KR20140078366A - Manufacturing method of cyclic dipeptide - Google Patents

Manufacturing method of cyclic dipeptide Download PDF

Info

Publication number
KR20140078366A
KR20140078366A KR1020120147647A KR20120147647A KR20140078366A KR 20140078366 A KR20140078366 A KR 20140078366A KR 1020120147647 A KR1020120147647 A KR 1020120147647A KR 20120147647 A KR20120147647 A KR 20120147647A KR 20140078366 A KR20140078366 A KR 20140078366A
Authority
KR
South Korea
Prior art keywords
group
alkyl
compound
nmr
mhz
Prior art date
Application number
KR1020120147647A
Other languages
Korean (ko)
Inventor
문석식
유현아
Original Assignee
주식회사 나프로바이오텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 나프로바이오텍 filed Critical 주식회사 나프로바이오텍
Priority to KR1020120147647A priority Critical patent/KR20140078366A/en
Publication of KR20140078366A publication Critical patent/KR20140078366A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/12Cyclic peptides with only normal peptide bonds in the ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • C07K1/061General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention relates to a manufacturing method of cyclic dipeptide and, more specifically, to a method for directly and simply manufacturing a cyclic dipeptide compound from a linear dipeptide compound under the presence of a catalyst by one pot reaction.

Description

고리형 다이펩타이드의 제조방법{Manufacturing method of cyclic dipeptide}Manufacturing method of cyclic dipeptide < RTI ID = 0.0 >

본 발명은 신규한 고리형 다이펩타이드 화합물의 제조방법에 관한 것으로서, 더욱 상세하게는 촉매존재 하에 선형 다이펩타이드 화합물로부터 고리형 다이펩타이드 화합물을 일용기 반응 (one pot reaction)으로 간편하게 제조하는 방법에 관한 것이다.The present invention relates to a process for preparing a novel cyclic dipeptide compound, and more particularly to a process for easily producing a cyclic dipeptide compound from a linear dipeptide compound in the presence of a catalyst by one pot reaction will be.

고리형 다이펩타이드 (cyclic dipeptide) 화합물은 항암제 (Merwe, E. Peptides 2008, 29, 1305; Nicholson, B. et al. Anticancer Drugs 2006, 17, 25), 항진균제(Houston, D. R. et al. J. Med. Chem. 2004, 47, 5713), 항균제(Fdhila, F. et al. J. Nat. Prod. 2003, 66, 1299) 항바이러스제 (Sinha, S. et al. Nucleosides, Nucleotides Nucleic Acids 2004, 23, 1815) 등 여러 가지 다양한 생물학적 작용을 가지는 것으로 알려져 있다. 특히, 아미노산의 일종인 프롤린 (proline)을 골격으로 하는 고리형 다이펩타이드 화합물은 생체 내에서 여러 가지 수용체 (receptor)를 인식하고, 그 활성을 조절할 뿐만 아니라, 여러 가지 효소의 저해제로도 작용함이 알려져 있다 (Martins, M. B., Carvalho, I. Tetrahedron 2007, 63, 9923; Wang, H. et al. J. Med. Chem. 2000, 43, 1577). Cyclic dipeptide compounds may be used in combination with anticancer agents (Merwe, E. Peptides 2008 , 29, 1305; Nicholson, B. et al. Anticancer Drugs 2006 , 17, 25), antifungal agents (Houston, DR et al. J. Med . Chem. 2004, 47, 5713 ), antibacterial agents (Fdhila, F. et al. J. Nat. Prod. 2003, 66, 1299) anti-viral agents (Sinha, S. et al. Nucleosides , Nucleotides Nucleic Acids 2004, 23, 1815) are known to have various biological functions. Particularly, a cyclic di-peptide compound having proline as a skeleton of an amino acid recognizes various receptors in vivo and not only regulates its activity but also acts as an inhibitor of various enzymes (Martins, MB, Carvalho, I. Tetrahedron 2007 , 63, 9923; Wang, H. et al J. Med. Chem 2000 , 43, 1577).

이처럼 다양한 생물학적 활성을 지닌 고리형 다이펩타이드 화합물의 제조방법에 대해서도 다양한 연구가 진행되어 있다. 고리형 다이펩타이드 화합물의 알려진 일반적인 제조방법은 다음과 같다. 하기 반응식 1에 나타낸 바와 같이, 아미노기가 알콕시카보닐 그룹으로 보호된 아미노산 화합물과 카르복실기에 알킬 그룹이 결합된 아미노산 에스테르 화합물을 축합하여 만들어지는 화학식 11로 표시되는 선형 다이펩타이드 화합물을 HCOOH 에서 2 시간 실온에서 방치하여 질소에 붙은 보호기를 떼어내고 HCOOH를 증발시킨 후에 얻은 불안전한 HCOOH 염(화학식 12)을 부탄올/톨루엔 용매에서 3시간 가열하면서 증발되는 부탄올을 계속 보충해 주면서 화학식 14로 표시되는 고리형 다이펩타이드를 합성한다 (Nitecki, D, E.; Halpern, B.; Westley, J. W. J. Org. Chem. 1968, 33, 864). 다른 방법으로는 반응식 1에서 표시된 바와 같이, 화학식 1의 물질을 4 N HCl을 포함하는 다이옥산 용매에서 30분간 실온에서 방치하고 용매를 날린 후에 얻은 불안전한 HCl 염(화학식 13)을 N-methylmorpoline을 1 당량 사용하고 0.1 ~ 2 M의 아세트산을 포함하는 부탄올에서 120 ℃ 온도 조건에서 3시간 가열하여 고리화하여 제조 한다. 상기 반응들은 질소의 보호기를 먼저 떼어내고 다시 다른 용매에서 고리화하는 두 단계의 제조 과정을 포함하고 있다. 이와는 달리 고온의 밀폐 용기에서 microwave를 조사하여 짧은 시간에 선형 다이펩타이드 (화학식 11)을 고리화시키는 방법은 일용기 반응(one-pot reaction)에서 고리화가 진행됨으로써 간편한 장점이 있다. 그러나 이 방법은 용매로 물을 사용하므로 물에 잘 녹지 않는 경우에는 반응 수율이 낮아지거나, 대량 제조하려면, 대형 microwave 발생장치를 추가로 설치해야 하고 여기에 적합한 고압용 대형 유리 용기를 사용하가 어렵기 때문에, 산업적으로 적용하기에는 경제성이 매우 낮은 측면이 있다. 또 다른 방법으로, 압력 용기에서 물을 촉매로 사용하여 130도에서 가열하여 고리화 반응을 유도하는 방법이 알려져 있으나, 이 방법 또한 물에 잘 녹지 않는 물질의 경우에는 혼합 유기용매를 사용하여야 하고, 또 대량으로 고리화 반응 공정을 설치하려면 추가로 압력 반응기를 설치하여야 한다.Various studies have also been made on a method for producing cyclic di-peptide compounds having various biological activities. Known general methods for producing cyclic di-peptide compounds are as follows. As shown in Reaction Scheme 1, a linear dipeptide compound represented by Formula 11, which is prepared by condensing an amino acid compound in which an amino group is protected with an alkoxycarbonyl group and an amino acid ester compound in which an alkyl group is bonded to a carboxyl group, is reacted with HCOOH for 2 hours at room temperature (12) was heated in a butanol / toluene solvent for 3 hours while continuously adding the butanol to be evaporated, and the cyclic diene represented by the formula (14) was added thereto while being continuously refluxed with the butanol being evaporated while the unrecovered HCOOH salt (Nitecki, D, E .; Halpern, B .; Westley, JWJ Org. Chem. 1968 , 33, 864). Alternatively, as shown in Scheme 1, the compound of formula (I) is allowed to stand in a dioxane solvent containing 4 N HCl at room temperature for 30 minutes, and the unsupported HCl salt (formula 13) obtained after the solvent is blown is reacted with N-methylmorpoline And the mixture is reacted in butanol containing 0.1 to 2 M of acetic acid at a temperature of 120 ° C for 3 hours to be cyclized. These reactions involve a two-step preparation process in which the nitrogen protecting group is first removed and then cyclized in another solvent. In contrast, the method of cyclizing linear dipeptides (Formula 11) in a short time by irradiating a microwave in a high-temperature sealed container has advantages in that the cyclization proceeds in a one-pot reaction. However, since this method uses water as a solvent, the reaction yield is lowered when it is not dissolved in water. In order to mass-produce it, it is necessary to additionally install a large microwave generator and it is difficult to use a large- There is a very low economical efficiency for industrial application. As another method, there is known a method in which water is used as a catalyst in a pressure vessel and heated at 130 ° C to induce a cyclization reaction. However, this method also requires a mixed organic solvent in the case of a material that is insoluble in water, In addition, in order to install a large amount of the cyclization reaction process, an additional pressure reactor should be installed.

[반응식 1][Reaction Scheme 1]

Figure pat00001
Figure pat00001

상기와 같은 방법과는 달리, 질소가 벤질기로 보호된 선형펩타이드를 수소화 반응으로 벤질기를 떼어내고 얻은 물질을 출발물질로 메탄올에서 가열하여 제조하거나, N-carboxy-Leuch anhydride를 사용하여 제조하는 방법도 보고되고 있다. Unlike the above method, a method in which a benzyl group is removed from a linear peptide in which nitrogen is protected with a benzyl group by a hydrogenation reaction, is heated in methanol as a starting material, or is produced by using N-carboxy-Leuch anhydride Are reported.

이상에서 살펴본 바와 같이, 종래 제조방법은 아민 보호기를 제거하기 위한 탈보호 반응과 분자내 고리화 반응을 각기 다른 반응조건으로 수행하는 2단계 제조공정으로 구성되어 있어서 제조 공정에 비용이 많이 들며, 목적물의 수율 또한 낮아진다. 강산을 사용하는 경우에 racemization 이 일어나서 정제가 어렵거나 생성물의 순도가 떨어지는 등의 단점이 있다. microwave를 조사하는 경우, 반응 공정이 한 단계로 장점이 있어 보이나, 고압에 견디는 유리 밀폐 용기를 사용하므로 제조 설비가 특수해야 하고, 목적물의 생산 규모를 키우려면 microwave 발생장치도 증량시켜야 하는 비용상의 커다란 문제점이 발생한다. 또한 물에 용해도가 낮은 선형 다이펩타이드를 고리화하는 경우에 그 물질의 물에 대한 낮은 용해도로 인하여 반응물의 수율이 매우 낮아지며 정제 공정이 어려워진다. As described above, the conventional preparation method is composed of a two-step preparation process in which the deprotection reaction for removing the amine protecting group and the intramolecular cyclization reaction are performed under different reaction conditions, Yield is also lowered. In case of using strong acid, racemization occurs and it is disadvantageous in that purification is difficult or purity of product is lowered. When microwave is irradiated, the reaction process seems to be advantageous in one step. However, since the glass enclosed vessel capable of withstanding high pressure is used, the manufacturing facility must be special. In order to increase the production scale of the object, A problem arises. In the case of cyclizing a linear di-peptide having a low solubility in water, the yield of the reaction product becomes very low due to low solubility of the substance in water and the purification process becomes difficult.

따라서 간단하면서도 대량생산이 가능하며 동시에 고수율로 고순도의 고리형 다이펩타이드 화합물를 제조하는 방법에 대한 연구가 요구된다.Therefore, there is a need for research on a method for producing a cyclic di-peptide compound of high purity at a high yield while being simple and capable of mass production.

