KR20120121486A - Solar Energy Heating System Integrated Control Device and Control Method using thereof - Google Patents

Solar Energy Heating System Integrated Control Device and Control Method using thereof Download PDF

Info

Publication number
KR20120121486A
KR20120121486A KR1020110039328A KR20110039328A KR20120121486A KR 20120121486 A KR20120121486 A KR 20120121486A KR 1020110039328 A KR1020110039328 A KR 1020110039328A KR 20110039328 A KR20110039328 A KR 20110039328A KR 20120121486 A KR20120121486 A KR 20120121486A
Authority
KR
South Korea
Prior art keywords
heating
temperature
storage tank
heat storage
pipe
Prior art date
Application number
KR1020110039328A
Other languages
Korean (ko)
Other versions
KR101269603B1 (en
Inventor
이태원
김용기
Original Assignee
한국건설기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국건설기술연구원 filed Critical 한국건설기술연구원
Priority to KR1020110039328A priority Critical patent/KR101269603B1/en
Publication of KR20120121486A publication Critical patent/KR20120121486A/en
Application granted granted Critical
Publication of KR101269603B1 publication Critical patent/KR101269603B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0078Recirculation systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/002Central heating systems using heat accumulated in storage masses water heating system
    • F24D11/003Central heating systems using heat accumulated in storage masses water heating system combined with solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1015Arrangement or mounting of control or safety devices for water heating systems for central heating using a valve or valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1042Arrangement or mounting of control or safety devices for water heating systems for central heating the system uses solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/02Fluid distribution means
    • F24D2220/0235Three-way-valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Abstract

PURPOSE: An integrated control device for a solar heating system and a control method with the same are provided to reduce the consumption of fuel by an auxiliary boiler as the heat stored at much lower temperature than the supply temperature of heating circulation water is used. CONSTITUTION: An integrated control device for a solar heating system comprises a heat storage tank(200), a heat circulation pump(500), an auxiliary boiler(300), a three way valve(600) for return water, a three way valve(600-1) for supply water, and an integrated control unit. The three way valve for supply water braches from a supply pipe installed between the heat storage tank and the spot that a branch pipe is joined to a supply pipe. The three way valve for supply water is installed at the inlet side branch point of a pipe bypassing a boiler. The integrated control unit controls the auxiliary boiler heat, the circulation pump, and the three way valves by measuring the temperature of the heat storage tank and outlet of a heating space.

Description

태양열 난방시스템 통합제어장치 및 이를 이용한 제어방법{Solar Energy Heating System Integrated Control Device and Control Method using thereof}Solar Energy Heating System Integrated Control Device and Control Method using same

본 발명은 태양열 난방시스템 통합제어장치 및 이를 이용한 제어방법에 관한 것으로서, 축열조(200), 난방순환펌프(500), 보조보일러(300), 공급측삼방밸브(600-1) 및 통합제어부(1000)를 포함하여 구성된다.
The present invention relates to a solar heating system integrated control device and a control method using the same, heat storage tank 200, heating circulation pump 500, auxiliary boiler 300, supply side three-way valve (600-1) and the integrated control unit 1000 It is configured to include.

일반적인 태양열 난방시스템의 난방운전방법은 도1에 보인 바와 같이 난방부하측 실내온도제어기(700)가 난방조건일 때, 난방순환펌프(500)를 동작시키고, 축열조 상단 온수의 온도(Tt)가 난방공급 기준온도(50℃ 내외) 이상이면 삼방밸브(600)를 제어하여 축열조 내 온수가 직접 난방 공급되도록 하고, 해당 온도가 기준온도 이하이면 보조열원(보조보일러)을 거쳐 난방 공급되도록 제어함으로써 축열조와 보조열원장치를 단순 연계 운전시키고 있다. 이러한 운전조건 하에서는 도2에 도시된 바와 같이 난방부하의 변화에 능동적으로 대응을 할 수 없어 태양열 설비의 효율이 저하되고, 태양열 의존율이 감소되어 경제성이 저하될 수밖에 없다.As shown in FIG. 1, the heating operation method of the general solar heating system operates the heating circulation pump 500 when the heating load side indoor temperature controller 700 is in a heating condition, and the temperature T t of the hot water on the top of the heat storage tank is heated. If the supply temperature is above 50 ℃, the three-way valve 600 is controlled to supply hot water directly to the heat storage tank. If the temperature is lower than the reference temperature, the heat is supplied to the heat storage tank through the auxiliary heat source (auxiliary boiler). Auxiliary heat source device is simply connected and operated. Under these operating conditions, as shown in FIG. 2, it is not possible to actively respond to the change in the heating load, so that the efficiency of the solar installation is lowered, the solar dependency is reduced, and the economical efficiency is inevitably lowered.

종래의 태양열 난방시스템은 축열조를 중심으로 태양열시스템 제어기(900), 보일러 제어기(800), 실내온도 제어기(선택적)(700)가 독립적으로 구성다.In the conventional solar heating system, the solar system controller 900, the boiler controller 800, and the indoor temperature controller (optional) 700 are independently configured around the heat storage tank.

이러한 종래의 태양열 난방시스템은 축열조(상부)의 매체온도(Tt)가 난방순환수 공급온도 설정값보다 높으면 축열조를 경유하여 직접 난방공급하거나 축열조 내부의 난방열교환기를 통해 난방순환수를 가열하다가, 축열조 매체온도가 난방순환수 공급온도 설정 값보다 낮아지면 축열조에 의한 난방공급을 중단하고 보조보일러를 이용하여 난방을 시작하게 되는데, 태양열시스템 제어기(900)는 집열과 축열조를 이용한 난방수행 여부만을 판단하는 제어를 수행하고, 보일러 제어기(800)는 난방순환수의 공급온도를 설정값에 도달시키기 위한 제어만을 수행하며, 실내온도 제어기(700)는 난방공간의 온도를 설정값에 도달시키기 위한 제어만을 각각 독립적으로 수행하고 있어 전체적인 효율 향상에 한계가 있다.
In the conventional solar heating system, when the medium temperature (T t ) of the heat storage tank (upper) is higher than the heating circulation water supply temperature set value, the heating heat is directly supplied through the heat storage tank or the heating circulation water is heated through the heat exchanger inside the heat storage tank. When the heat storage tank medium temperature is lower than the heating circulation water supply temperature setting value, the heating supply by the heat storage tank is stopped and heating is started by using an auxiliary boiler. The solar system controller 900 determines only the heating performance using the heat storage and storage tank. The boiler controller 800 performs only a control for reaching the set value of the supply temperature of the heating circulating water, and the indoor temperature controller 700 only controls for reaching the set value of the heating space. Since they are performed independently of each other, there is a limit to improving the overall efficiency.

상기한 문제점을 해결하기 위하여 창작된 본 발명은 축열조와 보조보일러의 작동을 유기적으로 연계하고 통합제어를 통하여 유지비용 절감과 난방효율 극대화를 그 목적으로 한다.
The present invention, which was created to solve the above problems, organically connects the operation of the heat storage tank and the auxiliary boiler and aims to reduce maintenance costs and maximize heating efficiency through integrated control.

