KR20130053209A - Mold flux for manufacturing high carbon steel - Google Patents

Mold flux for manufacturing high carbon steel Download PDF

Info

Publication number
KR20130053209A
KR20130053209A KR1020110118854A KR20110118854A KR20130053209A KR 20130053209 A KR20130053209 A KR 20130053209A KR 1020110118854 A KR1020110118854 A KR 1020110118854A KR 20110118854 A KR20110118854 A KR 20110118854A KR 20130053209 A KR20130053209 A KR 20130053209A
Authority
KR
South Korea
Prior art keywords
weight
parts
mold flux
high carbon
viscosity
Prior art date
Application number
KR1020110118854A
Other languages
Korean (ko)
Other versions
KR101313476B1 (en
Inventor
공현수
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020110118854A priority Critical patent/KR101313476B1/en
Publication of KR20130053209A publication Critical patent/KR20130053209A/en
Application granted granted Critical
Publication of KR101313476B1 publication Critical patent/KR101313476B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/108Feeding additives, powders, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/22Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in calcium oxide, e.g. wollastonite

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE: A mold flux for manufacturing high carbon steel is provided to improve a slab surface quality by appropriately controlling an inflow and by up-regulating a viscosity and a melting point and by enlarging amount of an exothermic material(Fe_2O_3). CONSTITUTION: A mold flux for manufacturing high carbon steel comprises CaO 25 to 40 parts by weight, SiO_2 26 to 40 parts by weight, MgO 1 to 5 parts by weight, Al_2O_3 4 to 9 parts by weight, Na 2O_9 to 16 parts by weight, Fe 2O_3 1 to 12 parts by weight, Li 2O_1 to 5 parts by weight, F 7 to 15 parts by weight, and free carbon 3 to 5 parts by weight about gross composition 100 by weight. A basicity(CaO/SiO_2) is 0.8 to 1.0. A melting point is 900 to 1000 deg. C. A viscosity is 0.16 to 0.35 poise(1300 deg. C). [Reference numerals] (AA) Example 1; (BB) Comparative example 1

Description

고탄소강 제조용 몰드 플럭스{MOLD FLUX FOR MANUFACTURING HIGH CARBON STEEL}MOLD FLUX FOR MANUFACTURING HIGH CARBON STEEL}

본 발명은 주편 표면 품질이 향상된 고탄소강 제조용 몰드 플럭스에 관한 것이다.
The present invention relates to a mold flux for producing high carbon steel with improved cast surface quality.

통상, 몰드 플럭스란 강의 연속 주조 공정에서 주형 내 첨가제로 사용하는 중요한 소모성 부자재로서, 이를 주형 내 용강 위에 투입하면 용강의 열을 받아 미용융층, 소결층, 용융 슬래그층의 3개 층을 나타내는데, 이러한 몰드 플럭스의 주된 기능은 탄소 함량과 밀접하게 관계하여 용강의 응고를 방지하는 보온 기능, 대기와의 접촉을 차단함으로써 대기에 의한 용강의 재산화를 방지하는 기능, 용강 표면으로부터 부상되는 개재물을 흡수하는 기능, 응고 셀과 주형간의 윤활 기능 및, 응고 셀과 주형 간의 열전달 매체의 기능을 수행한다. In general, the mold flux is an important consumable subsidiary material used as an additive in a mold in the continuous casting process of steel, and when it is put on the molten steel in the mold, the molten steel receives three layers of an unmelted layer, a sintered layer, and a molten slag layer. The main function of the mold flux is to keep the molten steel in close contact with the carbon content, to prevent the solidification of the molten steel, to prevent the reoxidation of the molten steel by the atmosphere, and to absorb the inclusions floating from the surface of the molten steel. Function, the lubrication function between the coagulation cell and the mold, and the heat transfer medium between the coagulation cell and the mold.

특히, 몰드 플럭스는 용강과 접촉하여 액상 슬래그(Slag)로 변화되면서 주형과 응고 셀 사이에 유입되어 윤활 작용을 함으로써 연속 주조 공정의 조업 안정과 주편 표면 품질을 향상시키는 기능을 한다.In particular, the mold flux changes into liquid slag in contact with molten steel and flows between the mold and the solidification cell to lubricate, thereby improving operation stability and continuous surface quality of the continuous casting process.

일반적으로, 몰드 플럭스는 SiO2, CaO, MgO, Al2O3, Na2O, Fe2O3, F, C 등으로 구성되어 있는 여러 화합물의 혼합 물질이다. 강의 연속주조 조건 즉, 강종 및 주조속도에 따라 몰드 플럭스의 화학 및 물리적 성질(용융점, 점도, 결정질율, 응고 온도 등)은 적절하게 조절되어야 한다. 강종의 구분은 대개 강 중의 탄소 함량에 따라 구분하며 극저탄소강(0.08wt%C 미만), 저탄소강(0.08 ~ 0.15 또는 0.18wt%C), 중·고탄소강(0.16 또는 0.19 ~ 0.6wt%C), 고탄소강(0.6wt%C 이상)으로 나누며 주조속도는 약 1.2 ~ 1.5m/min을 기준으로 하여 낮은 쪽을 저속, 높은 쪽을 고속으로 구분된다. 따라서, 강종에 따라 요구되는 몰드 플럭스의 화학 및 물리적 성질은 저탄소강일수록 몰드플럭스의 결정화 경향이 크며 고탄소강에 비해 염기도, 용융점 및 점도가 높다. 또한 저속용 보다는 고속용 몰드 플럭스의 점도가 낮다.In general, the mold flux is a mixed material of various compounds composed of SiO 2 , CaO, MgO, Al 2 O 3 , Na 2 O, Fe 2 O 3 , F, C, and the like. Depending on the continuous casting conditions of the steel, i.e. steel grade and casting speed, the chemical and physical properties (melting point, viscosity, crystallinity, solidification temperature, etc.) of the mold flux should be properly adjusted. The grades of steel are usually classified according to the carbon content in the steel, and ultra low carbon steel (less than 0.08 wt% C), low carbon steel (0.08 to 0.15 or 0.18 wt% C), and medium and high carbon steel (0.16 or 0.19 to 0.6 wt% C). ), High carbon steel (0.6wt% C or more), and the casting speed is divided into low speed and high speed based on 1.2 ~ 1.5m / min. Therefore, the chemical and physical properties of the mold flux required according to the steel grade are lower carbon steel, the greater the tendency of the crystallization of the mold flux, the higher the basicity, melting point and viscosity than the high carbon steel. In addition, the viscosity of the high speed mold flux is lower than that of the low speed.