Merwe, E. Peptides 2008, 29, 1305; Nicholson, B. et al. Anticancer Drugs 2006, 17, 25Merwe, E. Peptides 2008, 29, 1305; Nicholson, B. et al. Anticancer Drugs 2006, 17, 25 Houston, D. R. et al. J. Med. Chem. 2004, 47, 5713 Houston, D. R. et al. J. Med. Chem. 2004, 47, 5713 Fdhila, F. et al. J. Nat. Prod. 2003, 66, 1299Fdhila, F. et al. J. Nat. Prod. 2003, 66, 1299 Sinha, S. et al. Nucleosides, Nucleotides Nucleic Acids 2004, 23, 1815 Sinha, S. et al. Nucleosides, Nucleotides Nucleic Acids 2004, 23, 1815 Martins, M. B., Carvalho, I. Tetrahedron 2007, 63, 9923Martins, M. B., Carvalho, I. Tetrahedron 2007, 63, 9923 Wang, H. et al. J. Med. Chem. 2000, 43, 1577Wang, H. et al. J. Med. Chem. 2000, 43, 1577 Nitecki, D, E.; Halpern, B.; Westley, J. W. J. Org. Chem. 1968, 33, 864Nitecki, D, E .; Halpern, B .; Westley, J. W. J. Org. Chem. 1968, 33, 864

본 발명은, 질소가 알콕시카보닐로 보호된 선형 다이펩타이드 화합물을 아세트산을 활용하여 한 단계의 반응 조작으로 탈보호 반응과 고리화 반응을 동시에 수행하여 고리형 다이펩타이드 화합물을 직접 제조할 수 있는 매우 효과적인 방법을 제공하는 것을 목적으로 한다.The present invention relates to a method for producing a cyclic dipeptide compound by directly carrying out a deprotection reaction and a cyclization reaction in a single step reaction operation using acetic acid to a linear dipeptide compound in which nitrogen is protected with an alkoxycarbonyl And to provide an effective method.

본 발명은 아미노기가 보호되고 카르복실산기가 보호된 하기 화학식 2로 표시되는 선형 다이펩타이드 화합물을 하나의 반응용기 내에서 한 단계의 반응으로 분자내 고리화 반응을 유도하여 고리형 다이펩타이드 물질인 하기 화학식 1로 표시되는 고리형 다이펩타이드 화합물을 제조하는 방법을 제공한다.The present invention relates to a process for producing a cyclic dipeptide compound, which is a cyclic dipeptide compound, by reacting a linear dipeptide compound represented by the following formula 2, in which an amino group is protected and a carboxylic acid group is protected, There is provided a method for producing a cyclic dipeptide compound represented by the formula (1).

[화학식 1][Chemical Formula 1]

Figure pat00002
Figure pat00002

[화학식 2](2)

Figure pat00003
Figure pat00003

[상기 화학식 1 또는 2에서,[In the above formula (1) or (2)

*로 나타낸 탄소 원자는 카이랄 중심을 이루고;The carbon atom represented by * constitutes the chiral center;

R1 또는 R4는 서로 독립적으로, 수소, 하이드록시, 아미노, 카바모일, 카르복시산, 구아니디노, 머캅토, (C1-C10)알킬, (C6-C20)아르(C1-C10)알킬, (C6-C20)아릴 또는 (C3-C20)헤테로아릴이며;R 1 or R 4 independently of one another are hydrogen, hydroxy, amino, carbamoyl, carboxylic acid, guanidino, mercapto, (C 1 -C 10) alkyl, (C 6 -C 20) C6-C20) aryl or (C3-C20) heteroaryl;

R2 또는 R3은 서로 독립적으로 수소 또는 (C1-C10)알킬이거나, R2 와 R3 (C2-C10)알킬렌 또는 (C2-C10)알케닐렌으로 연결되어 지환족 고리 또는 방향족 고리를 형성할 수 있으며;R 2 or R 3 independently from each other are hydrogen or (C 1 -C 10) alkyl, or R 2 and R 3 are (C2-C10) alkylene or (C2-C10) alkenylene to form an alicyclic or aromatic ring;

X는 (C1-C10)알콕시카보닐기이며;X is a (C1-C10) alkoxycarbonyl group;

Y는 (C1-C10)알킬기이며;Y is a (C1-C10) alkyl group;

R1 또는 R4의 알킬, 아릴, 아르알킬 및 헤테로아릴 또는 R2 또는 R3의 알킬, 알킬렌, 알케닐렌, 지환족고리 및 방향족고리는 하이드록시, 아미노, 시아노, 카바모일, 카르복시산, 구아니디노, 머캅토, (C1-C10)알킬, (C6-C20)아르(C1-C10)알킬, (C6-C20)아릴, (C3-C20)헤테로아릴에서 선택되는 하나 이상으로 더 치환될 수 있다.]The alkyl, aryl, aralkyl and heteroaryl of R 1 or R 4 , or the alkyl, alkylene, alkenylene, alicyclic and aromatic ring of R 2 or R 3 may be substituted by hydroxy, amino, cyano, (C6-C20) aryl, (C3-C20) heteroaryl, each of which is optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, mercapto, (C1-C10) alkyl, Can be.]

본 발명에 기재된 「알킬」, 「알콕시」 및 그 외 「알킬」부분을 포함하는 치환체는 직쇄 또는 분쇄 형태를 모두 포함한다. 또한 본 발명에 기재된 「아릴」은 하나의 수소 제거에 의해서 방향족 탄화수소로부터 유도된 유기 라디칼로, 각 고리에 적절하게는 4 내지 7개, 바람직하게는 5 또는 6개의 고리원자를 포함하는 단일 또는 융합고리계를 포함하며, 다수개의 아릴이 단일결합으로 연결되어 있는 형태까지 포함한다. 구체적인 예로 페닐, 나프틸, 비페닐, 안트릴, 인데닐(indenyl), 플루오레닐 등을 포함하지만, 이에 한정되지 않는다. 본 발명에 기재된 「헤테로아릴」은 방향족 고리 골격 원자로서 B, N, O, S, P(=O), Si 및 P로부터 선택되는 1 내지 4개의 헤테로원자를 포함하고, 나머지 방향족 고리 골격 원자가 탄소인 아릴 그룹을 의미하는 것으로, 5 내지 6원 단환 헤테로아릴, 및 하나 이상의 벤젠환과 축합된 다환식 헤테로아릴이며, 부분적으로 포화될 수도 있다. 또한, 본 발명에서의 헤테로아릴은 하나 이상의 헤테로아릴이 단일결합으로 연결된 형태도 포함한다.The substituents comprising " alkyl ", " alkoxy " and other " alkyl " moieties described in this invention encompass both linear and branched forms. The term " aryl " in the present invention means an organic radical derived from an aromatic hydrocarbon by the removal of one hydrogen, and may be a single or fused ring containing 4 to 7, preferably 5 or 6 ring atoms, A ring system, and a form in which a plurality of aryls are connected by a single bond. Specific examples include, but are not limited to, phenyl, naphthyl, biphenyl, anthryl, indenyl, fluorenyl, and the like. "Heteroaryl" in the present invention includes 1 to 4 heteroatoms selected from B, N, O, S, P (= O), Si and P as aromatic ring skeletal atoms and the remaining aromatic ring skeletal atoms are carbon Means a 5 to 6 membered monocyclic heteroaryl and a polycyclic heteroaryl condensed with at least one benzene ring and may be partially saturated. The heteroaryl in the present invention also includes a form in which one or more heteroaryl is connected to a single bond.

본 발명의 일 실시예에 따른 상기 R1 또는 R4는 서로 독립적으로, 수소, (C1-C10)알킬 또는 (C6-C20)아르(C1-C10)알킬일 수 있다.According to one embodiment of the present invention, R 1 or R 4 may be, independently of each other, hydrogen, (C 1 -C 10) alkyl or (C 6 -C 20) aryl (C 1 -C 10) alkyl.

보다 바람직하게는, 상기 R1 또는 R4는 서로 독립적으로 수소, 메틸기, 에틸기, 프로필기, 이소프로필, 이소부틸, sec-부틸, tert-부틸, 5-아미노펜틸기, 카바모일메틸기, 2-카바모일에틸기, 카복실메틸기, 2-카복실에틸기, 3-구아니디노프로필기, 하이드록시메틸기, 1-하이드록시에틸기, 2-하이드록시에틸기, 티오메틸기, 2-티오에틸기, 메틸티오에틸기, 페닐기, 4-히드록시페닐기, 벤질기, 4-히드록시벤질기, 페닐에틸기, 이미다졸-4-일메틸기 또는 인돌-3-일메틸기이며;More preferably, R 1 or R 4 independently represents hydrogen, a methyl group, an ethyl group, a propyl group, an isopropyl group, an isobutyl group, a sec-butyl group, a tert- Hydroxyethyl group, 2-hydroxyethyl group, thiomethyl group, 2-thioethyl group, methylthioethyl group, phenyl group, 4-hydroxyethyl group, A hydroxyphenyl group, a benzyl group, a 4-hydroxybenzyl group, a phenylethyl group, an imidazol-4-ylmethyl group or an indol-3-ylmethyl group;

R2 및 R3은 서로 독립적으로 수소, 메틸 또는 에틸이거나 (C2-C10)알킬렌 으로 연결되어 지환족 고리를 형성한 것일 수 있다.R 2 and R 3 may be independently hydrogen, methyl or ethyl, or (C 2 -C 10) alkylene to form an alicyclic ring.

보다 바람직하게 상기 화학식 1은 하기 화합물에서 선택되는 것일 수 있으나, 이에 한정이 있는 것은 아니다.More preferably, the formula (1) may be selected from the following compounds, but is not limited thereto.

Figure pat00004
Figure pat00004

Figure pat00005
Figure pat00005

Figure pat00006
Figure pat00006

Figure pat00007
Figure pat00007

Figure pat00008
Figure pat00008

Figure pat00009
Figure pat00009

본 발명의 일 실시예에 따른 상기 화학식 2로 표시되는 선형 다이펩타이드 화합물은 아민그룹과 카르복실그룹을 포함하는 통상의 아미노산 화합물을 축합반응하여 제조한 화합물이다. 본 발명에서는 상기 화학식 2로 표시되는 선형 다이펩타이드 화합물을 구성하는 아미노산의 선택에 특별한 제한을 두지 않으며 천연 또는 합성 물질을 모두 포함하며, 아민그룹과 카르복실그룹을 연결하는 탄소사슬의 형태에 대해서도 특별한 제한을 두지 않는다.The linear dipeptide compound represented by Formula 2 according to an embodiment of the present invention is a compound prepared by condensation reaction of a common amino acid compound containing an amine group and a carboxyl group. In the present invention, there is no particular restriction on the choice of the amino acid constituting the linear dipeptide compound represented by the general formula (2), and both natural and synthetic materials are included. Also, as for the form of the carbon chain connecting the amine group and the carboxyl group There is no restriction.

본 발명의 일 실시예에 따른 촉매는 아세트산 또는 아세트산 수용액인 것을 특징으로 한다.The catalyst according to an embodiment of the present invention is characterized by being an aqueous solution of acetic acid or acetic acid.

보다 상세하게는 본 발명의 고리형 다이펩타이드의 제조방법은 종래에 한 단계의 반응을 유도하기 위해 적용되었던 극초단파를 사용하지 않고, 아세트산을 2 ~50 %의 수용액을 용매로 사용하거나 또는 아세트산을 촉매 겸 용매로 사용하여 반응기 내부의 용매가 환류할 수 있을 정도로 반응온도를 100℃ 내지 130℃, 바람직하게는 100℃ 내지 125℃, 보다 바람직하게는 110℃ 내지 125℃로 유지하면서 가열하여, 상기 화학식 2로 표시되는 선형 다이펩타이드의 아민 보호기를 제거하는 탈보호 반응과 분자내 고리화 반응이 순차적으로 일어나도록 유도하여 상기 화학식 1로 표시되는 고리형 다이펩타이드 화합물을 효율적으로 제조하는 것을 특징으로 한다. More specifically, the method of the present invention for producing a cyclic di-peptide can be carried out by using an aqueous solution of acetic acid in an amount of 2 to 50% as a solvent or using acetic acid as a catalyst And the mixture is heated while maintaining the reaction temperature at 100 to 130 캜, preferably 100 to 125 캜, and more preferably 110 to 125 캜, so that the solvent inside the reactor can be refluxed, 2, the deprotection reaction for removing the amine protecting group and the intramolecular cyclization reaction are sequentially performed, thereby efficiently producing the cyclic dipeptide compound represented by the above formula (1).

