KR20140108810A - Biosensor for Detecting Cancer Cell Treated Anti-cancer Drug and Preparation Method Thereof - Google Patents
Biosensor for Detecting Cancer Cell Treated Anti-cancer Drug and Preparation Method Thereof Download PDFInfo
- Publication number
- KR20140108810A KR20140108810A KR1020130022271A KR20130022271A KR20140108810A KR 20140108810 A KR20140108810 A KR 20140108810A KR 1020130022271 A KR1020130022271 A KR 1020130022271A KR 20130022271 A KR20130022271 A KR 20130022271A KR 20140108810 A KR20140108810 A KR 20140108810A
- Authority
- KR
- South Korea
- Prior art keywords
- biosensor
- polymer layer
- layer
- cancer
- cancer cells
- Prior art date
Links
- 201000011510 cancer Diseases 0.000 title claims abstract description 71
- 239000002246 antineoplastic agent Substances 0.000 title claims abstract description 15
- 238000002360 preparation method Methods 0.000 title description 3
- 229920002395 Aptamer Polymers 0.000 claims abstract description 21
- 239000002105 nanoparticle Substances 0.000 claims abstract description 15
- 229920001940 conductive polymer Polymers 0.000 claims abstract description 13
- STQGQHZAVUOBTE-VGBVRHCVSA-N DAUNOMYCIN Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 claims description 43
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 12
- 229920000642 polymer Polymers 0.000 claims description 9
- 239000005711 Benzoic acid Substances 0.000 claims description 7
- 229920001850 Nucleic acid sequence Polymers 0.000 claims description 6
- 150000007523 nucleic acids Chemical group 0.000 claims description 6
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-hydroxy-Succinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 claims description 5
- KXSFECAJUBPPFE-UHFFFAOYSA-N Terthiophene Chemical compound C1=CSC(C=2SC(=CC=2)C=2SC=CC=2)=C1 KXSFECAJUBPPFE-UHFFFAOYSA-N 0.000 claims description 4
- 125000003277 amino group Chemical group 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 239000000178 monomer Substances 0.000 claims description 4
- 206010057190 Respiratory tract infection Diseases 0.000 claims description 3
- AOJJSUZBOXZQNB-TZSSRYMLSA-N ADRIAMYCIN Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 claims description 2
- 229960001561 Bleomycin Drugs 0.000 claims description 2
- 108010006654 Bleomycin Proteins 0.000 claims description 2
- 229960000975 Daunorubicin Drugs 0.000 claims description 2
- 229960004679 Doxorubicin Drugs 0.000 claims description 2
- AOJJSUZBOXZQNB-VTZDEGQISA-N EPIRUBICIN Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-VTZDEGQISA-N 0.000 claims description 2
- 229960001904 EPIRUBICIN Drugs 0.000 claims description 2
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 claims description 2
- 150000001718 carbodiimides Chemical class 0.000 claims description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 claims description 2
- 229960004857 Mitomycin Drugs 0.000 claims 1
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 claims 1
- 239000006096 absorbing agent Substances 0.000 claims 1
- -1 duralubicin Chemical compound 0.000 claims 1
- 210000004027 cells Anatomy 0.000 description 83
- 239000010931 gold Substances 0.000 description 10
- 238000001514 detection method Methods 0.000 description 9
- 238000000157 electrochemical-induced impedance spectroscopy Methods 0.000 description 9
- 230000003993 interaction Effects 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000002484 cyclic voltammetry Methods 0.000 description 7
- 239000002609 media Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 239000000523 sample Substances 0.000 description 6
- 210000004881 tumor cells Anatomy 0.000 description 6
- 239000000427 antigen Substances 0.000 description 5
- 102000038129 antigens Human genes 0.000 description 5
- 108091007172 antigens Proteins 0.000 description 5
- 238000003380 quartz crystal microbalance Methods 0.000 description 5
- UCSJYZPVAKXKNQ-HZYVHMACSA-N 1-[(1S,2R,3R,4S,5R,6R)-3-carbamimidamido-6-{[(2R,3R,4R,5S)-3-{[(2S,3S,4S,5R,6S)-4,5-dihydroxy-6-(hydroxymethyl)-3-(methylamino)oxan-2-yl]oxy}-4-formyl-4-hydroxy-5-methyloxolan-2-yl]oxy}-2,4,5-trihydroxycyclohexyl]guanidine Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 4
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 4
- HKZLPVFGJNLROG-UHFFFAOYSA-M Silver chloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000034994 death Effects 0.000 description 4
- 231100000517 death Toxicity 0.000 description 4
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 4
- 206010006187 Breast cancer Diseases 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 3
- 238000004164 analytical calibration Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 102000004965 antibodies Human genes 0.000 description 3
- 108090001123 antibodies Proteins 0.000 description 3
- 230000000875 corresponding Effects 0.000 description 3
- 229920003013 deoxyribonucleic acid Polymers 0.000 description 3
- 238000004070 electrodeposition Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 210000001519 tissues Anatomy 0.000 description 3
- WPYMKLBDIGXBTP-UHFFFAOYSA-N Benzoic acid Natural products OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 210000000170 Cell Membrane Anatomy 0.000 description 2
- 206010008342 Cervix carcinoma Diseases 0.000 description 2
- 229940049954 Penicillin Drugs 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- 239000007759 RPMI Media 1640 Substances 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N Salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 210000002966 Serum Anatomy 0.000 description 2
- 229960005322 Streptomycin Drugs 0.000 description 2
- 235000010233 benzoic acid Nutrition 0.000 description 2
- 229960000626 benzylpenicillin Drugs 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 201000010881 cervical cancer Diseases 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 238000005755 formation reaction Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 229910021397 glassy carbon Inorganic materials 0.000 description 2
- 230000003899 glycosylation Effects 0.000 description 2
- 238000006206 glycosylation reaction Methods 0.000 description 2
- 238000001453 impedance spectrum Methods 0.000 description 2
- YMWUJEATGCHHMB-UHFFFAOYSA-N methylene dichloride Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N 2-mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K 2qpq Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 206010059512 Apoptosis Diseases 0.000 description 1
- 102000003852 Autoantibodies Human genes 0.000 description 1
- 108090000206 Autoantibodies Proteins 0.000 description 1
- 208000008787 Cardiovascular Disease Diseases 0.000 description 1
- 102000009058 Death Domain Receptors Human genes 0.000 description 1
- 108010049207 Death Domain Receptors Proteins 0.000 description 1
- 206010069844 Device electrical impedance issue Diseases 0.000 description 1
- 229920002971 Heparan sulfate Polymers 0.000 description 1
- 210000000987 Immune System Anatomy 0.000 description 1
- 206010064912 Malignant transformation Diseases 0.000 description 1
- 210000002264 Mammary Glands, Animal Anatomy 0.000 description 1
- 210000004293 Mammary Glands, Human Anatomy 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 238000006086 Paal-Knorr synthesis reaction Methods 0.000 description 1
- 108010079855 Peptide Aptamers Proteins 0.000 description 1
- UNJJBGNPUUVVFQ-ZJUUUORDSA-N Phosphatidylserine Chemical compound CCCC(=O)O[C@H](COC(=O)CC)COP(O)(=O)OC[C@H](N)C(O)=O UNJJBGNPUUVVFQ-ZJUUUORDSA-N 0.000 description 1
- 229920000034 Plastomer Polymers 0.000 description 1
- 239000007984 Tris EDTA buffer Substances 0.000 description 1
- 230000036462 Unbound Effects 0.000 description 1
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K [O-]P([O-])([O-])=O Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000003213 activating Effects 0.000 description 1
- 125000003275 alpha amino acid group Chemical group 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 230000000890 antigenic Effects 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 201000008274 breast adenocarcinoma Diseases 0.000 description 1
- UIIMBOGNXHQVGW-UHFFFAOYSA-M buffer Substances [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 1
- 125000000837 carbohydrate group Chemical group 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000005595 deprotonation Effects 0.000 description 1
- 238000010537 deprotonation reaction Methods 0.000 description 1
- LVSJLTMNAQBTPE-UHFFFAOYSA-N disodium tetraborate Chemical compound [Na+].[Na+].O1B(O)O[B-]2(O)OB(O)O[B-]1(O)O2 LVSJLTMNAQBTPE-UHFFFAOYSA-N 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N edta Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002593 electrical impedance tomography Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000001605 fetal Effects 0.000 description 1
- 238000003260 fluorescence intensity Methods 0.000 description 1
- 238000002073 fluorescence micrograph Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 201000010238 heart disease Diseases 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000004502 linear sweep voltammetry Methods 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000007431 microscopic evaluation Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006011 modification reaction Methods 0.000 description 1
- 230000003287 optical Effects 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- 230000001590 oxidative Effects 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 230000000865 phosphorylative Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- KAESVJOAVNADME-UHFFFAOYSA-N pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 229910052904 quartz Inorganic materials 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000005211 surface analysis Methods 0.000 description 1
- 230000004083 survival Effects 0.000 description 1
- KBLZDCFTQSIIOH-UHFFFAOYSA-M tetrabutylazanium;perchlorate Chemical compound [O-]Cl(=O)(=O)=O.CCCC[N+](CCCC)(CCCC)CCCC KBLZDCFTQSIIOH-UHFFFAOYSA-M 0.000 description 1
- SOBHUZYZLFQYFK-UHFFFAOYSA-K trisodium;hydroxy-[[phosphonatomethyl(phosphonomethyl)amino]methyl]phosphinate Chemical compound [Na+].[Na+].[Na+].OP(O)(=O)CN(CP(O)([O-])=O)CP([O-])([O-])=O SOBHUZYZLFQYFK-UHFFFAOYSA-K 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/406—Cells and probes with solid electrolytes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/115—Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/26—Preparation of nitrogen-containing carbohydrates
- C12P19/28—N-glycosides
- C12P19/30—Nucleotides
- C12P19/34—Polynucleotides, e.g. nucleic acids, oligoribonucleotides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/327—Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
- G01N27/3275—Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
- G01N27/3278—Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/406—Cells and probes with solid electrolytes
- G01N27/4065—Circuit arrangements specially adapted therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/16—Aptamers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2525/00—Reactions involving modified oligonucleotides, nucleic acids, or nucleotides
- C12Q2525/10—Modifications characterised by
- C12Q2525/205—Aptamer
Abstract
Description
본 발명은 항암제 처리된 암세포를 특이적, 정량적으로 검출하는 바이오센서 및 이의 제조방법에 관한 것이다. The present invention relates to a biosensor that specifically and quantitatively detects cancer cells treated with an anticancer agent and a method for producing the same.