또한, 몰드 플럭스 중의 각종 산화물 종류에 따른 몰드 플럭스의 화학 및 물리적 성질 변화는 다음과 같이 요약된다. 몰드 플럭스의 점도는 SiO2, Al2O3 증가에 따라 증가하나, CaO, MgO, Na2O, Fe2O3, F 증가에 따라 감소한다. 응고온도는 CaO 증가에 따라 증가하나, SiO2, Al2O3, MgO, Na2O, Fe2O3, F 증가에 따라 감소한다. 또한, 결정화 경향은 CaO, MgO, Na2O, F 증가에 따라 증가하나, SiO2, Al2O3 증가에 따라 감소한다.In addition, changes in the chemical and physical properties of the mold flux according to various oxide types in the mold flux are summarized as follows. The viscosity of the mold flux increases with increasing SiO 2 , Al 2 O 3, but decreases with increasing CaO, MgO, Na 2 O, Fe 2 O 3 , F. The solidification temperature increases with increasing CaO but decreases with increasing SiO 2 , Al 2 O 3 , MgO, Na 2 O, Fe 2 O 3 , F. In addition, the crystallization tendency increases with increasing CaO, MgO, Na 2 O, F, but decreases with increasing SiO 2 , Al 2 O 3 .

고탄소 공구강은 C성분이 중량%로 0.06 ~ 0.85%로 냉간압연 후 열처리를 실시하는 표면 고경도 제품으로서 줄자, 시계 태엽, 면도날 및 자동차 부품 등에 주로 사용되는 고부가 가치 제품이다. 금속학적인 특징으로는 일반적인 Fe-C 상태도에서도 알 수 있듯이, 고탄소 공구강은 과공석강이며, 열간압연 후 인장강도가 90-100kgf/㎟, 항복강도가 35-65kgf/㎟, 연신율이 10% 수준인 고강도재로서 최종제품 가공 후 수중 또는 유중 소입을 실시하여 표면강도를 얻으며, 강한 경화능으로 압축응력을 잔존시켜 공구의 구부러짐 현상과 뒤틀림 현상 등을 방지한다는 특징이 있다.High carbon tool steel is a surface hardened product that is heat treated after cold rolling at 0.06 ~ 0.85% by weight of C component. It is a high value-added product mainly used for tape measure, clockwork, razor blade and automobile parts. As can be seen from the general Fe-C state diagram, the high carbon tool steel is super-vacuum steel, the tensile strength is 90-100kgf / mm2, the yield strength is 35-65kgf / mm2, and the elongation is 10% after hot rolling. As a high strength phosphor, it is quenched in water or in water after processing the final product to obtain surface strength, and it has a feature of preventing bending and warping of tools by remaining compressive stress with strong hardening ability.

일반적으로 연속주조기를 통해 주조되는 고탄소 공구강과 같은 고탄소강은 그 제조상 다음과 같은 문제가 있다. 즉, 일반적인 Fe-C 상태에서도 알 수 있듯이, 강 중 C의 함량이 증가함에 따라서 고상선 온도가 낮아짐과 동시에 고액공존 구간이 넓어지게 된다.In general, high carbon steel such as high carbon tool steel cast through a continuous casting machine has the following problems in its manufacture. That is, as can be seen in the general Fe-C state, as the content of C in the steel increases, the solidus temperature is lowered and the solid-liquid coexistence section is widened.

이러한 고탄소강의 응고지연 현상으로 인하여 수냉되는 몰드와 접촉된 표면만이 응고되어 응고쉘(solidification shell)의 두께가 얇아지게 된다. 이에 따라 상대적으로 응고쉘과 몰드 간의 마찰에 의해 응고쉘이 파단되면서 구속성 주편터짐(break-out)이 발생되기 쉽다. 연주과정에서는 이 구속성 주편터짐을 막기 위해 윤활제로서 분말 또는 과립 형상의 합성슬래그(slag)인 몰드 플럭스(mold flux)를 몰드 내의 용강 상부에 투입하게 된다.Due to the solidification delay phenomenon of the high carbon steel, only the surface in contact with the water-cooled mold is solidified, so that the thickness of the solidification shell becomes thin. Accordingly, as the coagulation shell breaks due to friction between the coagulation shell and the mold, restrictive break-out is likely to occur. In the playing process, a mold flux, which is a synthetic slag in the form of powder or granules, is injected into the upper part of the molten steel in the mold in order to prevent the restraint cast slab.

한편, 슬라브 연주기에서의 고탄소 공구강 주조 시 사용되는 종래의 몰드 플럭스는 다수 제안되어 있다. 그 대표적인 예로서 특허문헌 1에는 슬라브 연주기의 구속성 주편터짐을 저감하기 위한 고탄소강용 몰드 플럭스가 개시되어 있다. 상기 특허에 개시된 몰드 플럭스는 중량%로, CaO : 25-40%, SiO2 : 25-40%, Al2O3 : 3-8%, Na2O: 7-13%, Ba2O5 : 5-7%, F : 10-15%로 조성되는데, 이러한 종래의 몰드 플럭스는 염기도(CaO/SiO2)가 0.95~0.97이고, 점도가 1.0~1.2 (poise, 1300℃)가 되도록 하여 윤활성을 확보하도록 선정되었다. 그러나, 이러한 몰드 플럭스는 열전달능 및 윤활능 미약으로 인하여, 응고되는 주편의 단위 중량당 윤활작용에 의해 소모되는 몰드 플럭스 중량(이하, '소모량')이 확보가 되지 않는 문제가 있었다. 고탄소 공구강을 연주 작업할 때 몰드 내 플럭스의 소모량이 충분치 않을 경우 응고쉘 파단에 의한 주편터짐이 발생할 가능성이 커지는 단점이 있다.On the other hand, a number of conventional mold fluxes used in high carbon tool steel casting in slab players have been proposed. As a representative example, Patent Document 1 discloses a mold flux for high carbon steel for reducing the restraint cast slab of a slab player. The mold flux disclosed in this patent is% by weight, CaO: 25-40%, SiO 2 : 25-40%, Al 2 O 3 : 3-8%, Na 2 O: 7-13%, Ba 2 O 5 : 5-7%, F: 10-15%, the conventional mold flux is such that the basicity (CaO / SiO 2 ) is 0.95 ~ 0.97, the viscosity is 1.0 ~ 1.2 (poise, 1300 ℃) lubricity Was chosen to secure. However, such mold flux has a problem in that the mold flux weight (hereinafter, 'consumption amount') consumed by the lubrication per unit weight of the solidified slab is not secured due to the poor heat transfer and lubricity. When playing high-carbon tool steel, if the consumption of the flux in the mold is insufficient, there is a disadvantage that the cast cracking due to the solidified shell breakage is increased.

