analysis (X-ray diffraction analysis, X-ray diffraction analysis).

For example, the block copolymer may exhibit at least one peak within the range of the scattering vector (q) of 0.5 nm -1 to 10 nm -1 in the X-ray diffraction analysis. The scattering vector q at which the peak appears may be 0.7 nm -1 or more, 0.9 nm -1 or more, 1.1 nm -1 or more, 1.3 nm -1 or 1.5 nm -1 or more in another example. In another example, the scattering vector q at which the peak appears may be 9 nm -1 or less, 8 nm -1 or less, 7 nm -1 or less, 6 nm -1 or less, 5 nm -1 or less, 4 nm -1 or less, 3.5 nm -1 or 3 nm -1 or less. The full width at half maximum (FWHM) of the peak identified within the range of the scattering vector (q) may be in the range of 0.2 to 0.9 nm -1 . The half width may be at least 0.25 nm -1, at least 0.3 nm -1, or at least 0.4 nm -1 in other examples. The half bandwidth may be 0.85 nm -1 or less, 0.8 nm -1 or 0.75 nm -1 or less in other examples.

In Condition 4, the term half width can mean the width of the peak (the difference in the scattering vector q) at the position showing the intensity of 1/2 of the intensity of the maximum peak.

The scattering vector (q) and the half width in the XRD analysis are numerical values obtained by a numerical analytical method using the minimum left-hand method as a result of XRD analysis described later. In this method, a portion showing the smallest intensity in the XRD diffraction pattern is taken as a baseline, and the intensity of the XRD pattern peak is set to a Gaussian fitting, and then the scattering vector and the full width at half maximum can be obtained from the fitted results. The R square at the time of Gaussian fitting is at least 0.9, at least 0.92, at least 0.94, or at least 0.96. The manner of obtaining the above information from the XRD analysis is known, and for example, a numerical analysis program such as an origin can be applied.

The block copolymer showing the peak of the half-width within the range of the scattering vector (q) may include a crystalline portion suitable for self-assembly. The block copolymer identified within the scope of the above-described scattering vector (q) can exhibit excellent self-assembling properties.

XRD analysis can be performed by passing X-rays through a block copolymer sample and measuring the scattering intensity according to the scattering vector. XRD analysis can be performed on the block copolymer without any special pretreatment, for example, after the block copolymer is dried under suitable conditions and then transmitted through X-rays. An X-ray having a vertical size of 0.023 mm and a horizontal size of 0.3 mm can be applied. A 2D diffraction pattern that is scattered in the sample is obtained as an image by using a measuring device (for example, 2D marCCD), and the obtained diffraction pattern is fitted in the above-described manner to obtain a scattering vector and a half width.

E. Condition 5

As a fifth condition, in the block copolymer of the present application, when the first block has a side chain chain to be described later, the number (n) of chain-forming atoms of the side chain chain is determined by X- The obtained scattering vector (q) and the following expression (2) can be satisfied.

[Equation 2]

3 nm -1 to 5 nm -1 = nq / (2 x π)

In the formula 2, n is the number of the chain-forming atoms and q is the smallest scattering vector (q) in which the peak is observed in the X-ray diffraction analysis of the block copolymer, or a peak of the largest peak area is observed Is a scattering vector (q). In Equation (2),? Represents the circumferential ratio.

The scattering vector or the like introduced into the formula (2) is a value obtained by the method as mentioned in the aforementioned X-ray diffraction analysis method.

The scattering vector q introduced in Equation 2 may be, for example, a scattering vector q within a range of 0.5 nm -1 to 10 nm -1 . The scattering vector q introduced in the above equation 2 may be 0.7 nm -1 or more, 0.9 nm -1 or more, 1.1 nm -1 or more, 1.3 nm -1 or 1.5 nm -1 or more in another example. In another example, the scattering vector q introduced into the above-mentioned formula 2 is 9 nm -1 or less, 8 nm -1 or less, 7 nm -1 or less, 6 nm -1 or less, 5 nm -1 or less, 4 nm -1 or less , 3.5 nm -1 or less, or 3 nm -1 or less.

Formula (2) represents the relationship between the distance (D) between the blocks containing the side chain chain and the number of chain forming atoms of the side chain chain when the block copolymer is self-assembled to form a phase separation structure, When the number of chain-forming atoms of the side chain in the block copolymer satisfies the above-mentioned formula (2), the crystallinity represented by the side chain is increased and consequently the phase-separating property or the vertical orientation of the block copolymer can be greatly improved. Nq / (2 x?) According to Equation 2 may be 4.5 nm -1 or less in another example. The interval (D, unit: nm) between the blocks including the side chain in the above can be calculated by the following equation: D = 2 x? / Q where D is the interval , < / RTI > and q are as defined in formula (2).

F. Condition 6

As the sixth condition, the absolute value of the difference between the surface energy of the first block of the block copolymer and the surface energy of the second block is 10 mN / m or less, 9 mN / m or less, 8 mN / m or less, 7.5 mN / m or less or 7 mN / m or less. The absolute value of the difference in surface energy may be 1.5 mN / m, 2 mN / m or 2.5 mN / m or more. The structure in which the first block and the second block having the absolute value of the difference in surface energy in this range are connected by covalent bonding can induce effective microphase seperation by phase separation due to proper non-availability. In the above, the first block may be, for example, a block having a side chain chain to be described later or a block including an aromatic structure having no halogen atom.

Surface energy can be measured using a Drop Shape Analyzer (DSA100, KRUSS). Specifically, the surface energy of a sample solution (block copolymer or homopolymer) to be measured is diluted with fluorobenzene to a solid concentration of about 2% by weight, and the coating solution is applied to the substrate with a thickness of about 50 nm and a coating area of 4 cm 2 (Length: 2 cm, length: 2 cm), which is then dried at room temperature for about 1 hour and then thermally annealed at 160 ° C for about 1 hour. The process of dropping the deionized water whose surface tension is known in the film subjected to thermal aging and obtaining the contact angle is repeated 5 times to obtain an average value of the obtained five contact angle values and similarly, The process of dropping the known diiodomethane and determining the contact angle thereof is repeated five times, and an average value of the obtained five contact angle values is obtained. Thereafter, the surface energy can be obtained by substituting the value (Strom value) of the surface tension of the solvent by the Owens-Wendt-Rabel-Kaelble method using the average value of the contact angle with the deionized water and diiodo methane obtained. The numerical value of the surface energy for each block of the block copolymer can be obtained by the method described above for a homopolymer produced only of the monomers forming the block.

When the block copolymer includes the above-described side chain chain, the block including the side chain chain may have a higher surface energy than other blocks. For example, if the first block of the block copolymer comprises a side chain, the first block may have a higher surface energy than the second block. In this case, the surface energy of the first block may be in the range of about 20 mN / m to 40 mN / m. The surface energy of the first block may be greater than or equal to 22 mN / m, greater than or equal to 24 mN / m, greater than or equal to 26 mN / m, or greater than or equal to 28 mN / m. The surface energy of the first block may be 38 mN / m or less, 36 mN / m or less, 34 mN / m or less, or 32 mN / m or less. The first block is included, and the block copolymer showing the difference in surface energy as the second block and the like can exhibit excellent self-assembling properties.

G. Condition 7

A seventh condition, the absolute value of the density of the first block and the second block different from the block copolymer is 0.25 g / cm 3 or more, 0.3 g / cm 3 or more, 0.35 g / cm 3 or more, 0.4 g / cm 3 Or 0.45 g / cm < 3 > or more. The absolute value of the density difference may be 0.9 g / cm 3 or more, 0.8 g / cm 3 or less, 0.7 g / cm 3 or less, 0.65 g / cm 3 or less, or 0.6 g / cm 3 or less. The structure in which the first block having the absolute value of the density difference in this range and the second block are connected by the covalent bond can induce an effective microphase seperation by phase separation due to suitable non-availability.

The density of each block of the block copolymer can be measured using a known buoyancy method. For example, the mass of the block copolymer in a solvent such as ethanol, which is known in mass and density in the air, Can be measured.

When the above-described side chain chain is included, the block including the side chain chain may have a lower density than other blocks. For example, if the first block of the block copolymer comprises a side chain, the first block may have a lower density than the second block. In this case, the density of the first block may be in the range of about 0.9 g / cm 3 to about 1.5 g / cm 3 . The density of the first block may be 0.95 g / cm < 3 > or more. The density of the first block is 1.4 g / cm 3 or less, 1.3 g / cm 3 1.2 g / cm < 3 > 1.1 g / cm < 3 > Or 1.05 g / cm < 3 > ≪ / RTI > Such a first block is included, and a block copolymer exhibiting such a density difference with the second block can exhibit excellent self-assembling properties.

H. Condition 8

In the block copolymer of the present application, for example, the range of X calculated by the following formula A may be 1.25 or more.

[Formula A]

X = 1 + (D x M) / (K x L)

(D2 / D1) of density (D1) of the first block to density (D2) of the second block and M is the ratio of the molar mass (M1) of the first block to the molar mass K is the ratio of the area A2 of the peak due to the second block in the 1 H-NMR to the area A2 of the peak due to the first block A2 / A1) and L is the ratio (H1 / H2) of the number of moles (H1) of the hydrogen atoms of one mole of the first block repeating unit to the number (H2) of hydrogen atoms of one mole of the second block repeating unit.