암은 인간의 건강에 대한 가장 치명적인 위협 중의 하나이다. 미국에서는 매년 거의 1,300,000명의 새로운 환자가 암에 걸리며 심장병에 이어 제 2의 사망 원인으로 4명 중 약 1명에 이른다. 또한, 암은 5년 이내에 사망의 제 1 원인이 되어 심혈관 질병을 능가할 수 있다고 예측된다. 고형암이 이러한 사망의 대부분을 차지한다. 특정 암의 의학적 치료에 있어서는 상당한 진전이 있었지만, 모든 암에 대한 총 5-년 생존률은 지난 20년 동안 단지 약 10% 만이 개선되었다. 암 또는 악성 종양은 전이되며 조절되지 않는 방식으로 급속히 성장하므로, 적시에 발견하여 치료하기가 매우 어렵다. 또한, 암은 조직 내의 하나 또는 수개의 정상 세포가 악성 전환을 통해 신체 내의 거의 모든 조직으로부터 발생할 수 있으며, 특정한 조직 기원을 갖는 암의 유형 마다 서로 상이하다.Cancer is one of the deadliest threats to human health. In the United States, nearly 1,300,000 new patients each year are cancerous, with heart disease followed by about one in four deaths, the second leading cause of death. In addition, cancer is predicted to be the primary cause of death within five years, surpassing cardiovascular disease. Solid rock accounts for most of these deaths. Although there has been considerable progress in the medical treatment of certain cancers, the overall 5-year survival rate for all cancers has improved only about 10% over the last 20 years. Cancer or malignant tumors are metastasized and grow rapidly in an uncontrolled manner, making it very difficult to find and treat in a timely manner. Also, cancer can arise from almost all tissues in the body through malignant transformation of one or several normal cells in the tissue, and they are different for each type of cancer with a specific tissue origin.
종양세포는 "종양 항원"의 존재로 인해 정상 세포와 항원성에 있어서 상이하다. 이들은 종양세포에만 특유할 수 있거나, 또는 상이하게 발현되거나 과량으로 발현됨으로써 "종양-관련 항원"(TAA)으로서 인식된다. 종양세포는 단백질 1차 구조, 즉 아미노산 서열이 정상 세포와 상이할 뿐만 아니라(게놈 서열의 변화로부터 유래), 글리코실화, 포스포릴화의 변화와 같이 번역 후 변형의 변화로 인하여 2차 및 3차 구조도 정상 세포와 상이할 수 있으며, 이것은 계속해서 상기 단백질의 항원성을 변화시키고, 또한 그것을 종양-관련 항원으로서 특정한다. 한 전형적인 예는 유선에서 나오는 단백질 점액소인데, 이것 자체는 종양 세포에 존재하는 변화는 아니지만, 유방암 환자에서는 이것에 대한 자가항체가 발견된다(때로는 난소암에서도 그렇다). 그 이유는 아마도 정상 세포에서는 이 단백질이 고도로 글리코실화되고, 탄수화물 사슬의 치밀하고 두꺼운 코팅으로 인해서 전혀 노출되지 않기 때문인 것으로 추정된다. 종양세포에서 글리코실화가 불량하면, 항원성 결정소로서 작용하는 단백질 단편이 면역 시스템에 노출되게 된다.Tumor cells differ in antigenicity from normal cells due to the presence of "tumor antigens ". They may be specific for tumor cells, or are recognized as "tumor-associated antigens" (TAA) by being differentially expressed or overexpressed. Tumor cells are characterized by their primary structure, that is, their amino acid sequences are different from normal cells (derived from genomic sequence changes), and the changes in post-translational modifications, such as glycosylation and phosphorylation, The structure may also differ from normal cells, which in turn changes the antigenicity of the protein and also identifies it as a tumor-associated antigen. One typical example is protein mucin from the mammary gland, which itself is not a change in tumor cells, but autoantibodies against it are found in breast cancer patients (sometimes even in ovarian cancer). Probably because the protein is highly glycosylated in normal cells and is not exposed at all due to the dense and thick coating of the carbohydrate chains. If glycosylation is poor in tumor cells, the protein fragments acting as antigenic determinants are exposed to the immune system.
따라서, 특이적이고 보다 효과적인 암 치료 방법으로 상기 종양세포 특이적 항원을 표적하는 항체를 사용하는 연구 및, 상기 항체를 통해 암세포의 세포사멸을 유도하는 암치료제 개발이 현재 관심을 받고 있다. 상기 기술과 관련하여 국내공개특허공보 10-2010-0045903은 암세포의 세포사멸 수용체인 항 DR5를 표적하는 항체를 개시하고 있다. Therefore, there is a growing interest in research using an antibody targeting the tumor cell-specific antigen as a specific and more effective cancer treatment method and development of a cancer therapeutic agent for inducing apoptosis of cancer cells through the antibody. In connection with the above technology, Korean Patent Publication No. 10-2010-0045903 discloses an antibody that targets anti-DR5, a cell death receptor for cancer cells.
그러나, 암 세포 종류별로 표적 항원이 상이하고, 암 세포에만 특이적으로 발현하는 항원을 찾기 어려워, 보다 비침습적이고, 간편하며, 다양한 암세포에 보편적으로 적용되는 암 세포 검출 방법이 요구되고 있다. However, there is a need for a cancer cell detection method that is more non-invasive, simple, and universally applicable to various cancer cells because it is difficult to find antigens that are differentially expressed in cancer cells and specifically expressed in cancer cells only.
따라서 본 발명은 보다 비침습적이고, 간편하며, 다양한 암세포에 보편적으로 적용되는 암 세포 검출용 바이오센서 및 이의 제조방법을 제공하고자 한다. Accordingly, the present invention provides a biosensor for detecting cancer cells which is more non-invasive, simple, and universally applicable to various cancer cells and a method for producing the same.
상기 과제의 해결을 위하여, 본 발명은 Au 나노입자층을 전착시킨 전극; 상기 Au 나노입자층 상단에 형성된 전기전도성 고분자층; 및 상기 전기전도성 고분자층 상단에 고정된 압타머층을 포함하는 항암제 처리된 암세포 검출용 바이오센서를 제공한다. In order to solve the above problems, the present invention provides an electrode comprising an Au nanoparticle layer electrodeposited; An electroconductive polymer layer formed on the Au nanoparticle layer; And an aptamer layer fixed on an upper portion of the electrically conductive polymer layer. The present invention also provides a biosensor for detecting cancer cells treated with an anticancer agent.
또한 본 발명은 전극 표면에 Au 나노입자층을 전착시키는 단계; 상기 Au 나노입자층 표면에 카르복실기가 활성화된 전기전도성 고분자층을 코팅하는 단계; 및 상기 전기전도성 고분자층의 카르복실기와 압타머를 공유결합시켜 압타머를 고정시키는 단계를 포함하는 항암제 처리된 암세포 검출용 바이오센서의 제조방법을 제공한다. The present invention also provides a method of manufacturing a semiconductor device, comprising: electrodepositing an Au nanoparticle layer on an electrode surface; Coating an electroconductive polymer layer having a carboxyl group on the surface of the Au nanoparticle layer; And covalently bonding the carboxyl group of the electrically conductive polymer layer and the platemer to immobilize the platemer. The present invention also provides a method of manufacturing a biosensor for cancer cell treatment.