또한, 고탄소강 스트랜드 내 응고 시 편석 발생을 최소화 하기 위해 용강 과열도를 타 강종대비 낮게 관리하고 있으며, 용융점 및 점도가 낮은 몰드 플럭스를 사용하여 주형과 응고쉘 사이에 몰드 플럭스가 원활히 유입되도록 유도하였다[ST-M5; 제조사: 스톨베르그].In addition, to minimize segregation during solidification in high carbon steel strands, molten steel superheat is managed lower than other steel grades, and mold flux with low melting point and viscosity is used to induce mold flux between mold and solidification shell. [ST-M5; Manufacturer: Stolberg].

그러나, 고탄소강의 낮은 용강과열도 및 저점도, 저융점 몰드 플럭스 사용으로 초기 응고쉘의 후크(Hook)부 과다 성장 가능성이 높으며, 이로 인해 용강 내의 개재물, 기포가 부상되어 몰드 플럭스 용융층에 포집되지 못하고 후크부에 부착되어 주편 표면 또는 표층 하에 잔류, 후 공정 압연 시 블로우 홀(Blow Hole), 스캡(Scab) 등의 결함을 발생시켰다.
However, the use of low molten steel superheat, low viscosity and low melting mold flux of high carbon steel has a high possibility of excessive growth of hook portion of the initial solidification shell, which causes inclusions and bubbles in the molten steel to be trapped in the molten molten metal flux layer. It was not attached to the hook part and remained under the surface or surface of the cast steel, and caused defects such as blow holes and scabs during post-process rolling.

대한민국 등록 특허 제113104호Republic of Korea Registered Patent No. 113104

이에, 본 발명자는 기존 고탄소강 제조용 몰드 플럭스에서 발열성 원료(Fe2O3)의 양을 증대시키고 점도 및 융점을 상향 조정하여 용융 몰드 플럭스의 유입량을 적절히 제어함으로써 주편 표면 품질이 향상된 고탄소강 제조용 몰드 플럭스를 개발하였다.Therefore, the present inventors increase the amount of pyrogenic raw materials (Fe 2 O 3 ) in the mold flux for manufacturing high carbon steel, and adjust the viscosity and melting point upwards to appropriately control the inflow of the molten mold flux for the production of high carbon steel with improved cast surface quality Mold flux was developed.

따라서, 본 발명의 목적은 주편 표면 품질이 향상된 고탄소강 제조용 몰드 플럭스를 제공하는 것이다.
Accordingly, it is an object of the present invention to provide a mold flux for producing high carbon steels with improved cast surface quality.

상기 과제를 해결하기 위한 수단으로서, 본 발명은 As means for solving the above problems,

전체 조성 100 중량부에 대하여, CaO 25 내지 40 중량부, SiO2 26 내지 40 중량부, MgO 1 내지 5 중량부, Al2O3 4 내지 9 중량부, Na2O 9 내지 16 중량부, Fe2O3 1 내지 12 중량부, Li2O 1 내지 5 중량부, F 7 내지 15 중량부 및 유리 탄소 3 내지 5 중량부를 포함하는 고탄소강 제조용 몰드 플럭스를 제공한다.
25 to 40 parts by weight of CaO, 26 to 40 parts by weight of SiO 2 , 1 to 5 parts by weight of MgO, 4 to 9 parts by weight of Al 2 O 3 , 9 to 16 parts by weight of Na 2 O, and Fe, based on 100 parts by weight of the total composition. Provided is a mold flux for producing high carbon steel comprising 1 to 12 parts by weight of 2 O 3 , 1 to 5 parts by weight of Li 2 O, 3 to 5 parts by weight of F 2 and 5 to 5 parts by weight of free carbon.

상기 과제를 해결하기 위한 다른 수단으로서, 본 발명은 As another means for solving the above problems,

전체 조성 100 중량부에 대하여, CaO 25 내지 40 중량부, SiO2 26 내지 40 중량부, Fe2O3 1 내지 12 중량부 및 유리 탄소 3 내지 5 중량부를 포함하며, 점도가 0.16 내지 0.35 poise(1300 ℃)인 고탄소강 제조용 몰드 플럭스를 제공한다.
With respect to 100 parts by weight of the total composition, 25 to 40 parts by weight of CaO, 26 to 40 parts by weight of SiO 2 , 1 to 12 parts by weight of Fe 2 O 3 and 3 to 5 parts by weight of free carbon, and has a viscosity of 0.16 to 0.35 poise ( 1300 ° C.) is provided.