본 발명의 기술적 과제를 해결하기 위하여 창작된 본 발명의 기술적 구성은 다음과 같다.The technical configuration of the present invention created to solve the technical problem of the present invention is as follows.

본 발명은 난방공간(400)과 연결된 순환배관을 따라 순환되는 난방순환수에 저장된 열을 공급하는 축열조(200); 순환배관에 설치되어 난방순환수의 이송 동력을 발생시키는 난방순환펌프(500); 순환배관을 구성하는 환수관과 공급관을 직접 연결하는 분기배관에 위치하여 상기 축열조(200)와 병렬적으로 설치되고, 순환되는 난방순환수에 열을 공급하는 보조보일러(300); 순환배관의 환수관과 분기배관이 만나는 지점에 설치되는 환수측삼방밸브(600); 분기배관과 순환배관의 공급관이 만나는 지점과 상기 축열조(200) 사이의 공급관에서 분기되어 상기 보조보일러(300)와 상기 환수측삼방밸브(600) 사이의 분기배관에 연결되는 보일러경유배관의 입구측 분기점에 설치되는 공급측삼방밸브(600-1); 및, 상기 난방공간(400)의 출구측 온수온도(출구온도) 및 상기 축열조(200)의 온도를 측정하여 상기 난방순환펌프(500), 상기 환수측삼방밸브(600), 상기 공급측삼방밸브(600-1), 및 상기 보조보일러(300)의 작동을 제어하는 통합제어부(1000);를 포함하여 구성된다.
The present invention provides a heat storage tank 200 for supplying heat stored in a heating circulation water circulated along a circulation pipe connected to a heating space 400; A heating circulation pump 500 installed in the circulation pipe to generate a transfer power of the heating circulation water; An auxiliary boiler 300 installed in parallel with the heat storage tank 200 and positioned in a branch pipe directly connecting the return pipe constituting the circulation pipe and supplying heat to the heating circulation water circulated; A return side three-way valve 600 installed at a point where the return pipe and the branch pipe of the circulation pipe meet; The inlet side of the boiler gas pipe connected to the branch pipe and the branch pipe between the auxiliary boiler 300 and the return side three-way valve 600 is branched from the supply pipe between the point where the supply pipe of the branch pipe and the circulation pipe meets and the heat storage tank (200). Supply side three-way valve (600-1) installed at the branch point; And, by measuring the outlet hot water temperature (outlet temperature) and the temperature of the heat storage tank 200 of the heating space 400, the heating circulation pump 500, the return side three-way valve 600, the supply side three-way valve ( 600-1), and an integrated control unit 1000 for controlling the operation of the auxiliary boiler 300.

본 발명의 구성에 따른 기술적 효과는 다음과 같다.Technical effects of the configuration of the present invention are as follows.

첫째, 3개의 제어장치를 통합하여 비용절감 및 상호 유기적인 연계운전을 통한 운전효율 향상시킬 수 있다.First, by integrating the three control devices can improve the operating efficiency through cost reduction and mutually organic linked operation.

둘째, 동일한 축열용량 대비 난방순환수 공급온도의 설정 값보다 훨씬 낮은(약 10℃ 이상 차이) 온도까지 축열된 열을 이용함으로써 태양열시스템 효율 향상 및 보조보일러에 의한 연료소비 절감(기존 30 ℃의 온도차 축열시 대비 33% 이상의 효율 향상) 효과를 거둘 수 있다.Second, by using heat accumulated to a temperature much lower than the setting value of heating circulation water supply temperature compared to the same heat storage capacity (approximately more than 10 ℃), the efficiency of solar system is improved and fuel consumption by auxiliary boiler is reduced (the temperature difference of 30 ℃) 33% more efficiency than heat storage).

셋째, 동일한 난방부하 및 태양열시스템 용량 대비 태양열시스템 초기투자비 절감 및 경제성 향상 효과를 거둘 수 있다.Third, it is possible to reduce the initial investment cost and economic efficiency of the solar system compared to the same heating load and solar system capacity.

넷째, 환수온도에 의한 변유량 비례제어를 수행함으로써 펌프에 의한 반송동력 및 열손실을 최소화(약 15% 수준)할 수 있다.
Fourth, it is possible to minimize the transfer power and heat loss by the pump (about 15% level) by performing the flow rate proportional control by the return temperature.

도1은 종래의 태양열 난방시스템 제어장치를 도시하는 구성도이다.
도2는 일간 외기온도 변화 및 일간 태양열 일사량 변화를 도시하는 개념도이다.
도3은 본 발명의 구체적 실시예의 구성도이다.
도4는 본 발명의 다른 구체적 실시예의 구성도이다.
도5는 종래의 제어장치와 본 발명의 제어장치의 축열조 온도변화를 비교한 그래프이다.
도6은 기온감지 개폐제어방식의 난방순환수 환수온도를 도시하는 그래프이다.(난방순환수 공급온도(Ts), 난방순환수 환수온도(Tr), 난방공간 실내온도(Ti), 외기온도(To), 난방순환유량(Q L/min))
도7은 수온감지 비례제어방식의 난방순환수 환수온도를 도시하는 그래프이다.(난방순환수 공급온도(Ts), 난방순환수 환수온도(Tr), 난방공간 실내온도(Ti), 외기온도(To), 난방순환유량(Q L/min))
1 is a block diagram showing a conventional solar heating system control device.
2 is a conceptual diagram showing a change in daily ambient temperature and a change in daily solar thermal radiation.
3 is a block diagram of a specific embodiment of the present invention.
4 is a block diagram of another specific embodiment of the present invention.
Figure 5 is a graph comparing the temperature change of the heat storage tank of the conventional control device and the control device of the present invention.
6 is a graph showing the heating circulating water return temperature of the temperature sensing switching control method (heating circulating water supply temperature (Ts), heating circulating water return temperature (Tr), heating room indoor temperature (Ti), outside air temperature ( To), heating circulation flow rate (QL / min))
7 is a graph showing the heating circulating water return temperature of the water temperature sensing proportional control method (heating circulating water supply temperature (Ts), heating circulating water return temperature (Tr), heating room indoor temperature (Ti), outside air temperature ( To), heating circulation flow rate (QL / min))

이하에서는 본 발명의 구체적 실시예를 첨부도면을 참조하여 보다 상세히 설명한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings.

축열조(200)는 난방공간(400)과 연결된 순환배관을 따라 순환되는 난방순환수에 저장된 열을 공급하는 역할을 한다.The heat storage tank 200 serves to supply heat stored in the heating circulation water circulated along the circulation pipe connected to the heating space 400.

축열조(200)에 저장된 열은 도3이나 도4에 도시된 바와 같이 태양열집열기(100)로부터 공급되는데, 경우에 따라서는 다른 열원을 이용할 수도 있다.The heat stored in the heat storage tank 200 is supplied from the solar collector 100 as shown in FIG. 3 or 4, and in some cases, another heat source may be used.

순환배관으로 공급되는 난방순환수는 축열조(200)의 상부에서 나와 난방공간(400)을 거쳐 다시 축열조(200)의 하부로 들어간다.The heating circulating water supplied to the circulation pipe exits from the top of the heat storage tank 200 and passes through the heating space 400 to enter the bottom of the heat storage tank 200 again.