본 발명에 따른 센서는 항암제 처리된 암세포를 특이적으로 검출하는 효능이 우수하며, 암세포의 수가 증가함에 따라, 형광 강도 및 임피던스 변화값도 비례하여 증가하는 바, 암세포를 정성, 정량적으로 검출할 수 있는 센서로 유용하게 사용될 수 있다. The sensor according to the present invention is excellent in the ability to specifically detect cancer cells treated with anticancer drugs, and the fluorescence intensity and the impedance change value are also increased proportionally as the number of cancer cells is increased. As a result, the cancer cells can be detected qualitatively and quantitatively It can be used effectively as a sensor.
도 1은 본 발명 바이오센서의 제작 모식도와 암세포 검출 원리를 나타낸다.
도 2는 센서 전극 표면의 성분 분석을 알기 위한 XPS 결과 그래프이다.
도 3은 (A) 다우노마이신이 처리되어 있지 않은 (a) GC/AuNPs/pTTBA와 (b) GC/AuNPs/pTTBA/압타머 전극들에 대한 암세포와의 반응을 나타내며, 다우노마이신이 처리된 정상 세포와 반응시킨 (c) GC/AuNPs/pTTBA/압타머 전극과 다우노마이신이 처리된 암세포와 반응시킨 (d) GC/AuNPs/pTTBA/압타머 전극에 대한 CV를 나타낸다. 삽입도: GC/AuNPs/pTTBA 전극을 사용하여 다우노마이신이 포함되어 있지 않은 용액(검은 선)과 0.01 mM 다우노마이신이 포함되어 용액(빨간선)에서의 CV를 나타낸다. (B) 다우노마이신이 처리된 경우(◎)와 처리되어 있지 않은 경우(◈), 그리고 압타머가 고정화되어 있지 않은 경우(★)와 고정화된 경우(▲)의 임피던스 결과를 나타낸다. 삽입도: 임피던스 신호들을 나타낸다. (C) 센서와 반응한 다우노마이신이 처리된 여러 수의 HeLa에 대한 임피던스 결과를 나타냈다. (D) 검정곡선 (n = 5).
도 4는 GC/AuNPs/pTTBA/앱타머 전극을 사용하여 0.1 M PBS(pH 7.4)에서 다우노마이신이 처리된 a) 암세포(HeLa)와 b) 정상 세포(OSE)에 대한 임피던스 결과 그래프이다.
도 5의 (a)와 (b)는 다우노마이신이 처리된 암세포와 반응한 센서 전극 표면의 SEM 이미지를 나타내며, (c) - (f)는 다우노마이신이 처리된 여러 수의 암세포에 대한 여기/방출 λ400/λ590에서의 형광 현미경 이미지를 나타낸다.Fig. 1 shows a production schematic diagram and a cancer cell detection principle of the biosensor of the present invention.
2 is an XPS result graph for analyzing the composition of the sensor electrode surface.
Figure 3 shows the reaction of (a) Daunomycin with (a) GC / AuNPs / pTTBA and (b) cancer cells against GC / AuNPs / pTTBA / (D) GC / AuNPs / pTTBA / platamater electrode reacted with (c) GC / AuNPs / pTTBA / platemaker electrode and Daunomycin treated cancer cells. Insertion figure: CV with solution (dark line) and 0.01 mM daunomycin not containing daunomycin in solution (red line) using GC / AuNPs / pTTBA electrode. (B) shows the impedance result when the daunomycin is processed (⊚) and not processed (◈), and when the aptamer is not immobilized () and immobilized (▴). Interpolation: Indicates impedance signals. (C) Daunomycin reacted with the sensor showed the impedance results for the various numbers of HeLa treated. (D) The calibration curve (n = 5).
4 is a graph of the impedance results for a) cancer cells (HeLa) and b) normal cells (OSE) treated with darunomycin in 0.1 M PBS (pH 7.4) using GC / AuNPs / pTTBA /
5 (a) and 5 (b) show SEM images of the surface of the sensor electrode reacted with cancer cells treated with Daunomycin, and (c) - (f) show the SEM images of the cancer cells treated with Daunomycin Fluorescence microscope image at excitation / emission? 400 /? 590 is shown.
본 발명은 Au 나노입자층을 전착시킨 전극; 상기 Au 나노입자층 상단에 형성된 전기전도성 고분자층; 및 상기 전기전도성 고분자층 상단에 고정된 압타머층을 포함하는 항암제 처리된 암세포 검출용 바이오센서를 제공한다. The present invention relates to an electrode comprising an Au nanoparticle layer electrodeposited; An electroconductive polymer layer formed on the Au nanoparticle layer; And an aptamer layer fixed on an upper portion of the electrically conductive polymer layer. The present invention also provides a biosensor for detecting cancer cells treated with an anticancer agent.
본 발명의 발명자들은, 보다 비침습적이고, 간편하며, 다양한 암세포에 보편적으로 적용되는 암 세포 검출 방법에 대해 연구하던 중, 암세포의 표면에 포스파티딜세린과 같은 음정하를 띄는 지질이 주로 분포하고, 또한 살리실산 및 헤파린 설페이트와 같은 음이온성 분자가 다량 존재하는 점에 착안하여, 암세포가 전기화학적으로 활성이고 형광 특성을 보이는 양이온성 항암제를 흡수하는 특성이 있으며, 암세포에 특이적으로 흡수된 항암제를 표적으로 한 암세포 검출용 바이오센서가 암세포 특이적 검출능이 우수함을 확인하고 본 발명을 완성하였다. The inventors of the present invention have studied cancer cell detection methods that are more noninvasive, convenient, and universally applied to various cancer cells, and have found that lipid having a low pitch such as phosphatidylserine is mainly distributed on the surface of cancer cells, Attention has been paid to the fact that a large amount of anionic molecules such as salicylic acid and heparin sulfate are present, and the cancer cell has a characteristic of absorbing a cationic anticancer drug which is electrochemically active and exhibits fluorescence property, and the anticancer drug specifically absorbed into cancer cells is targeted The inventors confirmed that a cancer cell detection biosensor has excellent cancer cell specific detection ability and completed the present invention.
상기 Au 나노입자층은 바이오센서의 민감도를 향상시키는 역할을 수행한다. Au 나노입자층이 전착되는 전극으로는 유리질 탄소전극 또는 인듐틴옥사이드 전극이 사용될 수 있으나 이에 제한되는 것은 아니다. The Au nanoparticle layer enhances the sensitivity of the biosensor. As the electrode to which the Au nanoparticle layer is deposited, a glassy carbon electrode or an indium tin oxide electrode may be used, but the present invention is not limited thereto.
본 발명의 한 구체예에서, 암세포에 처리되는 양이온성 항암제로는 다우노마이신, 블레오마이신, 다우노루비신, 독소루비신, 에피루비신, 이다루비신 및 미토마이신-C로 이루어진 군에서 선택된 어느 하나 이상일 수 있으며, 바람직하게는 다우노마이신(Daunomycin, 이하 DAN)을 사용할 수 있으나 이에 제한되는 것은 아니다. In one embodiment of the present invention, the cationic anticancer agent to be treated in cancer cells is any one or more selected from the group consisting of daunomycin, bleomycin, daunorubicin, doxorubicin, epirubicin, dirubicin and mitomycin- Daunomycin (DAN) may be used, but is not limited thereto.
본 발명의 다른 구체예에서, 상기 항암제와 특이적으로 결합하는 압타머는 서열번호 1의 핵산서열로 이루어진 압타머를 사용할 수 있으나 이에 제한되는 것은 아니다. 압타머의 일반적인 내용은 Bock LC et al., Nature 355(6360):5646(1992); Hoppe-Seyler F, Butz K "Peptide aptamers: powerful new tools for molecular medicine". J Mol Med. 78(8):42630(2000); Cohen BA, Colas P, Brent R . "An artificial cell-cycle inhibitor isolated from a combinatorial library". Proc Natl Acad Sci USA. 95(24):142727(1998)에 상세하게 개시되어 있다.In another embodiment of the present invention, the aptamer that specifically binds to the anticancer agent may be an aptamer consisting of the nucleic acid sequence of SEQ ID NO: 1, but is not limited thereto. The general contents of platamers are described in Bock LC et al., Nature 355 (6360): 5646 (1992); Hoppe-Seyler F, Butz K "Peptide aptamers: powerful new tools for molecular medicine". J Mol Med. 78 (8): 42630 (2000); Cohen BA, Colas P, Brent R. "An artificial cell-cycle inhibitor isolated from a combinatorial library". Proc Natl Acad Sci USA. 95 (24): 142727 (1998).
