KR20150102488A - 무선 통신 시스템에서 비가우시안 간섭채널을 생성하기 위한 방법 및 장치 - Google Patents

무선 통신 시스템에서 비가우시안 간섭채널을 생성하기 위한 방법 및 장치 Download PDF

Info

Publication number
KR20150102488A
KR20150102488A KR1020140024426A KR20140024426A KR20150102488A KR 20150102488 A KR20150102488 A KR 20150102488A KR 1020140024426 A KR1020140024426 A KR 1020140024426A KR 20140024426 A KR20140024426 A KR 20140024426A KR 20150102488 A KR20150102488 A KR 20150102488A
Authority
KR
South Korea
Prior art keywords
information
gaussian
modulation
channel quality
subcarrier
Prior art date
Application number
KR1020140024426A
Other languages
English (en)
Other versions
KR102171797B1 (ko
Inventor
홍성남
사공민
임치우
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020140024426A priority Critical patent/KR102171797B1/ko
Priority to CN201580010159.4A priority patent/CN106063212B/zh
Priority to US15/120,877 priority patent/US10277449B2/en
Priority to EP15755611.9A priority patent/EP3113433B1/en
Priority to PCT/KR2015/001948 priority patent/WO2015130135A1/ko
Publication of KR20150102488A publication Critical patent/KR20150102488A/ko
Application granted granted Critical
Publication of KR102171797B1 publication Critical patent/KR102171797B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/362Modulation using more than one carrier, e.g. with quadrature carriers, separately amplitude modulated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0012Modulated-carrier systems arrangements for identifying the type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2032Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner
    • H04L27/2053Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases
    • H04L27/206Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/106M-ary FSK

Abstract

무선 통신 시스템에서 기지국의 동작 방법이 제공된다. 상기 방법은 단말로부터 수신한 채널 상태 정보에서 채널 품질 정보와 할당된 영역에 대한 비가우시안(non-Gaussian) 정보를 획득하는 과정과, 상기 채널 품질 정보와 상기 비가우시안 정보를 기반으로 단말에 대한 변조, 코딩 레벨 및 부반송파 널링 비율을 결정하는 과정을 포함하는 것을 특징으로 한다.