난방순환펌프(500)는 순환배관에 설치되어 난방순환수의 이송 동력을 발생시키는 역할을 한다.Heating circulation pump 500 is installed in the circulation pipe serves to generate the transfer power of the heating circulation water.

보조보일러(300)는 순환배관을 구성하는 환수관과 공급관을 직접 연결하는 분기배관에 위치하여 축열조(200)와 병렬적으로 설치되는데, 축열조(200)만으론 충분한 열을 난방공간(400)에 공급할 수 없는 경우 작동되어 순환되는 난방순환수에 열을 공급하는 역할을 한다.Auxiliary boiler 300 is installed in parallel with the heat storage tank 200 is located in the branch pipe directly connecting the return pipe constituting the circulation pipe and the supply pipe, only the heat storage tank 200 to supply sufficient heat to the heating space (400). If it cannot, it acts to supply heat to the circulating heating circulation water.

환수측삼방밸브(600)는 순환배관의 환수관과 분기배관이 만나는 지점에 설치되는데, 환수되는 난방순환수의 경로를 선택하여 축열조(200)와 보조보일러(300) 가운데 어느 일방으로 흐르도록 한다.The return side three-way valve 600 is installed at a point where the return pipe and the branch pipe of the circulation pipe meet, and selects a path of the heating circulation water to be returned to flow to any one of the heat storage tank 200 and the auxiliary boiler 300. .

공급측삼방밸브(600-1)는 분기배관과 순환배관의 공급관이 만나는 지점과 상기 축열조(200) 사이의 공급관에 설치된다. 공급측삼방밸브(600-1)에는 순환배관의 공급관에서 분기되어 보조보일러(300)와 환수측삼방밸브(600) 사이의 분기배관에 연결되는 보일러경유배관이 연결된다. 즉 보일러경유배관의 입구측 분기점에 공급측삼방밸브(600-1)가 설치되는 것이다. 공급측삼방밸브(600-1)는 공급되는 난방순환수의 경로를 선택하는데, 바로 난방공간(400)으로 공급되는 경로와 보조보일러(300)를 거친 후 난방공간(400)으로 공급되는 경로 가운데 어느 일방을 선택하게 된다.Supply side three-way valve (600-1) is installed in the supply pipe between the branch pipe and the supply pipe of the circulation pipe and the heat storage tank 200. The supply side three-way valve (600-1) is branched from the supply pipe of the circulation pipe is connected to the boiler gas pipe connected to the branch pipe between the auxiliary boiler 300 and the return side three-way valve (600). That is, the supply side three-way valve (600-1) is installed at the inlet side branch point of the boiler oil pipe. Supply side three-way valve (600-1) selects the path of the heating circulating water is supplied, which is the path that is directly supplied to the heating space 400 and the auxiliary boiler 300 is passed through any of the paths supplied to the heating space (400) You will choose one.

통합제어부(1000)는 난방공간(400)의 출구온도 및 축열조(200)의 온도를 측정하여 난방순환펌프(500), 환수측삼방밸브(600), 공급측삼방밸브(600-1) 및 보조보일러(300)의 작동을 제어하게 된다.The integrated control unit 1000 measures the outlet temperature of the heating space 400 and the temperature of the heat storage tank 200 to provide a heating circulation pump 500, a return side three-way valve 600, a supply side three-way valve 600-1, and an auxiliary boiler. The operation of the 300 will be controlled.

비례제어밸브(600-2)는 도4에 도시된 바와 같이 난방공간(400)과 환수측삼방밸브(600) 사이의 환수관에 설치되며 개도에 따라 유량이 비례적으로 가변된다.Proportional control valve 600-2 is installed in the return pipe between the heating space 400 and the return side three-way valve 600, as shown in Figure 4 and the flow rate is proportionally variable according to the opening degree.

통합제어부(1000)는 다음과 같은 제어를 수행하게 된다.The integrated control unit 1000 performs the following control.

(1) 제1모드(1) first mode

통합제어부(1000)는 축열조온도(Tt)와 미리 설정된 난방순환수공급온도설정값(Ts,set)을 비교하여 환수측삼방밸브(600)와 공급측삼방밸브(600-1)를 제어하는데,The integrated control unit 1000 controls the return side three-way valve 600 and the supply side three-way valve 600-1 by comparing the heat storage tank temperature Tt with a preset heating circulation water supply temperature set value Ts, set.

축열조온도(Tt) > 난방순환수공급온도설정값(Ts,set)인 경우 환수측삼방밸브(600)와 공급측삼방밸브(600-1)를 제어하여 난방순환수가 분기배관이나 보일러경유배관으로 유입되지 않고 순환배관으로만 순환하여 축열조(200)의 열이 난방공간(400)으로 공급되도록 한다. 즉 축열조온도(Tt)가 충분히 높은 경우 별도로 보조보일러(300)를 작동시킬 필요가 없을 경우의 제어방식이다.Heat storage tank temperature (Tt)> In the case of heating circulating water supply temperature set value (Ts, set), the heating circulating water flows into branch pipe or boiler oil pipe by controlling return side three way valve 600 and supply side three way valve 600-1. Instead of circulating only through the circulation pipe, the heat of the heat storage tank 200 is supplied to the heating space 400. That is, when the heat storage tank temperature Tt is sufficiently high, it is a control method when it is not necessary to operate the auxiliary boiler 300 separately.

(2) 제2모드(2) second mode

통합제어부(1000)는 축열조온도(Tt), 난방순환수공급온도설정값(Ts,set), 난방공간(400)을 돌아 환수되는 난방순환수의 온도를 측정한 난방순환수환수온도(Tr), 및 난방순환수의 이송과정에서 발생되는 배관열손실을 고려하여 미리 설정된 설정온도차(△Tr,set)를 비교하여 환수측삼방밸브(600)와 공급측삼방밸브(600-1)를 제어하는데,The integrated control unit 1000 measures the heat storage tank temperature (Tt), the heating circulation water supply temperature set value (Ts, set), and the heating circulation water return temperature (Tr) by measuring the temperature of the heating circulation water returned from the heating space 400. In order to control the return side three-way valve 600 and the supply side three-way valve 600-1 by comparing the preset temperature difference (△ Tr, set) in consideration of the pipe heat loss generated during the transfer of water, and heating circulation water,

난방순환수공급온도설정값(Ts,set) ≥ 축열조온도(Tt) ≥ [난방순환수환수온도(Tr) + 설정온도차(△Tr,set)]인 경우 환수측삼방밸브(600)를 제어하여 난방순환수가 분기배관으로 유입되지 않고 순환배관을 통하여 축열조(200)로 들어가도록 하고, 공급측삼방밸브(600-1)를 제어하여 축열조(200)에서 나온 난방순환수가 보일러경유배관을 통하여 보조보일러(300)를 경유한 후 분기배관과 순환배관을 거쳐 난방공간(400)으로 공급되도록 한다. 즉 축열조(200)만으로는 충분한 열량을 난방공간(400)에 공급할 수 없는 경우 1차적으로 축열조(200)로부터 열량을 공급받고 2차적으로 보조보일러(300)에서 부족한 열량을 공급받는 경우의 제어방식이다.Heating circulating water supply temperature set value (Ts, set) ≥ Heat storage tank temperature (Tt) ≥ [Heating circulation return water temperature (Tr) + Set temperature difference (△ Tr, set)], control the return side three-way valve 600 The heating circulating water does not flow into the branch pipe and enters the heat storage tank 200 through the circulation pipe, and controls the supply side three-way valve 600-1 to control the heating circulating water from the heat storage tank 200 through the boiler oil pipe. After passing through 300, it is supplied to the heating space 400 through the branch pipe and the circulation pipe. In other words, when the heat storage tank 200 alone cannot supply sufficient heat to the heating space 400, the heat storage tank 200 is primarily supplied with heat from the heat storage tank 200, and the second boiler 300 is supplied with insufficient heat. .