The 1 H-NMR measurement method for obtaining the K value to be applied to the formula A is not particularly limited and can be carried out by a known method. An example of the above measurement method is described in the following embodiments. The method of calculating the area of the peak from the NMR measurement results is known. For example, when the peaks derived from the first block and the second block do not overlap with each other as a result of NMR measurement, they can be obtained through the area of the peak, When the peaks overlap each other, the ratio can be determined in consideration of the overlapped portion. Analysis programs capable of analyzing 1 H-NMR spectrum and obtaining the area of a peak are variously known. For example, the area of a peak can be calculated using the MestReC program.

The density of each block of the block copolymer to obtain the D value to be applied to the formula A can be measured by a known buoyancy method. For example, the density can be measured by analyzing the mass of the block copolymer in a solvent, such as ethanol, in which the mass and density in air are known. The density of each of the above-mentioned blocks can be measured, for example, by applying a homopolymer produced only by the monomers forming the block to the buoyancy method.

The M value applied to the formula A is the ratio of the molar mass of the repeating units of each block of the block copolymer as described above. Such a molar mass can be obtained by a known method, and for example, the above-mentioned M value can be obtained by the ratio of the molar mass of the monomers forming each block of the block copolymer. In this case, when one block of the block copolymer is formed of two or more kinds of monomers, the molar mass for calculating the M value is the molar mass of the monomers contained in the block most frequently among the two or more kinds of monomers Can be substituted.

The L value applied to the formula A is the ratio of the number of hydrogen atoms of one mole of the repeating unit of each block of the block copolymer as described above. These ratios can also be obtained based on the chemical structure of each repeating unit, and can be obtained, for example, from the number of hydrogen atoms in the chemical structure of the monomers forming each block of the block copolymer or the result of 1 H-NMR . Also in this case, when one block of the block copolymer is formed of two or more kinds of monomers, the molar mass for calculating the L value is the molar amount of the monomer contained in the block in the largest number of moles among the two or more kinds of monomers Mass can be substituted.

In the formula (A), X is a numerical value representative of the ratio of the first and second blocks in the block copolymer. Generally, the ratio of each block in the block copolymer is confirmed based on the molecular weight obtained through GPC or the like. However, this method does not accurately reflect the ratio between the blocks, and thus it is confirmed that the block copolymer as designed is not obtained Respectively. For example, when a block copolymer is synthesized by using one block of a block copolymer as a macromonomer as described later, depending on the reactivity of the macromonomer and the monomer, a block copolymer containing each block at a desired level In some cases, GPC alone can not confirm this point.

X according to Formula A may be about 1.3 or more, about 1.35 or more, about 1.4 or more, about 1.45 or more, about 1.5 or more, about 1.6 or more, or about 1.65 or more in another example. X according to Formula A may be 10 or less, 9.5 or less, 9 or less, 8.5 or less, 8 or less, 7.5 or less or 7 or less in other examples.

X according to Formula A may range from 2.5 to 6.7 2.5 to 5 or from about 2.8 to 5 in another example. The block copolymer having an X value in this range can form a so-called siltter structure, or can form a self-assembled structure in which the structure is dominant. Further, X in Formula A may be about 1.65 to 2.5, about 1.8 to 2.5, or about 1.8 to 2.3 in another example. A block copolymer having an X value in this range can form a so-called lamellar structure or form a self-assembled structure in which the structure is dominant.

For example, the first block may be a block including an aromatic structure having no halogen atom included together with a second block including an aromatic structure substituted with a halogen atom, or a second block including a halogen atom In the case of a block having a side chain chain included together with the block, the block copolymer having the range of X can effectively form a vertical alignment structure.

As described above, the block copolymer may satisfy any one of the conditions 1 to 8, or two or more selected from the above conditions.

As other conditions, the number average molecular weight (Mn) of the block copolymer may be in the range of, for example, 3,000 to 300,000. In the present specification, the term number average molecular weight refers to a value converted to standard polystyrene measured using GPC (Gel Permeation Chromatograph). In the present specification, the term molecular weight refers to a number average molecular weight unless otherwise specified. The molecular weight (Mn) may be, for example, 3000 or more, 5000 or more, 7000 or more, 9000 or more, 11000 or more, 13000 or more, or 15000 or more in other examples. In another example, the molecular weight (Mn) is not more than 250,000, less than 200,000, less than or equal to 180,000, less than or equal to 160,000, less than or equal to 140000, less than or equal to 120000, less than or equal to 100000, less than or equal to 90000, less than or equal to 80000, less than or equal to 70000, Or 25,000 or less. The block copolymer may have a polydispersity (Mw / Mn) in the range of 1.01 to 1.60. In another example, the degree of dispersion may be at least about 1.1, at least about 1.2, at least about 1.3, or at least about 1.4.

In this range, the block copolymer can exhibit proper self-assembling properties. The number average molecular weight of the block copolymer and the like can be adjusted in consideration of the desired self-assembling structure and the like.

The above-mentioned conditions can be achieved, for example, by controlling the structure of the block copolymer. For example, at least one or both of the first block and the second block of the block copolymer satisfying at least one of the above-mentioned conditions may comprise at least an aromatic structure. The first block and the second block may all include an aromatic structure, and in this case, the aromatic structures included in the first and second blocks may be the same or different. In addition, at least one of the first and second blocks of the block copolymer satisfying at least one of the above-mentioned conditions may contain the above-described side chain chain or may include at least one halogen atom described later, The halogen atom may be substituted in the aromatic structure. The block copolymer of the present application may comprise two blocks or may comprise more blocks.

As described above, the first block and / or the second block of the block copolymer may include an aromatic structure. The aromatic structure may be included in only one of the first and second blocks, or may be included in both blocks. When both blocks include an aromatic structure, the aromatic structures included in each block may be the same or different from each other.

As used herein, the term aromatic structure, aryl group or arylene group, unless otherwise specified, includes a benzene ring, or two or more benzene rings are linked together sharing one or two carbon atoms, A structure derived from a compound including a structure linked by a linker or a derivative thereof, a monovalent residue or a divalent residue. The aryl group or arylene group may be, for example, an aryl group having 6 to 30 carbon atoms, 6 to 25 carbon atoms, 6 to 21 carbon atoms, 6 to 18 carbon atoms, or 6 to 13 carbon atoms. Examples of the aryl group or the arylene group include benzene and the like, naphthalene, azobenzene, anthracene, phenanthrene, tetracene, pyrene, A monovalent or divalent residue derived from benzopyrene or the like may be exemplified.

The aromatic structure may be a structure contained in a block main chain or a structure in which a block main chain is connected in a side chain form. Control of the above conditions may be possible through appropriate control of the aromatic structure that each block may contain.

For example, in order to control the above-mentioned conditions, the first block of the block copolymer may have a chain having at least 8 chain-forming atoms connected to the side chain. In the present specification, the term chain and side chain chain may refer to the same object. When the first block comprises an aromatic structure, the chain may be connected to the aromatic structure.

The side chain chain may be a chain containing at least 8, at least 9, at least 10, at least 11 or at least 12 chain forming atoms as mentioned above. The number of chain-forming atoms may also be not more than 30, not more than 25, not more than 20, or not more than 16. The chain forming atom may be a carbon, oxygen, nitrogen or sulfur atom, and may suitably be carbon or oxygen.

As the branched chain, a hydrocarbon chain such as an alkyl group, an alkenyl group or an alkynyl group can be exemplified. At least one of the carbon atoms of the hydrocarbon chain may be replaced by a sulfur atom, an oxygen atom or a nitrogen atom.

When the side chain is connected to an aromatic structure, the chain may be directly connected to the aromatic structure or may be connected via a linker. The linker is an oxygen atom, a sulfur atom, -NR 1 -, -S (= O) 2 -, a carbonyl group, an alkylene group, alkenylene group, alkynylene group, -C (= O) -X 1 - or -X 1 -C (= O) -, and the like can be exemplified, in the above R 1 is hydrogen, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group or an aryl can be date, X 1 is a single bond, an oxygen atom, a sulfur atoms, -NR 2 -, -S (= O) 2 -, alkylene, alkenylene, or alkynylene may be an, at the R 2 is a hydrogen atom, alkyl group, alkenyl group, alkynyl group, alkoxy group or aryl date . Suitable linkers may be exemplified by oxygen atoms. The side chain may be connected to the aromatic structure via, for example, an oxygen atom or a nitrogen atom.

When the aromatic structure is connected to the main chain of the block in the form of a side chain, the aromatic structure may be directly connected to the main chain or may be connected via a linker. In this case, linker, oxygen atom, sulfur atom, -S (= O) 2 - , a carbonyl group, an alkylene group, alkenylene group, alkynylene group, -C (= O) -X 1 - or -X 1 - C (= O) - and the like can be exemplified, wherein X 1 may be a single bond, an oxygen atom, a sulfur atom, -S (= O) 2 -, an alkylene group, an alkenylene group or an alkynylene group. Suitable linkers connecting the aromatic structure to the backbone include, but are not limited to, -C (= O) -O- or -OC (= O) -.

In another example, the aromatic structure included in the first and / or second block of the block copolymer may comprise one or more, two or more, three or more, four or more, or five or more halogen atoms. The number of halogen atoms may be, for example, 30 or less, 25 or less, 20 or less, 15 or less, or 10 or less. Examples of the halogen atom include fluorine or chlorine, and the use of a fluorine atom may be advantageous. As described above, a block having an aromatic structure containing a halogen atom can efficiently realize a phase separation structure through proper interaction with other blocks.