만약 수용액에서 용해도가 낮아서 잘 녹지 않는 상기 화학식 2로 표시되는 선형 다이펩타이드의는 아세트산을 단독으로 사용함으로써 고리화 반응을 원활히 시킬 수 있다. 또한 수용액에서 용해도의 문제가 없는 경우에도, 아세트산 수용액 대신에 아세트산에서만 가열하여도 원하는 목적 화합물을 얻을 수 있다.If acetic acid is used alone in the linear dipeptide represented by the above formula (2), which is insoluble because of low solubility in an aqueous solution, the cyclization reaction can be facilitated. Even when there is no problem of solubility in an aqueous solution, desired compound can be obtained even by heating only with acetic acid instead of aqueous acetic acid.

따라서 본 발명의 제조방법은 아세트산만을 용매겸 촉매로 사용하는 것이 반응효율면에서 보다 바람직하다.Therefore, in the production method of the present invention, it is more preferable to use only acetic acid as a solvent and catalyst in terms of reaction efficiency.

본 발명의 일 실시예에 따른 아세트산수용액은 2 ~ 50중량%, 보다 바람직하게는 2 ~ 20중량%로 포함된 것일 수 있으며, 상기 화학식 2로 표시되는 선형 다이펩타이드 화합물 1 몰 (mole)을 기준으로 아세트산수용액 1 내지 3 L 의 범위를 사용할 수 있다.The aqueous solution of acetic acid according to an embodiment of the present invention may contain 2 to 50% by weight, more preferably 2 to 20% by weight, of the linear dipeptide compound represented by Formula 2, And a range of 1 to 3 L of an aqueous acetic acid solution may be used.

보다 바람직하게는 상기 고리화반응은 반응효율면에서 110℃ 내지 125℃에서 2시간 내지 7시간, 보다 바람직하게는 1시간 내지 5시간동안 수행될 수 있다.More preferably, the cyclization reaction may be carried out at a temperature of from 110 ° C to 125 ° C for 2 hours to 7 hours, more preferably from 1 hour to 5 hours in terms of reaction efficiency.

반응이 완료된 후에 아세트산이나 아세트산 수용액을 감압 하에 제거하고 얻은 고체 혼합물이 고리형 다이펩타이드 화합물이며, 정제과정을 거치지 않아도 고순도의 고리형 다이펩타이드 화합물을 얻을 수 있으나, 정제과정을 거칠 수도 있다.After completion of the reaction, the acetic acid or acetic acid aqueous solution is removed under reduced pressure, and the obtained solid mixture is a cyclic dipeptide compound. Without purification, a cyclic dipeptide compound of high purity can be obtained, but it may be subjected to a purification process.

정제과정은 한정이 있는 것은 아니나, 보다 효과적으로 정제하기 위한 측면에서 메탄올, 에틸 아세테이트, 헥산 또는 이들의 혼합물에 녹여 교반하고 용매를 제거하여 백색고체로 고리형 다이펩타이드 화합물을 얻을 수 있으며, 별도의 칼럼크로마토그라피와 같은 정제과정을 거치지 않더라도 높은 순도의 생성물을 얻을 수 있다. 그러나 이때 색깔이 있는 경우에는 농축한 반응혼합액을 메탄올에 녹여서 활성탄을 사용하여 색을 제거하고 다시 농축하여 메탄올, 에틸 아세테이트, 헥산 또는 이들의 혼합물에서 선택되는 용매를 최소량으로 사용하여 불순물을 제거하고 고체를 여과하면 백색 고체의 고리형 다이펩타이드 화합물을 얻을 수도 있다.Although the purification process is not limited, it may be dissolved in methanol, ethyl acetate, hexane or a mixture thereof in order to purify more effectively, and the solvent may be removed to obtain a cyclic diepeptide compound as a white solid. High purity products can be obtained without purification steps such as chromatography. However, if there is color, the concentrated reaction mixture is dissolved in methanol, the color is removed using activated charcoal, and concentrated to remove impurities using a solvent selected from methanol, ethyl acetate, hexane or a mixture thereof, Can be filtered to give a cyclic diep peptide compound as a white solid.

본 발명의 고리형 다이펩다이드의 제조방법은 하나의 반응기내에서 탈보호 반응과 고리화 반응을 동시에 수행함으로써, 공정을 단순화하는 효과를 가진다.The process for producing the cyclic dipeptide of the present invention has the effect of simplifying the process by simultaneously performing the deprotection reaction and the cyclization reaction in one reactor.

본 발명의 제조방법은 아세트산을 활용하는 것 외에 별도의 촉매나 유기용매를 사용하지 않는 조건에서도 원활하게 탈보호 반응과 고리화 반응을 수행함으로써, 제조공정의 비용이 낮출 수 있어 매우 경제적이다.In addition to utilizing acetic acid, the production method of the present invention can perform the deprotection reaction and the cyclization reaction smoothly even under the condition that no catalyst or organic solvent is used, so that the cost of the production process can be reduced and it is very economical.

또한 본 발명의 제조방법은 별도의 복잡한 장치가 필요없어 대량생산에 적용이 가능하며, 별도의 정제없이 또는 간단한 정제방법으로 고순도의 고리형 다이펩다이드를 고수율로 제조할 수 있다.In addition, the production method of the present invention can be applied to mass production without requiring a complicated apparatus, and a high purity cyclic dipeptide can be produced at a high yield by a simple purification method or without any additional purification.

또한 본 발명의 제조방법은 고리형 다이펩다이드가 라세미체로 얻어지지 않고 거의 하나의 이성질체로 얻어져 별도의 분리가 필요하지 않아 매우 경제적이다.Further, the production method of the present invention is very economical since the cyclic dipeptide is not obtained as a racemate but is obtained as almost one isomer, and no separate separation is required.

이하 본 발명의 구체적인 실시예를 제시하나, 제시된 실시예로 본 발명의 특허청구범위에 기재된 권리범위를 한정하고자 하고자 하는 것은 아니다.It is to be understood that the present invention is not limited to the disclosed embodiments, but is intended to be limited only by the scope of the appended claims.

상기 화학식 2로 표시되는 선형 다이펩타이드 화합물은 이미 공지된 문헌의 방법에 따라 제조하여 사용하였다 (Zeng, Y. et al. Bioorg. Med. Chem. Lett. 2005, 15, 3034; Thajudeen, H. et al. Tetrahedron Lett. 2010, 51, 1303; Urry, D. W. et al. Biochemistry 1974, 13, 609; Dahiya, R. J. Chil. Chem. Soc. 2007, 52, 1224; Donkor, I. O. et al. Bioorg. Med. Chem. Lett. 2001, 11, 2647).
The linear dipeptide compound represented by Formula 2 was prepared and used according to a known method (Zeng, Y. et al., Bioorg Med Chem. Lett. 2005, 15, 3034, Thajudeen, H. et 2007, 52, 1224, Donkor, IO et al., Bioorg. Med. Chem., 1979, 13, 609; Lett 2001, 11, 2647).

[실시예1] 화합물 7의 제조 [Example 1] Preparation of Compound 7

Figure pat00010
Figure pat00010

valine과 alanine으로 이루어진 고리형 다이펩타이드(화합물7)의 경우에, 아세트산 5중량%, 10중량%, 100중량%에서 반응시켜 얻은 생성물인 화합물 7을 고압액체크로마토그라피로 분석하였으며, 그 결과 최종 목적 생성물의 순도가 모두 다 매우 높다는 것을 알 수 있다. 반응조건과 반응 수율은 표 1에 나타내었으며, 아세트산만을 용매겸 촉매로 사용하였을 경우 가장 반응수율이 높았음을 알 수 있다.
Compound 7, a product obtained by reacting 5%, 10% and 100% by weight of acetic acid in the case of a cyclic diep peptide (compound 7) consisting of valine and alanine was analyzed by high pressure liquid chromatography, It can be seen that the purity of the product is all very high. The reaction conditions and reaction yields are shown in Table 1. It can be seen that the reaction yield was the highest when only acetic acid was used as the solvent and catalyst.

화합물번호Compound No. 반응조건Reaction conditions 반응 온도(℃)Reaction temperature (캜) 반응수율(%)Reaction yield (%) 녹는점(℃)Melting point (℃) 5중량% 아세트산 5% by weight acetic acid 9898 7878 215-219215-219 10중량% 아세트산10% by weight acetic acid 101101 7575 214-215214-215 화합물 7Compound 7 20중량% 아세트산20% by weight acetic acid 102102 8282 213-216213-216 아세트산 Acetic acid 117117 8585 216-221216-221

[실시예 2 내지 23] 화합물2 내지 7, 화합물10 내지 12, 화합물15내지 19 및 화합물 21 내지 28의 제조[Examples 2 to 23] Preparation of compounds 2 to 7, compounds 10 to 12, compounds 15 to 19 and compounds 21 to 28

둥근 플라스크에 선형 다이펩타이드 화합물(표2에 나타낸 화합물; 0.5 mol)을 용매와 촉매로 아세트산 1.5 L에 녹였다. 플라스크에 환류장치를 설치하고 외부 온도를 120℃가 유지되게 하여 4시간 동안 전동 교반기로 1200 rpm 으로 교반하였다. 약 50℃에서 감압 하에 아세트산과 생긴 액체들을 제거하고 남은 농축액에 헥산과 에틸 아세테이트 또는 메탄올 혼합물을 넣어서 생긴 백색 고체를 여과하였다. 이렇게 하여 얻은 백색 고체인 표제화합물을 얻었다. In a round flask, a linear dipeptide compound (compound shown in Table 2; 0.5 mol) was dissolved in 1.5 L of acetic acid as a solvent and a catalyst. The flask was equipped with a reflux condenser and agitated at 1200 rpm for 4 hours with an electric stirrer so that the external temperature was maintained at 120 ° C. The acetic acid and the resulting liquid were removed under reduced pressure at about 50 < 0 > C, and the resulting solid was filtered through a mixture of hexane and ethyl acetate or methanol. The title compound was thus obtained as a white solid.

제조된 고리형 다이펩타이드 화합물의 녹는점과 수율 또한 표 2에 나타내었으며, 표 3에 IUPAC 이름을 나타내었다.
Melting points and yields of the cyclic dipeptide compounds prepared are also shown in Table 2, and the IUPAC names are shown in Table 3.

[실시예 24 내지 28] 화합물 8, 9, 13, 14, 20[Examples 24 to 28] The compounds 8, 9, 13, 14, 20

실시예 2 내지 23에서 하기 표 2에 나타낸 화합물을 출발물질로 각각사용하고 아세트산 10중량%, 1.5L를 사용한 것을 제외하고는 실시예 2내지 23과 동일하게 실시하여 화합물 8, 9, 13, 14, 20을 제조하였으며, 제조된 고리형 다이펩타이드 화합물의 녹는점과 수율 또한 표 2에 나타내었으며, 표 3에 화합물 1 내지 28의 IUPAC 이름을 나타내었다.In Examples 2 to 23, compounds 8, 9, 13 and 14 were obtained in the same manner as in Examples 2 to 23 except that the compounds shown in the following Table 2 were used as starting materials and acetic acid was used in an amount of 10 wt% , 20 were prepared. The melting points and yields of the cyclic dipeptide compound thus prepared are also shown in Table 2, and the IUPAC names of the compounds 1 to 28 are shown in Table 3.