본 발명의 또 다른 구체예에서, 상기 전기전도성 고분자층은 전기전도성을 향상시키는 역할을 수행하며, 이는 터티오펜 단량체를 포함할 수 있으며, 보다 구체적으로 상기 터티오펜 단량체는 2,2':5',2''-터티오펜-3(p-벤조산)(2,2':5',2''-terthiophene-3(p-benzoic acid)), 또는 5,2':5',2"-터티오펜-3'-카르복시산(5,2':5',2"-terthiophene-3'-carboxylic acid) 일 수 있으며, 바람직하게는 2,2':5',2''-터티오펜-3(p-벤조산)(2,2':5',2''-terthiophene-3(p-benzoic acid))을 사용할 수 있으나 이에 제한되는 것은 아니다. In another embodiment of the present invention, the electrically conductive polymer layer serves to improve electrical conductivity, which may include a terthiophene monomer, and more specifically, the terthiophene monomer is 2,2 ': 5' , 2 '' - Entity thiophene -3 (p-benzoic acid) (2,2 ': 5', 2 '' - terthiophene-3 (p -benzoic acid)), or 5,2 ': 5', 2 "- 3 '-carboxylic acid (5,2': 5 ', 2 "-terthiophene-3'-carboxylic acid), preferably 2,2': 5 ' ( p -benzoic acid) (2,2 ': 5', 2 "-terthiophene-3 ( p- benzoic acid)).
상기 고분자층은 카보디이미드 또는 N-하이드록시숙신이미드로 카르복실기가 활성화되어 압타머의 5' 말단에 부착된 아민기와 공유결합을 형성할 수 있다. The polymer layer may form a covalent bond with an amine group attached to the 5'end of the extruder by activating the carboxyl group with carbodiimide or N-hydroxysuccinimide.
또한, 본 발명은 전극 표면에 Au 나노입자층을 전착시키는 단계; 상기 Au 나노입자층 표면에 카르복실기가 활성화된 전기전도성 고분자층을 코팅하는 단계; 및 상기 전기전도성 고분자층의 카르복실기와 압타머를 공유결합시켜 압타머를 고정시키는 단계를 포함하는 항암제 처리된 암세포 검출용 바이오센서의 제조방법을 제공한다. According to another aspect of the present invention, Coating an electroconductive polymer layer having a carboxyl group on the surface of the Au nanoparticle layer; And covalently bonding the carboxyl group of the electrically conductive polymer layer and the platemer to immobilize the platemer. The present invention also provides a method of manufacturing a biosensor for cancer cell treatment.
본 발명의 한 구체예에서, 상기 압타머는 서열번호 1의 핵산서열로 이루어진 것이며, 서열번호 1의 핵산서열의 5 말단에 부착된 아민기와 전기전도성 고분자층의 카르복실기간에 공유결합이 형성된다. In one embodiment of the present invention, the aptamer is composed of the nucleic acid sequence of SEQ ID NO: 1, and a covalent bond is formed between the amine group attached to the 5-terminal end of the nucleic acid sequence of SEQ ID NO: 1 and the carboxyl group of the electrically conductive polymer layer.
이하의 실시예에 따르면, 본 발명에 따른 바이오센서는 다우노마이신 처리된 암세포와 비암 세포의 구별 능력이 탁월하며, 80 내지 10000 cell/mL 범위에서 세포 수에 비례하여 임피던스 증가값(ΔRct)이 비례하게 나타났는 바, 추가적인 염색 또는 발색제 없이도, 본 발명의 바이오 센서에 의해 암세포를 정성, 정량적으로 검출할 수 있는 장점이 있다.
According to the present invention, the biosensor according to the present invention is excellent in the ability to distinguish cancer cells treated with daunomycin from non-cancerous cells, and has an impedance increase value (ΔR ct ) in proportion to the cell number in the range of 80 to 10000 cell / The biosensor of the present invention is advantageous in qualitatively and quantitatively detecting cancer cells without additional dye or coloring agent.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to the following examples. However, the following examples are intended to illustrate the contents of the present invention, but the scope of the present invention is not limited to the following examples. Embodiments of the present invention are provided to more fully describe the present invention to those skilled in the art.
<< 실험예Experimental Example >>
하기의 실험예들은 본 발명에 따른 각각의 실시예에 공통적으로 적용되는 실험예를 제공하기 위한 것이다.The following experimental examples are intended to provide experimental examples that are commonly applied to the respective embodiments according to the present invention.
1. 시약1. Reagents
전기 전도성 폴리머 2,2':5',2''-terthiophene-3(p-benzoic acid) (TTBA)는 Paal-Knorr 피롤 축합 반응에 의해 합성되었다. 테트라부틸암모늄 퍼클로레이트(TBAP, electrochemical grade) 는 Fluka (USA)로부터 구입하였고, 정체 후 1.33 x 10-3 Pa에서 진공 건조하였다. 1-에틸-3-(3-(디메틸아미노)-프로필) 카보디이미드(EDC), N-하이드록시석신이미드(NHS), 디클로로메탄(99.8%, 무수 및 N2 포장), 및 트리소듐 시트레이트는 Sigma Co. (USA) 로부터 구입되었다. 소듐 테트라하이드리도보레이트 및 HAuCl4·3H2O는 Aldrich (USA)로부터 구입되었다. 본 발명의 SELEX 유래 압타머는 5'에 아민 그룹을 부착하여 사용하였다 (NH2-5′-GGGAATTCGAGCTCGGTACCATCTGTGTAAGGGGTAAGGGGTGGGGGTGGGTACGTCTAGCTGCAGGCATGCAAGCTTGG-3′, 서열번호 1). PAGE 정제된 압타머는 Bioneer (S. Korea)로부터 구입하여 사용하였다. HPLC 등급 DAN 은 Sigma-Aldrich (USA)로부터 구입되었고, 4℃에서 보관되었다. 압타머 농축 용액(stock solution)은 pH 8.0, 멸균된 Tris EDTA 버퍼 (10.0 mM Tris-HCl 및 1.0 mM EDTA)에서 -20℃로 보관되었다. The
RPMI 1640 배지, Dulbecco's Modified Eagle's 배지(DMEM), 인간 혈청, 우태혈청(FBS), 트립신-EDTA, 페니실린/스트렙토마이신, Hank? balance salt (HBS) 용액은 Sigma-Aldrich로부터 구입되었다. 모든 수용액은 Milli-Q water purifying system (18 MΩ cm)에서 구입한 2차 증류수로 준비되었다. RPMI 1640 medium, Dulbecco's Modified Eagle's medium (DMEM), human serum, fetal serum (FBS), trypsin-EDTA, penicillin / streptomycin, Hank? The balance salt (HBS) solution was purchased from Sigma-Aldrich. All aqueous solutions were prepared with secondary distilled water purchased from Milli-Q water purifying system (18 MΩ cm).
2. 바이오 센서 제조2. Biosensor manufacturing
본 발명 바이오 센서의 제작도를 도 1에 나타내었다. AuNP는 TTBA의 중합반응 전 유리질탄소전극(glassy carbon electrode, GCE) 상에 전기증착되었다. 이때 전기증착은 0.001 % HAuCl4을 함유한 0.5M H2SO4 용액에서 1.5 에서 0.4V까지 linear sweep voltammetry(LSV) 을 사용하여 전착시간은 60 초, 전착전위는 -1.0 V, 주사속도는 0.1 V/s, 전위주기는 3회로 하여 전착을 수행하였다. FIG. 1 shows a production diagram of the biosensor of the present invention. AuNP was electrodeposited on a glassy carbon electrode (GCE) before the polymerization reaction of TTBA. Electrodeposition was carried out by using a linear sweep voltammetry (LSV) from 1.5 to 0.4 V in a 0.5MH 2 SO 4 solution containing 0.001% HAuCl 4. The electrodeposition time was 60 seconds, the electrodeposition potential was -1.0 V, / s, and the potential cycle was 3 cycles.
GC/AuNP 상의 pTTBA는 0.1 M TBAP/CH2Cl2 에 존재하는 1.0 mM TTBA 단량체를 0.1 V/s의 주사속도로 0.0 내지 +1.4 V (vs. Ag/AgCl)에서 1회 전위주사하는 전기 중합반응을 통해 형성되었다. 중합 후, pTTBA 층의 카복실산 작용기는 EDC/NHS 로 활성화된 후, 압타머가 고정되어 GC/AuNP/pTTBA/압타머 층을 형성하였다. 그 후, 0.1 M 머캅토에탄올로 1분간 세척하여 결합하지 않은 작용기를 제거하고, 각 층의 형성을 XPS로, 압타머 고정을 quartz crystal microbalance (QCM)로 확인하였다. PTTBA on GC / AuNP was prepared by electropolymerizing 1.0 mM TTBA monomers present in 0.1 M TBAP / CH 2 Cl 2 at a scan rate of 0.1 V / s at a rate of 0.0-1.4 V (vs. Ag / AgCl) Lt; / RTI > After the polymerization, the carboxylic acid functional groups of the pTTBA layer were activated with EDC / NHS and the aptamers were fixed to form a GC / AuNP / pTTBA / plastomer layer. Thereafter, the unbound functional groups were removed by washing with 0.1 M mercaptoethanol for 1 minute, and the formation of each layer was confirmed by XPS and the fixation by quartz crystal microbalance (QCM).