(3) 제3모드(3) third mode

통합제어부(1000)는 축열조온도(Tt), 난방공간(400)을 돌아 환수되는 난방순환수의 온도를 측정한 난방순환수환수온도(Tr), 및 난방순환수의 이송과정에서 발생되는 배관열손실을 고려하여 미리 설정된 설정온도차(△Tr,set)를 비교하여 환수측삼방밸브(600)와 공급측삼방밸브(600-1)를 제어하는데,Integrated control unit 1000 is the heat storage tank temperature (Tt), the heating circulation return temperature (Tr) measuring the temperature of the heating circulation water returned to the heating space 400, and the pipe heat generated during the transfer of the heating circulation water To control the return side three-way valve 600 and the supply side three-way valve 600-1 by comparing the set temperature difference (△ Tr, set) in consideration of the loss,

축열조온도(Tt) < [난방순환수환수온도(Tr) + 설정온도차(△Tr,set)]인 경우 환수측삼방밸브(600)를 제어하여 난방순환수가 분기배관을 통하여 보조보일러(300)만 경유하여 난방공간(400)으로 공급되도록 한다. 즉 축열조(200) 열원의 일부도 이용할 수 없을 정도로 축열조온도(Tt)가 낮을 경우 보조보일러(300)만을 이용하여 난방을 수행하는 경우의 제어방식이다.When the heat storage tank temperature (Tt) <[heating circulation return water temperature (Tr) + set temperature difference (△ Tr, set)], the return circulation three-way valve 600 is controlled so that the heating circulation water is only the auxiliary boiler 300 through the branch pipe. It is to be supplied to the heating space 400 via. That is, when the heat storage tank temperature Tt is so low that even a part of the heat storage tank 200 heat source cannot be used, it is a control method when heating is performed using only the auxiliary boiler 300.

비례제어밸브(600-2)가 구비된 경우 통합제어부(1000)는 난방공간(400)을 돌아 환수되는 난방순환수의 온도를 측정한 난방순환수환수온도(Tr)가 미리 설정된 환수온도설정값(Tr,set) 이하가 되도록 비례제어밸브(600-2)의 개도를 조절할 수 있다.When the proportional control valve 600-2 is provided, the integrated control unit 1000 returns the heating space 400, and the heating circulation return temperature Tr, which measures the temperature of the heating circulation water returned, is a preset return temperature set value. The opening degree of the proportional control valve 600-2 can be adjusted to be equal to or less than (Tr, set).

이와 같은 방법으로 난방순환수환수온도(Tr)를 최대한 낮게 유지하게 되면 적은 유량으로 같은 열량을 공급할 수 있게 된다. 왜냐하면 열량은 유량과 입출구 온도차에 비례하여 상승하기 때문에 온도차가 커지면 유량이 적더라도 같은 열량을 공급할 수 있기 때문이다. 또한 유량을 감소시킴으로써 펌핑동력과 배관열손실(유속이 빠르면 관표면에서의 열전달계수 증가)을 줄일 수 있다.By maintaining the heating circulation return temperature (Tr) as low as possible in this way it is possible to supply the same amount of heat at a lower flow rate. This is because the heat quantity increases in proportion to the flow rate and the inlet / outlet temperature difference, so that the same heat quantity can be supplied even if the flow rate is small when the temperature difference is large. In addition, by reducing the flow rate, pumping power and pipe heat loss (faster flow rates increase the heat transfer coefficient on the pipe surface) can be reduced.

즉 기존의 정유량 제어방법에 따르면 난방공간(400)의 출구측 온도가 높아서 축열조(200)에 저장된 에너지의 이용율이 그만큼 낮아지지만 본 발명과 같이 변유량 제어를 하게 되면 난방부하 대비 온도차를 극대화하고 유량을 최소화할 수 있으므로 난방공간(400)의 출구측 온도가 최대한 낮아져서 축열조(200)의 열을 최대한 이용할 수 있다.That is, according to the existing flow rate control method, the outlet temperature of the heating space 400 is high, so that the utilization rate of the energy stored in the heat storage tank 200 is lowered by that amount. Since the temperature of the outlet side of the heating space 400 can be minimized as much as possible, the heat of the heat storage tank 200 can be utilized to the maximum.

본 발명인 태양열 난방시스템 통합제어장치를 이용한 제어방법은 다음과 같다.The control method using the present invention integrated solar control system is as follows.

<제1모드에 따른 제어방법><Control Method According to the First Mode>

제1모드는 축열조온도(Tt)가 충분히 높은 경우 별도로 보조보일러(300)를 작동시킬 필요가 없을 경우의 제어방식이다.The first mode is a control method when it is not necessary to operate the auxiliary boiler 300 separately when the heat storage tank temperature Tt is sufficiently high.

(1) 제1단계(1) Step 1

난방순환수공급온도설정값(Ts,set)을 미리 설정하여 입력하는 단계이다.In this step, the heating circulating water supply temperature set value (Ts, set) is set in advance.

(2) 제2단계(2) Step 2

축열조온도(Tt)를 측정하고, 축열조온도(Tt)와 난방순환수공급온도설정값(Ts,set)을 비교하는 단계이다. 여기서 축열조온도(Tt)는 축열조(200)의 상부 온도를 측정한다. 왜냐하면 축열조(200)의 상부가 순환배관의 공급관과 연결되고 난방공간(400)으로 공급되는 난방순환수의 공급온도가 되기 때문이다.The heat storage tank temperature (Tt) is measured, and the heat storage tank temperature (Tt) and the heating circulation water supply temperature set value (Ts, set) are compared. Here, the heat storage tank temperature Tt measures the upper temperature of the heat storage tank 200. This is because the upper portion of the heat storage tank 200 is connected to the supply pipe of the circulation pipe and becomes a supply temperature of the heating circulation water supplied to the heating space 400.

(3) 제3단계(3) Step 3

통합제어부(1000)는 축열조온도(Tt) > 난방순환수공급온도설정값(Ts,set)인 경우 환수측삼방밸브(600)와 공급측삼방밸브(600-1)를 제어하여 난방순환수가 분기배관이나 보일러경유배관으로 유입되지 않고 순환배관으로만 순환하여 축열조(200)의 열이 난방공간(400)으로 공급되도록 한다. The integrated control unit 1000 controls the return side three-way valve 600 and the supply side three-way valve 600-1 when the heat storage tank temperature Tt> heating circulating water supply temperature set value (Ts, set) to branch pipe the heating circulation water. In addition, the heat from the heat storage tank 200 is supplied to the heating space 400 by circulating only through the circulation pipe without being introduced into the boiler oil pipe.