Examples of the aromatic structure containing a halogen atom include, but are not limited to, aromatic structures having 6 to 30 carbon atoms, 6 to 25 carbon atoms, 6 to 21 carbon atoms, 6 to 18 carbon atoms, or 6 to 13 carbon atoms.

In the case where both the first and second blocks in the block copolymer include an aromatic structure, the first block includes an aromatic structure not containing a halogen atom and the second block contains a halogen atom Containing aromatic structure. The aromatic structure of the first block may be linked to the above-mentioned side chain chain directly or via a linker including oxygen or nitrogen.

When the block copolymer comprises a block having a side chain chain, this block may be, for example, a block represented by the following general formula (1).

[Chemical Formula 1]

Figure pat00001

Wherein R is hydrogen or an alkyl group having 1 to 4 carbon atoms and X is a single bond, an oxygen atom, a sulfur atom, -S (= O) 2 -, a carbonyl group, an alkylene group, an alkenylene group, C (= O) -X 1 - or -X 1 -C (= O) -, wherein X 1 represents an oxygen atom, a sulfur atom, -S (═O) 2 -, an alkylene group, And Y is a monovalent substituent group comprising a ring structure having a chain having 8 or more chain forming atoms linked thereto.

The term single bond in the present application means that no separate atom is present at that site. For example, when X in the general formula (1) is a single bond, a structure in which Y is directly connected to a polymer chain can be realized.

As used herein, unless otherwise specified, the alkyl group may be a straight, branched or cyclic alkyl group of 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms Which may optionally be substituted by one or more substituents, provided that when the side chain is an alkyl group, the alkyl group may have 8 or more, 9 or more, 10 or more, 11 or 12 or more carbons Atoms, and the number of carbon atoms of the alkyl group may be 30 or less, 25 or less, 20 or less, or 16 or less).

As used herein, the term alkenyl or alkynyl group means a straight, branched or cyclic alkyl group having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms or 2 to 4 carbon atoms, Alkenyl group or alkynyl group which may optionally be substituted by one or more substituents, provided that the above-mentioned alkenyl or alkynyl group as the side chain is at least 8, at least 9, at least 10, at least 11, Or more than 12 carbon atoms, and the number of carbon atoms of the alkenyl group or alkynyl group may be 30 or less, 25 or less, 20 or less, or 16 or less).

The term alkylene group as used herein includes, unless otherwise specified, a linear, branched or cyclic alkylene group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms Which may optionally be substituted by one or more substituents.

The term alkenylene group or alkynylene group as used herein means a straight chain, branched chain or ring having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms or 1 to 4 carbon atoms, Lt; / RTI > alkylene group, which may optionally be substituted by one or more substituents.

Further, X in the general formula (1) may be -C (= O) O- or -OC (= O) - in another example.

In the general formula (1), Y is a substituent containing the above-mentioned chain, and may be, for example, a substituent containing an aromatic structure having 6 to 18 carbon atoms or 6 to 12 carbon atoms. The chain may be, for example, a straight chain alkyl group containing at least 8, at least 9, at least 10, at least 11, or at least 12 carbon atoms. The alkyl group may contain up to 30, up to 25, up to 20 or up to 16 carbon atoms. Such a chain may be directly connected to the aromatic structure or via the above-mentioned linker.

The first block may be represented by the following formula (2) in another example.

(2)

Figure pat00002

R is hydrogen or an alkyl group having 1 to 4 carbon atoms, X is -C (= O) -O-, P is an arylene group having 6 to 12 carbon atoms, Q is an oxygen atom, Z is a chain- Lt; RTI ID = 0.0 > 8 < / RTI >

In Formula (3), P may be phenylene in another example, and Z may be a straight chain alkyl group having 9 to 20 carbon atoms, 9 to 18 carbon atoms, or 9 to 16 carbon atoms in another example. In the above, when P is phenylene, Q may be connected to the para position of the phenylene. In the above, the alkyl group, arylene group, phenylene group and chain may be optionally substituted with one or more substituents.

When the block copolymer includes a block having an aromatic structure containing a halogen atom, the block may be, for example, a block represented by the following formula (3).

(3)

Figure pat00003

In formula 3 X 2 is a single bond, an oxygen atom, sulfur atom, -S (= O) 2 - , alkylene group, alkenylene group, alkynylene group, -C (= O) -X 1 - or -X 1 -C (= O) - and, in the X 1 is a single bond, oxygen atom, sulfur atom, -S (= O) 2 - , alkylene group, alkenyl group or alkynyl group, and W is at least one halogen Is an aryl group containing an atom.

X 2 in Formula (3) may be a single bond or an alkylene group in another example.

In formula (3), the aryl group of W may be an aryl group having 6 to 12 carbon atoms or may be a phenyl group, and the aryl group or phenyl group may have one or more, two or more, three or more, four or five or more halogen atoms . The number of halogen atoms in the above may be, for example, 30 or less, 25 or less, 20 or less, 15 or less, or 10 or less. As the halogen atom, a fluorine atom may be exemplified.

The block of formula (3) may be represented by the following formula (4) in another example.

[Chemical Formula 4]

Figure pat00004

In formula (4), X 2 is as defined in formula (3), R 1 to R 5 are each independently hydrogen, an alkyl group, a haloalkyl group or a halogen atom, and the number of halogen atoms contained in R 1 to R 5 is 1 or more to be.

In formula (4), R 1 to R 5 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a haloalkyl group having 1 to 4 carbon atoms, or halogen, wherein the halogen may be chlorine or fluorine.

In Formula 4, at least 2, at least 3, at least 4, at least 5 or at least 6 of R 1 to R 5 may contain a halogen. The upper limit of the number of halogen atoms is not particularly limited and may be, for example, 12 or less, 8 or less, or 7 or less.

The block copolymer may be a block copolymer containing either one or both of the above two types of blocks together with another block or containing only the two types of blocks.

In one example, two blocks of the block copolymer, e.g., any of the first and second blocks, may be a crosslinkable block. As described above, any one of the blocks is made into a cross-linkable block, thereby improving etch selectivity and the like. In order to make a block a crosslinkable block, there is a method of introducing a crosslinkable substituent into the block. Examples of the crosslinkable functional group that can be introduced into the block copolymer include a benzoylphenoxy group, an alkenyloxycarbonyl group, a (meth) acryloyl group or an alkenyloxyalkyl group, an azide alkylcarbonyloxy group, a glycidyl azide, And functional groups crosslinked by ultraviolet rays or heat such as azide-containing functional groups, sulfur-containing functional groups, or unsaturated double bond-containing functional groups such as benzophenone,

The crosslinkable functional group may be introduced into each block described above, or may be introduced into each block in a separate unit.

The manner of producing the block copolymer is not particularly limited. The block copolymer is polymerized by, for example, an LRP (Living Radical Polymerization) method. Examples thereof include an organic rare earth metal complex as a polymerization initiator or an organic alkali metal compound as a polymerization initiator to form an alkali metal or alkaline earth metal , An anion polymerization method in which an organic alkali metal compound is used as a polymerization initiator and synthesized in the presence of an organoaluminum compound, an anion polymerization method using an atom transfer radical polymerization agent as a polymerization initiator, (ATRP), Atomic Transfer Radical Polymerization (ATRP), and ICAR (Atomization Transfer), which perform polymerization under an organic or inorganic reducing agent that generates electrons using an atom transfer radical polymerization agent as a polymerization initiator. Initiators for continuous activator regeneration) Atom Transfer Radical Polymerization (ATRP) (RAFT) using a reversible addition-cleavage chain transfer agent using a reducing agent addition-cleavage chain transfer agent, or a method using an organic tellurium compound as an initiator. Among these methods, an appropriate method can be selected and applied.

For example, the block copolymer can be prepared in a manner that includes polymerizing a reactant containing monomers capable of forming the block in the presence of a radical initiator and a living radical polymerization reagent by living radical polymerization . The preparation of the block copolymer may further include, for example, a step of precipitating the polymerization product produced through the above process in the non-solvent.

The kind of the radical initiator is not particularly limited and may be appropriately selected in consideration of the polymerization efficiency. For example, AIBN (azobisisobutyronitrile) or 2,2'-azobis-2,4-dimethylvaleronitrile (2,2 ' -azobis- (2,4-dimethylvaleronitrile), and peroxides such as benzoyl peroxide (BPO) or di-t-butyl peroxide (DTBP).

The living radical polymerization process can be carried out in the presence of a base such as, for example, methylene chloride, 1,2-dichloroethane, chlorobenzene, dichlorobenzene, benzene, toluene, acetone, chloroform, tetrahydrofuran, dioxane, monoglyme, diglyme, Amide, dimethylsulfoxide or dimethylacetamide, and the like.

Examples of the non-solvent include ethers such as alcohols such as methanol, ethanol, n-propanol or isopropanol, glycols such as ethylene glycol, n-hexane, cyclohexane, n-heptane or petroleum ether, But is not limited thereto.

The present application is also directed to a polymer membrane comprising said block copolymer. The polymer membrane can be used for various purposes, for example, various electronic or electronic devices, a process of forming the pattern, a recording medium such as a magnetic storage medium, a flash memory, or a biosensor.

In one example, the block copolymer in the polymer membrane may be self-assembled to implement a cyclic structure including a sphere, a cylinder, a gyroid or a lamellar, . Such a structure may be vertically oriented. For example, in a block copolymer, other segments within the segments of the first or second block or other covalently bonded blocks may form a regular structure such as a lamellar or cylinder shape, And may be vertically oriented.