3. 세포 샘플 준비3. Cell sample preparation
HeLa(인간 자궁암), MCF-7(인간 유방 선암), HT-29(인간 대장암), SK-BR-3(인간 유방 선암), 난소 표면 상피(OSE) 세포, MCF-10A 및 HEK-293 세포주는 American Type Culture Collection (Manassas, VA, USA)에서 구입되었다. HeLa 및 MCF-7 세포주는 DMEM 배지에 배양되었고, HT-29 및 SK-BR-3 세포주는 RPMI 1640 배지에 배양되었다. 모든 암세포가 아닌 세포는 모두 DMEM 배지에 배양되었다. 세포는 37℃, 5% CO2 조건 하에서 10% 열-비활성화 우태혈청, 100.0 unit/mL 페니실린 및 100.0 unit/mL 스트렙토마이신을 함유하는 각각의 배지에서 배양되었다. 배지는 2일마다 교체되었다. 이후 모든 암/비암 세포를 HBS로 세척하여 배지를 제거한 후, PBS (pH 7.4) 에 존재하는 1.0 μM DAN로 20분간 4℃ 얼음 배쓰에서 DAN의 내재화를 배제하며 처리하였다. 흡수되지 않은 세포 표면의 DAN을 제거하기 위해, 세포는 1000rpm에서 원심분리되었다. DAN을 처리하지 않은 실험군을 양성 대조군으로 사용하였고, 실험군 및 대조군 세포는 바이오 센서와 함께 배양되었다. 본 발명의 바이오 센서 외에 압타머가 제거된 GC/AuNP/pTTBA 프로브도 비교 실험을 위해 사용되었다. 프로브의 표면은 세포와의 반응 후, 즉시 electrochemical impedance spectroscopy (EIS)로 측정되었다. MCF-10A and HEK-293 (human breast cancer), HeLa (human cervical cancer), MCF-7 (human breast adenocarcinoma), HT-29 Cell lines were purchased from the American Type Culture Collection (Manassas, VA, USA). HeLa and MCF-7 cell lines were cultured in DMEM medium, and HT-29 and SK-BR-3 cell lines were cultured in RPMI 1640 medium. All non-cancer cells were cultured in DMEM medium. Cells were cultured in each medium containing 10% heat-inactivated fetal bovine serum, 100.0 unit / mL penicillin and 100.0 unit / mL streptomycin at 37 ° C under 5% CO 2 . The medium was replaced every two days. Then, all cancerous / non-cancerous cells were washed with HBS to remove the medium and treated with 1.0 μM DAN in PBS (pH 7.4) for 20 minutes at 4 ° C in an ice bath to eliminate DAN internalization. To remove DAN from unabsorbed cell surface, cells were centrifuged at 1000 rpm. Experimental groups not treated with DAN were used as positive controls, and experimental and control cells were incubated with the biosensor. In addition to the biosensor of the present invention, a GC / AuNP / pTTBA probe with an aptamer removed was also used for comparative experiments. The surface of the probe was immediately measured by electrochemical impedance spectroscopy (EIS) after reaction with the cells.
4. 분석 4. Analysis
EIS 분석을 위한 전기화학전지는 포화 KCl 용액 상의 Ag/AgCl 참조전극, 백금 반대전극 및 본 발명의 GC/AuNP/pTTBA/압타머를 작동전극으로 한 3전극 전지를 사용하였다. 패러데이 임피던스 스펙트럼은 개방 회로 전위를 100.0 kHz 에서 100.0 MHz 로 하여 PARSTAT 2263 (USA)을 사용하여 기록되었다. 모든 전기화학 임피던스 측정은 PBS(pH7.4) 버퍼 에서 수행되었고, 임피던스 스펙트럼은 Nyquist plot 형식으로 수집되었다. The electrochemical cell for EIS analysis used a Ag / AgCl reference electrode on a saturating KCl solution, a platinum counter electrode, and a three electrode cell using GC / AuNP / pTTBA / platemer of the present invention as a working electrode. The Faraday impedance spectrum was recorded using PARSTAT 2263 (USA) with an open circuit potential of 100.0 kHz to 100.0 MHz. All electrochemical impedance measurements were performed in PBS (pH 7.4) buffer, and the impedance spectra were collected in the form of Nyquist plot.
<< 실시예Example 1> 제조된 바이오 센서의 1 > of the manufactured biosensor XPSXPS 및 And QCMQCM 분석 analysis
GC/AuNP/pTTBA/압타머 바이오 센서의 각 층의 형성을 분석하기 위해 VG Scientific XPSLAB 250 XPS spectrometer 를 사용하여 XPS 분석을 수행하였다. XPS 스펙트럼은 284.6eV 위치의 C1 피크를 내부 표준으로 사용하였다. 결과를 도 2에 나타내었다. (a)는 GC/AuNP/pTTBA 센서의 표면이고, (b)는 본 발명 GC/AuNP/pTTBA/압타머에 대한 표면 분석 결과이다. TTBA 코팅된 전극은 163.8 eV 위치에서 C-S 결합에 상응하는 S2p 피크를 보였고, 이는 pTTBA의 황 성분에 기인한 것으로 판단된다. 표면에 고정된 압타머의 N1 피크 398.8 및 399.8eV 위치에서 확인되었고, 이는 C-N, -NH 및 O=C-NH- 결합과 각각 상응하며, 이는 압타머의 NH2 그룹과 pTTBA 의 COOH 그룹간에 형성된 공유결합에 기인한다. 압타머 고정된 전극은 131.9eV에서 매우 명확한 P2p 피크를 보이는데, 이는 압타머 백본의 주요 구조적 요소인 포스페이트에 상응하고, 이는 압타머가 성공적으로 표면에 결합되어 있음을 시사한다. XPS analysis was performed using a
Au-코팅된 작동전극(면적: 0.196cm2; 9.0MHz; AT-cut quartz crystal) 을 사용하여 압타머 고정 정도를 pTTBA 필름에 대한 quartz crystal microbalance (QCM)로 주파수 변동을 기초로 하여 확인하였다. 압타머가 고정된 경우, 주파수의 감소는 1시간 이후 0.11 kHz 변화(Δf)를 거쳐 일정 상태에 도달하였고, 이는 132.8 ± 7.2 ng 의 질량 변화(Δm)와 상응하였다. 따라서 전극 표면의 압타머 분자의 수는 1.7 x 10-11mol/cm2로 확인되었다. 상기 결과는 압타머가 본 발명 센서의 pTTBA 층 상에 효과적으로 고정되어 있음을 시사한다.
Using a gold-coated working electrode (area: 0.196
<< 실시예Example 2> 제조된 바이오 센서의 ≪ 2 > 검출능Detectability 검토 Review
DAN 및 암세포간의 결합을 검토하기 위해, 압타머 바이오 센서의 CV(순환전압전류) 및 EIS(전기화학적 임피던스 분광법)를 분석하였다. 결과를 도 3 및 도 4에 나타내었다. CV (cyclic voltammetry) and electrochemical impedance spectroscopy (EIS) of the platemater biosensor were analyzed to examine the binding between DAN and cancer cells. The results are shown in Fig. 3 and Fig.
1. One. CVCV (순환전압전류) 검토 (Cyclic voltage current)
우선, DAN 용액의 전기화학적 거동을 압타머 없이 TTBA만 있는 전극(GC/AuNP/pTTBA)을 대상으로 분석하였고, 산화환원 피크는 -0.65/-0.55 V vs. Ag/AgCl 에서 나타났다(도 3A 내부도 참조). DAN의 CV 피크는 이하의 반응에 기인한다: DAN(ox) + 2e- + 2H+→DAN(red). First, the electrochemical behavior of the DAN solution was analyzed with an electrode with only TTBA (GC / AuNP / pTTBA) without an electrode, and the redox peak was -0.65 / -0.55 V vs. Ag / AgCl (see also FIG. 3A internal view). The CV peak of DAN is due to the following reaction: DAN (ox) + 2e - + 2H + → DAN (red).