<제2모드에 따른 제어방법><Control method according to the second mode>

제2모드는 축열조온도(Tt)만으론 충분한 난방이 이루어질 수 없는 경우 축열조(200)에서 1차적으로 열을 공급받은 후 다시 보조보일러(300)를 경유하도록 하여 부족한 열을 공급받도록 하는 경우의 제어방식이다.In the second mode, when sufficient heating cannot be achieved using only the heat storage tank temperature (Tt), after receiving heat from the heat storage tank 200 firstly and passing the auxiliary boiler 300 again, a control method for receiving insufficient heat to be.

(1) 제1단계(1) Step 1

난방순환수공급온도설정값(Ts,set) 및 배관열손실을 고려한 설정온도차(△Tr,set)를 미리 설정하여 입력하는 단계이다. The step of setting and inputting the set temperature difference ΔTr, set in consideration of the heating circulation water supply temperature set value (Ts, set) and pipe heat loss.

(2) 제2단계(2) Step 2

축열조온도(Tt) 및 난방순환수환수온도(Tr)를 측정하고, 축열조온도(Tt), 난방순환수환수온도(Tr), 난방순환수공급온도설정값(Ts,set) 및 설정온도차(△Tr,set)를 비교하는 단계이다.The heat storage tank temperature (Tt) and the heating circulation water return temperature (Tr) are measured, and the heat storage tank temperature (Tt), heating circulation water return temperature (Tr), heating circulation water supply temperature set value (Ts, set), and set temperature difference (△ Tr, set) is compared.

(3) 제3단계(3) Step 3

통합제어부(1000)는 난방순환수공급온도설정값(Ts,set) ≥ 축열조온도(Tt) ≥ [난방순환수환수온도(Tr) + 설정온도차(△Tr,set)]인 경우 환수측삼방밸브(600)를 제어하여 난방순환수가 분기배관으로 유입되지 않고 순환배관을 통하여 축열조(200)로 들어가도록 하고, 공급측삼방밸브(600-1)를 제어하여 축열조(200)에서 나온 난방순환수가 보일러경유배관을 통하여 보조보일러(300)를 경유한 후 분기배관과 순환배관을 거쳐 난방공간(400)으로 공급되도록 한다. The integrated control unit 1000 returns the return side three-way valve when the heating circulation water supply temperature set value (Ts, set) ≥ heat storage tank temperature (Tt) ≥ [heating circulation return water temperature (Tr) + set temperature difference (△ Tr, set)]. By controlling the 600, the heating circulating water does not flow into the branch pipe and enters the heat storage tank 200 through the circulation pipe, and controls the supply side three-way valve 600-1 to control the heating circulation water from the heat storage tank 200 via the boiler. After passing through the auxiliary boiler 300 through the pipe to be supplied to the heating space 400 through the branch pipe and the circulation pipe.

<제3모드에 따른 제어방법><Control method according to the third mode>

제3모드는 축열조(200) 열원의 일부도 이용할 수 없을 정도로 축열조온도(Tt)가 낮을 경우 보조보일러(300)만을 이용하여 난방을 수행하는 경우의 제어방식이다.The third mode is a control method when heating is performed using only the auxiliary boiler 300 when the heat storage tank temperature Tt is low enough to use a part of the heat storage tank 200 heat source.

(1) 제1단계(1) Step 1

난방순환수의 이송과정에서 발생되는 배관열손실을 고려하여 미리 설정된 설정온도차(△Tr,set)를 입력하는 단계이다.In this step, the preset temperature difference ΔTr, set is input in consideration of the pipe heat loss generated during the transfer of the heating circulation water.

(2) 제2단계(2) Step 2

축열조온도(Tt) 및 난방순환수환수온도(Tr)를 측정하고, 축열조온도(Tt), 난방순환수환수온도(Tr) 및 설정온도차(△Tr,set)를 비교하는 단계이다.The heat storage tank temperature Tt and the heating circulation return temperature Tr are measured, and the heat storage tank temperature Tt, the heating circulation return temperature Tr, and the set temperature difference ΔTr, set are compared.

(3) 제3단계(3) Step 3

축열조온도(Tt) < [난방순환수환수온도(Tr) + 설정온도차(△Tr,set)]인 경우 환수측삼방밸브(600)와 공급측삼방밸브(600-1)를 제어하여 난방순환수가 분기배관을 통하여 보조보일러(300)만 경유하여 난방공간(400)으로 공급되도록 한다.When the heat storage tank temperature (Tt) <[heating circulation return water temperature (Tr) + set temperature difference (△ Tr, set)], the return circulation three-way valve 600 and the supply-side three-way valve 600-1 are controlled to divert the heating circulation water. It is to be supplied to the heating space 400 via only the auxiliary boiler 300 through the pipe.

<비례제어밸브를 이용한 제어방법><Control method using proportional control valve>

(1) 제1단계(1) Step 1

환수온도설정값(Tr,set)을 입력하는 단계이다.Entering the return temperature set value (Tr, set).

(2) 제2단계(2) Step 2

난방순환수환수온도(Tr)를 측정하고, 환수온도설정값(Tr,set)과 난방순환수환수온도(Tr)를 비교하는 단계이다.It is a step of measuring the heating circulation return temperature (Tr) and comparing the return temperature set value (Tr, set) and the heating circulation return temperature (Tr).

(3) 제3단계(3) Step 3

난방공간(400)을 돌아 환수되는 난방순환수의 온도를 측정한 난방순환수환수온도(Tr)가 미리 설정된 환수온도설정값(Tr,set) 이하가 되도록 비례제어밸브(600-2)의 개도를 조절하는 단계이다.The opening degree of the proportional control valve 600-2 so that the heating circulation return temperature Tr measured by measuring the temperature of the heating circulation water returned to the heating space 400 is equal to or less than the preset return temperature set value Tr, set. This step is to adjust.

상기 모든 단계에서 난방순환펌프(500)의 작동은 당연히 포함되는 바 별도로 언급하지 않았다.Operation of the heating circulation pump 500 in all the above steps are not included separately, of course.

상기한 바와 같이 본 발명의 구체적 실시예를 참조하여 본 발명의 기술적 사상을 설명하였으나 본 발명의 보호범위가 반드시 이러한 실시예에 국한되는 것은 아니며 본 발명의 기술적 요지를 변경하지 않는 범위 내에서 다양한 설계변경, 공지기술의 부가나 삭제, 단순한 수치한정 등의 경우에도 본 발명의 보호범위에 속함을 분명히 한다. 아울러 본 발명의 태양열 난방시스템 통합제어장치는 난방시스템에 한정되는 것은 아니며 급탕시스템에도 그대로 적용할 수 있음을 밝혀둔다.
As described above, the technical spirit of the present invention has been described with reference to specific embodiments of the present invention, but the protection scope of the present invention is not necessarily limited to these embodiments, and various designs may be made without changing the technical spirit of the present invention. Changes, additions or deletions of well-known technology, and simple numerical limitations also make it clear that they belong to the protection scope of the present invention. In addition, the integrated solar heating system control device of the present invention is not limited to the heating system, it turns out that it can be applied to the hot water supply system as it is.