The polymer membrane of the present application can exhibit a peak perpendicular to the X coordinate in the above-described inflation impression diffraction pattern, that is, the GISAXS diffraction pattern in the GISAXS analysis. In a further example, the peak identified in the X coordinate of the GISAXS diffraction pattern may be at least two or more, and when there are a plurality of peaks, the scattering vector (q values) of the peak may be identified with an integer ratio.

The present application also relates to a method for forming a polymer film using the block copolymer. The method may include forming a polymer membrane including the block copolymer on a substrate in a self-assembled state. For example, the method may include coating the block copolymer or a coating solution containing the block copolymer to form a layer, and then aging the layer. The aging process may be a thermal annealing process or a solvent annealing process.

Thermal aging can be performed based on, for example, the phase transition temperature or the glass transition temperature of the block copolymer, and can be performed at, for example, a temperature above the glass transition temperature or the phase transition temperature. The time at which such thermal aging is performed is not particularly limited, and can be performed within a range of, for example, about 1 minute to 72 hours, but this can be changed as required. The heat treatment temperature in the thermal aging process may be, for example, about 100 ° C to 250 ° C, but may be changed in consideration of the block copolymer to be used.

Further, the solvent aging step may be performed in a non-polar solvent and / or a polar solvent at a suitable room temperature for about 1 minute to 72 hours.

The present application also relates to a method of pattern formation. The above method is a method for selectively removing the first or second block of the block copolymer in a laminate having a substrate and a polymer film formed on the surface of the substrate and self-assembled with the block copolymer . ≪ / RTI > The method may be a method of forming a pattern on the substrate. For example, the method may include forming a polymeric film comprising the block copolymer on a substrate, selectively removing one or more blocks of the block copolymer present in the film, and then etching the substrate . In this way, it is possible to form, for example, a nanoscale fine pattern. In addition, various patterns such as nano-rods, nano-holes, and the like can be formed through the above-described method depending on the type of the block copolymer in the polymer film. If necessary, the block copolymer may be mixed with another copolymer or homopolymer for pattern formation. The type of the substrate to be applied to this method is not particularly limited and may be selected as required. For example, silicon oxide or the like may be applied.

For example, the method can form a nanoscale pattern of silicon oxide that exhibits a high aspect ratio. For example, the polymer film is formed on silicon oxide, and one block of the block copolymer is selectively removed while the block copolymer in the polymer film forms a predetermined structure. Thereafter, the silicon oxide is removed in various ways, for example, , Reactive ion etching, or the like to form various patterns including patterns of nano-rods or nano holes. In addition, it is possible to realize a nano pattern having a large aspect ratio through such a method.

For example, the pattern can be implemented in a scale of several tens of nanometers, and such a pattern can be utilized for various purposes including, for example, a next-generation information electronic magnetic recording medium and the like.

For example, the method can form a pattern in which nanostructures having a width of about 10 nm to 40 nm, for example, nanowires are disposed at intervals of about 20 nm to 80 nm. In another example, it is possible to implement a structure in which a width of about 10 nm to 40 nm, for example, nano holes having a diameter of about 20 nm to 80 nm is formed.

Also, in the above structure, the nanowires and nano holes can have a large aspect ratio.

The method of selectively removing one block of the block copolymer in the above method is not particularly limited. For example, a method of removing a relatively soft block by irradiating an appropriate electromagnetic wave, for example, ultraviolet light, Can be used. In this case, the ultraviolet ray irradiation conditions are determined depending on the type of the block of the block copolymer, and can be performed, for example, by irradiating ultraviolet light having a wavelength of about 254 nm for 1 minute to 60 minutes.

Following the ultraviolet irradiation, the polymer membrane may be treated with an acid or the like to further remove the segment decomposed by ultraviolet rays.

The step of selectively etching the substrate using the polymer film from which the block is removed is not particularly limited and may be performed by, for example, a reactive ion etching step using CF 4 / Ar ions, etc., followed by an oxygen plasma Removing the polymer membrane from the substrate by treatment or the like.

The present application can provide a block copolymer and its use that can be used effectively in various applications because of its excellent self-assembly property or phase separation property.

1 and 2 are diagrams showing a GISAXS diffraction pattern.
3 to 10 are SEM photographs of the polymer membrane.
11 to 15 are diagrams showing the results of analysis of GIWAXS, respectively.
FIG. 16 is a diagram showing an exemplary method for calculating the K value of the equation A. FIG.
Figs. 17 to 19 are diagrams showing GISAXS diffraction patterns. Fig.

Hereinafter, the present application will be described in detail by way of examples and comparative examples according to the present application, but the scope of the present application is not limited by the following examples.

One. NMR  Measure

NMR analysis was performed at room temperature using an NMR spectrometer including a Varian Unity Inova (500 MHz) spectrometer with a triple resonance 5 mm probe. The analytes were diluted to a concentration of about 10 mg / ml in a solvent for NMR measurement (CDCl 3 ), and chemical shifts were expressed in ppm.

<Application Abbreviation>

br = broad signal, s = singlet, d = doublet, dd = doublet, t = triplet, dt = double triplet, q = quartet, p = octet, m = polyline.

2. GPC ( Come Permeation Chromatograph )

The number average molecular weight (Mn) and molecular weight distribution were measured using GPC (Gel Permeation Chromatography). Add a sample to be analyzed such as a block copolymer or a macroinitiator of the example or comparative example into a 5 mL vial and dilute with tetrahydrofuran (THF) to a concentration of about 1 mg / mL. After that, the calibration standard sample and the sample to be analyzed were filtered through a syringe filter (pore size: 0.45 μm) and then measured. The analytical program used was a ChemStation from Agilent Technologies. The elution time of the sample was compared with a calibration curve to determine the weight average molecular weight (Mw) and the number average molecular weight (Mn), and the molecular weight distribution (PDI ) Were calculated. The measurement conditions of GPC are as follows.

&Lt; GPC measurement condition >

Devices: 1200 series from Agilent Technologies

Column: Using PLgel mixed B from Polymer laboratories

Solvent: THF

Column temperature: 35 ° C

Sample concentration: 1 mg / mL, 200 L injection

Standard samples: Polystyrene (Mp: 3900000, 723000, 316500, 52200, 31400, 7200, 3940, 485)

3. GISAXS ( Grazing Incidence Small Angle  X ray Scattering )

The GISAXS analysis was performed using a Pohang accelerator 3C beamline. The block copolymer to be analyzed was diluted with fluorobenzene to a solid concentration of about 0.7 wt% to prepare a coating solution, and the coating solution was spin-coated on the substrate to a thickness of about 5 nm. The coating area is 2.25 cm2 (Width: 1.5 cm, length: 1.5 cm). The coated polymer membrane was dried at room temperature for about 1 hour and then thermally annealed at about 160 ° C for about 1 hour to induce a phase separation structure. Then, a film having a phase separation structure was formed. An X-ray diffraction pattern was obtained by scattering in a film with a detector (2D marCCD) after the X-ray was incident on the film at an incident angle within the range of about 0.12 to 0.23 degrees corresponding to the angle between the critical angle of the film and the critical angle of the substrate. At this time, the distance from the film to the detector was selected within a range of about 2 m to 3 m so that the self-assembly pattern formed on the film was well observed. The substrate may be a substrate having a hydrophilic surface (a silicon substrate treated with a solution of piranha and having a room temperature wetting angle of about 5 degrees relative to pure water) or a substrate having a hydrophobic surface (HMDS (hexamethyldisilazane) A silicon substrate having a recessed angle of about 60 degrees) was used.

4. XRD  Analysis method

The XRD analysis was performed by measuring the scattering intensity according to the scattering vector (q) by passing X-rays through the sample at the Pohang accelerator 4C beamline. As a sample, a block copolymer synthesized in the absence of a specific pretreatment was purified and then dried in a vacuum oven for one day to obtain a powdery block copolymer, which was used in an XRD measurement cell. For XRD pattern analysis, an X-ray with a vertical size of 0.023 mm and a horizontal size of 0.3 mm was used and a 2D marCCD was used as a detector. A scattered 2D diffraction pattern was obtained as an image. The obtained diffraction pattern was analyzed by a numerical analytical method using the minimum left - hand method to obtain information such as a scattering vector and a half width. In the analysis, an origin program was applied. A portion having the smallest intensity in the XRD diffraction pattern was taken as a baseline, and the intensity was set to be 0, The profile of the XRD pattern peak was subjected to Gaussian fitting, and the scattering vector and the half width were determined from the fitting results. The R square was at least 0.96 at the time of Gaussian fitting.

5. Measurement of surface energy

Surface energy was measured using a Drop Shape Analyzer (product of DSU100, KRUSS). The material to be measured (polymer) was diluted with flourobenzene to a solid concentration of about 2% by weight to prepare a coating solution. The coating solution was applied to a silicon wafer at a thickness of about 50 nm and a coating area of 4 cm 2 : 2 cm, length: 2 cm). The coating layer was dried at room temperature for about 1 hour and then subjected to thermal annealing at about 160 ° C for about 1 hour. The process of dropping the deionized water whose surface tension is known in the film subjected to thermal aging and obtaining the contact angle thereof was repeated 5 times to obtain an average value of the obtained five contact angle values. In the same manner, the process of dropping the diiodomethane having known surface tension and determining the contact angle thereof was repeated five times, and an average value of the obtained five contact angle values was obtained. The surface energy was determined by substituting the value (Strom value) of the surface tension of the solvent by the Owens-Wendt-Rabel-Kaelble method using the average value of the contact angle with the deionized water and diiodo methane obtained. The numerical values of surface energy for each block of the block copolymer were obtained by the method described above with respect to a homopolymer made only of the monomer forming the block.