본 발명은 고탄소강의 낮은 용강 과열도를 보상하기 위해 발열성 원료의 양을 증대시키고 점도 및 용융점을 상향 조정하여 용융 몰드 플럭스의 유입량을 적절하게 제어함으로써 몰드 플럭스 소모량 감소 및 완냉 효과를 확인(전열량 감소: 0.04 ~ 0.19 MW/m2)하였다. 즉, 본 발명은 고탄소강의 주편 표면 품질이 향상되었고, 초기 응고 쉘 완냉으로 데컬(Deckel) 발생을 저감시켰다.
In order to compensate the low molten steel superheat of the high carbon steel, the present invention increases the amount of pyrogenic raw materials and adjusts the viscosity and melting point upward to appropriately control the inflow of the molten mold flux, thereby reducing the mold flux consumption and confirming the cooling effect. Calorie Reduction: 0.04-0.19 MW / m 2 ). That is, in the present invention, the surface quality of the cast steel of high carbon steel was improved, and the Decel generation was reduced by the initial solidification of the shell.

도 1은 실시예 1 및 비교예 1의 몰드 플럭스의 개재물성 결함 발생 여부를 나타낸 것이다.Figure 1 shows the inclusion defects of the mold flux of Example 1 and Comparative Example 1.

본 발명은 전체 조성 100 중량부에 대하여, CaO 25 내지 40 중량부, SiO2 26 내지 40 중량부, Fe2O3 1 내지 12 중량부 및 유리 탄소 3 내지 5 중량부를 포함하는 고탄소강 제조용 몰드 플럭스에 관한 것이다.The present invention provides a mold flux for producing high carbon steel, including 25 to 40 parts by weight of CaO, 26 to 40 parts by weight of SiO 2 , 1 to 12 parts by weight of Fe 2 O 3 , and 3 to 5 parts by weight of free carbon, based on 100 parts by weight of the total composition. It is about.

더욱 바람직하게는, 전체 조성 100 중량부에 대하여, CaO 25 내지 40 중량부, SiO2 26 내지 40 중량부, MgO 1 내지 5 중량부, Al2O3 4 내지 9 중량부, Na2O 9 내지 16 중량부, Fe2O3 1 내지 12 중량부, Li2O 1 내지 5 중량부, F 7 내지 15 중량부 및 유리 탄소 3 내지 5 중량부를 포함하는 고탄소강 제조용 몰드 플럭스에 관한 것이다. More preferably, with respect to 100 parts by weight of the total composition, 25 to 40 parts by weight of CaO, 26 to 40 parts by weight of SiO 2 , 1 to 5 parts by weight of MgO, 4 to 9 parts by weight of Al 2 O 3 , Na 2 O 9 to It relates to a mold flux for producing high carbon steel comprising 16 parts by weight, 1 to 12 parts by weight of Fe 2 O 3 , 1 to 5 parts by weight of Li 2 O, 3 to 5 parts by weight of F 2 and 5 to 5 parts by weight of free carbon.

CaO와 SiO2는 몰드 플럭스의 염기도를 조성하는 성분으로, 전체 조성 100 중량부에 대하여 CaO 25 내지 40 중량부, SiO2 26 내지 40 중량부, 보다 바람직하게는 CaO 26 내지 35 중량부, SiO2 27 내지 35 중량부, 더욱 바람직하게는 CaO 27 내지 30 중량부, SiO2 28 내지 30 중량부가 포함된다.CaO and SiO 2 is a component to create a basicity of mold flux, the overall composition of 100 parts by weight CaO 25 to 40 parts by weight with respect to, SiO 2 26 to 40 parts by weight, more preferably CaO 26 to 35 parts by weight of SiO 2 27 to 35 parts by weight, more preferably 27 to 30 parts by weight of CaO, 28 to 30 parts by weight of SiO 2 is included.

CaO의 함량이 25 중량부 미만일 때에는 염기도가 극도로 낮아서 점도가 너무 높아지므로, 윤활을 위한 요구 점도치를 얻기 힘들고, 40 중량부를 초과할 경우에는 용강과의 반응에 의해 SiO2가 소모됨으로써 염기도가 높아져 고온 결합물의 형성이 시작될 수 있다.When the content of CaO is less than 25 parts by weight of basicity is so low that the viscosity is too high to extremely difficult to obtain the value required viscosity for lubrication, has a SiO 2 consumed by the reaction with the molten steel, if it exceeds 40 parts by weight, being higher the basicity Formation of the hot bond may begin.

마찬가지로 SiO2의 함량이 26 중량부 미만인 경우에는 염기도가 높아져 고온 결합물의 형성이 시작될 수 있으며, 40 중량부를 초과하는 경우 저 염기도로 인해 점도가 크게 증가하여 몰드 플럭스의 윤활능이 떨어지는 문제가 있다.Similarly, when the content of SiO 2 is less than 26 parts by weight, the basicity may be increased to start formation of the high temperature binder. When the content of SiO 2 is more than 40 parts by weight, the viscosity is greatly increased due to the low basicity, thereby reducing the lubricating ability of the mold flux.

MgO는 점도와 용융점의 조정을 위해 첨가되며, 몰드 플럭스 전체 조성 100 중량부에 대하여 바람직하게는 1 내지 5 중량부, 보다 바람직하게는 1.2 내지 4 중량부, 더욱 바람직하게는 1.3 내지 2.5 중량부가 포함된다. MgO의 함량이 5 중량부를 초과할 경우 불규칙한 결정상인 MgSiO4가 형성되어 열전도의 조정 기능의 수행에서 불리해질 수 있다.MgO is added to adjust the viscosity and the melting point, and preferably 1 to 5 parts by weight, more preferably 1.2 to 4 parts by weight, still more preferably 1.3 to 2.5 parts by weight based on 100 parts by weight of the total composition of the mold flux. do. When the content of MgO exceeds 5 parts by weight, an irregular crystalline phase MgSiO 4 is formed, which may be disadvantageous in performing the function of adjusting the thermal conductivity.