Figure pat00011

Figure pat00011

화합물compound XX YY RR 1One RR 22 RR 33 RR 44 녹는점Melting point
(℃) (° C)
수율yield
(%)(%)
1One BocBoc CH3 CH 3 H H HH HH HH 212-216212-216 8989 22 BocBoc CH3 CH 3 (S) CH3 (S) CH 3 HH HH HH 211-213211-213 9292 33 BocBoc CH3 CH 3 (S) (CH3)2CH (S) (CH 3) 2 CH HH HH HH 251-256251-256 9090 44 BocBoc CH3 CH 3 (S) (CH3)2CHCH2 (S) (CH 3) 2 CHCH 2 HH HH HH 241-243241-243 8585 55 BocBoc CH3 CH 3 (S) CH3CH2CH(CH3) (S) CH 3 CH 2 CH (CH 3) HH HH HH 225-230225-230 8383 66 BocBoc CH3 CH 3 (S) CH3 (S) CH 3 HH HH (S) CH3 (S) CH 3 241-246241-246 8888 77 BocBoc CH3 CH 3 (S) (CH3)2CH (S) (CH 3) 2 CH HH HH (S) CH3 (S) CH 3 216-221216-221 8585 88 BocBoc CH3 CH 3 (S) (CH3)2CHCH2 (S) (CH 3) 2 CHCH 2 HH HH (S) CH3 (S) CH 3 219-223219-223 9191 99 BocBoc CH3 CH 3 (S) CH3CH2CH(CH3) (S) CH 3 CH 2 CH (CH 3) HH HH (S) CH3 (S) CH 3 220-225220-225 8888 1010 BocBoc CH3 CH 3 (S) (CH3)2CHCH2 (S) (CH 3) 2 CHCH 2 HH HH (S) HOCH2 (S) HOCH 2 208-213208-213 8484 1111 BocBoc CH3 CH 3 H H HH HH (S) HOCH2 (S) HOCH 2 219-223219-223 8282 1212 BocBoc CH3 CH 3 (S) 4-HO-C6H5-CH2 (S) 4-HO-C 6 H 5 -CH 2 HH HH (S) CH3 (S) CH 3 271-273271-273 8383 1313 BocBoc CH3 CH 3 H H HH HH (S) 인돌-3-일메틸(S) indol-3-ylmethyl 280-284280-284 9191 1414 BocBoc CH3 CH 3 (S) (CH3)2CHCH2 (S) (CH 3) 2 CHCH 2 HH HH (S) C6H5-CH2 (S) C 6 H 5 -CH 2 279-283279-283 8181 1515 BocBoc CH3 CH 3 (S) (CH3)2CHCH2 (S) (CH 3) 2 CHCH 2 HH HH (S) CH3CH(OH) (S) CH 3 CH (OH ) 245-248245-248 7575 1616 BocBoc CH3 CH 3 H H -(CH2)3-- (CH 2 ) 3 - (S) H(S) H 152-157152-157 7878 1717 BocBoc CH3 CH 3 (S) CH3 (S) CH 3 -(CH2)3-- (CH 2 ) 3 - (S) H(S) H 175-178175-178 8181 1818 BocBoc CH3 CH 3 (S) (CH3)2CH (S) (CH 3) 2 CH -(CH2)3-- (CH 2 ) 3 - (S) H(S) H 167-172167-172 8484 1919 BocBoc CH3 CH 3 (S) (CH3)2CHCH2 (S) (CH 3) 2 CHCH 2 -(CH2)3-- (CH 2 ) 3 - (S) H(S) H 152-155152-155 8181 2020 BocBoc CH3 CH 3 (S) CH3CH2CH(CH3) (S) CH 3 CH 2 CH (CH 3) -(CH2)3-- (CH 2 ) 3 - (S) H(S) H 103-105103-105 7575 2121 BocBoc CH3 CH 3 (S) HOCH2 (S) HOCH 2 -(CH2)3-- (CH 2 ) 3 - (S) H(S) H 153-156153-156 8888 2222 BocBoc CH3 CH 3 (S) C6H5-CH2 (S) C 6 H 5 -CH 2 -(CH2)3-- (CH 2 ) 3 - (S) H(S) H 133-137133-137 8686 2323 BocBoc CH3 CH 3 (S) 인돌-3-일메틸(S) indol-3-ylmethyl -(CH2)3-- (CH 2 ) 3 - (S) H(S) H 174-176174-176 8484 2424 BocBoc CH3 CH 3 (S) 4-HO-C6H5-CH2 (S) 4-HO-C 6 H 5 -CH 2 -(CH2)3-- (CH 2 ) 3 - (S) H(S) H 148-152148-152 8989 2525 BocBoc CH3 CH 3 (S) CH3CH(OH) (S) CH 3 CH (OH ) -(CH2)3-- (CH 2 ) 3 - (S) H(S) H 162-165162-165 7878 2626 BocBoc CH3 CH 3 (S) H2N-CO-CH2CH2 (S) H 2 N-CO-CH 2 CH 2 -(CH2)3-- (CH 2 ) 3 - (S) H(S) H 190-195190-195 6969 2727 BocBoc CH3 CH 3 (S) H2N-CO-CH2 (S) H 2 N-CO-CH 2 -(CH2)3-- (CH 2 ) 3 - (S) H(S) H 180-183180-183 6363 2828 BocBoc CH3 CH 3 (S) CH3SCH2CH2 (S) CH 3 SCH 2 CH 2 -(CH2)3-- (CH 2 ) 3 - (S) H(S) H 212-215212-215 8383

화합물compound IUPAC 이름IUPAC Name 1One piperazine-2,5-dionepiperazine-2,5-dione 22 (S)-3-methylpiperazine-2,5-dione(S) -3-methylpiperazine-2,5-dione 33 (S)-3-isopropylpiperazine-2,5-dione(S) -3-isopropylpiperazine-2,5-dione 44 (S)-3-isobutylpiperazine-2,5-dione(S) -3-isobutylpiperazine-2,5-dione 55 (S)-3-sec-butylpiperazine-2,5-dione(S) -3-sec-butylpiperazine-2,5-dione 66 (3S,6S)-3,6-dimethylpiperazine-2,5-dione(3S, 6S) -3,6-dimethylpiperazine-2,5-dione 77 (3S,6S)-3-isopropyl-6-methylpiperazine-2,5-dione(3S, 6S) -3-isopropyl-6-methylpiperazine-2,5-dione 88 (3S,6S)-3-isobutyl-6-methylpiperazine-2,5-dione(3S, 6S) -3-isobutyl-6-methylpiperazine-2,5-dione 99 (3S,6S)-3-sec-butyl-6-methylpiperazine-2,5-dione(3S, 6S) -3-sec-butyl-6-methylpiperazine-2,5-dione 1010 (3S,6S)-3-(hydroxymethyl)-6-isobutylpiperazine-2,5-dione(3S, 6S) -3- (hydroxymethyl) -6-isobutylpiperazine-2,5-dione 1111 (S)-3-(hydroxymethyl)piperazine-2,5-dione(S) -3- (hydroxymethyl) piperazine-2,5-dione 1212 (3S,6S)-3-(4-hydroxybenzyl)-6-methylpiperazine-2,5-dione(3S, 6S) -3- (4-hydroxybenzyl) -6-methylpiperazine-2,5-dione 1313 (S)-3-((1H-indol-3-yl)methyl)piperazine-2,5-dione(S) -3 - ((1H-indol-3-yl) methyl) piperazine-2,5-dione 1414 (3S,6S)-3-benzyl-6-isobutylpiperazine-2,5-dione(3S, 6S) -3-benzyl-6-isobutylpiperazine-2,5-dione 1515 (3S,6S)-3-sec-butyl-6-(1-hydroxyethyl)piperazine-2,5-dione(3S, 6S) -3-sec-butyl-6- (1-hydroxyethyl) piperazine-2,5-dione 1616 (S)-hexahydropyrrolo[1,2-a]pyrazine-1,4-dione (S) -hexahydropyrrolo [1,2-a] pyrazine-1,4-dione 1717 (3S,8aS)-hexahydro-3-methylpyrrolo[1,2-a]pyrazine-1,4-dione(3S, 8aS) -hexahydro-3-methylpyrrolo [1,2-a] pyrazine-1,4-dione 1818 (3S,8aS)-hexahydro-3-isopropylpyrrolo[1,2-a]pyrazine-1,4-dione(3S, 8aS) -hexahydro-3-isopropylpyrrolo [1,2-a] pyrazine-1,4-dione 1919 (3S,8aS)-hexahydro-3-isobutylpyrrolo[1,2-a]pyrazine-1,4-dione(3S, 8aS) -hexahydro-3-isobutylpyrrolo [1,2-a] pyrazine-1,4-dione 2020 (3S,8aS)-3-sec-butyl-hexahydropyrrolo[1,2-a]pyrazine-1,4-dione(3S, 8aS) -3-sec-butyl-hexahydropyrrolo [1,2-a] pyrazine- 1,4-dione 2121 (3S,8aS)-hexahydro-3-(hydroxymethyl)pyrrolo[1,2-a]pyrazine-1,4-dione(3S, 8aS) -hexahydro-3- (hydroxymethyl) pyrrolo [1,2-a] pyrazine-1,4-dione 2222 (3S,8aS)-3-benzyl-hexahydropyrrolo[1,2-a]pyrazine-1,4-dione(3S, 8aS) -3-benzyl-hexahydropyrrolo [1,2-a] pyrazine-1,4-dione 2323 (3S,8aS)-3-((1H-indol-3-yl)methyl)-hexahydropyrrolo[1,2-a]pyrazine-1,4-dione(3S, 8aS) -3 - ((1H-indol-3-yl) methyl) hexahydropyrrolo 1,2- a pyrazine- 2424 (3S,8aS)-3-(4-hydroxybenzyl)-hexahydropyrrolo[1,2-a]pyrazine-1,4-dione(3S, 8aS) -3- (4-hydroxybenzyl) hexahydropyrrolo [1,2-a] pyrazine-1,4-dione 2525 (3S,8aS)-hexahydro-3-(1-hydroxyethyl)pyrrolo[1,2-a]pyrazine-1,4-dione(3S, 8aS) -hexahydro-3- (1-hydroxyethyl) pyrrolo [1,2- a] pyrazine- 1,4-dione 2626 3-((3S,8aS)-octahydro-1,4-dioxopyrrolo[1,2-a]pyrazin-3-yl)propanamide3 - ((3S, 8aS) -octahydro-1,4-dioxopyrrolo [1,2-a] pyrazin-3- yl) propanamide 2727 2-((3S,8aS)-octahydro-1,4-dioxopyrrolo[1,2-a]pyrazin-3-yl)acetamide2 - ((3S, 8aS) -octahydro-1,4-dioxopyrrolo [1,2-a] pyrazin-3- yl) acetamide 2828 (3S,8aS)-hexahydro-3-(2-(methylthio)ethyl)pyrrolo[1,2-a]pyrazine-1,4-dione(3S, 8aS) -hexahydro-3- (2- (methylthio) ethyl) pyrrolo [1,2- a] pyrazine- 1,4-dione

화합물 1 Cyclo(Gly-Gly): 흰색 고체; 녹는점 212-216℃ (dec); 1H NMR (DMSO-d 6, 400 MHz) δ 7.98 (2H, s), 3.68 (4H, s) ppm; 13C NMR (DMSO-d 6, 100 MHz) δ 166.7, 45.0 ppm.
Compound 1 Cyclo (Gly-Gly): white solid; Melting point 212-216 占 폚 (dec); 1 H NMR (DMSO- d 6, 400 MHz) δ 7.98 (2H, s), 3.68 (4H, s) ppm; 13 C NMR (DMSO- d 6, 100 MHz) δ 166.7, 45.0 ppm.