6. GIWAXS ( Grazing Incidence Wide Angle  X ray Scattering )

The GIWAXS analysis was performed using a Pohang accelerator 3C beamline. The single copolymer to be analyzed was diluted with toluene (toulene) to a solids concentration of about 1 wt% to prepare a coating solution, and the coating solution was spin-coated on the substrate to a thickness of about 30 nm. The coating area is about 2.25 cm2 (Width: 1.5 cm, length: 1.5 cm). The coated polymer membrane was dried at room temperature for about 1 hour, and then subjected to thermal annealing at a temperature of about 160 DEG C for about 1 hour to form a film. An X-ray diffraction pattern was obtained by scattering in a film with a detector (2D marCCD) after the X-ray was incident on the film at an incident angle within the range of about 0.12 to 0.23 degrees corresponding to the angle between the critical angle of the film and the critical angle of the substrate. At this time, the distance from the film to the detector was selected within a range of about 0.1 m to 0.5 m so that the crystal or liquid crystal structure formed on the film was well observed. As a substrate, a silicon substrate having a room temperature wetting angle of about 5 degrees with respect to pure water was used as the piranha solution.

An azimuthal angle of the diffraction pattern in the range of 12 nm-1 to 16 nm-1 in the GIWAXS spectrum, an azimuthal angle in the range of 90 to 90 degrees (the azimuth angle when the upper direction of the diffraction pattern (out- ), And the half width was obtained from the graph through Gauss fitting. Further, when half of the peak is observed at the time of Gauss fitting, a value twice as large as the half width (FWHM) is defined as the half width of the peak.

7. DSC  analysis

DSC analysis was performed using a PerkinElmer DSC800 instrument. Using the above equipment, the sample to be analyzed was heated at a rate of 10 ° C per minute from 25 ° 2 to 200 ° C under a nitrogen atmosphere, cooled again at a rate of -10 ° C per minute from 200 ° C to -80 ° C, To 200 &lt; 0 &gt; C at a rate of 10 [deg.] C per minute to obtain an endothermic curve. The obtained endothermic curve was analyzed to determine the temperature (melt transition temperature, Tm) or the temperature (isotropic transition temperature, Ti) indicating the isotropic transition peak indicating the melting transition peak, and the area of the peak was obtained. The temperature was defined as the temperature corresponding to the apex of each peak. The area per unit mass of each peak is defined as the area of each peak divided by the mass of the sample, and this calculation can be calculated using the program provided by the DSC equipment.

8. Measurement of X according to formula A

The variables D, M, K and L applied to the equation A can be obtained by the following methods, respectively.

First, the sample to be analyzed (a homopolymer produced only from the monomer forming the first block or a homopolymer made from only the monomer forming the second block) is put into a solvent (ethanol) in which mass and density in air are known , The densities of the respective blocks are obtained through the masses, and their ratios are calculated.

M can be determined by the ratio of the molar mass of the monomers forming each block of the block copolymer. For example, in the case of each of the block copolymers in Examples, M is a monomer forming the first block 1 is 346.5 g / mol, and the molar mass of pentafluorostyrene forming the second block is 194.1 g / mol. From the ratio, the M can be calculated to be about 1.79.

L can be obtained by the ratio of the number of hydrogen atoms of the monomers forming each block of the block copolymer. For example, in the case of each of the block copolymers in Examples, L is a monomer which forms the first block The number of hydrogen atoms in the monomer of Production Example 1 is 34, and the number of hydrogen atoms of pentafluorostyrene forming the second block is 3, and from the ratio, L can be calculated to be about 11.3.

Finally, K can be calculated through the area of the spectrum obtained by the NMR measurement method described above. In this case, when the peaks derived from each block of the block copolymer do not overlap, the area of the peak derived from each block is simply And K can be obtained through the ratio.

However, when there is a portion where peaks derived from each block of the block copolymer overlap, the K should be obtained in consideration of this. For example, FIG. 18 attached is an exemplary NMR spectrum of a block copolymer comprising a unit derived from the compound of the formula (A) and a unit derived from pentafluorostyrene in Production Example 1 applied in the following examples and comparative examples, In the figure, the portion represented by e and the portion represented by d are peaks derived from the second block, that is, the pentafluorostyrene derived unit, and the remaining a, b, c, f, g, Is a peak originating from a unit derived from the compound of the formula (A) in Production Example 1. As can be seen from the figure, the peaks indicated by e and g are overlapped with the peaks indicated by d and f, and in such a case, the K value should be obtained in consideration of the overlapping.

In this case, a method of obtaining the K value in consideration of the overlapping is known. For example, the above can be obtained by applying an NMR analysis program such as a MestReC program or the like.

Manufacturing example  One. Of the monomer (A)  synthesis

The compound (DPM-C12) shown below was synthesized in the following manner. Hydroquinone (10.0 g, 94.2 mmol) and 1-bromododecane (23.5 g, 94.2 mmol) were placed in a 250-mL flask and dissolved in 100 mL of acetonitrile. Potassium carbonate was added and reacted at 75 ° C for about 48 hours under nitrogen. After the reaction, the remaining potassium carbonate was filtered off and acetonitrile used in the reaction was removed. A mixed solvent of DCM (dichloromethane) and water was added thereto to work up, and the separated organic layers were collected and dehydrated by passing through MgSO 4 . Subsequently, the title compound (4-dodecyloxyphenol) (9.8 g, 35.2 mmol) as white solid was obtained in a yield of about 37% using dichloromethane in column chromatography.

< NMR  Analysis results>

1 H-NMR (CDCl 3) : d6.77 (dd, 4H); d4.45 (s, 1 H); d3.89 (t, 2H); d 1.75 (p, 2H); d1.43 (p, 2H); d 1.33-1.26 (m, 16H); d 0.88 (t, 3 H).

(9.8 g, 35.2 mmol), methacrylic acid (6.0 g, 69.7 mmol), DCC (dicyclohexylcarbodiimide) (10.8 g, 52.3 mmol) and DMAP (p-dimethylaminopyridine) , 13.9 mmol), 120 mL of methylene chloride was added, and the reaction was allowed to proceed at room temperature under nitrogen for 24 hours. After completion of the reaction, the salt (urea salt) formed during the reaction was removed by filtration and the remaining methylene chloride was removed. The resulting product was recrystallized in a mixed solvent of methanol and water (1: 1 mixture) to obtain the title compound (7.7 g, 22.2 mmol) as a white solid. 1H-NMR (DMSO-d6) 63%. &Lt; / RTI &gt;

< NMR  Analysis results>

1 H-NMR (CDCl 3) : d7.02 (dd, 2H); d 6.89 (dd, 2 H); d6.32 (dt, 1 H); d5.73 (dt, 1 H); d 3.94 (t, 2 H); d 2.05 (dd, 3H); d, 1.76 (p, 2H); d1.43 (p, 2H); 1.34-1.27 (m, 16H); d 0.88 (t, 3 H).

(A)

Figure pat00005

In formula (A), R is a straight chain alkyl group having 12 carbon atoms.

Manufacturing example  2. Of the monomer (G)  synthesis

A compound of the following formula G was synthesized in the same manner as in Preparation Example 1, except that 1-bromobutane was used instead of 1-bromododecane. NMR analysis results of the above compound are as follows.

< NMR  Analysis results>

1 H-NMR (CDCl 3) : d7.02 (dd, 2H); d 6.89 (dd, 2 H); d6.33 (dt, 1 H); d5.73 (dt, 1 H); d 3.95 (t, 2 H); d 2.06 (dd, 3 H); d, 1.76 (p, 2H); d1.49 (p, 2H); d0.98 (t, 3H).

[Formula G]

Figure pat00006

In formula (G), R is a straight-chain alkyl group having 4 carbon atoms.

Manufacturing example  3. Of the monomer (C)  synthesis

A compound of the following formula (C) was synthesized in the same manner as in Preparation Example 1 except that 1-bromododecane was used instead of 1-bromododecane. NMR analysis results for the above compounds are shown below.

< NMR  Analysis results>

1 H-NMR (CDCl 3) : d7.02 (dd, 2H); d 6.89 (dd, 2 H); d6.33 (dt, 1 H); d5.72 (dt, 1 H); d 3.94 (t, 2 H); d 2.06 (dd, 3 H); d 1.77 (p, 2H); d1.45 (p, 2H); 1.34-1.28 (m, 12H); d0.89 (t, 3H).

&Lt; RTI ID = 0.0 &

Figure pat00007

In formula (C), R is a straight chain alkyl group having 10 carbon atoms.

Manufacturing example  4. Of the monomer (D)  synthesis

A compound of the following formula (D) was synthesized in the same manner as in Preparation Example 1 except that 1-bromotetradecane was used instead of 1-bromododecane. NMR analysis results for the above compounds are shown below.

< NMR  Analysis results>

1 H-NMR (CDCl 3) : d7.02 (dd, 2H); d 6.89 (dd, 2 H); d6.33 (dt, 1 H); d5.73 (dt, 1 H); d 3.94 (t, 2 H); d 2.05 (dd, 3H); d 1.77 (p, 2H); d1.45 (p, 2H); 1.36-1.27 (m, 20H); d 0.88 (t, 3H.)