Description

무선 통신 시스템에서 비가우시안 간섭채널을 생성하기 위한 방법 및 장치{METHOD AND APPARATUS FOR GENERATING NON-GAUSSIAN INTEFERENCE CHANNELS IN WIRELESS COMMUNICATION SYSTEM}
본 발명은 비가우시안 (non-Gaussian) 간섭채널을 형성하기 위한 방법 및 장치에 대한 것이다.
통신 시스템은 낮은 복잡도로 시스템을 운용 (적응적 변조 및 부호화 운용, 연판정 복호 메트릭 생성 등)하기 위하여 간섭 신호에 대하여 가우시안 가정을 해 왔다. 이로 인해, 간섭신호의 특성을 최대한 가우시안에 가깝게 만들기 위하여 Quadrature Amplitude Modulation (QAM) 계열의 변조방식을 주로 사용해 왔다. 또한, 최소 채널 부호화 율과 최소 변조차수를 적용해도 목표 에러 성능을 만족시킬 수 없는 단말에 대하여 QAM 심벌을 반복적으로 전송함으로써 목표 성능을 달성하게 하는 방식을 사용하였다.
하지만, 최근의 무선 통신 네트워크에서 가산 잡음의 통계적인 분포가 가우시안 분포를 따르는 경우가 채널 용량의 관점에서 최악의 경우임이 증명되었다. 따라서, 가산 잡음의 특성을 갖는 간섭 신호들의 통계적인 분포가 비가우시안 분포를 따르도록 하면 종래의 시스템 보다 더 높은 네트워크 처리량을 얻을 수 있을 것은 자명하다.
이러한 연유로 제안된 변조방식이 Frequency and Quadrature-Amplitude Modulation (FQAM) 이다. FQAM은 QAM과 Frequency-Shift Keying (FSK)가 결합된 하이브리드(Hybrid) 변조방식으로써 심벌을 구성하는 다수의 부반송파 중 일부만이 활성화 되므로 간섭신호의 통계적인 분포가 비가우시안하게 되는 특징이 있다.
이는 종래의 FSK 변조방식과 유사한 점이 있지만, FQAM은 활성화 되는 부반송파에 QAM심벌을 전송함으로써 FSK방식보다 스펙트럴 효율 (Spectral Efficiency)을 크게 개선한다.
FQAM을 간섭신호가 매우 강한 셀 외곽 사용자들에게 적용하게 되면 비가우시안 간섭채널이 형성되고, QAM 심벌을 반복 전송하여 가우시안 간섭채널을 형성하던 시스템 대비 네트워크 처리량을 매우 크게 개선할 수 있다. FQAM과 같은 변조방식을 적용하여 성능개선을 이루기 위해서는 비이진 부호화/복호화 기술의 적용이 필수적이다. 하지만, 비이진 부호화/복호화 기술은 복잡도가 매우 큰 문제점이 있다.
본 발명의 목적은 무선 통신 시스템에서 비가우시안 간섭채널을 생성하기 위한 변조방법 및 장치를 제공함에 있다.
본 발명의 다른 목적은 무선 통신 시스템에서 복잡도가 낮고 우수한 채널 용량을 제공하는 비가우시안 간섭채널을 생성하기 위한 변조방법 및 장치를 제공함에 있다.
본 발명의 또 다른 목적은 무선 통신 시스템에서 비가우시안 간섭채널을 형성하여 네트워크 처리량을 향상시키기 위한 방법 및 장치를 제공함에 있다.
본 발명의 또 다른 목적은 무선 통신 시스템에서 널링(Nulling) 방식을 이용하여 비이진 부호화/복호화 기술의 복잡도를 낮춘 방법 및 장치를 제공함에 있다.
본 발명의 제 1 견지에 따르면, 무선 통신 시스템에서 기지국의 동작 방법에 있어서, 상기 방법은 단말로부터 수신한 채널 상태 정보에서 채널 품질 정보와 할당된 영역에 대한 비가우시안 정보를 획득하는 과정과, 상기 채널 품질 정보와 상기 비가우시안 정보를 기반으로 단말에 대한 변조, 코딩 레벨 및 부반송파 널링 (nulling) 비율을 결정하는 과정을 포함하는 것을 특징으로 한다.
본 발명의 제 2 견지에 따르면, 무선 통신 시스템에서 단말의 동작 방법에 있어서, 상기 방법은 채널 품질 정보를 결정하는 과정과, 할당된 영역에 대한 비가우시안 정보를 측정하는 과정과, 상기 채널 품질 정보와 상기 비가우시안 정보를 기지국으로 전송하는 과정을 포함하는 것을 특징으로 한다.
본 발명의 제 3 견지에 따르면, 무선 통신 시스템에서 기지국의 장치에 있어서, 상기 장치는 정보를 송수신하는 모뎀과, 단말로부터 수신한 채널 상태 정보에서 채널 품질 정보와 할당된 영역에 대한 비가우시안 정보를 획득하고, 상기 채널 품질 정보와 상기 비가우시안 정보를 기반으로 단말에 대한 변조, 코딩 레벨 및 부반송파 널링 비율을 결정하는 제어부를 포함하는 것을 특징으로 한다.
본 발명의 제 4 견지에 따르면, 무선 통신 시스템에서 단말의 장치에 있어서, 상기 장치는 채널 품질 정보 및 할당된 영역에 대한 비가우시안 정보를 결정하는 제어부와, 상기 채널 품질 정보와 상기 비가우시안 정보를 기지국으로 전송하는 모뎀을 포함하는 것을 특징으로 한다.
본 발명은 비가우시안 간섭채널을 형성하고, 이진 채널 코드(binary channel codes)를 사용하여 기존 QAM 방식대비 성능을 크게 향상시킬 수 있는 이점이 있다.
본 발명은 비이진 채널 코드(non-binary channel codes)의 복잡도로 인해 FQAM을 적용할 수 없는 통신 시스템에 적용하여 비가우시안 간섭채널을 형성시킬 수 있고 이로 인하여 성능을 향상시킬 수 있는 이점이 있다.
도 1은 본 발명의 실시 예에 따른 NQAM (Nulling QAM)방식을 도시한 제 1 도면이다.
도 2는 본 발명의 실시 예에 따른 NQAM 방식을 도시한 제 2 도면이다.
도 3은 본 발명의 실시 예에 따른 NQAM을 이용한 동작 방식을 도시한 도면이다.
도 4는 본 발명의 실시 예에 따른 기지국의 MCS 레벨 결정 과정을 도시한 흐름도이다.
도 5는 본 발명의 실시 예에 따른 기지국의 MCS 결정 상세 과정을 도시한 흐름도이다.
도 6은 본 발명의 실시 예에 따른 송신부를 도시한 블록도이다.
도 7은 본 발명의 실시 예에 따른 수신부를 도시한 블록이다.
도 8은 본 발명의 실시 예에 따른 송신부의 동작 과정을 도시한 흐름도이다.
도 9는 본 발명의 실시 예에 따른 수신부의 동작 과정을 도시한 흐름도이다.
도 10는 본 발명의 실시 예에 따른 전자 장치의 블록 구성을 도시한 도면이다.
도 11은 본 발명의 실시 예에 따른 간섭채널의 분포를 도시한 도면이다.
도 12는 본 발명의 실시 예에 따른 성능을 도시한 제 1 도면이다.
도 13은 본 발명의 실시 예에 따른 성능을 도시한 제 2 도면이다.
이하 본 발명의 바람직한 실시 예를 첨부된 도면을 참조하여 상세히 설명한다. 그리고, 본 발명을 설명함에 있어서, 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 단말, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
이하, 본 발명은 무선 통신 시스템에서 비가우시안 간섭채널을 생성하기 위한 변조방법 및 장치에 대해 설명할 것이다.
본 발명은 간섭채널을 비가우시안화 함으로써 네트워크 처리량을 증가시킨다. 가우시안 간섭채널을 형성시키는 종래의 기술(QAM+repetition) 대신 비가우시안 간섭채널을 형성시키는 변조 방법을 제안한다. 특히, 본 발명은 QAM+repetition 대신 QAM 심볼의 파워를 증가시키고 사용하지 않는 부반송파를 둔다. 이 경우, 본 발명은 다른 사용자 입장에서 부반송파를 랜덤(random)하게 비활성화 시키는 것처럼 보이도록 부반송파를 비활성화 시키는 패턴을 적용한다.
그리고 사용하는 자원의 송신파워는 비활성화 시키는 자원의 비율에 맞추어 증가시킨다. 그리고 Orthogonal Frequency Division Multiple Access (OFDMA) 심볼마다 할당받은 자원블록(RB: Resource Block) 내에서 부반송파 단위의 퍼뮤테이션(Permutation)을 수행한다. 이 경우, 각 셀마다 다른 퍼뮤테이션 규칙을 적용한다.
본 발명은 이진 채널 코드(Binary channel codes) 적용으로 복잡도를 감소시킨다. 종래의 FQAM 방식은 비가우시안 간섭채널을 형성하지만 이진 채널 코드 대비 매우 큰 복잡도를 갖는 변조차수와 동일한 차수의 비이진 채널 코드를 적용해야 QAM+repetition 대비 성능 개선이 가능하다.
하지만, 본 발명은 이진 코드 적용으로도 QAM+repetition 대비 성능 개선이 가능하다. 즉, 본 발명은 FQAM 방식과 유사하게 비가우시안 간섭채널을 형성하지만 이진 코드를 적용하므로 복잡도를 크게 낮출 수 있다.
도 1은 본 발명의 실시 예에 따른 NQAM (Nulling QAM)방식을 도시한 제 1 도면이다.
상기 도 1을 참조하면, 본 발명은 가우시안 간섭채널을 형성시키는 기술 (QAM+repetition) 대신 비가우시안 간섭채널을 형성시키는 변조 방법을 제안한다. 특히, 본 발명은 QAM+repetition 대신 QAM 심볼의 파워를 증가시키고 사용하지 않는 부반송파를 비활성화시키는 방식을 사용한다.