화합물 2 Cyclo(Ala-Gly): 흰색 고체; 녹는점 211-213℃ (dec); 1H NMR (DMSO-d 6, 400 MHz) δ 8.14 (1H, s), 7.95 (1H, s), 3.81 (1H, q, J = 6.4 Hz), 3.72 (2H, br d), 1.21 (3H, d) ppm; 13C NMR (DMSO-d 6, 100 MHz) δ 169.6, 167.0, 50.4, 45.1, 19.3 ppm.
Compound 2 Cyclo (Ala-Gly): white solid; Melting point 211-213 占 폚 (dec); 1 H NMR (DMSO- d 6, 400 MHz) δ 8.14 (1H, s), 7.95 (1H, s), 3.81 (1H, q, J = 6.4 Hz), 3.72 (2H, br d), 1.21 (3H , d) ppm; 13 C NMR (DMSO- d 6, 100 MHz) δ 169.6, 167.0, 50.4, 45.1, 19.3 ppm.

화합물 3 Cyclo(Val-Gly): 흰색 고체; 녹는점 251-256(dec)℃; [α]20 D +24.5 (c 0.5, H2O); 1H NMR (CD3OD, 400 MHz) δ 4.01 (1H, d, J = 18.4 Hz), 3.82 (1H, d, J = 18.4 Hz), 3.73 (1H, d, J = 4.0 Hz), 2.28 - 2.20 (1H, m), 1.03 (3H, d, J = 7.2 Hz), 0.96 (3H, d, J = 7.2 Hz); 13C NMR (100 MHz, CD3OD) δ 170.4, 169.0, 61.8, 45.3, 34.5, 19.1, 17.3 ppm.
Compound 3 Cyclo (Val-Gly): white solid; Melting point 251-256 (dec) 占 폚; [α] 20 D +24.5 (c 0.5, H 2 O); 1 H NMR (CD 3 OD, 400 MHz) δ 4.01 (1H, d, J = 18.4 Hz), 3.82 (1H, d, J = 18.4 Hz), 3.73 (1H, d, J = 4.0 Hz), 2.28 - 2.20 (1H, m), 1.03 (3H, d, J = 7.2 Hz), 0.96 (3H, d, J = 7.2 Hz); 13 C NMR (100 MHz, CD 3 OD)? 170.4, 169.0, 61.8, 45.3, 34.5, 19.1, 17.3 ppm.

화합물 4 Cyclo(Leu-Gly): 흰색 고체; 녹는점 241-243℃; [α]20 D +25.1 (c 0.5, CH3OH); 1H NMR (CD3OD, 400 MHz) δ 4.01 (1H, d, J = 18.4 Hz), 3.89 (1H, t, J = 6.8 Hz), 3.82 (1H, d, J = 18.4 Hz), 1.72 - 1.89 (1H, m), 1.66 - 1.70 (1H, m), 0.97 (6H, t, J = 7.2 Hz) ppm; 13C NMR (100 MHz, CD3OD) δ 171.7, 169.0, 54.9, 45.4, 44.0, 25.7, 23.5, 22.3 ppm.
Compound 4 Cyclo (Leu-Gly): white solid; Melting point 241-243 DEG C; [?] 20 D +25.1 ( c 0.5, CH 3 OH); 1 H NMR (CD 3 OD, 400 MHz) δ 4.01 (1H, d, J = 18.4 Hz), 3.89 (1H, t, J = 6.8 Hz), 3.82 (1H, d, J = 18.4 Hz), 1.72 - 1.89 (1H, m), 1.66-1.70 (1H, m), 0.97 (6H, t, J = 7.2 Hz) ppm; 13 C NMR (100 MHz, CD 3 OD)? 171.7, 169.0, 54.9, 45.4, 44.0, 25.7, 23.5, 22.3 ppm.

화합물 5 Cyclo(Ile-Gly): 흰색 고체; 녹는점 225-230℃ (dec); [α]20 D +12.8 (c 0.5, CH3OH); 1H NMR (DMSO-d 6, 400 MHz) δ 8.39 (1H, s), 8.23 (1H, s), 4.03 (1H, d, J = 17.6 Hz), 3.87-3.80 (2H, overlapped), 2.07-1.99 (1H, m), 1.70-1.60 (1H, m), 1.43-1.34 (1H, m), 1.12 (3H, d, J = 7.2 Hz), 1.08 (3H, t, J = 7.2 Hz) ppm; 13C NMR (100 MHz, CD3OD) δ 167.6, 166.4, 59.4, 44.6, 39.5, 24.6, 15.4, 12.1 ppm.
Compound 5 Cyclo (Ile-Gly): white solid; Melting point 225-230 占 폚 (dec); [?] 20 D +12.8 ( c 0.5, CH 3 OH); 1 H NMR (DMSO- d 6, 400 MHz) δ 8.39 (1H, s), 8.23 (1H, s), 4.03 (1H, d, J = 17.6 Hz), 3.87-3.80 (2H, overlapped), 2.07- 1.99 (1H, m), 1.70-1.60 (1H, m), 1.43-1.34 (1H, m), 1.12 (3H, d, J = 7.2 Hz), 1.08 (3H, t, J = 7.2 Hz) ppm; 13 C NMR (100 MHz, CD 3 OD)? 167.6, 166.4, 59.4, 44.6, 39.5, 24.6, 15.4, 12.1 ppm.

화합물 6 Cyclo(Ala-Ala): 흰색 고체; 녹는점 241-246℃(dec); 1H NMR (DMSO-d 6, 400 MHz) δ 8.07 (2H, s), 3.89 (2H, q, J = 6.8 Hz), 1.22 (6H, d, J = 6.8 Hz) ppm; 13C NMR (DMSO-d 6, 100 MHz) δ 169.8, 50.5, 19.2 ppm.
Compound 6 Cyclo (Ala-Ala): white solid; Melting point 241-246 占 폚 (dec); 1 H NMR (DMSO- d 6, 400 MHz) δ 8.07 (2H, s), 3.89 (2H, q, J = 6.8 Hz), 1.22 (6H, d, J = 6.8 Hz) ppm; 13 C NMR (DMSO- d 6, 100 MHz) δ 169.8, 50.5, 19.2 ppm.

화합물 7 Cyclo(Val-Ala): 흰색 고체; 녹는점 216-221℃ (dec); [α]20 D -48.6 (c 0.5, CH3OH); 1H NMR (DMSO-d 6, 400 MHz) δ 8.11 (1H, s), 8.00 (1H, s), 3.86 (1H, q, J = 6.8 Hz), 3.66 (1H, br s), 2.15-2.10 (1H, m), 1.25 (3H, d, J = 6.8 Hz), 0.92 (3H, d, J = 6.8 Hz), 0.81 (3H, d, J = 6.8 Hz) ppm; 13C NMR (CD3OD, 100 MHz) δ 169.1, 167.1 59.8, 50.1, 31.5, 20.5, 18.9, 17.3 ppm.
Compound 7 Cyclo (Val-Ala): white solid; Melting point 216-221 占 폚 (dec); [?] 20 D -48.6 ( c 0.5, CH 3 OH); 1 H NMR (DMSO- d 6, 400 MHz) δ 8.11 (1H, s), 8.00 (1H, s), 3.86 (1H, q, J = 6.8 Hz), 3.66 (1H, br s), 2.15-2.10 (3H, d, J = 6.8 Hz), 0.92 (3H, d, J = 6.8 Hz), 0.81 (3H, d, J = 6.8 Hz) ppm; 13 C NMR (CD 3 OD, 100 MHz)? 169.1, 167.1 59.8, 50.1, 31.5, 20.5, 18.9, 17.3 ppm.

화합물 8 Cyclo(Leu-Ala): 흰색 고체; 녹는점 219-223℃; 1H NMR (CD3OD, 400 MHz) δ 4.00 (1H, q, J = 6.8 Hz), 3.94 (1H, dd, J = 6.8, 5.6 Hz), 1.88-1.80 (1H, m), 1.63 (1H, dd, J = 14.0, 6.8 Hz), 1.61 (1H, dd, 14.0, 5.4 Hz), 1.44 (3H, d, J = 6.8 Hz), 0.96 (6H, t, J = 7.2 Hz); 13C NMR (CD3OD, 100 MHz) δ 171.6, 171.0, 60.9, 53.2, 45.0, 23.9, 22.2, 22.1, 19.5, 18.5 ppm.
Compound 8 Cyclo (Leu-Ala): white solid; Melting point 219-223 DEG C; 1 H NMR (CD 3 OD, 400 MHz) δ 4.00 (1H, q, J = 6.8 Hz), 3.94 (1H, dd, J = 6.8, 5.6 Hz), 1.88-1.80 (1H, m), 1.63 (1H dd, J = 14.0, 6.8 Hz), 1.61 (1H, dd, 14.0, 5.4 Hz), 1.44 (3H, d, J = 6.8 Hz), 0.96 (6H, t, J = 7.2 Hz); 13 C NMR (CD 3 OD, 100 MHz)? 171.6, 171.0, 60.9, 53.2, 45.0, 23.9, 22.2, 22.1, 19.5, 18.5 ppm.

화합물 9 Cyclo(Ile-Ala): 흰색 고체; 녹는점 220-225℃ (dec); [α]20 D -34.8 (c 0.5, CH3OH); 1H NMR (CD3OD, 400 MHz) δ 4.07 (1H, q, J = 1.6 Hz), 3.92 (1H, d, J = 2.0 Hz), 2.00-1.91 (1H, m), 1.56-1.47 (1H, m), 1.44 (3H, d, J = 7.2 Hz ), 1.31-1.18 (1H, m), 1.01 (3H, d, J = 7.2 Hz), 0.95 (3H, t, J = 7.2 Hz); 13C NMR (CD3OD, 100 MHz) δ 169.8, 167.7, 59.5, 50.2, 38.9, 24.2, 19.5, 14.1, 10.7 ppm.
Compound 9 Cyclo (Ile-Ala): white solid; Melting point 220-225 占 폚 (dec); [?] 20 D -34.8 ( c 0.5, CH 3 OH); 1 H NMR (CD 3 OD, 400 MHz) δ 4.07 (1H, q, J = 1.6 Hz), 3.92 (1H, d, J = 2.0 Hz), 2.00-1.91 (1H, m), 1.56-1.47 (1H (m, 1H), 1.44 (3H, d, J = 7.2 Hz), 1.31-1.18 (1H, m), 1.01 (3H, d, J = 7.2 Hz), 0.95 (3H, t, J = 7.2 Hz); 13 C NMR (CD 3 OD, 100 MHz)? 169.8, 167.7, 59.5, 50.2, 38.9, 24.2, 19.5, 14.1, 10.7 ppm.

화합물 10 Cyclo(Leu-Ser): 흰색 고체; 녹는점 208-213℃; [α]20 D -28.3 (c 0.3, CH3OH); 1H NMR (CD3OD, 400 MHz) δ 3.94-3.91 (2H, m), 3.90 (1H, t, J = 3.6 Hz), 3.67 (1H, dd, J = 12.8 and 4.4 Hz) 1.85 (1H, m), 1.82 (2H, m), 0.95 (3H, d, J = 6 Hz), 0.95 (3H, d) ppm; 13C NMR (CD3OD, 100 MHz); δ 170.2, 167.6, 62.7, 57.8, 53.4, 45.0, 23.8, 22.4, 20.6 ppm.
Compound 10 Cyclo (Leu-Ser): white solid; Melting point 208-213 DEG C; [?] 20 D -28.3 (c 0.3, CH 3 OH); 1 H NMR (CD 3 OD, 400 MHz) δ 3.94-3.91 (2H, m), 3.90 (1H, t, J = 3.6 Hz), 3.67 (1H, dd, J = 12.8 and 4.4 Hz) 1.85 (1H, m), 1.82 (2H, m), 0.95 (3H, d, J = 6 Hz), 0.95 (3H, d) ppm; 13 C NMR (CD 3 OD, 100 MHz); [delta] 170.2, 167.6, 62.7, 57.8, 53.4, 45.0, 23.8, 22.4, 20.6 ppm.