[Chemical Formula D]

Figure pat00008

In formula (D), R is a straight chain alkyl group having 14 carbon atoms.

Manufacturing example  5. Of the monomer (E)  synthesis

A compound of the following formula (E) was synthesized in the same manner as in Preparation Example 1 except that 1-bromohexadecane was used instead of 1-bromododecane. NMR analysis results for the above compounds are shown below.

< NMR  Analysis results>

1 H-NMR (CDCl 3) : d7.01 (dd, 2H); d 6.88 (dd, 2 H); d6.32 (dt, 1 H); d5.73 (dt, 1 H); d 3.94 (t, 2 H); d 2.05 (dd, 3H); d 1.77 (p, 2H); d1.45 (p, 2H); 1.36-1.26 (m, 24H); d0.89 (t, 3H)

(E)

Figure pat00009

In formula (E), R is a straight chain alkyl group having 16 carbon atoms.

GIWAXS  And DSC  Analysis

Six homopolymers were prepared using the monomers prepared in Preparation Examples 1 to 5, respectively, and GIWAXS and DSC were analyzed for each of them. The results are summarized in Table 1 below. In the above, the homopolymer was prepared by a method of synthesizing a macro initiator using each monomer in the following Examples or Comparative Examples. In the above, the homopolymer was prepared by a method of synthesizing a macro initiator using each monomer in the following Examples or Comparative Examples. In addition, the results of the GIWAXS analysis for each production example are shown in Figs. 11 to 15, respectively. 11 to 15 are graphs showing the results of GIWAXS analysis for Production Examples 1 to 5, respectively.

In FIG. 11, R square was about 0.264 at Gauss fitting, R square was about 0.676 in FIG. 14, and R square was about 0.932 in FIG.


Manufacturing example
One 2 3 4 5 Tg 33 Tm -3 23 46 Ti 15 44 60 60 M / I 3.67 5.75 71.86 FWHM1 48 13 23 FWHM2 58 12 26 Chain forming atom 12 4 10 14 16 Tg : Glass transition temperature (unit: ° C)
Tm : Melting transition temperature (unit: ° C)
Ti : Isotropic transition temperature (unit: ° C)
M / I: ratio of the area (M) of the melt transition peak to the area (I) of the isotropic transition peak
FWHM1 : GIWAXS Of the peak at the azimuth angle of -90 degrees to -70 degrees Half width (Unit: degrees)
FWHM2 : GIWAXS Of the peak at an azimuth angle of 70 degrees to 90 degrees Half width (Unit: degrees)
Chain forming atom: number of chain forming atoms of the first block (= angle Manufacturing example  The number of carbon atoms of R in the formula)

Example 1.

1.785 g of the monomer (A) of Preparation Example 1 and 38 mg of cyanoisoproyldithiobenzoate (RAFT), 14 mg of azobisisobutyronitrile (AIBN) as a radical initiator and 4.765 mL of benzene were dissolved in 10 mL of Schlenk flask and stirred at room temperature for 30 minutes under a nitrogen atmosphere. Reversible addition ramentation chain transfer (RAFT) polymerization was carried out at 70 ° C for 4 hours. After the polymerization, the reaction solution was precipitated in 250 mL of methanol, which was an extraction solvent, and dried under reduced pressure to give a giant initiator of pink color. The yield of the macro initiator was about 83.1 wt%, and the number average molecular weight (Mn) and the molecular weight distribution (Mw / Mn) were 11,400 and 1.15, respectively. 0.3086 g of a macro initiator, 1.839 g of pentafluorostyrene monomer, and 0.701 mL of benzene were placed in a 10 mL Schlenk flask, stirred at room temperature for 30 minutes under a nitrogen atmosphere, and then subjected to Reversible Addition Ratio Chain Transfer (RAFT) The reaction was carried out. After the polymerization, the reaction solution was precipitated in 250 mL of methanol, which was an extraction solvent, and then dried under reduced pressure to obtain a pale pink block copolymer. The yield of the block copolymer was about 27.1 wt%, and the number average molecular weight (Mn) and the molecular weight distribution (Mw / Mn) were 18,900 and 1.19, respectively. The block copolymer includes a first block derived from the monomer (A) of Production Example 1 and a second block derived from the pentafluorostyrene monomer. The results of measurement of GISAXS (Grazing Incidence Small Angle X-ray Scattering) in the manner described above with respect to a surface having a room temperature wetting angle of 5 degrees against pure water as a hydrophilic surface for a block copolymer are shown in FIG. 1, The results of GISAXS (Grazing Incidence Small Angle X-ray Scattering) measured on the surface at a room temperature wetting angle of 60 degrees are shown in FIG. It can be seen from Figs. 1 and 2 that the GISAXS shows a diffraction pattern of inflation in either case.

Example  2.

A block copolymer was prepared in the same manner as in Example 1, except that the monomer (C) of Preparation Example 3 was used in place of the monomer (A) of Preparation Example 1, using a macro initiator and pentafluorostyrene as monomers. The block copolymer includes a first block derived from the monomer (C) of Production Example 4 and a second block derived from the pentafluorostyrene monomer. The GISAXS was performed on the block copolymer in the same manner as in Example 1, and the diffraction pattern of inflation on both hydrophilic and hydrophobic surfaces was confirmed.

Example  3.

A block copolymer was prepared in the same manner as in Example 1, except that the monomer (D) of Production Example 4 was used instead of the monomer (A) of Production Example 1, using a macro initiator and pentafluorostyrene as monomers. The block copolymer includes a first block derived from the monomer (D) of Production Example 5 and a second block derived from the pentafluorostyrene monomer. The GISAXS was performed on the block copolymer in the same manner as in Example 1, and the diffraction pattern of inflation on both hydrophilic and hydrophobic surfaces was confirmed.

Example  4.

A block copolymer was prepared in the same manner as in Example 1, except that the monomer (E) of Production Example 5 was used instead of the monomer (A) of Production Example 1, using a macro initiator and pentafluorostyrene as monomers. The block copolymer comprises a first block derived from the monomer (E) of Production Example 6 and a second block derived from the pentafluorostyrene monomer. The GISAXS was performed on the block copolymer in the same manner as in Example 1, and the diffraction pattern of inflation on both hydrophilic and hydrophobic surfaces was confirmed.

Comparative Example  One.

A block copolymer was prepared in the same manner as in Example 1 except that the monomer (G) of Production Example 2 was used in place of the monomer (A) of Production Example 1, using a macro initiator and pentafluorostyrene as monomers. The block copolymer includes a first block derived from the monomer (G) of Production Example 2 and a second block derived from the pentafluorostyrene monomer. GISAXS was performed on the block copolymer in the same manner as in Example 1, but the diffraction pattern of the inflation impression was not confirmed on both hydrophilic and hydrophobic surfaces.

Comparative Example  2.

Except that 4-methoxyphenylmethacrylate was used in place of the monomer (A) in Production Example 1, a block copolymer was prepared using a macromonomer and pentafluorostyrene as monomers in the same manner as in Example 1 Respectively. The block copolymer comprises a first block derived from the 4-methoxyphenyl methacrylate and a second block derived from the pentafluorostyrene monomer. GISAXS was performed on the block copolymer in the same manner as in Example 1, but the diffraction pattern of the inflation impression was not confirmed on both hydrophilic and hydrophobic surfaces.

Comparative Example  3.

A block copolymer was prepared in the same manner as in Example 1, except that dodecyl methacrylate was used instead of the monomer (A) in Production Example 1, using a macro initiator and pentafluorostyrene as monomers. The block copolymer comprises a first block derived from the dodecyl methacrylate and a second block derived from the pentafluorostyrene monomer. GISAXS was performed on the block copolymer in the same manner as in Example 1, but the diffraction pattern of the inflation impression was not confirmed on both hydrophilic and hydrophobic surfaces.

The results of GPC measurement of each of the macro initiators and the prepared block copolymers in the above Examples and Comparative Examples are summarized in Table 2 below.


Example Comparative Example
One 2 3 4 One 2 3 MI
Mn 11400 8500 8700 9400 9000 7800 8000
PDI 1.15 1.14 1.18 1.15 1.17 1.13 1.16 BCP
Mn 18900 17100 17400 18900 18800 18700 16700
PDI 1.19 1.17 1.18 1.17 1.20 1.16 1.20 MI:
BCP: block copolymer
Mn: number average molecular weight
PDI: molecular weight distribution

The properties of each of the above-prepared block copolymers were evaluated in the above-mentioned manner, and the results are summarized in Table 3 below.