100:태양열집열기
200:축열조
300:보조보일러
400:난방공간
500:난방순환펌프
600:환수측삼방밸브
600-1:공급측삼방밸브
600-2:비례제어밸브
700:실내온도 제어기
800:보일러 제어기
900:태양열시스템 제어기
1000:통합제어부
100: solar collector
200: heat storage tank
300: auxiliary boiler
400: heating space
500: heating circulation pump
600: return side three-way valve
600-1: Supply side three way valve
600-2: proportional control valve
700: room temperature controller
800: boiler controller
900: solar system controller
1000: integrated control unit

Claims (11)

난방공간(400)과 연결된 순환배관을 따라 순환되는 난방순환수에 저장된 열을 공급하는 축열조(200);
순환배관에 설치되어 난방순환수의 이송 동력을 발생시키는 난방순환펌프(500);
순환배관을 구성하는 환수관과 공급관을 직접 연결하는 분기배관에 위치하여 상기 축열조(200)와 병렬적으로 설치되고, 순환되는 난방순환수에 열을 공급하는 보조보일러(300);
순환배관의 환수관과 분기배관이 만나는 지점에 설치되는 환수측삼방밸브(600);
분기배관과 순환배관의 공급관이 만나는 지점과 상기 축열조(200) 사이의 공급관에서 분기되어 상기 보조보일러(300)와 상기 환수측삼방밸브(600) 사이의 분기배관에 연결되는 보일러경유배관의 입구측 분기점에 설치되는 공급측삼방밸브(600-1); 및,
상기 난방공간(400)의 출구온도 및 상기 축열조(200)의 온도를 측정하여 상기 난방순환펌프(500), 상기 환수측삼방밸브(600), 상기 공급측삼방밸브(600-1) 및 상기 보조보일러(300)의 작동을 제어하는 통합제어부(1000);
를 포함하여 구성되는 것을 특징으로 하는 태양열 난방시스템 통합제어장치.
A heat storage tank 200 for supplying heat stored in the heating circulation water circulated along the circulation pipe connected to the heating space 400;
A heating circulation pump 500 installed in the circulation pipe to generate a transfer power of the heating circulation water;
An auxiliary boiler 300 installed in parallel with the heat storage tank 200 and positioned in a branch pipe directly connecting the return pipe constituting the circulation pipe and supplying heat to the heating circulation water circulated;
A return side three-way valve 600 installed at a point where the return pipe and the branch pipe of the circulation pipe meet;
The inlet side of the boiler gas pipe connected to the branch pipe and the branch pipe between the auxiliary boiler 300 and the return side three-way valve 600 is branched from the supply pipe between the point where the supply pipe of the branch pipe and the circulation pipe meets and the heat storage tank (200). Supply side three-way valve (600-1) installed at the branch point; And,
By measuring the outlet temperature of the heating space 400 and the temperature of the heat storage tank 200, the heating circulation pump 500, the return side three-way valve 600, the supply side three-way valve 600-1 and the auxiliary boiler Integrated control unit 1000 for controlling the operation of the 300;
Solar heating system integrated control device, characterized in that comprises a.
제1항에서,
상기 축열조(200)는 태양열집열기(100)로부터 열을 공급받는 것을 특징으로 하는 태양열 난방시스템 통합제어장치.
In claim 1,
The heat storage tank 200 is a solar heating system integrated control device, characterized in that receiving heat from the solar collector (100).
제1항에서,
상기 난방공간(400)과 상기 환수측삼방밸브(600) 사이의 환수관에 설치되며 개도에 따라 유량이 비례적으로 가변되는 비례제어밸브(600-2);
를 더 포함하는 것을 특징으로 하는 태양열 난방시스템 통합제어장치.
In claim 1,
A proportional control valve (600-2) installed in the return pipe between the heating space (400) and the return side three-way valve (600), the flow rate of which varies proportionally according to the opening degree;
Solar heating system integrated control device further comprising a.
제1항 내지 제3항 가운데 어느 한 항에서,
상기 통합제어부(1000)는,
축열조온도(Tt)와 미리 설정된 난방순환수공급온도설정값(Ts,set)을 비교하고,
축열조온도(Tt) > 난방순환수공급온도설정값(Ts,set)
인 경우 상기 환수측삼방밸브(600)와 상기 공급측삼방밸브(600-1)를 제어하여 난방순환수가 분기배관이나 보일러경유배관으로 유입되지 않고 순환배관으로만 순환하여 상기 축열조(200)의 열이 상기 난방공간(400)으로 공급되도록 하는 것을 특징으로 하는 태양열 난방시스템 통합제어장치.
4. The method according to any one of claims 1 to 3,
The integrated control unit 1000,
Compare the heat storage tank temperature (Tt) with the preset heating circulation water supply temperature set value (Ts, set),
Heat storage tank temperature (Tt) > Heating circulating water supply temperature set value (Ts, set)
In the case of the return side three-way valve 600 and the supply side three-way valve (600-1) by controlling the heating circulating water does not flow into the branch pipe or the boiler oil pipe, the circulation of the heat storage tank 200 is circulated only by the circulation pipe Solar heating system integrated control device, characterized in that to be supplied to the heating space (400).
제1항 내지 제3항 가운데 어느 한 항에서,
상기 통합제어부(1000)는,
축열조온도(Tt), 난방순환수공급온도설정값(Ts,set), 상기 난방공간(400)을 돌아 환수되는 난방순환수의 온도를 측정한 난방순환수환수온도(Tr), 및 난방순환수의 이송과정에서 발생되는 배관열손실을 고려하여 미리 설정된 설정온도차(△Tr,set)를 비교하고,
난방순환수공급온도설정값(Ts,set) ≥ 축열조온도(Tt) ≥ [난방순환수환수온도( + 설정온도차(△Tr,set)]
인 경우 상기 환수측삼방밸브(600)를 제어하여 난방순환수가 분기배관으로 유입되지 않고 순환배관을 통하여 상기 축열조(200)로 들어가도록 하고, 상기 공급측삼방밸브(600-1)를 제어하여 상기 축열조(200)에서 나온 난방순환수가 보일러경유배관을 통하여 상기 보조보일러(300)를 경유한 후 분기배관과 순환배관을 거쳐 상기 난방공간(400)으로 공급되도록 하는 것을 특징으로 하는 태양열 난방시스템 통합제어장치.
4. The method according to any one of claims 1 to 3,
The integrated control unit 1000,
Heat storage tank temperature (Tt), heating circulation water supply temperature set value (Ts, set), heating circulation water return temperature (Tr) measuring the temperature of the heating circulation water returned to the heating space 400, and heating circulation water Compare the preset temperature difference (△ Tr, set) in consideration of the pipe heat loss generated during the transfer of
Heating circulating water supply temperature set value (Ts, set) ≥ Heat storage tank temperature (Tt) ≥ [Heating circulating water return temperature (+ Set temperature difference (△ Tr, set)]
In the case of controlling the return side three-way valve 600 so that the heating circulating water does not flow into the branch pipe to enter the heat storage tank 200 through the circulation pipe, the supply side three-way valve (600-1) by controlling the heat storage tank Integrated heating device for solar heating system characterized in that the heating circulating water from (200) is supplied to the heating space 400 through the branch pipe and the circulation pipe after passing through the auxiliary boiler 300 through the boiler gas pipe. .
제1항 내지 제3항 가운데 어느 한 항에서,
상기 통합제어부(1000)는,
축열조온도(Tt), 상기 난방공간(400)을 돌아 환수되는 난방순환수의 온도를 측정한 난방순환수환수온도(Tr), 및 난방순환수의 이송과정에서 발생되는 배관열손실을 고려하여 미리 설정된 설정온도차(△Tr,set)를 비교하고,
축열조온도(Tt) < 난방순환수환수온도(Tr) + 설정온도차(△Tr,set)
인 경우 상기 환수측삼방밸브(600)와 상기 공급측삼방밸브(600-1)를 제어하여 난방순환수가 분기배관을 통하여 상기 보조보일러(300)만 경유하여 상기 난방공간(400)으로 공급되도록 하는 것을 특징으로 하는 태양열 난방시스템 통합제어장치.
4. The method according to any one of claims 1 to 3,
The integrated control unit 1000,
In consideration of the heat storage tank temperature (Tt), the heating circulation water return temperature (Tr) measuring the temperature of the heating circulation water returned to the heating space 400, and the pipe heat loss generated during the transfer of the heating circulation water in advance Compare set temperature difference (△ Tr, set),
Heat storage tank temperature (Tt) <Heating circulation return temperature (Tr) + Set temperature difference (△ Tr, set)