이후, 광학 현미경 존재 하에서 1회용 hemocytometer를 사용하여 HeLa 자궁암 및 난소 표면 상피(OSE) 비암세포를 계수 (2.5ⅹ102 cells mL-1) 하였고, DAN 과 배양하였다. 흡수되지 않은 세포 표면의 DAN을 제거하기 위해, 세포는 1000rpm에서 원심분리되었고, 암 및 비암 세포는 CCD 및 NCD로 각각 명명되었다. 상기 세포는 그후 15분간 본 발명의 바이오 센서와 반응되었고, 세척 후, CV가 0.1 M 탈산소화된 PBS 에서 50.0mV/s 주사속도로 -0.30 내지 -1.0 V범위에서 기록되었다. DAN이 암세포 막 내로 흡수되어, 바이오 센서에 검출(n=5, RSD<3.9%) 된 것에 기인한 산화화원 피크 쌍은 약 -0.61/-0.58V vs. Ag/AgCl 에서 확인되었다(도 3A, 파란색 선 d) 참조). DNA 용액에서의 CV와 비교한 DAN 피크 전위 이동은 암 표면에 DAN이 결합하였음을 시사한다. 본 발명의 DNA 피크 전류는 표면에 국한된 DAN의 전기화학 반응에 의해 스캔 속도에 비례하게 나타났고, 이는 암 세포와 반응한 DAN이 바이오 센서에 흡수됨을 시사한다. 그러나, 산화환원 피크는 DAN이 처리되지 않은 암세포에서 관찰되지 않았으며(도 3A 검정 선 참조), NCD (비암세포)는 약한 피크 흡수를 보였는 바(도 3A 녹색 선 참조), 이는 DAN이 비암세포에 비해 암세포의 표면에 특이적으로 결합함을 시사한다. HeLa cervical cancer and ovarian surface epithelial (OSE) non-cancer cells were counted (2.5 × 10 2 cells mL -1 ) using a disposable hemocytometer in the presence of an optical microscope and cultured with DAN. To remove DAN from unabsorbed cell surface, cells were centrifuged at 1000 rpm and cancerous and non-cancerous cells were named CC D and NC D , respectively. The cells were then reacted with the biosensor of the present invention for 15 minutes and after washing, the CV was recorded in the range of -0.30 to -1.0 V at a scanning rate of 50.0 mV / s in 0.1 M deoxygenated PBS. The pair of oxidizing source peaks due to DAN being absorbed into the cancer cell membrane and detected by the biosensor (n = 5, RSD <3.9%) is about -0.61 / -0.58V vs. Ag / AgCl (Figure 3A, blue line d)). DAN peak potential shift compared to CV in DNA solution suggests DAN binding to the cancer surface. The DNA peak current of the present invention was proportional to the scan rate by the electrochemical reaction of DAN localized on the surface, suggesting that DAN reacted with cancer cells was absorbed by the biosensor. However, the redox peak was not observed in cancer cells that were not treated with DAN (see Figure 3A line), NC D (non-cancer cells) showed weak peak absorption (see the green line in Figure 3A) Suggesting specific binding to the surface of cancer cells as compared to cancer cells.
2. 2. EISEIS 스펙트럼 검토 Spectrum Review
Nyquist 플롯의 EIS 스펙트럼은 CCD와 바이오 센서의 상호작용 전후에 PBS 상에서 기록되었고 결과를 도 4에 나타내었다(a) DAN이 처리된 암세포, b) 정상 세포). 도 4 a)를 참조하면, CCD(1.0μM)와 바이오 센서의 상호작용 후, 급격한 Rct 값 증가(ΔRct)가 관찰됨을 알 수 있었다(2902.5±112.6Ω). 그러나, 도 4 b)를 참조하면, 본 발명의 바이오 센서가 동일한 조건에서 NCD와 상호작용한 경우, 14배 낮은 ΔRct가 확인되었다(223.2±13.5Ω). The EIS spectrum of the Nyquist plot was recorded on PBS before and after the interaction of CC D with the biosensor and the results are shown in Figure 4 (a) cancer cells treated with DAN, and b) normal cells. Referring to FIG. 4 a, a rapid increase in R ct value (ΔR ct ) was observed (2902.5 ± 112.6 Ω) after interaction between CC D (1.0 μM) and the biosensor. However, referring to FIG. 4 b, when the biosensor of the present invention interacted with NC D under the same conditions, a 14-fold lower ΔR ct was identified (223.2 ± 13.5 Ω).
비교 실험에서, DAN(암세포 없이) 및 프로브간의 상호작용 후 EIS 를 측정하였고, ΔRct 값은 16배 낮게 측정(~188.4±12.3Ω) 되었으며, 상기 결과는 NCD 와 바이오 센서의 상호작용 결과와 유사하였다. 그러나, CCD가 동일한 프로브와 상호작용한 경우, 임피던스는 크게 증가하였다. 상기 결과는, DAN-흡수한 암세포와 바이오 센서의 결합이 ΔRct 값의 증가와 연관이 있음을 시사한다. In comparative experiments, EIS was measured after interaction between DAN (without cancer cells) and probe, and ΔR ct (~ 188.4 ± 12.3 Ω), which is similar to the result of interaction between NC D and biosensor. However, when CC D interacted with the same probe, the impedance increased significantly. The results show that the combination of the DAN-absorbed cancer cells and the biosensor is ΔR ct Suggesting that it is associated with an increase in value.
DAN이 0.01μM 농도인 경우, CCD 에 대한 ΔRct 값은 2186.5±84.2Ω까지 증가한 반면, NCD의 ΔRct 값은 32.5±3.5Ω로 거의 증가하지 않았고, 이는 CCD의 값보다 68.3배 낮은 값에 해당한다(n = 5, RSD<4.2%, 도 4 참조). When the concentration of DAN is 0.01 μM, CC D Lt; RTI ID = 0.0 > While the value increased to 2186.5 ± 84.2Ω, NC D of ΔR ct The value did not increase almost to 32.5 ± 3.5 Ω, which is 68.3 times lower than the value of CC D (n = 5, RSD <4.2%, see Fig. 4).
3. 임피던스 변화 검토 3. Impedance change review
임피던스 변화가 바이오 센서와 CCD 간의 상호작용에 특이적인지 여부를 확인하기 위해 압타머 고정 및 DAN 처리 유무에 따른 비교실험이 수행되었고, 결과를 도 3의 B에 나타내었다. 도 3의 B는 다우노마이신이 처리된 경우(◎)와 처리되어 있지 않은 경우(◈), 그리고 압타머가 고정화되어 있지 않은 경우(★)와 고정화된 경우(▲)의 임피던스 결과를 나타낸다. 우선, DAN이 미처리된 암세포 및 압타머가 없는 센서(GC/AuNPs/pTTBA) 표면의 상호작용이 측정되었고(1-◈★), 표면의 카복실기로 인해 음전하를 띄는 GC/AuNPs/pTTBA 와 암세포 표면의 음전하간의 정전기적 반발력으로 인해 ΔRct 값은 증가하지 않는 것으로 나타났다. 이는 DAN이 미처리된 암세포는 GC/AuNPs/pTTBA 표면에 대한 어떤 친화기도 갖고있지 않음을 명백하게 보여준다. 다른 비교실험에서, DAN-미처리된 암세포와 압타머가 고정된 전극(GC/AuNPs/pTTBA/aptamer)과의 상호작용이 측정되었고(2-◈▲), 바이오 센서가 pH 7.4에서 압타머에 존재하는 포스페이트 작용기의 탈양성자화로 인해 음전하를 띄고, 이와 암세포 표면의 음전하간의 정전기적 반발력으로 인해 ΔRct 값은 증가하지 않는 것으로 나타났다. DAN 처리된 CCD와 GC/AuNPs/pTTBA 전극간의 상호작용 또한 측정되었고(3-◎★), pTTBA 표면에 CCD 에 대한 친화력을 갖는 작용기가 없어 ΔRct 값은 증가하지 않는 것으로 나타났다. 따라서, ΔRct 값은 DAN 이 암세포 세포막에 흡수되어 바이오 센서에 검출될 때만 증가하는 것으로 나타났다(4-◎▲). In order to check whether the impedance change is specific to the interaction between the biosensor and the CC D , a comparative experiment was conducted according to whether or not the platemaker was fixed and the DAN treatment was performed. The result is shown in FIG. 3B. FIG. 3B shows the impedance results of the case where the daunomycin is processed (⊚) and not processed (◈), and the case where the aptamer is not immobilized () and immobilized (▴). First, the interaction between DAN-treated cancer cells and a sensor without aptamer (GC / AuNPs / pTTBA) was measured (1-◈ ★) and GC / AuNPs / pTTBA, which is negatively charged due to carboxyl groups on the surface, due to the electrostatic repulsion between the negatively charged ΔR ct The value did not increase. This clearly shows that DAN untreated cancer cells do not have any affinity for the GC / AuNPs / pTTBA surface. In another comparative experiment, the interaction between DAN-untreated cancer cells and an aptamer with a fixed electrode (GC / AuNPs / pTTBA / aptamer) was measured (2-¬), and the biosensor It was found that the ΔR ct value was not increased due to the negative charge due to the deprotonation of the phosphate functional group and the electrostatic repulsion between the negative charge and the negative charge on the cancer cell surface. The interaction between the DAN-treated CC D and the GC / AuNPs / pTTBA electrode was also measured (3- ◎ ★), and CC D There is no functional group with affinity for ΔR ct The value did not increase. Thus, ΔR ct Value increased only when DAN was absorbed into cancer cell membrane and detected by biosensor (4- ▲).
4. 정량 4. Quantification 검출능Detectability 검토 Review
본 발명의 검출 센서가 다양한 암세포 검출에도 적용됨을 확인하기 위해, DAN 처리된 MCF-7, HT-29 및 SKBr-3 암세포주에 대해 유사한 방법으로 실험을 수행하였다. 상기 모든 실험 세포주에 대한 ΔRct 값은 급격히 증가한 것으로 나타났다. 또한 본 발명이 암 세포의 정량 검출에도 적용될 수 있음을 확인하기 위해, 다양한 양의 DAN-처리된 HeLa 세포(HeCCD)를 바이오 센서와 반응시켰고, 결과를 도 3의 C에 나타내었다. 도 3C를 참조하면, ΔRct 값은 HeCCD의 수가 증가함에 따라 점차적으로 증가하는 것을 알 수 있었다. HeCCD임피던스 데이터에 기초하여, 검량선을 도출하였고, 이를 도 3의 D에 나타내었다. 검량선은 HeCCD의 범위인 80 내지 10000 cell/mL에서 선형으로 나타났고, 검출 한계는 43 ± 3 cell/mL (RSD<4.4%) 로 나타났다(95% 신뢰수준, n=5). 선형 회귀 방정식은 ΔRct (Ω) = 33.05 + 0.727[HeCCD]로 나타났으며, 상관계수는 0.998이다.