이 경우, 본 발명은 다른 사용자 입장에서 부반송파를 랜덤(random)하게 비활성화시키는 것처럼 보이도록 부반송파를 비활성화시키는 패턴을 인터리빙 과정을 수행하여 적용한다. 그리고 본 발명은 비활성화시키는 자원의 비율에 맞추어 사용하는 자원의 송신파워를 증가시킨다.
그리고 본 발명은 OFDMA 심볼마다 할당받은 자원블록 내에서 부반송파 단위의 퍼뮤테이션을 수행한다. 이 경우, 각 셀마다 다른 퍼뮤테이션 규칙이 적용된다. 가능한 셀 마다의 퍼뮤테이션 규칙은 하기와 같다.
먼저, 본 발명은 할당받은 전체 자원 영역 내에서 부반송파 단위의 퍼뮤테이션할 수 있다. 또는, 할당받은 전체 자원 영역 내에서 정수 개의 부반송파씩 그룹화하고 해당 그룹 단위의 퍼뮤테이션을 수행할 수 있다. 또는, 할당받은 전체 자원 영역 내에서 각 OFDMA 심볼에 대하여 부반송파 단위의 퍼뮤테이션을 수행할 수 있다. 이 경우, OFDMA 심볼마다 동일한 퍼뮤테이션 규칙을 적용하거나, OFDMA 심볼마다 서로 다른 퍼뮤테이션 규칙을 적용할 수 있다. 또는, 할당받은 전체 자원 영역 내에서 각 OFDMA 심볼에 대하여 정수 개의 부반송파씩 그룹화 하고 해당 그룹 단위의 퍼뮤테이션을 수행할 수 있다. 이 경우, OFDMA 심볼 마다 동일한 퍼뮤테이션 규칙을 적용하거나, OFDMA 심볼마다 서로 다른 퍼뮤테이션 규칙을 적용할 수 있다.
도 2는 본 발명의 실시 예에 따른 NQAM 방식을 도시한 제 2 도면이다.
상기 도 2를 참조하면, 전술한 바와 같이, 본 발명은 가우시안 간섭채널을 형성시키는 기술 (QAM+repetition) 대신 비가우시안 간섭채널을 형성시키는 변조 방법을 제안한다.
이를 위해, 본 발명은 NQAM 을 사용하여 비가우시안 간섭채널을 형성시키기 위하여 기존 QAM 을 사용하는 밴드와 NQAM을 사용하는 밴드를 별도로 운용한다.
도면에서는 해당 슬롯에서 RB-(N+1)~RB-M까지의 밴드가 NQAM을 사용하는 밴드이고, RB-1~RB-N까지의 밴드가 QAM을 사용하는 밴드인 것을 나타내고 있다.
도 3은 본 발명의 실시 예에 따른 NQAM을 이용한 동작 방식을 도시한 도면이다.
상기 도 3을 참조하면, 기지국(310)은 단말(350)로 채널 상태 보고를 요청한다(a 단계). 이 경우, 단말(350)로 보고 요청한 채널 상태는 단말(350)이 할당받은 영역의 SINR (Signal-to-Interference-Plus-Noise Ratio), NQAM 영역의 비가우시안 정도를 포함한다.
이후, 단말(350)는 할당받은 영역의 채널 상태를 측정하여 기지국(310)으로 보고한다(b 단계). 이 경우, 단말(350)이 보고한 채널 상태는 단말(350)이 할당받은 영역의 SINR, NQAM 영역의 비가우시안 정도를 포함한다.
이후, 기지국(310)은 제공받은 SINR 및 NQAM 영역의 비가우시안 정도를 이용하여 단말(350)에 적합한 MCS레벨을 결정한다(c 단계)
이후, 기지국(310)은 결정한 MCS 레벨을 적용한 신호를 단말(350)로 전송한다(d 단계). 이후, 기지국(310)은 결정한 MCS레벨을 단말(350)에 통보한다(e 단계). 여기서, 상기 d) 단계와 e) 단계는 동시에 수행될 수 있다.
이후, 단말(350)은 수신한 MCS 레벨을 수신신호 복조 과정에 적용한다(f 단계).
도 4는 본 발명의 실시 예에 따른 기지국의 MCS 레벨 결정 과정을 도시한 흐름도이다.
상기 도 4를 참조하면, 단말이 보고한 SINR 이 Sth 보다 큰 경우(410 단계), 기지국은 종래의 QAM을 사용하는 시스템과 같이 MCS레벨을 결정한다. 즉, 기존과 같이 SINR에 따라, 미리 정의한 MSC레벨 (code rate, QAM 변조차수)를 결정한다(420 단계). 여기서, Sth 는 NQAM 사용여부를 결정짓는 임계 값이다
만약, 단말이 보고한 SINR 이 Sth 보다 크지 않은 경우 (410 단계), 단말이 보고한 NQAM 영역의 비가우시안 정도(α)를 고려하여, 단말의 MCS레벨을 결정한다(430 단계). 여기서, 기지국은 활성 부반송파수/할당 부반송파 수, code rate, QAM의 변조차수를 결정한다.
본 발명에서 비가우시안정도인 α 를 구하는 과정은 다음과 같다.
대부분의 채널 복호화기(channel decoder)는 Log-Likelihood Ratio (LLR)을 입력으로 받아 정보 비트(information bit) 또는 심벌(symbol)을 추정(estimation)한다. 일반적으로, 이진 복호화기(binary decoder)는 하기 <수학식 1>과 같이 LLR을 계산한다.
Figure pat00001
상기 <수학식 1>에서, 상기
Figure pat00002
은 이진 복호화에 대응하는 k번째 심벌의 λ번째 비트의 LLR, 상기
Figure pat00003
는 k번째 송신 심벌에 대한 채널 계수의 추정, 상기
Figure pat00004
는 k번째 송신 심벌에 대응하는 수신 신호, 상기
Figure pat00005
는 λ번째 비트가 0인 후보 심벌들의 집합, 상기
Figure pat00006
는 λ번째 비트가 1인 후보 심벌들의 집합, 상기
Figure pat00007
는 k번째 수신 심벌에 대한 PDF, 상기
Figure pat00008
는 k번째 송신 심벌을 의미한다. 상기
Figure pat00009
는 송신 가능한 심벌 후보를 나타내는 더미 변수(dummy variable)이다. 16-QAM의 경우, 상기
Figure pat00010
는 전체 16개 심벌들 중 8개, 상기
Figure pat00011
는 나머지 8개를 포함한다.
상기 <수학식 1>을 통해 알 수 있듯이, 채널 복호화에 필요한 LLR을 계산하기 위해서는 PDF (Probability Density Function)의 계산이 필요하다.
기존의 비가우시안 복호 방법 중에 대표적인 방법으로, CGG(Complex Generalized Gaussian)복호 방식이 존재한다. 상기 CGG 복호 방식은 간섭 신호 또는 잡음이 CGG 분포를 따른다고 가정하고, LLR 또는 PDF를 계산하여 계산된 결과를 채널 복호화기의 입력으로 제공한다. 상기 CGG 복호 방식은 가우시안 복호 방식을 포함하므로, 본 발명에서는 상기 CGG 복호 방식에 대해서만 설명한다. CGG 분포의 PDF는 하기 <수학식 2>과 같다.
Figure pat00012
상기 <수학식 2>에서, 상기
Figure pat00013
는 잡음의 PDF, 상기
Figure pat00014
는 잡음을 나타내는 변수, 상기
Figure pat00015
는 모양 파라미터(shape parameter)로서 비가우시안의 정도를 표현하는 변수, 상기
Figure pat00016
는 스케일 파라미터(scale parameter)로서 분산(variance)을 표현하는 변수, 상기
Figure pat00017
는 감마 함수(Gamma function)로서,
Figure pat00018
로 정의된다.
상기 <수학식 2>에서, CGG 분포의 PDF는, 상기 α가 2이면 가우시안(Gaussian) 분포에 따르고, 상기 α가 2보다 작으면 헤비 테일(heavy-tail)을 가지는 수퍼 가우시안(super Gaussian) 분포에 따르고, 상기 α가 2보다 크면 라이트 테일(light-tail)을 가지는 서브 가우시안(sub Gaussian) 분포에 따르게 된다. 즉, 상기 α가 2인 경우, 상기 CGG 복호 방식은 가우시안 복호 방식과 동일하다.
대부분의 간섭 신호 및 잡음들은 상기 α 값이 0 내지 2에 속하는 수퍼 가우시안 또는 가우시안으로 모델링된다. 스케일 파라미터(Scale parameter)라 불리는 상기 β는 가우시안 PDF의 분산과 같은 역할을 수행한다. 대부분의 비가우시안 복호 방식에 사용되는 PDF들은 CGG 분포의 α 및 β와 같은 모양 파라미터 및 스케일 파라미터를 포함한다. 따라서, 본 발명이 CGG를 예로 들어 설명하나, 본 발명은 현존하는 대부분의 비가우시안 복호 방식들에도 동일하게 적용될 수 있음은 자명하다.
QAM을 CGG 복호하기 위해서, 하기 <수학식 3>과 같은 PDF 식의 계산이 필요하다.
Figure pat00019
상기 <수학식 3>에서, 상기
Figure pat00020
는 송신 심벌의 PDF,
Figure pat00021
는 k번째 송신 심벌에 대응하는 수신 신호, 상기
Figure pat00022
는 k번째 송신 심벌에 대한 채널 계수, 상기
Figure pat00023
는 k번째 송신 심벌, 상기
Figure pat00024
는 모양 파라미터, 상기
Figure pat00025
는 스케일 파라미터, 상기
Figure pat00026
는 감마 함수(Gamma function)로서,