화합물 11 Cyclo(Ser-Gly): 흰색 고체; 1H-NMR (CD3OD, 400 MHz) ; δ 4.03 (1H, d, J = 17.6 Hz), 3.96 (1H, dd, J = 11.2, 2.8 Hz), 3.89 (1H, t, J = 2.8 Hz), 3.79 (1H, d, J = 17.6 Hz), 3.71 (1H, dd, J = 11.2, 2.8 Hz) ppm; 13C NMR (DMSO-d 6, 100 MHz) δ 169.9, 169.5, 65.1, 59.0, 45.6 ppm.
Compound 11 Cyclo (Ser-Gly): white solid; 1 H-NMR (CD 3 OD, 400 MHz); δ 4.03 (1H, d, J = 17.6 Hz), 3.96 (1H, dd, J = 11.2, 2.8 Hz), 3.89 (1H, t, J = 2.8 Hz), 3.79 (1H, d, J = 17.6 Hz) , 3.71 (1H, dd, J = 11.2, 2.8 Hz) ppm; 13 C NMR (DMSO- d 6, 100 MHz) δ 169.9, 169.5, 65.1, 59.0, 45.6 ppm.

화합물 12 Cyclo(Tyr-Ala): 흰색 고체; 녹는점 271-273℃ (dec); 1H NMR (DMSO-d 6, 400 MHz) δ 9.25 (1H, s), 8.04 (1H, s), 7.90 (1H, s), 6.91 (2H, d, J = 7.2 Hz), 6.65 (2H, d, J = 7.2 Hz), 4.05 (1H, br s), 3.60 (1H, q, J = 7.2 Hz)), 3.00 (1H, dd, J = 13.6, 3.6 Hz)), 2.71 (1H, dd, J = 13.6, 3.6 Hz), 0.54 (3H, d, J = 7.2 Hz) ppm; 13C NMR (DMSO-d 6, 100 MHz) δ 169.7, 165.5, 155.8, 130.3 (2C), 127.2, 116.1 (2C), 59.5, 56.2, 45.6, 36.2, 28.4, 22.9 ppm.
Compound 12 Cyclo (Tyr-Ala): white solid; Melting point 271-273 DEG C (dec); 1 H NMR (DMSO- d 6, 400 MHz) δ 9.25 (1H, s), 8.04 (1H, s), 7.90 (1H, s), 6.91 (2H, d, J = 7.2 Hz), 6.65 (2H, d, J = 7.2 Hz), 4.05 (1H, br s), 3.60 (1H, q, J = 7.2 Hz)), 3.00 (1H, dd, J = 13.6, 3.6 Hz)), 2.71 (1H, dd, J = 13.6, 3.6 Hz), 0.54 (3H, d, J = 7.2 Hz) ppm; 13 C NMR (DMSO- d 6, 100 MHz) δ 169.7, 165.5, 155.8, 130.3 (2C), 127.2, 116.1 (2C), 59.5, 56.2, 45.6, 36.2, 28.4, 22.9 ppm.

화합물 13 Cyclo(Gly-Trp): 백색고체; 녹는점 280-284℃C (dec); 1H NMR (DMSO-d 6, 400 MHz) δ 10.92 (1H, s), 8.09 (1H, s), 7.75 (1H, s), 7.52 (1H, d, J = 7.6 Hz), 7.31 (1H, d, J = 7.6 Hz), 7.06 (2H, overlapped), 6.93 (1H, t, J = 7.2 Hz), 4.00 (1H, q, J = 3.2 Hz), 3.33 (1H, dd, J = 17.2, 2.8 Hz), 3.28 (2H, dd, J = 14.4, 4.4 Hz), 2.97 (1H, dd, J = 14.4, 4.4 Hz), 2.76 (1H, dd, J = 17.2, 1.2 Hz) ppm; 13CNMR (DMSO-d 6, 100 MHz) δ 168.6, 166.3, 136.6, 128.1, 125.2, 121.5, 119.3, 119.1, 111.8, 109.0, 56.1, 44.5, 29.8 ppm.
Compound 13 Cyclo (Gly-Trp): White solid; Melting point 280 - 284 ° C C (dec); 1 H NMR (DMSO- d 6, 400 MHz) δ 10.92 (1H, s), 8.09 (1H, s), 7.75 (1H, s), 7.52 (1H, d, J = 7.6 Hz), 7.31 (1H, d, J = 7.6 Hz), 7.06 (2H, overlapped), 6.93 (1H, t, J = 7.2 Hz), 4.00 (1H, q, J = 3.2 Hz), 3.33 (1H, dd, J = 17.2, 2.8 (2H, dd, J = 14.4, 4.4 Hz), 2.97 (1H, dd, J = 14.4, 4.4 Hz), 2.76 (1H, dd, J = 17.2, 1.2Hz) ppm; 13 C NMR (DMSO- d 6 , 100 MHz)? 168.6, 166.3, 136.6, 128.1, 125.2, 121.5, 119.3, 119.1, 111.8, 109.0, 56.1, 44.5, 29.8 ppm.

화합물 15 Cyclo(Leu-Thr): 흰색 결정성 고체; 녹는점 245-248℃; [α]20 D -48.2 (c 0.5, CH3OH); 1H-NMR (CD3OD, 400 MHz) ; δ 4.17 (1H, dq, J = 6.8 Hz), 3.87 (1H, dd, J = 4.0 Hz, 9.0 Hz), 3.71 (1H, d, J = 2.4 Hz), 1.89-1.83 (2H, overlapped), 1.71-1.75 (1H, m), 1.23 (3H, d, J = 6.8 Hz), 0.94 (6H, d J = 6.4 Hz) ppm; 13C NMR (CD3OD, 100 MHz) δ 170.4, 168.0, 67.3, 60.8, 53.2, 45.0, 23.6, 22.2, 20.2, 18.5 ppm.
Compound 15 Cyclo (Leu-Thr): white crystalline solid; Melting point 245-248 DEG C; [?] 20 D -48.2 (c 0.5, CH 3 OH); 1 H-NMR (CD 3 OD, 400 MHz); (1H, d, J = 6.8 Hz), 3.87 (1H, dd, J = 4.0 Hz, 9.0 Hz), 3.71 (1H, d, J = 2.4 Hz), 1.89-1.83 -1.75 (1H, m), 1.23 (3H, d, J = 6.8 Hz), 0.94 (6H, d, J = 6.4 Hz) ppm; 13 C NMR (CD 3 OD, 100 MHz)? 170.4, 168.0, 67.3, 60.8, 53.2, 45.0, 23.6, 22.2, 20.2, 18.5 ppm.

화합물 16 Cyclo(Gly-Pro): 흰색 고체; 녹는점 152-156℃; [α]20 D -136.8 (c 0.5, CH3OH; 1H NMR (CDCl3, 400 MHz) δ 7.21 (1H, s), 4.08 (1H, br t, J = 6.8 Hz), 4.04 (1H, s), 3.82 (2H, dd, J = 16.8, 4.8 Hz), 3.65-3.50 (2H, m), 2.38-2.31 (1H, m), 2.08-1.98 (2H, m), 1.93-1.86 (1H, m) ppm; 13C NMR (CDCl3, 100 MHz) δ 170.1, 163.5, 58.5, 46.6, 45.3, 28.4, 22.4 ppm.
Compound 16 Cyclo (Gly-Pro): white solid; Melting point 152-156 ° C; 4.01 (1H, s), 4.08 (1H, br, J = 6.8 Hz), [?] 20 D -136.8 (c 0.5, CH 3 OH; 1 H NMR (CDCl 3 , 400 MHz) m), 2.08-1.98 (2H, m), 1.93-1.86 (1H, m), 3.82 (2H, dd, J = 16.8,4.8Hz), 3.65-3.50 m) ppm; 13 C NMR ( CDCl 3, 100 MHz) δ 170.1, 163.5, 58.5, 46.6, 45.3, 28.4, 22.4 ppm.

화합물 17 Cyclo(Ala-Pro): 흰색 고체; 녹는점 175-178℃; [α]20 D -88.7 (c 0.3, CH3OH); 1H NMR (CDCl3, 400 MHz) δ 6.44 (1H, s), 4.13(1H, d, J = 11.2 Hz), 4.11 (1H, d, J = 11.2 Hz), 3.61-3.46 (2H, m), 2.37-2.32 (1H, m), 2.13-2.07 (1H, m), 2.07-1.98 (1H, m), 1.95-1.82 (1H, m), 1.46 (3H, d, J = 6.8 Hz ) ppm; 13C NMR (CDCl3, 100 MHz) δ 170.3, 166.3, 59.3, 51.2, 45.4, 28.2, 22.8, 16.0 ppm.
Compound 17 Cyclo (Ala-Pro): white solid; Melting point 175-178 ° C; [?] 20 D -88.7 (c 0.3, CH 3 OH); 1 H NMR (CDCl 3, 400 MHz) δ 6.44 (1H, s), 4.13 (1H, d, J = 11.2 Hz), 4.11 (1H, d, J = 11.2 Hz), 3.61-3.46 (2H, m) , 2.37-2.32 (1H, m), 2.13-2.07 (1H, m), 2.07-1.98 (1H, m), 1.95-1.82 (1H, m), 1.46 (3H, d, J = 6.8 Hz) ppm; 13 C NMR (CDCl3 , 100 MHz) [delta] 170.3, 166.3, 59.3, 51.2, 45.4, 28.2, 22.8, 16.0 ppm.

화합물 18 Cyclo(Val-Pro): 흰색 고체; 녹는점 167-172℃; [α]20 D -125.2 (c 0.3, CH3OH); 1H NMR (400 MHz, CD3OD); δ 4.19 (1H, br t, J = 8.0 Hz), 4.03 (1H, br s), 3.47-3.58 (2H, m), 2.55-2.42 (1H, m), 2.38-2.21 (1H, m), 2.03-1.93 (1H, m), 1.89-2.04 (2H, m), 1.09 (3H, d, J = 7.2 Hz), 0.93 (3H, d, J = 7.2 Hz) ppm; 13C NMR (100 MHz, CD3OD); δ 171.4, 166.4, 60.3, 58.8, 45.0, 28.7, 28.3, 22.1, 17.6, 15.5 ppm.
Compound 18 Cyclo (Val-Pro): white solid; Melting point 167-172 DEG C; [?] 20 D -125.2 (c 0.3, CH 3 OH); 1 H NMR (400 MHz, CD 3 OD); δ 4.19 (1H, br t, J = 8.0 Hz), 4.03 (1H, br s), 3.47-3.58 (2H, m), 2.55-2.42 (1H, m), 2.38-2.21 (1H, m), 2.03 -1.93 (1H, m), 1.89-2.04 (2H, m), 1.09 (3H, d, J = 7.2 Hz), 0.93 (3H, d, J = 7.2 Hz) ppm; 13 C NMR (100 MHz, CD 3 OD); [delta] 171.4, 166.4, 60.3, 58.8, 45.0, 28.7, 28.3, 22.1, 17.6, 15.5 ppm.