Example Comparative Example Ref.
One 2 3 4 One 2 3 1st
block
SE 30.83 27.38 26.924 27.79 37.37 48.95 19.1 38.3
De One 1.02 0.99 One 1.11 1.19 0.93 1.05 Second
block
SE 24.4 24.4 24.4 24.4 24.4 24.4 24.4 41.8
De 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.18 SE difference 6.43 2.98 2.524 3.39 12.98 24.55 5.3 3.5 De Difference 0.57 0.55 0.58 0.57 0.46 0.38 0.64 0.13 Chain forming atom 12 10 14 16 4 One 12 n / D 3.75 3.45 4.24 4.44 2.82 1.98 - - SE : Surface energy (unit: mN / m)
De : Density (unit: g / cm 3 )
SE  Difference: The difference between the surface energy of the first block and the surface energy of the second block Absolute value
De  Difference: The difference between the density of the first block and the density of the second block Absolute value
Chain forming atom: the number of chain forming atoms of the first block
n / D: Equation 1 ( nq / (2 x?)) (N: number of chain forming atoms, q is a scattering vector of 0.5 nm -One  To 10 nm -One Lt; RTI ID = 0.0 &gt; a &lt; / RTI &gt; peak having the largest peak area in the range of &
Ref : Polystyrene- Polymethyl methacrylate  Block copolymer (first block: polystyrene block, second block: Polymethyl methacrylate  block)

The XRD patterns of the macromonomer of each of the above block copolymers were analyzed and are summarized in Table 4 below (in the case of Comparative Example 3, the peak was observed within the range of 0.5 nm -1 to 10 nm -1 of the scattering vector ).


Example Comparative Example
One 2 3 4 One 2 3 q peak value (unit: nm -1 ) 1.96 2.15 1.83 1.72 4.42 3.18 - Half width (unit: nm -1 ) 0.57 0.63 0.45 0.53 0.97 1.06 -

Test Example  1. Evaluation of Self-Assembly Characteristics

The coating solution prepared by diluting the block copolymer of Example or Comparative Example to a solid content concentration of 0.7% by weight in fluorobenzene was spin-coated (coating area: width × length = 1.5) on the silicon wafer to a thickness of about 5 nm cm x 1.5 cm), dried at room temperature for about 1 hour, and then thermally annealed at about 160 ° C for about 1 hour to form a self-assembled film. Scanning electron microscope (SEM) images were taken of the formed film. Figs. 3 to 6 are SEM images taken with respect to Examples 1 to 4. Fig. As can be seen from the figure, in the case of the block copolymer of the examples, the self-assembled polymer film in the line pattern was effectively formed. In contrast, in the case of the comparative example, proper phase separation was not induced. For example, FIG. 7 shows the SEM results for Comparative Example 3, confirming that effective phase separation was not induced.

Test Example  2. Evaluation of self-assembly characteristics

A polymer membrane was formed on the block copolymer prepared in Example 1 in the same manner as in Test Example 1 above. The polymer film was formed on a silicon substrate treated with a pyranase solution having a room temperature wetting angle of 5 degrees for pure water, a silicon oxide substrate having a wetting angle of about 45 degrees and a hexamethyldisilazane (HMDS) treated silicon substrate having the wetting angle of about 60 degrees. 8 to 10 are SEM images of polymer membranes formed with respect to the wetting angles of 5 degrees, 45 degrees, and 60 degrees, respectively. From the figure, it can be confirmed that the block copolymer realizes a phase separation structure effectively regardless of the surface characteristics of the substrate.

Test Example  3.

In the same manner as in Example 1 Block copolymers were prepared and the block copolymers (BCP1 to BCP4) were prepared such that the X value of the formula A was changed as follows by controlling the molar ratio of the monomer and the macro initiator.

X value of formula A D M K L BCP1 2.18 1.57 1.79 0.21 11.3 BCP2 1.85 1.57 1.79 0.29 11.3 BCP3 1.75 1.57 1.79 0.33 11.3 BCP4 1.26 1.57 1.79 0.95 11.3 D: a ratio (D2 / D1) of the density (D1) of the first block to the density (D2)
M: The molar mass (346.5 g / mol, M1) of the monomer of the formula (A) in Production Example 1, which is the monomer forming the first block, and the molar mass of the monomers, pentafluorostyrene, , M2) (M1 / M2)
K: A ratio (A2 / A1) of an area (A2) of a peak appearing in the second block in the 1 H-NMR and an area (A2) of a peak appearing in the first block,
L: The number of hydrogen atoms (34, H1) of the monomer of formula (A) in Production Example 1, which is the monomer forming the first block, and the number of hydrogen atoms of pentafluorostyrene, ) (H1 / H2)

Each of the block copolymers was diluted with fluorobenzene to a solid concentration of 0.7% by weight. The coating solution was spin-coated on a silicon wafer to a thickness of about 5 nm (coating area: width = 1.5 cm, = 1.5 cm), dried at room temperature for about 1 hour, and then subjected to thermal annealing at a temperature of about 160 캜 for about 1 hour to form a film. GISAXS was measured for the formed film in the manner described above and the results are shown in the figure. Figures 19 to 21 show the results for BCP1, BCP2 and BCP3, respectively. From the figure, it can be seen that the infra-red diffraction pattern is confirmed on GISAXS in the case of the block copolymer. However, in the case of BCP4, no definite result could be confirmed.

Claims (22)

  1. A first block showing a melt transition peak or an isotropic transition peak within a range of -80 deg. C to 200 deg. C in DSC (Differential scanning calorimetry), and a second block different from the first block.
  2. The method according to claim 1, wherein the first block represents both the melting transition peak and the isotropic transition peak, and the difference (Ti-Tm) between the temperature Ti at which the isotropic transition peak appears and the temperature Tm at which the melting transition peak appears is Lt; RTI ID = 0.0 &gt; 5 C &lt; / RTI &gt;
  3. The method according to claim 1, wherein the first block represents both the melting transition peak and the isotropic transition peak, and the ratio (M / I) of the area (I) of the isotropic transition peak to the area (M) Lt; RTI ID = 0.0 &gt; 500. &Lt; / RTI &gt;
  4. The block copolymer according to claim 1, wherein the first block exhibits a melt transition peak within a range of -10 캜 to 55 캜.
  5. 2. The block copolymer according to claim 1, wherein the first block has a branched chain and satisfies the following formula 1:
    [Equation 1]
    10 ° C ≤ Tm - 12.25 ° C × n + 149.5 ° C ≤ 10 ° C
    In the formula (1), Tm is the temperature at which the melting transition peak appears, and n is the number of chain-forming atoms of the sidechain chain.
  6. The block copolymer according to claim 1, wherein the range of X in the formula (2) is 1.25 or more.
    [Equation 2]
    X = 1 + (D x M) / (K x L)
    (D2 / D1) of density (D1) of the first block to density (D2) of the second block and M is the ratio of the molar mass (M1) of the first block to the molar mass K is the ratio of the area A2 of the peak due to the second block in the 1 H-NMR to the area A2 of the peak due to the first block A2 / A1) and L is the ratio (H1 / H2) of the number of moles (H1) of the hydrogen atoms of one mole of the first block repeating unit to the number (H2) of hydrogen atoms of one mole of the second block repeating unit.
  7. The block copolymer according to claim 1, wherein the first block or the second block comprises an aromatic structure.
  8. The block copolymer of claim 1, wherein the first and second blocks comprise an aromatic structure.
  9. The block copolymer according to claim 1, wherein the first block comprises an aromatic structure not containing a halogen atom, and the second block comprises an aromatic structure containing a halogen atom.
  10. The block copolymer according to claim 1, wherein the first block or the second block comprises a side chain having 8 or more chain forming atoms.
  11. The block copolymer according to claim 1, wherein the first block or the second block comprises a halogen atom.
  12. The block copolymer according to claim 1, wherein the first block comprises a side chain chain having at least 8 chain-forming atoms and the second block comprises a halogen atom.
  13. The block copolymer according to claim 1, wherein the first block or the second block comprises an aromatic structure to which side chain chains having at least 8 chain-forming atoms are connected.
  14. 14. The block copolymer according to claim 13, wherein the side chain is connected to the aromatic structure via an oxygen atom or a nitrogen atom.
  15. The block copolymer according to claim 1, wherein the first block or the second block comprises an aromatic structure substituted with a halogen atom.
  16. 2. The block copolymer according to claim 1, wherein the first block comprises an aromatic structure to which side chain chains having eight or more chain forming atoms are connected, and the second block includes an aromatic structure including a halogen atom.
  17. 2. The block copolymer according to claim 1, wherein the first block is a block including a unit represented by the following formula
    [Chemical Formula 1]
    Figure pat00010

    Wherein R is hydrogen or an alkyl group having 1 to 4 carbon atoms and X is a single bond, an oxygen atom, a sulfur atom, -S (= O) 2 -, a carbonyl group, an alkylene group, an alkenylene group, C (= O) -X 1 - or -X 1 -C (= O) -O-, wherein X 1 represents an oxygen atom, a sulfur atom, -S (═O) 2 -, an alkylene group, Or an alkynylene group, and Y is a monovalent substituent group including a ring structure having a chain having 8 or more chain-forming atoms.
  18. 2. The block copolymer according to claim 1, wherein the second block is a block copolymer represented by the following formula (3)
    (3)
    Figure pat00011

    In formula 3 X 2 is a single bond, an oxygen atom, sulfur atom, -S (= O) 2 - , alkylene group, alkenylene group, alkynylene group, -C (= O) -X 1 - or -X 1 -C (= O) -O- and in said X 1 is a single bond, oxygen atom, sulfur atom, -S (= O) 2 - , an alkylene group, an alkenylene group, or alkynylene group, W is at least one Lt; RTI ID = 0.0 &gt; halogen atoms. &Lt; / RTI &gt;
  19. A polymer membrane comprising the self-assembled block copolymer of claim 1.
  20. 20. The polymeric membrane according to claim 19, wherein the polymer film exhibits a peak perpendicular to the X coordinate in the grating angle incidence angle scattering (GISAXS) diffraction pattern.
  21. A method for forming a polymer membrane, which comprises forming on a substrate a self-assembled polymer membrane comprising the block copolymer of claim 1.
  22. And removing the first or second block of the block copolymer from the polymer membrane comprising the self-assembled block copolymer of claim 1 formed on the surface of the substrate.
KR1020150079491A 2014-09-30 2015-06-04 Block copolymer KR20160038711A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR20140131964 2014-09-30
KR1020140131964 2014-09-30