Al2O3은 몰드 플럭스의 점도를 조절하는 성분으로, 몰드 플럭스 전체 조성 100 중량부에 대하여 바람직하게는 4 내지 9 중량부, 보다 바람직하게는 4.5 내지 8 중량부, 더욱 바람직하게는 5 내지 7 중량부가 포함된다. Al2O3의 함량이 4 중량부 미만일 경우에는 점도가 낮아 용강 유속에 의한 Mold Flux 혼입 가능성이 증가하는 문제가 있으며, 9 중량부를 초과할 경우, 몰드 플럭스의 점도가 과도하게 증가하고 용강 내의 비금속 개재물 흡수능이 저하된다. 따라서, 점도를 증가시키려면 Na2O 성분을 감소시키고 Al2O3 성분을 증가시키며, 점도를 감소시키려면 Na2O 성분을 증가시키고 Al2O3 성분을 감소시키는 것이 바람직하다.Al 2 O 3 is a component for controlling the viscosity of the mold flux, and is preferably 4 to 9 parts by weight, more preferably 4.5 to 8 parts by weight, still more preferably 5 to 7 parts by weight of 100 parts by weight of the total composition of the mold flux. Parts by weight are included. If the content of Al 2 O 3 is less than 4 parts by weight, there is a problem in that the possibility of incorporation of Mold Flux due to the molten steel flow rate is increased due to the low viscosity. If it exceeds 9 parts by weight, the viscosity of the mold flux is excessively increased and the base metal in the molten steel is increased. Inclusion capacity decreases. Therefore, it is desirable to increase the viscosity to reduce the Na 2 O component and increases the Al 2 O 3 component, to decrease the viscosity increasing the Na 2 O component and decreasing the Al 2 O 3 component.

Na2O는 몰드 플럭스의 용융점을 제어하기 위해 조성되는 성분으로, 몰드 플럭스 전체 조성 100 중량부에 대하여 바람직하게는 9 내지 16 중량부, 보다 바람직하게는 10 내지 16 중량부, 더욱 바람직하게는 13 내지 15.5 중량부가 포함된다. Na2O의 함량이 너무 적을 경우 몰드 플럭스의 점도와 표면 장력이 지나치게 높아지게 되는 문제점이 있으며, 너무 많을 경우 몰드 플럭스의 용융점이 낮아져 점도와 표면 장력이 지나치게 저하되므로, 용강 혼입의 억제 효과를 현저히 저하시킨다.Na 2 O is a component to control the melting point of the mold flux, preferably 9 to 16 parts by weight, more preferably 10 to 16 parts by weight, more preferably 13 to 100 parts by weight of the total composition of the mold flux. To 15.5 parts by weight. If the content of Na 2 O is too small, there is a problem that the viscosity and surface tension of the mold flux is too high. If the content is too high, the melting point of the mold flux is lowered, so that the viscosity and surface tension are excessively lowered. Let's do it.

Fe2O3은 발열성 원료로 유리 탄소의 산화성 연료 역할을 하며, 기존 고탄소강 제조용 몰드 플럭스에서는 발열성 원료로 사용되지 않았으므로 전체 조성 100 중량부에 대하여 Fe2O3 1 중량부 미만을 사용하였으나, 본 발명에서 Fe2O3는 몰드 플럭스 전체 조성 100 중량부에 대하여 바람직하게는 1 내지 12 중량부, 보다 바람직하게는 5 내지 11 중량부, 더욱 바람직하게는 6 내지 10 중량부를 사용함으로써 기존 고탄소강 제조용 몰드 플럭스의 문제점을 개선시킬 수 있다. Fe2O3의 함량이 1 중량부 미만일 경우에는 유리 탄소량 대비 산화성 원소가 부족한 문제가 있으며, 12 중량부를 초과할 경우, 유리탄소대비 너무 많은 산화성 원료가 불필요하게 포함되며 다른 성분 설계의 제약으로서 작용하게 된다.Fe 2 O 3 is an exothermic raw material, which acts as an oxidative fuel of free carbon, and is not used as an exothermic raw material in the mold flux for manufacturing high carbon steel, so less than 1 part by weight of Fe 2 O 3 is used based on 100 parts by weight of the total composition. However, in the present invention, Fe 2 O 3 is preferably 1 to 12 parts by weight, more preferably 5 to 11 parts by weight, and more preferably 6 to 10 parts by weight based on 100 parts by weight of the total composition of the mold flux. The problem of mold flux for manufacturing high carbon steel can be improved. When the content of Fe 2 O 3 is less than 1 part by weight, there is a problem that the amount of oxidizing elements is insufficient compared to the amount of free carbon. When the content of Fe 2 O 3 is more than 12 parts by weight, too much oxidizing raw material is unnecessarily included as compared to the amount of free carbon. Will work.

Li2O는 몰드 플럭스의 용융점, 점도 열전도도 등을 제어하는 성분으로, 몰드 플럭스 전체 조성 100 중량부에 대하여 바람직하게는 1 내지 5 중량부, 보다 바람직하게는 1.5 내지 4 중량부, 더욱 바람직하게는 1.5 내지 3 중량부 가 포함된다. Li2O의 함량이 너무 적을 경우 점도가 크게 증가하며 반대로 너무 많을 경우 저점도로 인한 문제를 야기한다.Li 2 O is a component that controls the melting point of the mold flux, the viscosity thermal conductivity, and the like, and is preferably 1 to 5 parts by weight, more preferably 1.5 to 4 parts by weight, and more preferably to 100 parts by weight of the total composition of the mold flux. Contains 1.5 to 3 parts by weight. If the content of Li 2 O is too small, the viscosity is greatly increased. On the contrary, too much Li 2 O causes problems due to low viscosity.

F는 연주 조업 시 결정질 몰드 슬래그 필름을 확보하여 전열량을 억제하도록 Cuspidine(3CaO-2SiO2-CaF2)을 주된 결정상으로 정출하는 성분으로, 몰드 플럭스의 용융점을 제어하기 위해 사용된다.F is a component that crystallizes Cuspidine (3CaO-2SiO 2 -CaF 2 ) into the main crystalline phase so as to secure a crystalline mold slag film to suppress the heat transfer during the playing operation, and is used to control the melting point of the mold flux.