Figure pat00027
로 정의된다.
상기 <수학식 3>의 α값 및 β값을 추정하는 방법은 다양하게 존재한다. 이하, 본 발명은 이미 제안된 방법인 모먼트 매칭(moment matching) 기법을 예로 들어 설명한다. 상기 모먼트 매칭 기법에 따르면, 1차 모먼트(moment) 및 2차 모먼트를 매칭(matcning) 시킴으로써 상기 α값 및 상기 β값 추정된다. 상기 α값 및 상기 β값 추정을 수식으로 표현하면 하기 <수학식 4>와 같다.
Figure pat00028
상기 <수학식 4>에서, 상기
Figure pat00029
는 모양 파라미터, 상기
Figure pat00030
는 스케일 파라미터,
Figure pat00031
는 k번째 송신 심벌에 대응하는 수신 신호, 상기
Figure pat00032
는 k번째 송신 심벌에 대한 채널 계수, 상기
Figure pat00033
는 경판정(hard decision) 방식으로 추정한 k번째 송신 심벌, 상기
Figure pat00034
는 감마 함수(Gamma function)로서,
Figure pat00035
로 정의된다.
도 5는 본 발명의 실시 예에 따른 기지국의 MCS 결정 상세 과정을 도시한 흐름도이다.
상기 도 5를 참조하면, 단말이 보고한 SINR 이 Sth 보다 큰 경우(505 단계), 기지국은 NQAM을 사용하지 않고, 기존 방식대로 MCS레벨을 결정한다(510 단계). 여기서, Sth 는 NQAM을 사용여부를 결정짓는 임계 값이다.
만약, 단말이 보고한 SINR 이 Sth 근처의 값이고, α가 2와 가까운 값인 경우(515 단계), 즉, 가우시안 특성이 강한 채널인 경우, 기지국은 무선 채널의 비가우시안 특성을 강하게 하기 위하여 Rn 을 감소시키고(520 단계) 이에 따른 α의 변화와 SINR 값을 이용하여 Rc, M 을 결정하고 이에 따른 MCS 레벨을 결정한다(525 단계). 여기서, Rn은 할당 부반송파에 대한 활성 부반송파 비율이다. 즉, Rn = 활성 부반송파/할당 부반송파이다. Rc 는 무선 채널의 코드 레이트이고, M은 QAM 변조차수를 나타낸다. 상기 기지국은 Rc, M, Rn을 결정하고, 이에 따른 MCS 레벨을 결정할 수 있다.
만약, 단말이 보고한 SINR 이 Sth 근처의 값이고, α가 2보다 매우 작은 값인 경우(530 단계), 즉, 비가우시안 특성이 강한 채널인 경우(530 단계), 기지국은 현재 무선 채널은 비가우시안 특성 α에 적합한 Rn 을 결정하고 α와 SINR 값을 이용하여 Rc, M 을 결정하고 이에 따른 MCS 레벨을 결정한다(535 단계)
만약, 단말이 보고한 SINR 이 Sth 보다 매우 작은 값이고, α가 2와 가까운 값인 경우(540 단계), 즉, 가우시안 특성이 강한 채널인 경우, 기지국은 무선 채널의 비가우시안 특성을 강하게 만들기 위하여 Rn 을 매우 작은 값을 갖도록 설정하고(545 단계) 이에 따른 α의 변화와 SINR 값을 이용하여 Rc, M 을 결정하고 이에 따른 MCS 레벨을 설정한다(550 단계).
만약, 단말이 보고한 SINR 이 Sth 보다 매우 작은 값이고, α가 2보다 매우 작은 값인 경우(555 단계), 즉, 비가우시안 특성이 강한 채널인 경우, 현재 무선 채널의 비가우시안 특성 α에 적합한 Rn을 결정하고 α와 SINR 값을 이용하여 Rc, M 을 결정하여 이에 따른 MCS 레벨을 결정한다(560 단계).
상기 도 5에서, NQAM 밴드의 α이 커질수록, 즉, 무선 채널의 비가우시안 특성이 약해질수록, Rc, M, Rn 이 감소하고, NQAM 밴드의 α이 작아질수록, 즉, 무선 채널의 비가우시안 특성이 커질수록, Rc, M, Rn 이 증가함을 알 수 있다.
도 6은 본 발명의 실시 예에 따른 송신부를 도시한 블록도이다.
상기 도 6을 참조하면, 송신부의 블록의 구성을 도시한 것으로, 정보 비트는 인코딩부(605)에 입력되어 이진 채널 인코딩이 수행된다, 이진 채널 인코딩된 정보비트는 인터리빙부(610)에서 인터리빙되고, 인터리빙된 정보비트는 변조부(615)에서 변조된다. 상기 변조부(615)는 일 예로 변조방식으로 QAM을 이용할 수 있다.
이후, 변조된 QAM 심볼은 널링 부반송파 결정부(620)로 입력되고, 널링 부반송파 결정부(620)는 변조된 QAM 심볼에서 매핑할 부반송파를 결정할 시 널링 부반송파를 결정하여 설정한다. 즉, 할당 부반송파에 대한 활성 부반송파 비율인 Rn 에 따라 변조된 QAM 심볼에서 널링 부반송파를 결정하고 설정하여 매핑한다. 출력된 부반송파는 부반송파 퍼뮤테이션부(625)에 입력된다.
이후, 부반송파 퍼뮤테이션부(625)는 부반송파 단위로 퍼뮤테이션을 수행하여 출력한다. 상기 부반송파 퍼뮤테이션부(625)의 출력은 OFDMA 신호 처리부(630)에 입력된다. OFDMA 신호 처리부(630)는 IFFT(Inverse Fast Fourier Transform) 연산 및 CP(Cyclic Prefix) 삽입을 통해 OFDMA 심벌들을 구성한다. 본 발명에서는 OFDMA 시스템을 기반으로 설명하지만, Orthogonal Frequency Division Multiplexing (OFDM) 시스템으로 확장하는 것도 가능하다.
도 7은 본 발명의 실시 예에 따른 수신부를 도시한 블록이다.
상기 도 7을 참조하면, 수신부의 블록 구성을 도시한 것으로, 수신 신호는 OFDMA 신호부(705)에 입력되어 처리된다. OFDMA 신호부(705)는 상기 수신 신호를 OFDMA 심벌 단위로 분할하고, FFT(Fast Fourier Transform) 연산을 통해 부반송파들에 매핑된 신호들을 복원하여 출력한다.
이후, 부반송파 디퍼뮤테이션부(710)는 OFDMA 신호부(705)의 출력 신호에 대해 부반송파 단위의 디퍼뮤테이션을 수행한다.
이후, 비가우시안 결정부(715)에서 비가우시안 정도가 결정된다. 즉, 비가우시안 결정부(715)는 널링 부반송파를 이용한 무선 채널의 비가우시안 정도(α)를 결정한다. 또한, 비가우시안 결정부(715)는 OFDMA 신호부(705)의 출력 신호를 복조부(720)에 제공한다.
이후, 복조부(720)는 기지국에 의해 제시된 MCS 레벨 에 따라 제공받은 신호를 복조한다.
이후, 디인터링부(725)는 복조한 신호를 디인터리빙하고, 디코딩부(730)은 디인터리빙한 신호를 기지국에 의해 제시된 코드 레이트(Rc)에 따라 디코딩하여 복조비트를 출력한다. 본 발명에서는 OFDMA 시스템을 기반으로 설명하지만, OFDM 시스템으로 확장하는 것도 가능하다.
도 8은 본 발명의 실시 예에 따른 송신부의 동작 과정을 도시한 흐름도이다.
상기 도 8을 참조하면, 정보 비트는 인코딩부(605)에 입력되어 이진 채널 인코딩이 수행된다(805 단계), 이진 채널 인코딩된 정보비트는 인터리빙부(610)에서 인터리빙되고(810 단계), 인터리빙된 정보비트는 변조부(615)에서 변조된다(815 단계). 여기서, 상기 변조방식으로 QAM을 이용할 수 있다. 이후, 변조된 QAM 심볼은 부반송파 결정부(620)로 입력되고, 부반송파 결정부(620)는 변조된 QAM 심볼에서 매핑할 부반송파를 결정할 시 널링 부반송파를 결정하여 설정한다(820 단계). 즉, 할당 부반송파에 대한 활성 부반송파 비율인 Rn 에 따라 변조된 QAM 심볼에서 널링 부반송파를 결정하고 설정하여 매핑한다. 출력된 부반송파는 부반송파 퍼뮤테이션부(625)에 입력된다.
이후, 부반송파 퍼뮤테이션부(625)는 부반송파 단위로 퍼뮤테이션을 수행하여 출력한다(825 단계). 부반송파 퍼뮤테이션부(625)의 출력은 OFDMA 신호 처리부(630)에 입력된다. OFDMA 신호 처리부(630)는 IFFT(Inverse Fast Fourier Transform) 연산 및 CP(Cyclic Prefix) 삽입을 통해 OFDMA 심벌들을 구성한다(830 단계). 본 발명에서는 OFDMA 시스템을 기반으로 설명하지만, OFDM 시스템으로 확장하는 것도 가능하다.
도 9는 본 발명의 실시 예에 따른 수신부의 동작 과정을 도시한 흐름도이다.
상기 도 9를 참조하면, 수신 신호는 OFDMA 신호부(705)에 입력되어 처리된다(905 단계). OFDMA 신호부(705)는 상기 수신 신호를 OFDMA 심벌 단위로 분할하고, FFT(Fast Fourier Transform) 연산을 통해 부반송파들에 매핑된 신호들을 복원하여 출력한다.
이후, 부반송파 디퍼뮤테이션부(710)는 OFDMA 신호부(705)의 출력 신호에 대해 부반송파 단위의 디퍼뮤테이션을 수행한다(910 단계).