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
TW104132150A TWI591086B (en) 2014-09-30 2015-09-30 Block copolymer
CN201580060099.7A CN107075052B (en) 2014-09-30 2015-09-30 Block copolymer
EP15847157.3A EP3202800A4 (en) 2014-09-30 2015-09-30 Block copolymer
US15/515,821 US10703897B2 (en) 2014-09-30 2015-09-30 Block copolymer
JP2017517288A JP6538159B2 (en) 2014-09-30 2015-09-30 Block copolymer
PCT/KR2015/010332 WO2016053009A1 (en) 2014-09-30 2015-09-30 Block copolymer
KR1020150138196A KR101749415B1 (en) 2014-09-30 2015-09-30 Block copolymer

Publications (1)

Publication Number Publication Date
KR20160038711A true KR20160038711A (en) 2016-04-07

Family

ID=55789827

Family Applications (17)

Application Number Title Priority Date Filing Date
KR1020150079480A KR101835092B1 (en) 2014-09-30 2015-06-04 Block copolymer
KR1020150079488A KR20160038708A (en) 2014-09-30 2015-06-04 Block copolymer
KR1020150079490A KR20160038710A (en) 2014-09-30 2015-06-04 Block copolymer
KR1020150079487A KR101882369B1 (en) 2014-09-30 2015-06-04 Polymer layer
KR1020150079491A KR20160038711A (en) 2014-09-30 2015-06-04 Block copolymer
KR1020150079468A KR20160038701A (en) 2014-09-30 2015-06-04 Preparation method of patterened substrate
KR1020150079486A KR101781685B1 (en) 2014-09-30 2015-06-04 Block copolymer
KR1020150079473A KR101851973B1 (en) 2014-09-30 2015-06-04 Block copolymer
KR1020150079489A KR101832031B1 (en) 2014-09-30 2015-06-04 Bl℃k copolymer
KR1020150079469A KR20160038702A (en) 2014-09-30 2015-06-04 Preparation method of patterened substrate
KR1020150079483A KR101880212B1 (en) 2014-09-30 2015-06-04 Block copolymer
KR1020150079454A KR20160038700A (en) 2014-09-30 2015-06-04 Compositon for neural layer
KR1020150138198A KR101749416B1 (en) 2014-09-30 2015-09-30 Block copolymer
KR1020150138200A KR101756538B1 (en) 2014-09-30 2015-09-30 Preparation method of patterened substrate
KR1020150138199A KR101749417B1 (en) 2014-09-30 2015-09-30 Block copolymer
KR1020150138196A KR101749415B1 (en) 2014-09-30 2015-09-30 Block copolymer
KR1020150138201A KR101756539B1 (en) 2014-09-30 2015-09-30 Preparation method of patterened substrate

Family Applications Before (4)

Application Number Title Priority Date Filing Date
KR1020150079480A KR101835092B1 (en) 2014-09-30 2015-06-04 Block copolymer
KR1020150079488A KR20160038708A (en) 2014-09-30 2015-06-04 Block copolymer
KR1020150079490A KR20160038710A (en) 2014-09-30 2015-06-04 Block copolymer
KR1020150079487A KR101882369B1 (en) 2014-09-30 2015-06-04 Polymer layer

Family Applications After (12)

Application Number Title Priority Date Filing Date
KR1020150079468A KR20160038701A (en) 2014-09-30 2015-06-04 Preparation method of patterened substrate
KR1020150079486A KR101781685B1 (en) 2014-09-30 2015-06-04 Block copolymer
KR1020150079473A KR101851973B1 (en) 2014-09-30 2015-06-04 Block copolymer
KR1020150079489A KR101832031B1 (en) 2014-09-30 2015-06-04 Bl℃k copolymer
KR1020150079469A KR20160038702A (en) 2014-09-30 2015-06-04 Preparation method of patterened substrate
KR1020150079483A KR101880212B1 (en) 2014-09-30 2015-06-04 Block copolymer
KR1020150079454A KR20160038700A (en) 2014-09-30 2015-06-04 Compositon for neural layer
KR1020150138198A KR101749416B1 (en) 2014-09-30 2015-09-30 Block copolymer
KR1020150138200A KR101756538B1 (en) 2014-09-30 2015-09-30 Preparation method of patterened substrate
KR1020150138199A KR101749417B1 (en) 2014-09-30 2015-09-30 Block copolymer
KR1020150138196A KR101749415B1 (en) 2014-09-30 2015-09-30 Block copolymer
KR1020150138201A KR101756539B1 (en) 2014-09-30 2015-09-30 Preparation method of patterened substrate

Country Status (2)

Country Link
KR (17) KR101835092B1 (en)
TW (10) TWI583710B (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6361893B2 (en) 2013-12-06 2018-07-25 エルジー・ケム・リミテッド Block copolymer
US10287430B2 (en) 2014-09-30 2019-05-14 Lg Chem, Ltd. Method of manufacturing patterned substrate
JP6402867B2 (en) 2013-12-06 2018-10-10 エルジー・ケム・リミテッド Block copolymer
CN105899560B (en) 2013-12-06 2018-01-12 株式会社Lg化学 Block copolymer
CN106459326B (en) 2013-12-06 2019-08-13 株式会社Lg化学 Block copolymer
WO2015084123A1 (en) 2013-12-06 2015-06-11 주식회사 엘지화학 Block copolymer
WO2016053007A1 (en) 2014-09-30 2016-04-07 주식회사 엘지화학 Method for producing patterned substrate
WO2016053005A1 (en) 2014-09-30 2016-04-07 주식회사 엘지화학 Block copolymer
WO2015084126A1 (en) 2013-12-06 2015-06-11 주식회사 엘지화학 Block copolymer
US10160822B2 (en) 2013-12-06 2018-12-25 Lg Chem, Ltd. Monomer and block copolymer
EP3225641A4 (en) 2014-09-30 2018-09-26 LG Chem, Ltd. Block copolymer
US10202480B2 (en) 2013-12-06 2019-02-12 Lg Chem, Ltd. Block copolymer
JP6419820B2 (en) 2013-12-06 2018-11-07 エルジー・ケム・リミテッド Block copolymer
EP3078690A4 (en) 2013-12-06 2017-08-16 LG Chem, Ltd. Block copolymer
CN105916904B (en) 2013-12-06 2018-11-09 株式会社Lg化学 Block copolymer
WO2016053011A1 (en) 2014-09-30 2016-04-07 주식회사 엘지화학 Block copolymer
WO2015084122A1 (en) 2013-12-06 2015-06-11 주식회사 엘지화학 Block copolymer
WO2015084133A1 (en) 2013-12-06 2015-06-11 주식회사 엘지화학 Block copolymer
CN107075056B (en) 2014-09-30 2019-10-08 株式会社Lg化学 Block copolymer
JP6451966B2 (en) 2014-09-30 2019-01-16 エルジー・ケム・リミテッド Block copolymer
EP3202801A4 (en) 2014-09-30 2018-05-30 LG Chem, Ltd. Block copolymer
WO2016052999A1 (en) 2014-09-30 2016-04-07 주식회사 엘지화학 Block copolymer
KR102097819B1 (en) * 2016-11-30 2020-04-07 주식회사 엘지화학 Block copolymer
US20190292286A1 (en) * 2016-11-30 2019-09-26 Lg Chem, Ltd. Polymer Composition
KR20180062410A (en) * 2016-11-30 2018-06-08 주식회사 엘지화학 Polymer copolymer
JP2019534178A (en) * 2016-11-30 2019-11-28 エルジー・ケム・リミテッド Laminated body
KR101946775B1 (en) * 2016-11-30 2019-02-12 주식회사 엘지화학 Block copolymer
WO2018101730A1 (en) * 2016-11-30 2018-06-07 주식회사 엘지화학 Block copolymer
CN110023384A (en) * 2016-11-30 2019-07-16 株式会社Lg化学 Lamilate
KR102071914B1 (en) * 2016-11-30 2020-01-31 주식회사 엘지화학 Block copolymer
KR102096271B1 (en) * 2016-11-30 2020-05-27 주식회사 엘지화학 Block copolymer
KR20180062159A (en) * 2016-11-30 2018-06-08 주식회사 엘지화학 Preparation method for polymer layer
KR20180103568A (en) * 2017-03-10 2018-09-19 주식회사 엘지화학 Preparation method of patterened substrate
KR102096270B1 (en) * 2017-07-14 2020-04-02 주식회사 엘지화학 Compositon for neural layer
JP6328306B1 (en) 2017-09-04 2018-05-23 株式会社マコエンタープライズ Menu display method, menu display device, and menu display program
EP3665531A1 (en) * 2017-09-13 2020-06-17 LG Chem, Ltd. Preparation method of patterned substrate
TW201919886A (en) * 2017-09-15 2019-06-01 南韓商Lg化學股份有限公司 Laminate
CN111295283A (en) * 2017-11-07 2020-06-16 株式会社Lg化学 Polymer composition

Family Cites Families (17)

* Cited by examiner, † Cited by third party