F는 몰드 플럭스 전체 조성 100 중량부에 대하여 바람직하게는 7 내지 15 중량부, 보다 바람직하게는 10 내지 14 중량부, 더욱 바람직하게는 11 내지 13.5 중량부가 포함된다. F의 함량이 7 중량부 미만인 경우 응고온도가 감소하여 전열량이 증가, 초기 완냉이 불가능한 문제가 있으며, 15 중량부를 초과할 경우 몰드 플럭스의 점도가 너무 낮아져서 소모량이 급증하고, 주편의 표면 결함을 야기할 수 있다.F is preferably included 7 to 15 parts by weight, more preferably 10 to 14 parts by weight, still more preferably 11 to 13.5 parts by weight based on 100 parts by weight of the total composition of the mold flux. If the content of F is less than 7 parts by weight, there is a problem that the heat transfer amount is increased due to the decrease of the solidification temperature and initial cooling is impossible.If the content of F is more than 15 parts by weight, the viscosity of the mold flux is too low, so that the consumption increases rapidly and the surface defect of the cast steel is reduced. Can cause.

또한, 유리탄소는 용융속도를 제어하기 위해 사용하는데, 몰드 플럭스 전체 조성 100 중량부에 대하여 3 내지 5 중량부로 포함되는 것이 바람직하다. 유리탄소를 3 중량부 미만으로 사용하면 탈탄 반응이 충분히 일어나기 전 입자 상호 간 융착에 의한 덩어리 형태의 소결층 형성으로 몰드 플럭스 유입 저해와 조업불안정을 야기시킬 수 있으며, 5 중량부 초과할 경우에는 용강 내 [O] 소스와 반응하여 CO 가스를 생성하고, 탕면 보일링(Boiling)이 심하게 발생한다.In addition, the free carbon is used to control the melting rate, preferably 3 to 5 parts by weight based on 100 parts by weight of the total composition of the mold flux. If less than 3 parts by weight of free carbon is used, the formation of agglomerated sintered layer by fusion between particles before decarburization occurs sufficiently may cause mold flux inflow and operation instability. Reacts with the [O] source to produce CO gas, and bad boiling occurs.

본 발명에 따른 고탄소강 제조용 몰드 플럭스의 염기도는 SiO2와 CaO 성분의 수치 한정한 영향으로, 0.8 내지 1.0, 보다 바람직하게는 0.9 내지 0.99이다.The basicity of the mold flux for producing high carbon steel according to the present invention is 0.8 to 1.0, more preferably 0.9 to 0.99 due to numerical limited influence of SiO 2 and CaO components.

염기도가 0.8 미만인 경우 점도가 너무 높아서 용강과의 반응에 의해 점도가 더 상승하게 되므로 윤활이 잘 이루어지지 않으며, 염기도가 1.0을 초과하는 경우 반응 후 상대적으로 많아진 CaO의 함량에 의해 고융점 화합물이 형성될 수 있다.If the basicity is less than 0.8, the viscosity is so high that the viscosity is further increased by the reaction with molten steel, so lubrication is not good. If the basicity is more than 1.0, a high melting point compound is formed by the content of CaO which is relatively high after the reaction. Can be.

본 발명에 따른 고탄소강 제조용 몰드 플럭스의 용융점은 900 내지 1,000 ℃이다. 용융점이 중요한 이유는 적정 슬래그 풀(Slag Pool) 형성 및 초기 용융 속도를 결정하기 때문이며, 용융점이 너무 낮을 경우 슬래그 풀 이 과다 형성되어 소모량 증가 Oscillation Mark Depth가 증가하는 문제가 있고, 용융점이 너무 높을 경우 슬래그 풀 형성이 불충분하여 유입량이 감소 전열량이 불균일하거나 충분하지 않아 건전한 응고쉘 형성이 불가능 하기 때문이다.Melting point of the mold flux for producing high carbon steel according to the present invention is 900 to 1,000 ℃. Melting point is important because it determines proper slag pool formation and initial melting rate. If melting point is too low, slag pool is excessively formed and consumption is increased. Oscillation Mark Depth increases, and melting point is too high. This is because the slag pool formation is insufficient and the flow rate is reduced.

본 발명에 따른 고탄소강 제조용 몰드 플럭스의 점도는 1300 ℃에서 0.16 내지 0.35 poise이다. 점도가 중요한 이유는 몰드 플럭스의 가장 중요한 기능인 윤활능을 결정하기 때문이다. 점도가 너무 낮을 경우 윤활능은 좋으나 용강 내 몰드 플럭스의 혼입이 증가하여 바람직하지 않고, 점도가 너무 높을 경우 유입량 및 윤활능이 감소하여, 초기 응고쉘 건전성 확보가 어려운 문제가 있다.The viscosity of the mold flux for producing high carbon steel according to the present invention is from 0.16 to 0.35 poise at 1300 ° C. Viscosity is important because it determines the ability to lubricate, the most important function of the mold flux. If the viscosity is too low, the lubricity is good but the mixing of the mold flux in the molten steel is not preferable, and if the viscosity is too high, the flow rate and the lubricity decreases, it is difficult to secure the initial solidification shell integrity.

본 발명에 따른 고탄소강 제조용 몰드 플럭스는 발열성 원료의 양을 증대시킴으로써 플럭스의 소모량을 감소시키고 완냉형 특징을 부가하여 전열안정화를 향상시킬 수 있다. 즉 몰드 플럭스의 점도 및 용융점을 상향되도록, 성분계를 조정하여 완냉형 플럭스로 조성을 설계함으로써 몰드 전열을 안정화하고, 이에 따라 주조 완주율 및 열연 투입 가능한 주편 실수율을 향상시킬 수 있다.The mold flux for producing high carbon steel according to the present invention can increase the amount of pyrogenic raw materials to reduce the consumption of the flux and to improve the heat transfer stability by adding a slow cooling type. In other words, by adjusting the component system so as to raise the viscosity and melting point of the mold flux, by designing a composition with a slow-cooled flux, it is possible to stabilize the mold heat transfer, thereby improving the casting completion rate and the casting error rate can be hot-rolled.

본 발명에 따른 몰드 플럭스로부터 제조된 고탄소강은 [C]가 0.60% 이상, 바람직하게는 0.60 내지 0.90 % 함유된 것으로, 주편 표면 품질 확보가 가능하다.
The high carbon steel produced from the mold flux according to the present invention contains [C] of 0.60% or more, preferably 0.60 to 0.90%, thereby ensuring the surface quality of the cast steel.