화합물 19 Cyclo(Leu-Pro): 흰색 고체; 녹는점 152-155℃; [a]20 D -101.1 (c 0.5, CH3OH); 1H NMR (400MHz, CD3OD) δ 4.25 (1H, br t, J = 8.0 Hz), 4.10-4.18 (1H, m), 3.47-3.53 (2H, m), 2.25-2.34 (1H, m), 2.02 (1H, m), 1.89-2.01 (2H, m), 1.89 (1H, m), 1.84 (1H, m), 0.96 (3H, d, J = 6.8 Hz), 0.95 (3H, d, J = 6.8 Hz) ppm; 13C NMR (100 MHz, CDCl3) δ 170.7, 166.5, 59.2, 53.6 , 45.7, 38.7, 28.3, 24.8, 23.5, 22.9, 21.5 ppm.
Compound 19 Cyclo (Leu-Pro): white solid; Melting point 152-155 DEG C; [?] 20 D -101.1 ( c 0.5, CH 3 OH); 1 H NMR (400MHz, CD 3 OD) δ 4.25 (1H, br t, J = 8.0 Hz), 4.10-4.18 (1H, m), 3.47-3.53 (2H, m), 2.25-2.34 (1H, m) , 2.02 (1H, m), 1.89-2.01 (2H, m), 1.89 (1H, m), 1.84 (1H, m), 0.96 (3H, d, J = 6.8 Hz), 0.95 (3H, d, J = 6.8 Hz) ppm; 13 C NMR (100 MHz, CDCl 3) δ 170.7, 166.5, 59.2, 53.6, 45.7, 38.7, 28.3, 24.8, 23.5, 22.9, 21.5 ppm.

화합물 20 Cyclo(Ile-Pro): 흰색 고체; 녹는점 103-105℃; 1H NMR (CDCl3, 400 MHz) δ 6.68 (1H, s), 4.01 (1H, t, J = 7.6 Hz), 3.93 (1H, s), 3.64-3.49 (2H, m), 2.34-2.23 (2H, m), 2.01-1.94 (2H, m), 1.88-1.82 (1H, m), 1.40-1.34 (1H, m), 1.21-1.13 (1H, m), 1.02 (3H, d, J = 6.8 Hz), 0.88 (3H, t, J = 8.0 Hz); 13C NMR (CDCl3, 100 MHz) δ 170.4, 165.3, 60.7, 58.9, 45.3, 35.5, 28.7, 24.2, 22.5, 15.9, 12.3 ppm.
Compound 20 Cyclo (Ile-Pro): white solid; Melting point 103-105 ° C; 1 H NMR (CDCl 3, 400 MHz) δ 6.68 (1H, s), 4.01 (1H, t, J = 7.6 Hz), 3.93 (1H, s), 3.64-3.49 (2H, m), 2.34-2.23 ( 2H, m), 2.01-1.94 (2H , m), 1.88-1.82 (1H, m), 1.40-1.34 (1H, m), 1.21-1.13 (1H, m), 1.02 (3H, d, J = 6.8 Hz), 0.88 (3H, t, J = 8.0 Hz); 13 C NMR (CDCl 3, 100 MHz) δ 170.4, 165.3, 60.7, 58.9, 45.3, 35.5, 28.7, 24.2, 22.5, 15.9, 12.3 ppm.

화합물 21 Cyclo(Ser-Pro): 백색고체; 녹는점 153-156℃C; 1H NMR (CDCl3, 400 MHz) δ 7.40 (1H, s), 4.10 (2H, t), 3.97 (2H, dd), 3.62-3.54 (2H, m), 2.36-2.39 (1H, m), 2.07-1.99 (2H, m), 1.90-1.84 (1H, m) ppm; 13C NMR (CDCl3, 100 MHz) δ 170.5, 165.2, 61.2, 59.2, 56.7, 45.5, 28.4, 22.7 ppm.
Compound 21 Cyclo (Ser-Pro): white solid; Melting point 153-156 ° C; 1 H NMR (CDCl 3, 400 MHz) δ 7.40 (1H, s), 4.10 (2H, t), 3.97 (2H, dd), 3.62-3.54 (2H, m), 2.36-2.39 (1H, m), 2.07-1.99 (2H, m), 1.90-1.84 (1H, m) ppm; 13 C NMR (CDCl 3, 100 MHz) δ 170.5, 165.2, 61.2, 59.2, 56.7, 45.5, 28.4, 22.7 ppm.

화합물 22 Cyclo(Phe-Pro): 흰색 고체; 녹는점 133-137℃; [α]20 D -98.0 (c 0.4, CH3OH); 1H NMR (400 MHz, CD3OD) δ 7.28-7.22 (2H, overlapped), 7.27-7.19 (3H, overlapped), 4.44 (1H, br t, J = 5.2 Hz ), 4.05 (1H, dd, J = 11.2, 6.8 Hz), 3.53-3.47 (1H, m), 3.36-3.29 (1H, m), 3.19-3.10 (2H, m), 2.09-2.02 (1H, m), 1.25-1.17 (1H, m), 0.79-0.72 (2H, m) ppm; 13C NMR (100 MHz, CD3OD) δ 171.6, 167.0, 137.4, 131.2, 129.6, 128.2, 60.2, 57.8, 46.1, 38.4, 29.5, 22.9 ppm.
Compound 22 Cyclo (Phe-Pro): white solid; Melting point 133-137 DEG C; [?] 20 D -98.0 (c 0.4, CH 3 OH ); 1 H NMR (400 MHz, CD 3 OD) δ 7.28-7.22 (2H, overlapped), 7.27-7.19 (3H, overlapped), 4.44 (1H, br t, J = 5.2 Hz), 4.05 (1H, dd, J M), 2.09-2.02 (1H, m), 1.25-1.17 (1 H, m), 3.13-3.10 (2H, m) ), 0.79-0.72 (2H, m) ppm; 13 C NMR (100 MHz, CD 3 OD)? 171.6, 167.0, 137.4, 131.2, 129.6, 128.2, 60.2, 57.8, 46.1, 38.4, 29.5, 22.9 ppm.

화합물 23 Cyclo(Trp-Pro): 백색고체; [α]20 D -70.3℃℃c 0.3, MeOH); 1H NMR (CDCl3, 400 MHz) δ 7.05 (2H, d, J = 8.4 Hz), 6.77 (2H, d, J = 8.4 Hz), 5.72 (1H, s), 4.21 (1H, d, J = 6.4 Hz), 4.08 (1H, t, J = 6.8 Hz), 3.68-3.58 (1H, m), 3.59- 3.50 (1H, m), 3.44-3.36 (1H, m), 2.75 (1H, dd, J = 14.4, 10.0 Hz), 2.30-2.24 (1H, m), 2.04-1.95 (1H, m), 1.96-1.84 (2H, m) ppm; 13C NMR (CDCl3, 100 MHz) δ 169.8, 165.3, 155.6, 130.5 (2C), 127.4, 116.3 (2C), 59.3, 56.4, 45.6, 36.1, 28.5, 22.7 ppm.
Compound 23 Cyclo (Trp-Pro): white solid; [α] 20 D -70.3 ℃℃ c 0.3, MeOH); 1 H NMR (CDCl 3, 400 MHz) δ 7.05 (2H, d, J = 8.4 Hz), 6.77 (2H, d, J = 8.4 Hz), 5.72 (1H, s), 4.21 (1H, d, J = 6.4 Hz), 4.08 (1H, t, J = 6.8 Hz), 3.68-3.58 (1H, m), 3.59- 3.50 (1H, m), 3.44-3.36 (1H, m), 2.75 (1H, dd, J = 14.4, 10.0 Hz), 2.30-2.24 (1H, m), 2.04-1.95 (1H, m), 1.96-1.84 (2H, m) ppm; 13 C NMR (CDCl 3 , 100 MHz)? 169.8, 165.3, 155.6, 130.5 (2C), 127.4, 116.3 (2C), 59.3, 56.4, 45.6, 36.1, 28.5, 22.7 ppm.

화합물 24 Cyclo(Tyr-Pro): 흰색 고체; 녹는점 148-152℃; [α]20 D -.1 (c 0.2, CH3OH); 1H NMR (400 MHz, CD3OD); δ 7.02 (2H, d, J = 8.0 Hz), 6.68 (2H, d, J = 8.0 Hz), 4.35 (1H, t, J = 4.8 Hz), 4.03 (1H, dd, J = 10.8, 6.4 Hz), 3.54 (1H, dt, J =12.0, 8.4 Hz), 3.35 (1H, q, J = 6.4 Hz), 3.07 (1H, dd, J = 14.4, 5.2 Hz), 3.03 (1H, dd, J = 14.4, 5.2 Hz), 2.08 (1H, sext, J = 5.4 Hz), 1.80 (2H, m), 1.21 (1H, quin, J = 10.5 Hz) ppm; 13C NMR (100 MHz, CD3OD); δ 169.6, 165.8, 156.5, 130.9, 126.4, 115.0, 58.9, 56.7, 44.7, 36.5, 28.2, 21.5 ppm.
Compound 24 Cyclo (Tyr-Pro): white solid; Melting point 148-152 캜; [?] 20 D-1 (c 0.2, CH 3 OH); 1 H NMR (400 MHz, CD 3 OD); δ 7.02 (2H, d, J = 8.0 Hz), 6.68 (2H, d, J = 8.0 Hz), 4.35 (1H, t, J = 4.8 Hz), 4.03 (1H, dd, J = 10.8, 6.4 Hz) , 3.54 (1H, dt, J = 12.0, 8.4 Hz), 3.35 (1H, q, J = 6.4 Hz), 3.07 (1H, dd, J = 14.4, 5.2 Hz), 3.03 (1H, dd, J = 14.4 , 5.2 Hz), 2.08 (1H, sext, J = 5.4 Hz), 1.80 (2H, m), 1.21 (1H, quin, J = 10.5 Hz) ppm; 13 C NMR (100 MHz, CD 3 OD); [delta] 169.6, 165.8, 156.5, 130.9, 126.4, 115.0, 58.9, 56.7, 44.7, 36.5, 28.2, 21.5 ppm.

화합물 25 Cyclo(Thr-Pro): 백색고체, 1H NMR (CDCl3, 400 MHz) δ 7.09 (1H, s), 4.27 (1H, dd), 4.01 (2H, t), 3.88 (1H, d), 3.57-3.50 (1H, m), 3.47-3.41 (1H, m), 2.29-2.23 (1H, m), 2.04-1.90 (3H, m), 1.86-1.81 (1H, m), 1.27 (3H, d) ppm; 13C NMR (CDCl3, 100 MHz) δ 170.7, 165.5, 65.8, 59.6, 59.1, 45.5, 28.2, 22.8 ppm.
Compound 25 Cyclo (Thr-Pro): white solid, 1 H NMR (CDCl 3 , 400 MHz)? 7.09 (1H, s), 4.27 (1H, dd), 4.01 (1H, m), 3.57-3.50 (1H, m), 3.47-3.41 (1H, m), 2.29-2.23 (1H, m), 2.04-1.90 d) ppm; 13 C NMR (CDCl 3, 100 MHz) δ 170.7, 165.5, 65.8, 59.6, 59.1, 45.5, 28.2, 22.8 ppm.

화합물 27 Cyclo(Asn-Pro): 백색고체, 1H NMR (DMSO-d 6, 400 MHz) δ 7.96 (1H, s), 7.41 (1H, s), 6.90 (1H, s), 4.33 (1H, t, J = 7.2 Hz), 4.18 (1H, t, J = 7.2 Hz), 3.42-3.33 (1H, m), 3.32-3.24 (1H, m), 2.70 (1H, dd, J = 16.0, 5.6 Hz), 2.28 (1H, dd, J = 16.0, 6.4 Hz), 2.12-2.06 (1H, m), 1.90-1.77 (3H, m) ppm; 13C NMR (DMSO-d 6, 100 MHz) δ 172.1, 170.4, 166.2, 59.2, 52.1, 45.5, 35.3, 28.2, 23.0 ppm.
Compound 27 Cyclo (Asn-Pro): white solid, 1 H NMR (DMSO- d 6 , 400 MHz)? 7.96 (1H, s), 7.41 (1H, s), 6.90 t, J = 7.2 Hz), 4.18 (1H, t, J = 7.2 Hz), 3.42-3.33 (1H, m), 3.32-3.24 (1H, m), 2.70 (1H, dd, J = 16.0, 5.6 Hz ), 2.28 (1H, dd, J = 16.0, 6.4 Hz), 2.12-2.06 (1H, m), 1.90-1.77 (3H, m) ppm; 13 C NMR (DMSO- d 6, 100 MHz) δ 172.1, 170.4, 166.2, 59.2, 52.1, 45.5, 35.3, 28.2, 23.0 ppm.