이후, 비가우시안 결정부(715)에서 비가우시안 정도가 결정된다(915 단계). 즉, 비가우시안 결정부(715)는 널링 부반송파를 이용한 무선 채널의 비가우시안 정도(α)를 결정한다. 또한, 비가우시안 결정부(715)는 OFDMA 신호부(705)의 출력 신호를 복조부(720)에 제공한다. 상기 비가우시안 정도(α)는 상기 기지국으로 보고될 수 있다.
이후, 복조부(720)는 기지국에 의해 제시된 MCS 레벨에 따라 제공받은 신호를 복조한다(920 단계). 일 예로, QAM 복조가 사용될 수 있다.
이후, 디인터링부(725)는 복조한 신호를 디인터리빙하고(925 단계), 디코딩부(730)은 디인터리빙한 신호를 기지국에 의해 제시된 코드 레이트(Rc)에 따라 디코딩하여 복조비트를 출력한다(930 단계).
본 발명에서는 OFDMA 시스템을 기반으로 설명하지만, OFDM 시스템으로 확장하는 것도 가능하다.
도 10는 본 발명의 실시 예에 따른 전자 장치의 블록 구성을 도시한 도면이다.
상기 도 10을 참조하면, 상기 전자장치는 본 발명에서 기지국 또는 단말에 해당한다. 상기 전자장치는 메모리(1010), 프로세서 유닛(Processor Unit)(1020), 입출력 제어부(1040), 표시부(1050) 및 입력 장치(1060)를 포함한다. 여기서, 메모리(1010)는 다수 개 존재할 수도 있다. 각 구성요소에 대해 살펴보면 다음과 같다.
메모리(1010)는 전자장치의 동작을 제어하기 위한 프로그램을 저장하는 프로그램 저장부(1011) 및 프로그램 수행 중에 발생되는 데이터를 저장하는 데이터 저장부(1012)를 포함한다.
데이터 저장부(1012)는 애플리케이션 프로그램(1013), NQAM 관리부(1014) 의 동작에 필요한 데이터를 저장할 수 있다.
프로그램 저장부(1011)는 애플리케이션 프로그램(1013), NQAM 관리부(1014)을 포함한다. 여기서, 프로그램 저장부(1011)에 포함되는 프로그램은 명령어들의 집합으로 명령어 세트(instruction set)로 표현할 수도 있다.
애플리케이션 프로그램(1013)은 상기 전자장치에서 동작하는 애플리케이션 프로그램을 포함한다. 즉, 애플리케이션 프로그램(1013)은 프로세서(1022)에 의해 구동되는 애플리케이션의 명령어를 포함한다.
상기 전자장치는 음성 통신 및 데이터 통신을 위한 통신 기능을 수행하는 통신 처리부(1090)를 포함하고, 통신 처리부(1090)는 전술한 도 6, 7의 송신부 및 수신부를 포함할 수 있다.
NQAM 관리부(1014)는 본 발명의 기지국에 있어서 다음과 같은 동작을 수행하도록 통신 처리부(1090)의 동작을 제어한다. 즉, NQAM 관리부(1014)는 통신 처리부(1090)의 동작을 제어하여 다음과 같은 동작을 수행하도록 지시하기 위해 제어한다.
NQAM 관리부(1014)는 정보 비트가 인코딩부(605)에 입력되어 이진 채널 인코딩이 수행하게 제어한다.
NQAM 관리부(1014)는 이진 채널 인코딩된 정보비트가 인터리빙부(610)에서 인터리빙되게 제어한다.
NQAM 관리부(1014)는 인터리빙된 정보비트가 변조부(615)에서 변조되게 제어한다. 여기서, 상기 변조방식으로 QAM을 이용할 수 있다.
NQAM 관리부(1014)는 부반송파 결정부(620)가 변조된 QAM 심볼에서 매핑할 부반송파를 결정할 시 널링 부반송파를 결정하여 설정하게 제어한다. 즉, NQAM 관리부(1014)는 할당 부반송파에 대한 활성 부반송파 비율인 Rn 에 따라 변조된 QAM 심볼에서 널링 부반송파를 결정하고 설정하여 매핑하도록 제어한다.
NQAM 관리부(1014)는 부반송파 퍼뮤테이션부(625)가 부반송파 단위로 퍼뮤테이션을 수행하여 출력하게 제어한다.
NQAM 관리부(1014)는 OFDMA 신호 처리부(630)로 하여금 IFFT(Inverse Fast Fourier Transform) 연산 및 CP(Cyclic Prefix) 삽입을 통해 OFDMA 심벌들을 구성하도록 제어한다.
NQAM 관리부(1014)는 본 발명의 단말에 있어서 다음과 같은 동작을 수행하도록 통신 처리부(1090)의 동작을 제어한다.
즉, NQAM 관리부(1014)는 통신 처리부(1090)의 동작을 제어하여 다음과 같은 동작을 수행하도록 지시한다.
NQAM 관리부(1014)는 수신 신호가 OFDMA 신호부(705)에 입력되어 처리되게 제어한다. 즉, NQAM 관리부(1014)는 OFDMA 신호부(705)가 상기 수신 신호를 OFDMA 심벌 단위로 분할하고, FFT(Fast Fourier Transform) 연산을 통해 부반송파들에 매핑된 신호들을 복원하여 출력하게 제어한다.
NQAM 관리부(1014)는 부반송파 디퍼뮤테이션부(710)가 OFDMA 신호부(705)의 출력 신호에 대해 부반송파 단위의 디퍼뮤테이션을 수행하게 제어한다.
NQAM 관리부(1014)는 비가우시안 결정부(715)가 비가우시안 정도를 결정하게 제어한다. 즉, NQAM 관리부(1014)는 비가우시안 결정부(715)가 널링 부반송파를 이용한 무선 채널의 비가우시안 정도(α)를 결정하게 제어한다.
NQAM 관리부(1014)는 복조부(720)가 기지국에 의해 제시된 MCS 레벨에 따라 제공받은 신호를 복조하게 제어한다. 일 예로, QAM 복조가 사용될 수 있다.
NQAM 관리부(1014)는 디인터링부(725)가 복조한 신호를 디인터리빙하게 제어한다.
NQAM 관리부(1014)는 디코딩부(730)가 디인터리빙한 신호를 기지국에 의해 제시된 코드 레이트(Rc)에 따라 디코딩하여 복조비트를 출력하게 제어한다.
본 발명에서는 OFDMA 시스템을 기반으로 설명하지만, OFDM 시스템으로 확장하는 것도 가능하다.
메모리 인터페이스(1021)는 프로세서(1022) 또는 주변 장치 인터페이스(1023)와 같은 구성요소의 메모리(1010) 접근을 제어한다.
주변 장치 인터페이스(1023)는 기지국의 입출력 주변 장치와 프로세서(1022) 및 메모리 인터페이스(1021)의 연결을 제어한다.
프로세서(1022)는 적어도 하나의 소프트웨어 프로그램을 사용하여 기지국이 해당 서비스를 제공하도록 제어한다. 이때, 프로세서(1022)는 메모리(1010)에 저장되어 있는 적어도 하나의 프로그램을 실행하여 해당 프로그램에 대응하는 서비스를 제공한다.
입출력 제어부(1040)는 표시부(1050) 및 입력 장치(1060) 등의 입출력 장치와 주변 장치 인터페이스(1023) 사이에 인터페이스를 제공한다.
표시부(1050)는 상태 정보, 입력되는 문자, 동화상(moving picture) 및 정화상(still picture) 등을 표시한다. 예를 들어, 표시부(1050)는 프로세서(1022)에 의해 구동되는 응용프로그램 정보를 표시한다.
입력 장치(1060)는 전자 장치의 선택에 의해 발생하는 입력 데이터를 입출력 제어부(1040)를 통해 프로세서 유닛(1020)으로 제공한다. 이때, 입력 장치(1060)는 적어도 하나의 하드웨어 버튼을 포함하는 키패드 및 터치 정보를 감지하는 터치 패드 등을 포함한다. 예를 들어, 입력 장치(1060)는 터치 패드를 통해 감지한 터치, 터치 움직임, 터치 해제 등의 터치 정보를 입출력 제어부(1040)를 통해 프로세서(1022)로 제공한다.
도 11은 본 발명의 실시 예에 따른 간섭채널 분포를 도시한 도면이다.
상기 도 11을 참조하면, FQAM은 4개의 부반송파 마다 1개의 부반송파가 활성화되는 환경이다. 본 발명의 방식도 1개의 데이터 부반송파당 3개의 부반송파를 비워 두도록 설정하였다. 본 발명의 NQAM은 FQAM과 유사한 비가우시안 간섭채널을 형성할 수 있음을 확인할 수 있다.
도 12는 본 발명의 실시 예에 따른 성능을 도시한 제 1 도면이다.
상기 도 12를 참조하면, 3 셀 구조하에서, 본 발명의 방식 적용 시 기존 QAM+repetition 대비 네트워크 처리량이 2배 증가됨을 알 수 있다.
본 발명의 방식은 채널 추정 오류가 발생하는 상황에서 기존 방식 대비 성능 개선 효과가 큼을 알 수 있다. 이는 본 발명에서 비워두는 부반송파에 의하여 파일롯 손상 정도가 감소되기 때문이다.
도 13은 본 발명의 실시 예에 따른 성능을 도시한 제 2 도면이다.
상기 도 13을 참조하면, 7-셀 구조 하에서 본 발명의 방식 적용 시 기존 QAM+repetition 대비 네트워크 처리량이 1.5배 증가됨을 알 수 있다. 간섭 셀이 이 증가되면 비가우시안 특성이 약화되므로 성능 개선 효과가 감소되지만, 여전히 제안하는 방법의 성능이 기존 방식보다 우수함을 알 수 있다.
한편 본 발명의 상세한 설명에서는 구체적인 실시 예에 관해 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능하다. 그러므로 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 아니 되며 후술하는 특허청구의 범위뿐만 아니라 이 특허청구의 범위와 균등한 것들에 의해 정해져야 한다.