In the case that the return side three-way valve 600 and the supply side three-way valve (600-1) is controlled so that the heating circulating water is supplied to the heating space 400 via the auxiliary boiler 300 only through the branch pipe. Solar heating system integrated control device characterized in that.
제3항에서,
상기 통합제어부(1000)는,
상기 난방공간(400)을 돌아 환수되는 난방순환수의 온도를 측정한 난방순환수환수온도(Tr)가 미리 설정된 환수온도설정값(Tr,set) 이하가 되도록 상기 비례제어밸브(600-2)의 개도를 조절하는 것을 특징으로 하는 태양열 난방시스템 통합제어장치.
4. The method of claim 3,
The integrated control unit 1000,
The proportional control valve 600-2 such that the heating circulation return temperature Tr measured by measuring the temperature of the heating circulation water returned to the heating space 400 is equal to or less than a preset return temperature set value Tr, set. Solar heating system integrated control device, characterized in that to adjust the opening degree of.
제3항의 태양열 난방시스템 통합제어장치를 이용한 제어방법에 관한 것으로서,
난방순환수공급온도설정값(Ts,set)을 입력하는 제1단계;
축열조온도(Tt)를 측정하고, 축열조온도(Tt)와 난방순환수공급온도설정값(Ts,set)을 비교하는 제2단계; 및,
축열조온도(Tt) > 난방순환수공급온도설정값(Ts,set)인 경우 환수측삼방밸브(600)와 공급측삼방밸브(600-1)를 제어하여 난방순환수가 분기배관이나 보일러경유배관으로 유입되지 않고 순환배관으로만 순환하여 축열조(200)의 열이 난방공간(400)으로 공급되도록 하는 제3단계;
를 포함하여 구성되는 것을 특징으로 하는 태양열 난방시스템 통합제어장치를 이용한 제어방법.
Claim 3 relates to a control method using a solar heating system integrated control device,
A first step of inputting a heating circulation water supply temperature set value (Ts, set);
A second step of measuring the heat storage tank temperature (Tt) and comparing the heat storage tank temperature (Tt) with a heating circulation water supply temperature set value (Ts, set); And,
Heat storage tank temperature (Tt)> In the case of heating circulating water supply temperature set value (Ts, set), the heating circulating water flows into branch pipe or boiler oil pipe by controlling return side three way valve 600 and supply side three way valve 600-1. A third step of circulating only the circulation pipe without supplying the heat of the heat storage tank 200 to the heating space 400;
Control method using a solar heating system integrated control device comprising a.
제3항의 태양열 난방시스템 통합제어장치를 이용한 제어방법에 관한 것으로서,
난방순환수공급온도설정값(Ts,set) 및 배관열손실을 고려한 설정온도차(△Tr,set)를 입력하는 제1단계;
축열조온도(Tt) 및 난방순환수환수온도(Tr)를 측정하고, 축열조온도(Tt), 난방순환수환수온도(Tr), 난방순환수공급온도설정값(Ts,set) 및 설정온도차(△Tr,set)를 비교하는 제2단계; 및,
난방순환수공급온도설정값(Ts,set) ≥ 축열조온도(Tt) ≥ [난방순환수환수온도(Tr) + 설정온도차(△Tr,set)]인 경우 환수측삼방밸브(600)를 제어하여 난방순환수가 분기배관으로 유입되지 않고 순환배관을 통하여 축열조(200)로 들어가도록 하고, 공급측삼방밸브(600-1)를 제어하여 축열조(200)에서 나온 난방순환수가 보일러경유배관을 통하여 보조보일러(300)를 경유한 후 분기배관과 순환배관을 거쳐 난방공간(400)으로 공급되도록 하는 제3단계;
를 포함하여 구성되는 것을 특징으로 하는 태양열 난방시스템 통합제어장치를 이용한 제어방법.
Claim 3 relates to a control method using a solar heating system integrated control device,
A first step of inputting a set temperature difference ΔTr, set in consideration of the heating circulation water supply temperature set value Ts, set and pipe heat loss;
The heat storage tank temperature (Tt) and the heating circulation water return temperature (Tr) are measured, and the heat storage tank temperature (Tt), heating circulation water return temperature (Tr), heating circulation water supply temperature set value (Ts, set), and set temperature difference (△ A second step of comparing Tr, set); And,
Heating circulating water supply temperature set value (Ts, set) ≥ Heat storage tank temperature (Tt) ≥ [Heating circulation return water temperature (Tr) + Set temperature difference (△ Tr, set)], control the return side three-way valve 600 The heating circulating water does not flow into the branch pipe and enters the heat storage tank 200 through the circulation pipe, and controls the supply side three-way valve 600-1 to control the heating circulating water from the heat storage tank 200 through the boiler oil pipe. A third step of supplying the heating space 400 through the branch pipe and the circulation pipe after passing through 300;
Control method using a solar heating system integrated control device comprising a.
제3항의 태양열 난방시스템 통합제어장치를 이용한 제어방법에 관한 것으로서,
난방순환수의 이송과정에서 발생되는 배관열손실을 고려하여 미리 설정된 설정온도차(△Tr,set)를 입력하는 제1단계;
축열조온도(Tt) 및 난방순환수환수온도(Tr)를 측정하고, 축열조온도(Tt), 난방순환수환수온도(Tr) 및 설정온도차(△Tr,set)를 비교하는 제2단계; 및,
축열조온도(Tt) < 난방순환수환수온도(Tr) + 설정온도차(△Tr,set)인 경우 환수측삼방밸브(600)와 공급측삼방밸브(600-1)를 제어하여 난방순환수가 분기배관을 통하여 보조보일러(300)만 경유하여 난방공간(400)으로 공급되도록 하는 제3단계;
를 포함하여 구성되는 것을 특징으로 하는 태양열 난방시스템 통합제어장치를 이용한 제어방법.
Claim 3 relates to a control method using a solar heating system integrated control device,
A first step of inputting a preset set temperature difference ΔTr, set in consideration of pipe heat loss generated during the transfer of heating circulation water;
A second step of measuring the heat storage tank temperature (Tt) and the heating circulation water return temperature (Tr), and comparing the heat storage tank temperature (Tt), the heating circulation water return temperature (Tr), and the set temperature difference (ΔTr, set); And,
Heat storage tank temperature (Tt) <heating circulation water return temperature (Tr) + set temperature difference (△ Tr, set), control the return side three-way valve 600 and the supply side three-way valve (600-1) to control the heating circulating water branch pipe A third step of supplying the heating space 400 via only the auxiliary boiler 300;
Control method using a solar heating system integrated control device comprising a.
제3항의 태양열 난방시스템 통합제어장치를 이용한 제어방법에 관한 것으로서,
환수온도설정값(Tr,set)을 입력하는 제1단계;
난방순환수환수온도(Tr)를 측정하고, 환수온도설정값(Tr,set)과 난방순환수환수온도(Tr)를 비교하는 제2단계;
난방공간(400)을 돌아 환수되는 난방순환수의 온도를 측정한 난방순환수환수온도(Tr)가 미리 설정된 환수온도설정값(Tr,set) 이하가 되도록 비례제어밸브(600-2)의 개도를 조절하는 제3단계;
를 포함하여 구성되는 것을 특징으로 하는 태양열 난방시스템 통합제어장치를 이용한 제어방법.
Claim 3 relates to a control method using a solar heating system integrated control device,
A first step of inputting a return temperature set value (Tr, set);
A second step of measuring a heating circulation return temperature (Tr) and comparing the return temperature set value (Tr, set) with the heating circulation return temperature (Tr);
The opening degree of the proportional control valve 600-2 so that the heating circulation return temperature Tr measured by measuring the temperature of the heating circulation water returned to the heating space 400 is equal to or less than the preset return temperature set value Tr, set. Adjusting a third step;
Control method using a solar heating system integrated control device comprising a.
KR1020110039328A 2011-04-27 2011-04-27 Solar Energy Heating System Integrated Control Device and Control Method using thereof KR101269603B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110039328A KR101269603B1 (en) 2011-04-27 2011-04-27 Solar Energy Heating System Integrated Control Device and Control Method using thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110039328A KR101269603B1 (en) 2011-04-27 2011-04-27 Solar Energy Heating System Integrated Control Device and Control Method using thereof