화합물 28 Cyclo(Met-Pro): 백색고체, 1H NMR (CDCl3, 400 MHz) δ 7.33 (1H, s), 4.20 (1H, t, J = 6.0 Hz), 4.10 (1H, t, J = 8.2 Hz), 3.60-3.49 (2H, m), 2.69 (2H, t, J = 7.0 Hz), 2.40-2.29 (2H, m), 2.10 (3H, s), 2.05-1.94 (3H, m), 1.92-1.83 (1H, m) ppm. Compound 28 Cyclo (Met-Pro): white solid, 1 H NMR (CDCl 3, 400 MHz) δ 7.33 (1H, s), 4.20 (1H, t, J = 6.0 Hz), 4.10 (1H, t, J = 8.2 Hz), 3.60-3.49 (2H, m) , 2.69 (2H, t, J = 7.0 Hz), 2.40-2.29 (2H, m), 2.10 (3H, s), 2.05-1.94 (3H, m), 1.92-1.83 (1H, m) ppm.

Claims (8)

촉매존재 하에서 하기 화학식 2로 표시되는 선형 다이펩타이드 화합물을 고리화반응시켜 하기 화학식 1로 표시되는 고리형 다이펩타이드 화합물을 제조하는 방법.
[화학식 1]
Figure pat00012

[화학식 2]
Figure pat00013

[상기 화학식 1 또는 2에서,
*로 나타낸 탄소 원자는 카이랄 중심을 이루고;
R1 또는 R4는 서로 독립적으로, 수소, 하이드록시, 아미노, 카바모일, 카르복시산, 구아니디노, 머캅토, (C1-C10)알킬, (C6-C20)아르(C1-C10)알킬, (C6-C20)아릴 또는 (C3-C20)헤테로아릴이며;
R2 또는 R3은 서로 독립적으로 수소 또는 (C1-C10)알킬이거나, R2 와 R3 (C2-C10)알킬렌 또는 (C2-C10)알케닐렌으로 연결되어 지환족 고리 또는 방향족 고리를 형성할 수 있으며;
X는 (C1-C10)알콕시카보닐기이며;
Y는 (C1-C10)알킬기이며;
R1 또는 R4의 알킬, 아릴, 아르알킬 및 헤테로아릴 또는 R2 또는 R3의 알킬, 알킬렌, 알케닐렌, 지환족고리 및 방향족고리는 하이드록시, 아미노, 시아노, 카바모일, 카르복시산, 구아니디노, 머캅토, (C1-C10)알킬, (C6-C20)아르(C1-C10)알킬, (C6-C20)아릴, (C3-C20)헤테로아릴에서 선택되는 하나 이상으로 더 치환될 수 있다.]
A method for producing a cyclic dipeptide compound represented by the following formula (1) by cyclizing a linear dipeptide compound represented by the following formula (2) in the presence of a catalyst.
[Chemical Formula 1]
Figure pat00012

(2)
Figure pat00013

[In the above formula (1) or (2)
The carbon atom represented by * constitutes the chiral center;
R 1 or R 4 independently of one another are hydrogen, hydroxy, amino, carbamoyl, carboxylic acid, guanidino, mercapto, (C 1 -C 10) alkyl, (C 6 -C 20) C6-C20) aryl or (C3-C20) heteroaryl;
R 2 Or R 3 is independently hydrogen or (C1-C10) alkyl each other, R 2 And R < 3 & (C2-C10) alkylene or (C2-C10) alkenylene to form an alicyclic or aromatic ring;
X is a (C1-C10) alkoxycarbonyl group;
Y is a (C1-C10) alkyl group;
R 1 Or R 4 an alkyl, aryl, aralkyl and heteroaryl, or R 2 Or the R 3 alkyl, alkylene, alkenylene, alicyclic ring, an aromatic ring with hydroxy, amino, cyano, carbamoyl, carboxylic acid, guanidino, mercapto, (C1-C10) alkyl, (C6-C20 (C1-C10) alkyl, (C6-C20) aryl and (C3-C20) heteroaryl.
제 1항에 있어서,
상기 R1 또는 R4는 서로 독립적으로, 수소, (C1-C10)알킬 또는 (C6-C20)아르(C1-C10)알킬인 것을 특징으로 하는 방법.
The method according to claim 1,
Wherein R 1 or R 4 are, independently from each other, hydrogen, (C 1 -C 10) alkyl or (C 6 -C 20) aryl (C 1 -C 10) alkyl.
제 1항에 있어서,
상기 R1 또는 R4는 서로 독립적으로 수소, 메틸기, 에틸기, 프로필기, 이소프로필, 이소부틸, sec-부틸, tert-부틸, 5-아미노펜틸기, 카바모일메틸기, 2-카바모일에틸기, 카복실메틸기, 2-카복실에틸기, 3-구아니디노프로필기, 하이드록시메틸기, 1-하이드록시에틸기, 2-하이드록시에틸기, 티오메틸기, 2-티오에틸기, 메틸티오에틸기, 페닐기, 4-히드록시페닐기, 벤질기, 4-히드록시벤질기, 페닐에틸기, 이미다졸-4-일메틸기 또는 인돌-3-일메틸기이며;
R2 및 R3은 서로 독립적으로 수소, 메틸 또는 에틸이거나 (C2-C10)알킬렌 으로 연결되어 지환족 고리를 형성한 것을 특징으로 하는 방법.
The method according to claim 1,
Wherein R 1 or R 4 independently represent hydrogen, a methyl group, an ethyl group, a propyl group, an isopropyl group, an isobutyl group, a sec-butyl group, a tert- butyl group, a 5-aminopentyl group, a carbamoylmethyl group, a 2-carbamoylethyl group, , A 2-carboxylethyl group, a 3-guanidino propyl group, a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a thiomethyl group, a 2-thioethyl group, a methylthioethyl group, Benzyl group, 4-hydroxybenzyl group, phenylethyl group, imidazol-4-ylmethyl group or indol-3-ylmethyl group;
R 2 and R 3 are independently of each other hydrogen, methyl or ethyl, or (C 2 -C 10) alkylene to form an alicyclic ring.
제 1항에 있어서,
상기 화학식 1은 하기 화합물에서 선택되는 것을 특징으로 하는 방법.
Figure pat00014

Figure pat00015

Figure pat00016

Figure pat00017

Figure pat00018

Figure pat00019
The method according to claim 1,
Wherein said formula (1) is selected from the following compounds.
Figure pat00014

Figure pat00015

Figure pat00016

Figure pat00017

Figure pat00018

Figure pat00019
제 1항에 있어서,
촉매는 아세트산 또는 아세트산 수용액인 것을 특징으로 하는 방법.
The method according to claim 1,
Wherein the catalyst is an aqueous solution of acetic acid or acetic acid.
제 5항에 있어서,
아세트산 수용액은 아세트산이 2 ~ 50중량%로 포함된 것을 특징으로 하는 방법.
6. The method of claim 5,
Wherein the acetic acid aqueous solution contains 2 to 50% by weight of acetic acid.
제 1항에 있어서,
상기 고리화반응은 100℃ 내지 130℃에서 수행되는 것을 특징으로 하는 방법.
The method according to claim 1,
Wherein the cyclization reaction is carried out at a temperature of from 100 캜 to 130 캜.
청구항 7에 있어서,
상기 반응은 110℃ 내지 125℃에서 2시간 내지 7시간동안 수행되는 것을 특징으로 하는 방법.
The method of claim 7,
Wherein the reaction is carried out at a temperature of from 110 DEG C to 125 DEG C for from 2 hours to 7 hours.
KR1020120147647A 2012-12-17 2012-12-17 Manufacturing method of cyclic dipeptide KR20140078366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120147647A KR20140078366A (en) 2012-12-17 2012-12-17 Manufacturing method of cyclic dipeptide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120147647A KR20140078366A (en) 2012-12-17 2012-12-17 Manufacturing method of cyclic dipeptide

Publications (1)

Publication Number Publication Date
KR20140078366A true KR20140078366A (en) 2014-06-25

Family

ID=51129996

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120147647A KR20140078366A (en) 2012-12-17 2012-12-17 Manufacturing method of cyclic dipeptide

Country Status (1)

Country Link
KR (1) KR20140078366A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160136695A (en) 2015-05-20 2016-11-30 연세대학교 산학협력단 The synthesis method of cyclic peptide by pre-activation cyclization and cyclic peptide synthesized thereby

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160136695A (en) 2015-05-20 2016-11-30 연세대학교 산학협력단 The synthesis method of cyclic peptide by pre-activation cyclization and cyclic peptide synthesized thereby

Similar Documents

Publication Publication Date Title
EP2534140B1 (en) Efficient methods for z- or cis-selective cross-metathesis
JP6266509B2 (en) Z-selective ring-closing metathesis reaction
ES2803516T3 (en) A crystalline form of linezolid
KR101216900B1 (en) new ruthenium complexes as catalysts for metathesis reactions
KR20120111929A (en) Process for producing pyripyropene derivative
CN106977415A (en) One planting sand storehouse must be bent intermediate and preparation method thereof
KR20140078366A (en) Manufacturing method of cyclic dipeptide
Si et al. Asymmetric synthesis of epohelmins A, B and 3-epi ent-epohelmin A
CS254868B1 (en) Method of cyclic dipeptides production
Bull et al. Enantiodiscrimination of racemic electrophiles by diketopiperazine enolates: asymmetric synthesis of methyl 2-amino-3-aryl-butanoates and 3-methyl-aspartates
KR20110120051A (en) Process for preparing 2,5-diketopiperazine compounds
Chai et al. The synthetic versatility of alkoxycarbonyl-and hydroxymethyl-piperazine-2, 5-diones
Kikuchi et al. Improved synthesis of d-allothreonine derivatives from l-threonine
Gilchrist et al. Azabicyclo [3.2. 0] heptan-7-ones (carbapenams) from pyrrole
EP0771790B1 (en) Process for preparing 1-substituted pyrrole-3-carboxylic acid derivatives
KR100572483B1 (en) Stereoisomeric indole compounds, preparation methods and uses thereof
Sato et al. Photoinduced Electron Transfer-Initiated Selective Cyclization Reactions of (Z)-N-Benzoyl-α-dehydro-(1-naphthyl) alaninamides into 4, 5-Dihydrooxazole Derivatives
Hashimoto et al. Synthetic studies of carzinophilin. Part 1: Synthesis of 2-methylidene-1-azabicyclo [3.1. 0] hexane systems related to carzinophilin
AU2004290695A1 (en) Processes for the preparation of N-substituted phthalimides
Zhao et al. Photochemical studies on exo-bicyclo [2.1. 1] hexyl and bicyclo [3.1. 0] hexyl aryl ketones: two approaches for synthesis of enantiomerically enriched cyclopentene derivatives
Matsuyama et al. Conjugate addition of 6-membered hydrazine to chiral tert-butyl (E)-2-(p-tolylsulfinyl) cinnamates. Synthesis of (S)-celacinnine
Shen et al. An Efficient Semi‐Synthetic Method to Construct Docetaxel via Sterically Crowded Linear Side Chain Esterification
Hu et al. Development of a practical and scalable synthesis of anti-HBV drug Y101
KR20190092429A (en) Process for preparing diazepine derivative
JP3987944B2 (en) Process for producing polysubstituted cyclobutane and polysubstituted cyclobutene compound

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application