Claims (22)

  1. 무선 통신 시스템에서 기지국의 동작 방법에 있어서,
    단말로부터 수신한 채널 상태 정보에서 채널 품질 정보와 할당된 영역에 대한 비가우시안(non-Gaussian) 정보를 획득하는 과정과,
    상기 채널 품질 정보와 상기 비가우시안 정보를 기반으로 단말에 대한 변조, 코딩 레벨 및 부반송파 널링 비율을 결정하는 과정을 포함하는 것을 특징으로 하는 방법.
  2. 제 1항에 있어서,
    결정된 변조, 코딩 레벨 및 부반송파 널링 비율에 따라 신호를 처리하는 과정과,
    처리한 신호에 대해 셀 특정 퍼뮤테이션을 수행하여 전송하는 과정을 더 포함하고,
    상기 신호 처리 시 이진 채널 코딩을 수행하는 것을 특징으로 하는 방법.
  3. 제 2항에 있어서,
    처리한 신호에 대해 셀 특정 퍼뮤테이션을 수행하는 과정은,
    할당받은 자원 영역 내에서 부반송파 또는 부반송파의 그룹 단위의 퍼뮤테이션을 수행하는 과정을 포함하는 것을 특징으로 하는 방법.
  4. 제 2항에 있어서,
    처리한 신호에 대해 셀 특정 퍼뮤테이션을 수행하는 과정은,
    할당받은 자원 영역 내에서 각 OFDMA 심볼에 대해 부반송파 또는 부반송파의 그룹 단위의 퍼뮤테이션을 수행하는 과정을 포함하는 것을 특징으로 하는 방법.
  5. 제 1항에 있어서,
    상기 할당된 영역에 대한 정보를 상기 단말에 전송하는 과정을 더 포함하는 방법.
  6. 제 1항에 있어서,
    상기 채널 품질 정보와 상기 비가우시안 정보를 기반으로 단말에 대한 변조, 코딩 레벨 및 부반송파 널링 비율을 결정하는 과정은,
    상기 채널 품질 정보와 상기 비가우시안 정보를 기반으로 상기 단말에 대한 변조차수, 채널 코드 레이트, 할당 부반송파에 대한 활성 부반송파의 비율을 결정하는 과정을 포함하는 것을 특징으로 하는 방법.
  7. 제 6항에 있어서,
    상기 채널 품질 정보와 상기 비가우시안 정보를 기반으로 단말에 대한 변조, 코딩 레벨 및 부반송파 널링 비율을 결정하는 과정은,
    상기 할당 영역의 비가우시안의 정도가 임계값보다 작을수록 상기 변조, 코딩 레벨 및 부반송파 널링 비율을 감소시키는 과정을 포함하는 것을 특징으로 하는 방법.
  8. 제 6항에 있어서,
    상기 채널 품질 정보와 상기 비가우시안 정보를 기반으로 단말에 대한 변조, 코딩 레벨 및 부반송파 널링 비율을 결정하는 과정은,
    상기 할당 영역의 비가우시안의 정도가 임계값보다 클수록 상기 변조, 코딩 레벨 및 부반송파 널링 비율을 증가시키는 과정을 포함하는 것을 특징으로 하는 방법.
  9. 무선 통신 시스템에서 단말의 동작 방법에 있어서,
    채널 품질 정보를 결정하는 과정과,
    할당된 영역에 대한 비가우시안(non-Gaussian) 정보를 측정하는 과정과,
    상기 채널 품질 정보와 상기 비가우시안 정보를 기지국으로 전송하는 과정을 포함하는 것을 특징으로 하는 방법.
  10. 제 10항에 있어서,
    상기 비가우시안 정보가 반영된 변조 및 코딩 레벨에 대한 신호를 수신하는 과정과,
    상기 신호에 셀 특정 디퍼뮤테이션을 수행하는 과정을 더 포함하는 것을 특징으로 하는 방법.
  11. 제 9항에 있어서,
    상기 할당된 영역에 대한 정보를 수신하는 과정을 더 포함하는 방법.
  12. 무선 통신 시스템에서 기지국의 장치에 있어서,
    정보를 송수신하는 모뎀과,
    단말로부터 수신한 채널 상태 정보에서 채널 품질 정보와 할당된 영역에 대한 비가우시안(non-Gaussian) 정보를 획득하고, 상기 채널 품질 정보와 상기 비가우시안 정보를 기반으로 단말에 대한 변조, 코딩 레벨 및 부반송파 널링 비율을 결정하는 제어부를 포함하는 것을 특징으로 하는 장치.
  13. 제 12항에 있어서,
    상기 모뎀은
    결정된 변조, 코딩 레벨 및 부반송파 널링 비율에 따라 신호를 처리하고,
    처리한 신호에 대해 셀 특정 퍼뮤테이션을 수행하여 전송하고,
    상기 신호 처리 시 이진 채널 코딩을 수행하는 것을 특징으로 하는 장치.
  14. 제 13항에 있어서,
    상기 모뎀은
    처리한 신호에 대해 셀 특정 퍼뮤테이션을 수행할 시,
    할당받은 자원 영역 내에서 부반송파 또는 부반송파의 그룹 단위의 퍼뮤테이션을 수행하는 것을 특징으로 하는 장치.
  15. 제 13항에 있어서,
    상기 모뎀은
    처리한 신호에 대해 셀 특정 퍼뮤테이션을 수행할 시,
    할당받은 자원 영역 내에서 각 OFDMA 심볼에 대해 부반송파 또는 부반송파의 그룹 단위의 퍼뮤테이션을 수행하는 것을 특징으로 하는 장치.
  16. 제 12항에 있어서,
    상기 모뎀은,
    상기 할당된 영역에 대한 정보를 상기 단말에 전송하는 것을 특징으로 하는 장치.
  17. 제 12항에 있어서,
    상기 제어부는,
    상기 채널 품질 정보와 상기 비가우시안 정보를 기반으로 단말에 대한 변조, 코딩 레벨 및 부반송파 널링 비율을 결정할 시,
    상기 채널 품질 정보와 상기 비가우시안 정보를 기반으로 상기 단말에 대한 변조차수, 채널 코드 레이트, 할당 부반송파에 대한 활성 부반송파의 비율을 결정하는 것을 특징으로 하는 장치.
  18. 제 17항에 있어서,
    상기 제어부는,
    상기 채널 품질 정보와 상기 비가우시안 정보를 기반으로 단말에 대한 변조, 코딩 레벨 및 부반송파 널링 비율을 결정할 시,
    상기 할당 영역의 비가우시안의 정도가 임계값보다 작을수록 상기 변조, 코딩 레벨 및 부반송파 널링 비율을 감소시키는 것을 특징으로 하는 장치.
  19. 제 17항에 있어서,
    상기 제어부는,
    상기 채널 품질 정보와 상기 비가우시안 정보를 기반으로 단말에 대한 변조, 코딩 레벨 및 부반송파 널링 비율을 결정할 시,
    상기 할당 영역의 비가우시안의 정도가 임계값보다 클수록 상기 변조, 코딩 레벨 및 부반송파 널링 비율을 증가시키는 것을 특징으로 하는 장치.
  20. 무선 통신 시스템에서 단말의 장치에 있어서,
    채널 품질 정보 및 할당된 영역에 대한 비가우시안(non-Gaussian) 정보를 결정하는 제어부와,
    상기 채널 품질 정보와 상기 비가우시안 정보를 기지국으로 전송하는 모뎀을 포함하는 것을 특징으로 하는 장치.
  21. 제 20항에 있어서,
    상기 모뎀은
    상기 비가우시안 정보가 반영된 변조 및 코딩 레벨에 대한 신호를 수신하고,
    상기 할당된 영역에 대한 정보를 수신하는 것을 특징으로 하는 장치.
  22. 제 20항에 있어서,
    상기 모뎀은,
    상기 할당된 영역에 대한 정보를 수신하는 것을 특징으로 하는 장치.
KR1020140024426A 2014-02-28 2014-02-28 무선 통신 시스템에서 비가우시안 간섭채널을 생성하기 위한 방법 및 장치 KR102171797B1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020140024426A KR102171797B1 (ko) 2014-02-28 2014-02-28 무선 통신 시스템에서 비가우시안 간섭채널을 생성하기 위한 방법 및 장치
CN201580010159.4A CN106063212B (zh) 2014-02-28 2015-02-27 用于在无线通信系统中生成非高斯干扰信道的方法和设备
US15/120,877 US10277449B2 (en) 2014-02-28 2015-02-27 Method and device for generating non-gaussian interference channel in wireless communication system
EP15755611.9A EP3113433B1 (en) 2014-02-28 2015-02-27 Method and device for generating non-gaussian interference channel in wireless communication system
PCT/KR2015/001948 WO2015130135A1 (ko) 2014-02-28 2015-02-27 무선 통신 시스템에서 비가우시안 간섭채널을 생성하기 위한 방법 및 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140024426A KR102171797B1 (ko) 2014-02-28 2014-02-28 무선 통신 시스템에서 비가우시안 간섭채널을 생성하기 위한 방법 및 장치