Publications (2)

Publication Number Publication Date
KR20120121486A true KR20120121486A (en) 2012-11-06
KR101269603B1 KR101269603B1 (en) 2013-06-05

Family

ID=47507919

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110039328A KR101269603B1 (en) 2011-04-27 2011-04-27 Solar Energy Heating System Integrated Control Device and Control Method using thereof

Country Status (1)

Country Link
KR (1) KR101269603B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103017245A (en) * 2012-12-27 2013-04-03 法罗力热能设备(中国)有限公司 Multi-energy integrated water heating system
CN103615752A (en) * 2013-11-19 2014-03-05 常熟市古里镇白茆联动建筑变形缝装置厂 Constant temperature system
CN103994490A (en) * 2014-05-23 2014-08-20 西安交通大学 Solar phase-change energy-storage contact type heating system
CN105333489A (en) * 2015-12-02 2016-02-17 无锡职业技术学院 Solar and gas combined floor heating system
KR102237676B1 (en) * 2019-11-05 2021-04-08 한국지역난방공사 Pipe system with heat storage tank for bi-direcional heat trade

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104034056B (en) * 2014-06-17 2015-05-06 施亦龙 Control system for novel split type domestic solar water heater
KR102004859B1 (en) * 2017-12-28 2019-10-01 한국에너지기술연구원 Distributed solar system using seasonal storage and method of using thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100684125B1 (en) * 2004-10-14 2007-02-16 전석영 Operating control method of solor boiler system
ITMN20070042A1 (en) 2007-11-30 2009-06-01 Ar Ca S R L HEATING DEVICE FOR A FLUID VECTOR INCLUDING A GAS BOILER AND A STORAGE TANK, HOWEVER, HEATED.
KR101229934B1 (en) * 2009-10-08 2013-02-05 안상원 The boiler and the solar heat axial line the connection one heating which will beg and warm water system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103017245A (en) * 2012-12-27 2013-04-03 法罗力热能设备(中国)有限公司 Multi-energy integrated water heating system
CN103017245B (en) * 2012-12-27 2015-08-19 法罗力热能设备(中国)有限公司 The integrated hot-water heating system of a kind of multiple-energy-source
CN103615752A (en) * 2013-11-19 2014-03-05 常熟市古里镇白茆联动建筑变形缝装置厂 Constant temperature system
CN103994490A (en) * 2014-05-23 2014-08-20 西安交通大学 Solar phase-change energy-storage contact type heating system
CN105333489A (en) * 2015-12-02 2016-02-17 无锡职业技术学院 Solar and gas combined floor heating system
KR102237676B1 (en) * 2019-11-05 2021-04-08 한국지역난방공사 Pipe system with heat storage tank for bi-direcional heat trade

Also Published As

Publication number Publication date
KR101269603B1 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
KR101269603B1 (en) Solar Energy Heating System Integrated Control Device and Control Method using thereof
CN202868819U (en) Intelligent centralized heating system
JP5347654B2 (en) Hot water storage hot water supply system
JP5438401B2 (en) Hybrid hot water supply system and operation control method thereof
JP2006105434A (en) Heat pump hot water supply heating device
JP2014016075A (en) Hybrid system
WO2011134803A1 (en) Heating plant for the production of domestic hot water
JP4139826B2 (en) Hybrid hot water supply system
JP2005147494A (en) Multi-temperature heat storage tank and heat storage system using the same
JP2014202405A (en) Heat pump hot water supply unit
JP4528226B2 (en) Hybrid hot water supply system
JP5513178B2 (en) Bath bathing equipment
JP5921416B2 (en) Cogeneration system and hot water supply equipment
KR101250466B1 (en) Variable Flow Rate Solar Energy Collector Control System and Control Method using thereof
JP5291402B2 (en) Hybrid hot water supply system
JP2012180962A (en) Water heater system having hot water storage tank with auxiliary heat source
GB2450633A (en) Improvements in and relating to heating and ventilating systems using solar heat collectors
WO2016042312A1 (en) A domestic water and space heating system
KR100633238B1 (en) Heating storage system for several heat storage-tank in one network
KR101376059B1 (en) Natural circulation type hot-water supply system using solar heat for local heating
KR101149744B1 (en) System and method for controling water and air heat exchange amount according to heating load
WO2018066037A1 (en) Storage type hot water supplying device, hot water supplying method, and program
JP5739510B2 (en) Bath bathing equipment
EP2722596B1 (en) Heating installation and method related thereto
KR102456840B1 (en) Thermal network system and control method using solar heat

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160428

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170508

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180502

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190513

Year of fee payment: 7