In order to confirm that the detection sensor of the present invention is applied to various cancer cell detection, experiments were similarly performed on DAN-treated MCF-7, HT-29 and SKBr-3 cancer cell lines. ΔR ct for all the experimental cell lines The value increased rapidly. In addition, to ensure that the present invention may be applied to quantitative detection of cancer cells, various amounts of sikyeotgo DAN--treated HeLa cells (HeCC D) a biosensor with the reaction, and the results are shown in Figure 3 C. Referring to Figure 3C, ΔR ct Value gradually increased as the number of HeCC D increased. Based on the HeCC D impedance data, a calibration curve was derived and is shown in Figure 3D. The calibration curves were linear at 80 to 10000 cells / mL in the HeCC D range and the detection limit was 43 ± 3 cell / mL (RSD <4.4%) (95% confidence level, n = 5). The linear regression equation is ΔRct (Ω) = 33.05 + 0.727 [HeCC D ] and the correlation coefficient is 0.998.
<< 실시예Example 3> 센서 표면에의 3> on sensor surface 결합여부Whether or not it 확인 Confirm
바이오 센서와 CCD간의 상호작용을 센서 표면의 현미경 분석으로 확인하였다. EIS 스펙트럼 측정 후, 바이오 센서 표면은 SEM 으로 분석되었고, 결과를 도 5에 나타내었다. 도 5의 a 및 b를 참조하면, 5.0 내지 7.0μm 크기의 CCD가 바이오 센서 상에 존재함을 알 수 있었다. The interaction between biosensor and CC D was confirmed by microscopic analysis of sensor surface. After EIS spectrum measurement, the biosensor surface was analyzed by SEM and the results are shown in FIG. Referring to FIGS. 5A and 5B, it can be seen that CC D of 5.0 to 7.0 μm is present on the biosensor.
또한 DAN이 내재적인 형광 활성을 갖고 있으므로, 인듐틴옥사이드(ITO) 전극에서 형광 현미경 이미지 조사를 통해 바이오 센서 전극상의 CCD 를 확인하였고 결과를 도 5의 c 내지 f 에 나타내었다. 도 5의 c 내지 f 를 참조하면, ITO/pTTBA/압타머 프로브에 의해 검출된 다양한 수의 CCD 가 확인됨을 알 수 있으며, 프로브와 배양되는 CCD의 양이 증가할수록 검출되는 CCD의 양 또한 증가함을 확인할 수 있었다. 검출되는 CCD의 양이 증가함에 따라 Rct 값은 증가할 것이며, 따라서, 추가적인 염색 또는 발색제 없이도, 본 발명의 바이오 센서에 의해 암세포를 정성, 정량적으로 검출할 수 있다.
In addition, since DAN has an intrinsic fluorescence activity, CC D on the biosensor electrode was confirmed by fluorescent microscope image inspection on an indium tin oxide (ITO) electrode, and the results are shown in FIGS. 5C to 5F. Referring to Figures 5C-5F, the various numbers of CC Ds detected by ITO / pTTBA / Is detected, and it is detected as the amount of CC D to be cultured with the probe increases And the amount of CC D was also increased. As the amount of CC D detected increases, R ct The value will increase, and therefore cancer cells can be qualitatively and quantitatively detected by the biosensor of the present invention without additional dyeing or coloring agents.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시예일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention as defined in the appended claims. will be. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.
<110> Pusan National University Industry-University Cooperation Foundation <120> Biosensor for Detecting Cancer Cell Treated Anti-cancer Drug and Preparation Method Thereof <130> ADP-2013-0038 <160> 1 <170> KopatentIn 2.0 <210> 1 <211> 80 <212> DNA <213> Artificial Sequence <220> <223> Aptamer for anticancer drug <400> 1 gggaattcga gctcggtacc atctgtgtaa ggggtaaggg gtgggggtgg gtacgtctag 60 ctgcaggcat gcaagcttgg 80 <110> Pusan National University Industry-University Cooperation Foundation <120> Biosensor for Detecting Cancer Cell Treated Anti-cancer Drug and Preparation Method Thereof <130> ADP-2013-0038 <160> 1 <170> Kopatentin 2.0 <210> 1 <211> 80 <212> DNA <213> Artificial Sequence <220> <223> Aptamer for anticancer drug <400> 1 gggaattcga gctcggtacc atctgtgtaa ggggtaaggg gtgggggtgg gtacgtctag 60 ctgcaggcat gcaagcttgg 80
Claims (8)
상기 Au 나노입자층 상단에 형성된 전기전도성 고분자층; 및
상기 전기전도성 고분자층 상단에 고정된 압타머층을 포함하는
항암제 처리된 암세포 검출용 바이오센서. An electrode electrodeposited with an Au nanoparticle layer;
An electroconductive polymer layer formed on the Au nanoparticle layer; And
And an absorber layer fixed on top of the electrically conductive polymer layer
Biosensor for detecting cancer cells treated with anticancer drugs.
상기 항암제는 다우노마이신, 블레오마이신, 다우노루비신, 독소루비신, 에피루비신, 이다루비신 및 미토마이신-C로 이루어진 군에서 선택된 어느 하나 이상인 것인 항암제 처리된 암세포 검출용 바이오센서. The method according to claim 1,
Wherein the anticancer agent is at least one selected from the group consisting of daunomycin, bleomycin, daunorubicin, doxorubicin, epirubicin, duralubicin, and mitomycin-C.
상기 압타머는 서열번호 1의 핵산서열로 이루어진 것인 항암제 처리된 암세포 검출용 바이오센서. The method according to claim 1,
Wherein the aptamer comprises the nucleic acid sequence of SEQ ID NO: 1.
상기 전기전도성 고분자층은 터티오펜 단량체를 포함하는 것인 항암제 처리된 암세포 검출용 바이오센서. The method according to claim 1,
Wherein the electrically conductive polymer layer comprises a terthiophene monomer.
상기 터티오펜 단량체는
2,2':5',2''-터티오펜-3(p-벤조산)(2,2':5',2''-terthiophene-3(p-benzoic acid)), 또는 5,2':5',2"-터티오펜-3'-카르복시산(5,2':5',2"-terthiophene-3'-carboxylic acid) 인 것인 항암제 처리된 암세포 검출용 바이오센서. 5. The method of claim 4,
The terthiophene monomer
2,2 ': 5', 2 '' - Entity thiophene -3 (p-benzoic acid) (2,2 ': 5', 2 '' - terthiophene-3 (p -benzoic acid)), or 5,2 ' : 5 ', 2 "-tetiophen-3'-carboxylic acid (5,2': 5 ', 2"-terthiophene-3'-carboxylic acid).
상기 전기전도성 고분자층은 카보디이미드 또는 N-하이드록시숙신이미드로 카르복실기가 활성화된 고분자층인 것인 항암제 처리된 암세포 검출용 바이오센서. The method according to claim 1,
Wherein the electrically conductive polymer layer is a polymer layer in which a carboxyl group is activated by carbodiimide or N-hydroxysuccinimide.
상기 Au 나노입자층 표면에 카르복실기가 활성화된 전기전도성 고분자층을 코팅하는 단계; 및
상기 전기전도성 고분자층의 카르복실기와 압타머를 공유결합시켜 압타머를 고정시키는 단계를 포함하는 항암제 처리된 암세포 검출용 바이오센서의 제조방법.Electrodepositing an Au nanoparticle layer on the electrode surface;
Coating an electroconductive polymer layer having a carboxyl group on the surface of the Au nanoparticle layer; And
And covalently bonding a carboxyl group of the electrically conductive polymer layer and an electrode pad to fix the electrode pad.