Publications (2)

Publication Number Publication Date
KR20150102488A true KR20150102488A (ko) 2015-09-07
KR102171797B1 KR102171797B1 (ko) 2020-10-29

Family

ID=54009378

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140024426A KR102171797B1 (ko) 2014-02-28 2014-02-28 무선 통신 시스템에서 비가우시안 간섭채널을 생성하기 위한 방법 및 장치

Country Status (5)

Country Link
US (1) US10277449B2 (ko)
EP (1) EP3113433B1 (ko)
KR (1) KR102171797B1 (ko)
CN (1) CN106063212B (ko)
WO (1) WO2015130135A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10050820B2 (en) 2014-09-12 2018-08-14 Samsung Electronics Co., Ltd. Apparatus and method for modulation/demodulation for transmitting and receiving signal in wireless communication system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170045016A (ko) * 2015-10-16 2017-04-26 삼성전자주식회사 통신 시스템에서 간섭 특성을 고려하여 사용자 단말기 동작을 제어하는 장치 및 방법
GB2552832B (en) * 2016-08-12 2019-08-14 Samsung Electronics Co Ltd Improvements in and relating to communication system resource allocation
US9929813B1 (en) * 2017-03-06 2018-03-27 Tyco Electronics Subsea Communications Llc Optical communication system and method using a nonlinear reversible code for probablistic constellation shaping
PL3616378T3 (pl) * 2017-04-25 2021-12-13 Telefonaktiebolaget Lm Ericsson (Publ) Generowanie sygnału FSK zawartego w sygnale OFDM
US11252004B2 (en) * 2020-03-30 2022-02-15 Huawei Technologies Co., Ltd. Multiple access wireless communications using a non-gaussian manifold

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090075597A (ko) * 2008-01-03 2009-07-08 엘지전자 주식회사 반복 채널 코딩을 위한 심볼 매핑 방법
KR20110068377A (ko) * 2009-12-16 2011-06-22 포항공과대학교 산학협력단 무선 통신 시스템에서 비가우시안 채널을 기반으로 한 연판정 정보 생성 방법 및 장치
US20130230013A1 (en) * 2010-11-25 2013-09-05 Lg Electronics Inc. Method and apparatus for transmitting a control channel and a data channel in a wireless communication system
KR20150020413A (ko) * 2013-08-14 2015-02-26 삼성전자주식회사 채널 정보 추정 방법 및 장치