이하, 본 발명을 실시예에 의해 더욱 상세히 설명한다. 단, 하기의 실시예는 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의해 제한되는 것은 아니다.
Hereinafter, the present invention will be described in more detail by way of examples. It should be noted, however, that the following examples are illustrative of the invention and are not intended to limit the scope of the invention.

실시예Example 1 ~ 2 및  1 and 2 and 비교예Comparative example 1 One

슬라브 연속 주조기에서 가장 생산량이 많은 [C] 0.6~0.85%의 고탄소 공구강에 대하여 모든 조건을 동일하게 하여 연속 주조를 실시하였다. 이때, 몰드 플럭스로는 하기 표 1과 같은 조성을 갖는 제품을 투입하였다.Continuous casting was carried out under the same conditions for the high-carbon tool steel of [C] 0.6-0.85%, which is the most productive in the slab continuous casting machine. At this time, a product having a composition as shown in Table 1 was added as the mold flux.

구분
(전체 몰드 플럭스 조성 100 중량부 기준)
division
(Based on 100 parts by weight of the total mold flux composition)
비교예 1Comparative Example 1 실시예 1Example 1 실시예 2Example 2
염기도basicity 0.950.95 0.960.96 0.960.96 SiO2 (중량부)SiO 2 (parts by weight) 27.127.1 29.729.7 28.528.5 CaO (중량부)CaO (parts by weight) 25.825.8 28.628.6 27.327.3 MgO (중량부)MgO (parts by weight) 1.11.1 1.51.5 1.41.4 Al2O3 (중량부)Al 2 O 3 (parts by weight) 2.02.0 5.55.5 5.45.4 Fe2O3 (중량부)Fe 2 O 3 (parts by weight) 0.20.2 7.47.4 8.98.9 Na2O (중량부)Na 2 O (parts by weight) 18.418.4 14.714.7 14.714.7 F (중량부)F (parts by weight) 11.311.3 12.812.8 12.812.8 Li2O (중량부)Li 2 O (parts by weight) 2.02.0 2.02.0 2.02.0 유리탄소(중량부)Free Carbon (parts by weight) 7.17.1 3.13.1 3.73.7 기타불순물Other impurities 나머지Remainder 나머지Remainder 나머지Remainder

시험예Test Example

상기 실시예 1~2 및 비교예 2의 몰드 플럭스에 의한 완냉 및 개재물 저감 효과 확인을 위해 스트랜드별 투입 몰드 플럭스를 다르게 하였다. 한쪽 스트랜드는 기존 고탄소강 몰드 플럭스인 비교예 1을 투입하였고 다른 한쪽 스트랜드는 실시예 1 또는 실시예 2의 몰드 플럭스를 투입하였다.
The injection mold flux for each strand was changed in order to confirm the effect of slowing cooling and inclusions by the mold flux of Examples 1 to 2 and Comparative Example 2. One strand was charged with the comparative example 1 which is the existing high carbon steel mold flux, and the other strand was charged with the mold flux of Example 1 or Example 2.

상기 몰드 플러스에 대하여 다음과 같이 물성을 확인하였다.The physical properties of the mold plus were checked as follows.

1) 용융점 측정1) Melting point measurement

융점 측정기를 사용하여 용융점을 측정하였다.Melting points were measured using a melting point meter.

2) 점도 측정2) viscosity measurement

몰드 플럭스를 용융상태에서 점도를 측정하였다.The mold flux was measured for viscosity in the molten state.

3) 소모량 측정3) consumption measurement

주조 개시시점부터 주조 종료시점까지 실제 주조에 사용된 몰드 플럭스의 소모량을 주조된 주편의 톤(Ton)으로 나누어 소모량을 계산하였다.The consumption was calculated by dividing the consumption of the mold flux used for the actual casting from the start of casting to the end of casting by the ton of the cast slab.

4) 전열량 측정4) Heat quantity measurement

Mold 동판에 부착된 TC(열전대)의 온도 변화와 몰드 내 투입되는 1차 냉각수량을 집계하여 전열량을 측정하였다.The heat transfer amount was measured by counting the temperature change of the TC (thermocouple) attached to the mold copper plate and the amount of primary cooling water introduced into the mold.

5) 압연 품질 평가5) rolling quality evaluation

열연 공정에서 열간 압연후 표면 결함 확인을 위한 SDD(Surface Defect Detect) System을 활용하여 개재물성 결함 발생 여부를 확인하였다.In the hot rolling process, the presence of interfacial defects was confirmed by utilizing a Surface Defect Detect (SDD) system for checking surface defects after hot rolling.

<평가기준><Evaluation Criteria>

○: 개재물성 결함 발생율 0.3% 이하○: 0.3% or less of inclusion defects

△: 개재물성 결함 발생율 0.3 내지 0.7%(Triangle | delta): 0.3-0.7% of intervening defect occurrence rates

X: 개재물성 결함 발생율 0.7% 이상X: 0.7% or more occurrence of intervening defects

구분division 비교예 1Comparative Example 1 실시예 1Example 1 실시예 2Example 2 용융점(℃)Melting point (캜) 870870 965965 925925 점도(poise, 1300℃)Viscosity (1300 ℃) 0.150.15 0.330.33 0.30.3 소모량(Kg/t.s)Consumption (Kg / t.s) 0.340.34 0.250.25 0.310.31 전열량(MW/m²)Heat transfer capacity (MW / m²) 1.751.75 1.651.65 1.661.66 압연 품질Rolling quality

발열성 원료를 첨가한 실시예 1과 2는 점도 향상 및 완냉 효과로 인한 전열량 감소를 확인하였으며, 초기 후크(Hook) 성장 완화로 압연 시 개재물성 결함 발생 또한 크게 개선됨을 확인하였다.Examples 1 and 2 to which the exothermic raw material was added confirmed that the heat transfer amount was reduced due to the viscosity improvement and the slow cooling effect, and the occurrence of inclusion defects during rolling was also greatly improved due to the initial hook growth relaxation.