상기 압타머는 서열번호 1의 핵산서열로 이루어진 것이며, 서열번호 1의 핵산서열의 5' 말단에 부착된 아민기와 전기전도성 고분자층의 카르복실기간에 공유결합이 형성되는 것인 항암제 처리된 암세포 검출용 바이오센서의 제조방법.8. The method of claim 7,
The above aptamer is composed of a nucleic acid sequence of SEQ ID NO: 1, and a covalent bond is formed between an amine group attached to the 5 'end of the nucleic acid sequence of SEQ ID NO: 1 and a carboxyl group of the electrically conductive polymer layer. ≪ / RTI >
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20130022271A KR101478896B1 (en) | 2013-02-28 | 2013-02-28 | Biosensor for Detecting Cancer Cell Treated Anti-cancer Drug and Preparation Method Thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20130022271A KR101478896B1 (en) | 2013-02-28 | 2013-02-28 | Biosensor for Detecting Cancer Cell Treated Anti-cancer Drug and Preparation Method Thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20140108810A true KR20140108810A (en) | 2014-09-15 |
KR101478896B1 KR101478896B1 (en) | 2015-01-08 |
Family
ID=51755679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR20130022271A KR101478896B1 (en) | 2013-02-28 | 2013-02-28 | Biosensor for Detecting Cancer Cell Treated Anti-cancer Drug and Preparation Method Thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101478896B1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017039345A1 (en) * | 2015-09-01 | 2017-03-09 | 부산대학교 산학협력단 | One-time-use amperometric detection method for simultaneously measuring hemoglobin and glycated hemoglobin |
KR20170030686A (en) | 2015-09-09 | 2017-03-20 | 부산대학교 산학협력단 | Sensor for detecting multidrug resistance cancer cell and detecting method of multidrug resistance cancer cell using the same |
CN107153089A (en) * | 2017-05-10 | 2017-09-12 | 青岛大学 | A kind of preparation method of dendroid nano-complex Doxorubicin electrochemical sensor |
KR101875135B1 (en) * | 2016-07-04 | 2018-07-06 | 부산대학교 산학협력단 | Selecting method of aptamer using AC potential modulated microfluidic channel |
KR101880862B1 (en) * | 2017-11-10 | 2018-07-23 | (주) 비비비 | Iron Oxide Nanoparticle Complex And Biosensor Using The Same |
WO2021116753A1 (en) * | 2019-12-11 | 2021-06-17 | Novocure Gmbh | Methods of altering the electric impedance to an alternating electric field |
US11067564B2 (en) | 2015-04-30 | 2021-07-20 | Industry Academic Cooperation Foundation Keimyung University | Portable insulin resistance diagnosis device and diagnosis method using same |
WO2022225255A1 (en) * | 2021-04-21 | 2022-10-27 | 고려대학교 산학협력단 | High-sensitivity nanoplasmonic biosensor for detecting autophagy markers, manufacturing method therefor, and autophagy marker detection method using same |
KR20220145235A (en) * | 2021-04-21 | 2022-10-28 | 고려대학교 산학협력단 | Nanoplasmonic biosensor for high sensitivity detection of autophagy marker, method of preparing the same and method of detecting autophagy marker using the same |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101836226B1 (en) | 2015-01-29 | 2018-03-15 | 충남대학교산학협력단 | Manufacturing process of biochip of high efficiency using gold nanoparticle and polymer coating and biochip of high efficiency the same |
KR20220076278A (en) | 2020-11-30 | 2022-06-08 | (주)한국바이오셀프 | Manufacturing process of MEMS chip for separating blood cancer cells mems chip manufactured thereby |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100092255A (en) * | 2009-02-12 | 2010-08-20 | 성균관대학교산학협력단 | Biosensor having polymer multilayer |
KR20110038897A (en) * | 2009-10-09 | 2011-04-15 | 부산대학교 산학협력단 | Diagnostic sensor for lung cancer and preparation method thereof |
KR20120085470A (en) * | 2011-01-24 | 2012-08-01 | 부산대학교 산학협력단 | Biomimetic membrane and biosensor for detecting NADH using the same |
KR20120103911A (en) * | 2011-03-11 | 2012-09-20 | 부산대학교 산학협력단 | Biosensor for detecting nitric oxide and preparation method thereof |
-
2013
- 2013-02-28 KR KR20130022271A patent/KR101478896B1/en active IP Right Grant
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11067564B2 (en) | 2015-04-30 | 2021-07-20 | Industry Academic Cooperation Foundation Keimyung University | Portable insulin resistance diagnosis device and diagnosis method using same |
WO2017039345A1 (en) * | 2015-09-01 | 2017-03-09 | 부산대학교 산학협력단 | One-time-use amperometric detection method for simultaneously measuring hemoglobin and glycated hemoglobin |
KR20170030686A (en) | 2015-09-09 | 2017-03-20 | 부산대학교 산학협력단 | Sensor for detecting multidrug resistance cancer cell and detecting method of multidrug resistance cancer cell using the same |
KR101875135B1 (en) * | 2016-07-04 | 2018-07-06 | 부산대학교 산학협력단 | Selecting method of aptamer using AC potential modulated microfluidic channel |
CN107153089A (en) * | 2017-05-10 | 2017-09-12 | 青岛大学 | A kind of preparation method of dendroid nano-complex Doxorubicin electrochemical sensor |
CN107153089B (en) * | 2017-05-10 | 2019-03-08 | 青岛大学 | A kind of preparation method of dendroid nano-complex Doxorubicin electrochemical sensor |
KR101880862B1 (en) * | 2017-11-10 | 2018-07-23 | (주) 비비비 | Iron Oxide Nanoparticle Complex And Biosensor Using The Same |
WO2021116753A1 (en) * | 2019-12-11 | 2021-06-17 | Novocure Gmbh | Methods of altering the electric impedance to an alternating electric field |
WO2022225255A1 (en) * | 2021-04-21 | 2022-10-27 | 고려대학교 산학협력단 | High-sensitivity nanoplasmonic biosensor for detecting autophagy markers, manufacturing method therefor, and autophagy marker detection method using same |
KR20220145235A (en) * | 2021-04-21 | 2022-10-28 | 고려대학교 산학협력단 | Nanoplasmonic biosensor for high sensitivity detection of autophagy marker, method of preparing the same and method of detecting autophagy marker using the same |
Also Published As
Publication number | Publication date |
---|---|
KR101478896B1 (en) | 2015-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101478896B1 (en) | Biosensor for Detecting Cancer Cell Treated Anti-cancer Drug and Preparation Method Thereof | |
Canfarotta et al. | Specific drug delivery to cancer cells with double-imprinted nanoparticles against epidermal growth factor receptor | |
Cui et al. | A highly sensitive biosensor for tumor maker alpha fetoprotein based on poly (ethylene glycol) doped conducting polymer PEDOT | |
Zhang et al. | Multivalency interface and g-C3N4 coated liquid metal nanoprobe signal amplification for sensitive electrogenerated chemiluminescence detection of exosomes and their surface proteins | |
Ribeiro et al. | Disposable electrochemical detection of breast cancer tumour marker CA 15-3 using poly (Toluidine Blue) as imprinted polymer receptor | |
Chandola et al. | Application of aptamers in diagnostics, drug-delivery and imaging | |
Tang et al. | Self-assembling peptide-based multifunctional nanofibers for electrochemical identification of breast cancer stem-like cells | |
Orndorff et al. | Neurotoxin quantum dot conjugates detect endogenous targets expressed in live cancer cells | |
Chen et al. | Low fouling electrochemical biosensors based on designed Y-shaped peptides with antifouling and recognizing branches for the detection of IgG in human serum | |
Shafiei et al. | A label-free electrochemical aptasensor for breast cancer cell detection based on a reduced graphene oxide-chitosan-gold nanoparticle composite | |
Guo et al. | Deliver anti-PD-L1 into brain by p-hydroxybenzoic acid to enhance immunotherapeutic effect for glioblastoma | |
Zhao et al. | Amplified electrochemical detection of surface biomarker in breast cancer stem cell using self-assembled supramolecular nanocomposites | |
Wang et al. | Aptamer-functionalized polydiacetylene liposomes act as a fluorescent sensor for sensitive detection of MUC1 and targeted imaging of cancer cells | |
Abbasy et al. | Development of a reliable bioanalytical method based on prostate specific antigen trapping on the cavity of molecular imprinted polymer towards sensing of PSA using binding affinity of PSA-MIP receptor: A novel biosensor | |
Chen et al. | Antifouling aptasensor based on self-assembled loop-closed peptides with enhanced stability for CA125 assay in complex biofluids | |
Li et al. | Electrochemical biosensor for epidermal growth factor receptor detection with peptide ligand | |
Kopansky et al. | Peptide-directed HPMA copolymer-doxorubicin conjugates as targeted therapeutics for colorectal cancer | |
Li et al. | Polymer-functionalized carbon nanotubes prepared via ring-opening polymerization for electrochemical detection of carcinoembryonic antigen | |
Akbarinejad et al. | Novel electrochemically switchable, flexible, microporous cloth that selectively captures, releases, and concentrates intact extracellular vesicles | |
Shen et al. | Redox probes tagged electrochemical aptasensing device for simultaneous detection of multiple cytokines in real time | |
Sandil et al. | Biofunctionalized nanostructured tungsten trioxide based sensor for cardiac biomarker detection | |
Guo et al. | Nanodiamonds inhibit cancer cell migration by strengthening cell adhesion: implications for cancer treatment | |
Zhao et al. | Low fouling strategy of electrochemical biosensor based on chondroitin sulfate functionalized gold magnetic particle for voltammetric determination of mycoplasma ovipneumonia in whole serum | |
Wang et al. | Recent advances and biomedical applications of peptide-integrated conducting polymers | |
Shim et al. | Sequential activation of anticancer therapy triggered by tumor microenvironment-selective imaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20171204 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20181129 Year of fee payment: 5 |