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6456653B1 (en) * 1999-08-25 2002-09-24 Lucent Technologies Inc. Fast and accurate signal-to-noise ratio estimation technique for OFDM systems
JPWO2005006622A1 (ja) 2003-07-14 2007-09-20 松下電器産業株式会社 マルチキャリア送信装置、マルチキャリア受信装置及びマルチキャリア通信方法
KR100891806B1 (ko) * 2003-11-26 2009-04-07 삼성전자주식회사 직교 주파수 분할 다중 접속 시스템에서 적응적 채널할당을 위한 채널 상태 추정 장치 및 방법
US7489621B2 (en) * 2003-12-30 2009-02-10 Alexander A Maltsev Adaptive puncturing technique for multicarrier systems
GB0503928D0 (en) 2005-02-25 2005-04-06 Nokia Corp A wireless communications system
CN1909537A (zh) * 2005-08-02 2007-02-07 松下电器产业株式会社 用于提高多小区正交频分多址-时分多址系统容量的方法
CN101175308B (zh) 2006-11-01 2011-11-09 株式会社Ntt都科摩 蜂窝通信系统中上行链路资源的调度方法
US7885176B2 (en) * 2007-06-01 2011-02-08 Samsung Electronics Co., Ltd. Methods and apparatus for mapping modulation symbols to resources in OFDM systems
WO2008157609A2 (en) * 2007-06-18 2008-12-24 University Of Connecticut Apparatus, systems and methods for enhanced multi-carrier based underwater acoustic communications
CN101911577B (zh) * 2007-10-29 2014-09-17 爱立信电话股份有限公司 Ofdm系统中的控制信道数据分配方法及装置
US8625508B2 (en) * 2008-04-29 2014-01-07 Electronics And Telecommunications Research Institute Apparatus and method for transmitting data using multiple antenna for single carrier frequency division multiple access system
KR101527009B1 (ko) * 2008-07-11 2015-06-18 엘지전자 주식회사 다중 셀 기반에서 멀티-셀 mimo 적용 방법
US8254247B2 (en) * 2008-10-20 2012-08-28 Lg Electronics Inc. Method and apparatus for transmitting signal in a wireless communication system
WO2010087666A2 (en) * 2009-02-01 2010-08-05 Lg Electronics Inc. Method of allocating resources for transmitting uplink signal in mimo wireless communication system and apparatus thereof
KR20100097584A (ko) * 2009-02-26 2010-09-03 엘지전자 주식회사 다중안테나 시스템에서 데이터 전송 장치 및 방법
KR101753391B1 (ko) * 2009-03-30 2017-07-04 엘지전자 주식회사 무선 통신 시스템에서 신호 전송 방법 및 장치
US8340231B1 (en) 2009-07-08 2012-12-25 Marvell International Ltd. Optimal symbol detection in the presence of non-gaussian interference
KR101757452B1 (ko) * 2010-01-08 2017-07-13 삼성전자주식회사 무선 통신 시스템에서 자원 매핑 및 디매핑 방법 및 장치
US20120045024A1 (en) * 2010-02-24 2012-02-23 Qualcomm Incorporated Methods and apparatus for iterative decoding in multiple-input-multiple-output (mimo) communication systems
US20130107852A1 (en) * 2010-07-23 2013-05-02 Lg Electronics Inc. Method and device for transmitting control information in wireless communication system
WO2012053854A2 (ko) * 2010-10-21 2012-04-26 엘지전자 주식회사 다중 노드 시스템에서 신호 전송 방법
WO2012053858A2 (ko) * 2010-10-21 2012-04-26 엘지전자 주식회사 다중 노드 시스템에서 신호 전송 방법
KR101165643B1 (ko) * 2010-12-20 2012-07-17 엘지전자 주식회사 Ack/nack 전송방법 및 사용자기기와, ack/nack 수신방법 및 기지국
WO2012108912A1 (en) * 2011-02-07 2012-08-16 Intel Corporation Co-phasing of transmissions from multiple infrastructure nodes
JP2013255047A (ja) * 2012-06-06 2013-12-19 Sharp Corp 送信装置、受信装置、送信方法及び受信方法
KR101791761B1 (ko) * 2013-01-11 2017-10-30 인터디지탈 패튼 홀딩스, 인크 적응형 변조를 위한 시스템 및 방법
US9197385B2 (en) * 2013-03-28 2015-11-24 Sharp Laboratories Of America, Inc. Systems and methods for demodulation reference signal selection
CN103281267B (zh) 2013-05-17 2016-06-22 宁波大学 一种脉冲噪声环境下ofdm系统中的盲信道估计方法
WO2014193475A1 (en) * 2013-05-31 2014-12-04 Intel IP Corporation Hybrid digital and analog beamforming for large antenna arrays
US10159090B2 (en) * 2013-10-30 2018-12-18 Lg Electronics Inc. Method for transmitting, to MTC device, PDSCH including downlink data, and base station therefor
JP2017034294A (ja) * 2013-12-13 2017-02-09 シャープ株式会社 基地局装置、端末装置、送信方法及び受信方法
US9973362B2 (en) * 2014-03-07 2018-05-15 Huawei Technologies Co., Ltd. Common broadcast channel low PAPR signaling in massive MIMO systems
US9680678B2 (en) * 2014-06-23 2017-06-13 Intel IP Corporation Communication systems and methods
MX2017003569A (es) * 2014-09-25 2017-07-14 Sony Corp Dispositivo de comunicacion inalambrica, metodo de comunicacion inalambrica, y programa.
KR102438318B1 (ko) * 2014-10-10 2022-08-30 뉴라컴 인코포레이티드 고효율 무선랜에서 동적 자원 할당
EP3249870B1 (en) * 2015-01-23 2020-10-07 LG Electronics Inc. Method and apparatus for generating signal by device-to-device communication terminal in wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090075597A (ko) * 2008-01-03 2009-07-08 엘지전자 주식회사 반복 채널 코딩을 위한 심볼 매핑 방법
KR20110068377A (ko) * 2009-12-16 2011-06-22 포항공과대학교 산학협력단 무선 통신 시스템에서 비가우시안 채널을 기반으로 한 연판정 정보 생성 방법 및 장치
US20130230013A1 (en) * 2010-11-25 2013-09-05 Lg Electronics Inc. Method and apparatus for transmitting a control channel and a data channel in a wireless communication system
KR20150020413A (ko) * 2013-08-14 2015-02-26 삼성전자주식회사 채널 정보 추정 방법 및 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUNGNAM HONG et al., "FQAM : A modulation scheme for beyond 4G cellular wireless communication systems", 2013 IEEE Globecom Workshops(2013.12.09.)* *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10050820B2 (en) 2014-09-12 2018-08-14 Samsung Electronics Co., Ltd. Apparatus and method for modulation/demodulation for transmitting and receiving signal in wireless communication system

Also Published As

Publication number Publication date
CN106063212A (zh) 2016-10-26
KR102171797B1 (ko) 2020-10-29
EP3113433A4 (en) 2017-10-04
US10277449B2 (en) 2019-04-30
WO2015130135A1 (ko) 2015-09-03
US20160366006A1 (en) 2016-12-15
EP3113433A1 (en) 2017-01-04
CN106063212B (zh) 2019-11-01
EP3113433B1 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
JP5399412B2 (ja) 無線通信システム、及び無線通信方法
KR101239600B1 (ko) 이동국 장치, 기지국 장치 및 cqi 보고 방법
US9166736B2 (en) Communication apparatus and communication method
EP2936755B1 (en) Method and apparatus for transmitting/receiving signal in a communication system
KR100883354B1 (ko) 다중 반송파 무선 시스템에서 채널 품질 정보의 보고 주기결정 방법 및 장치
KR102171797B1 (ko) 무선 통신 시스템에서 비가우시안 간섭채널을 생성하기 위한 방법 및 장치
KR100871259B1 (ko) 통신 시스템에서 신호 수신 장치 및 방법
KR20140081753A (ko) 무선 통신 시스템에서 복수의 변조 기법을 이용한 신호 송수신 방법 및 장치
US9386547B2 (en) SC-FDMA transmission device and transmission method
AU2008346019A1 (en) Radio transmitting device and radio transmitting method
US9917722B2 (en) Modulation method and apparatus for signal transmission and reception in mobile communication system
KR101650573B1 (ko) 다중 사용자 ofdm 시스템의 적응적 자원 할당 방법 및 장치
JPWO2009133916A1 (ja) 無線通信システムおよび通信装置
KR20150020413A (ko) 채널 정보 추정 방법 및 장치
KR101645299B1 (ko) 서브-채널들에서 심벌들의 시간―주파수 맵핑을 이용하여 전송하기 위한 방법 및 디바이스
US10050820B2 (en) Apparatus and method for modulation/demodulation for transmitting and receiving signal in wireless communication system
JP5299641B2 (ja) マッピング方法、マッピング装置、移動局、通信システム及びプログラム
KR20090035790A (ko) 무선통신시스템에서 채널 추정 장치 및 방법
CN111277528B (zh) 传输方法及第一通信设备
JPWO2008156098A1 (ja) マッピング方法、マッピング装置、移動局、通信システム及びプログラム
Lee et al. Performance evaluation of adaptive modulation for multi-band OFDM
KR20090125453A (ko) 광대역 무선통신 시스템에서 자원 할당 정보 송/수신 장치및 방법

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right