Claims (6)

전체 조성 100 중량부에 대하여, CaO 25 내지 40 중량부, SiO2 26 내지 40 중량부, MgO 1 내지 5 중량부, Al2O3 4 내지 9 중량부, Na2O 9 내지 16 중량부, Fe2O3 1 내지 12 중량부, Li2O 1 내지 5 중량부, F 7 내지 15 중량부 및 유리 탄소 3 내지 5 중량부를 포함하는 고탄소강 제조용 몰드 플럭스.
25 to 40 parts by weight of CaO, 26 to 40 parts by weight of SiO 2 , 1 to 5 parts by weight of MgO, 4 to 9 parts by weight of Al 2 O 3 , 9 to 16 parts by weight of Na 2 O, and Fe, based on 100 parts by weight of the total composition. Mold flux for producing high carbon steel comprising 1 to 12 parts by weight of 2 O 3 , 1 to 5 parts by weight of Li 2 O, 3 to 5 parts by weight of F 2 and 5 to 5 parts by weight of free carbon.
제 1 항에 있어서,
염기도(CaO/SiO2)는 0.8 내지 1.0인 고탄소강 제조용 몰드 플럭스.
The method of claim 1,
Basicity (CaO / SiO 2 ) is 0.8 to 1.0 mold flux for high carbon steel production.
제 1 항에 있어서,
용융점이 900 내지 1000 ℃인 고탄소강 제조용 몰드 플럭스.
The method of claim 1,
Mold flux for producing high carbon steels with a melting point of 900 to 1000 ° C.
제 1 항에 있어서,
점도가 0.16 내지 0.35 poise(1300 ℃)인 고탄소강 제조용 몰드 플럭스.
The method of claim 1,
Mold flux for producing high carbon steels with a viscosity of 0.16 to 0.35 poise (1300 ° C.).
제 1 항에 있어서,
고탄소강은 [C]가 0.60% 이상인 고탄소강 제조용 몰드 플럭스.
The method of claim 1,
High carbon steel is a mold flux for producing high carbon steel having a [C] of 0.60% or more.
전체 조성 100 중량부에 대하여, CaO 25 내지 40 중량부, SiO2 26 내지 40 중량부, Fe2O3 1 내지 12 중량부 및 유리 탄소 3 내지 5 중량부를 포함하며, 점도가 0.16 내지 0.35 poise(1300 ℃)인 고탄소강 제조용 몰드 플럭스.With respect to 100 parts by weight of the total composition, 25 to 40 parts by weight of CaO, 26 to 40 parts by weight of SiO 2 , 1 to 12 parts by weight of Fe 2 O 3 and 3 to 5 parts by weight of free carbon, and has a viscosity of 0.16 to 0.35 poise ( Mold flux for the production of high carbon steel.
KR1020110118854A 2011-11-15 2011-11-15 Mold flux for manufacturing high carbon steel KR101313476B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110118854A KR101313476B1 (en) 2011-11-15 2011-11-15 Mold flux for manufacturing high carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110118854A KR101313476B1 (en) 2011-11-15 2011-11-15 Mold flux for manufacturing high carbon steel

Publications (2)

Publication Number Publication Date
KR20130053209A true KR20130053209A (en) 2013-05-23
KR101313476B1 KR101313476B1 (en) 2013-10-01

Family

ID=48662506

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110118854A KR101313476B1 (en) 2011-11-15 2011-11-15 Mold flux for manufacturing high carbon steel

Country Status (1)

Country Link
KR (1) KR101313476B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113333702A (en) * 2021-06-29 2021-09-03 广东韶钢松山股份有限公司 High-carbon chromium bearing steel continuous casting crystallizer casting powder and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100490987B1 (en) * 2000-12-05 2005-05-24 주식회사 포스코 Mold flux for manufacturing high carbon steel
JP2003053497A (en) 2001-08-08 2003-02-26 Hirono Kagaku Kogyo Kk Flux for continuous casting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113333702A (en) * 2021-06-29 2021-09-03 广东韶钢松山股份有限公司 High-carbon chromium bearing steel continuous casting crystallizer casting powder and application thereof

Also Published As

Publication number Publication date
KR101313476B1 (en) 2013-10-01

Similar Documents

Publication Publication Date Title
JP4646849B2 (en) Mold powder for continuous casting of high aluminum steel
JP2011530004A (en) Environmentally friendly lead-free free-cutting steel and method for producing the same
JP4932635B2 (en) Continuous casting powder and steel continuous casting method
KR101316254B1 (en) Mold flux for casting non-oriented electrical steel sheet with high Al content and method for producing non-oriented electrical steel sheet using the same
JP3993623B1 (en) High Al steel continuous casting method
JP4430638B2 (en) Mold powder for continuous casting of high aluminum steel
KR101247459B1 (en) Mold flux for continuously casting steel and method of continuously casting steel using the same
KR101313476B1 (en) Mold flux for manufacturing high carbon steel
CN107530769B (en) Continuous casting method using mold flux, and slab manufactured using the same
KR102629377B1 (en) Mold powder and continuous casting method for continuous casting of Al-containing apostatic steel
JP4527693B2 (en) Continuous casting method of high Al steel slab
JP6510342B2 (en) Continuous casting powder for Al-containing steel and continuous casting method
KR20140058145A (en) Method for manufacturing mold powder and method for the continuous casting of ferritic stainless steel using the method
KR100482225B1 (en) Method for continuous casting of high carbon alloy steel
JP2000158105A (en) Mold powder for continuous steel casting and continuous casting method
JP6701379B2 (en) Mold flux and casting method using the same
KR102210204B1 (en) Mold flux and casting method using the same
KR100490987B1 (en) Mold flux for manufacturing high carbon steel
KR100530338B1 (en) Mold Flux for manufacturing extremely low carbon cold rolled steel sheet
KR101921939B1 (en) Mould Flux
KR20130053575A (en) Mold flux for casting twip with high al content and method for producing twip using the same
JP2019048316A (en) Continuous casting method for Al-containing steel
KR102173170B1 (en) Mold flux and casting method using the same
CN116967410A (en) Production method for improving transverse crack defect of casting blank
KR20040003315A (en) Mold flux for law carbon steel plate manufacture

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160926

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170925

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180928

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190924

Year of fee payment: 7