KR20120022794A - Sintered mesh catalyst support and manufacturing method of reduction catalyst for ozone gas - Google Patents

Sintered mesh catalyst support and manufacturing method of reduction catalyst for ozone gas Download PDF

Info

Publication number
KR20120022794A
KR20120022794A KR1020117024718A KR20117024718A KR20120022794A KR 20120022794 A KR20120022794 A KR 20120022794A KR 1020117024718 A KR1020117024718 A KR 1020117024718A KR 20117024718 A KR20117024718 A KR 20117024718A KR 20120022794 A KR20120022794 A KR 20120022794A
Authority
KR
South Korea
Prior art keywords
catalyst
ozone gas
substrate
catalyst carrier
gold
Prior art date
Application number
KR1020117024718A
Other languages
Korean (ko)
Inventor
마스오 히라이와
타카토키 미나미
슈지 우에키
료이치 미야나베
마코토 나카야치고
Original Assignee
니치다이 필터 가부시키가이샤
크로린엔지니아즈 가부시키가이샤
미쯔이 죠센 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 니치다이 필터 가부시키가이샤, 크로린엔지니아즈 가부시키가이샤, 미쯔이 죠센 가부시키가이샤 filed Critical 니치다이 필터 가부시키가이샤
Publication of KR20120022794A publication Critical patent/KR20120022794A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • B01J37/0226Oxidation of the substrate, e.g. anodisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/106Ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8671Removing components of defined structure not provided for in B01D53/8603 - B01D53/8668
    • B01D53/8675Ozone
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

종래의 세라믹제의 기재는 충격에 대하여 깨지기 쉽고, 또한 개구를 크게 하면 훨씬 깨지기 쉽고, 한편, 스테인레스 박판제의 기재는 작은 유로를 형성하는 것이 곤란하고, 게다가 저렴하게 제조할 수 없고, 또한 허니콤 형상의 구조 때문에 유로가 직선적이고, 촉매 물질과 반응 물질의 접촉 가능성을 높게 하기 위해서, 유로를 길게 할 필요가 있어 구조체를 작게 하는 것이 곤란하다는 문제점이 있었다.
본 발명의 오존 가스 환원 촉매 담지체는 1장의 금망으로 이루어지는 소재,또는 복수장의 금망을 적층한 소재를 소결한 다공체를 촉매 담지체의 기재로 하고, 이 기재의 표면에 백금족 금속 또는 그 산화물의 촉매 물질을 분산 담지한 알루미나 박층을 형성한다
Conventional ceramic substrates are easily broken against impact, and are much more brittle when the opening is enlarged. On the other hand, stainless steel substrates are difficult to form small flow paths, and are not manufactured at low cost, and have a honeycomb shape. Because of the structure, the flow path is linear, and in order to increase the possibility of contact between the catalyst material and the reactant material, it is necessary to lengthen the flow path, which makes it difficult to reduce the structure.
In the ozone gas reduction catalyst carrier of the present invention, a porous body obtained by sintering a material consisting of one gold mesh or a material in which a plurality of gold meshes are laminated is used as a substrate for the catalyst carrier, and a catalyst of a platinum group metal or an oxide thereof is formed on the surface of the substrate. To form a thin alumina layer on which the materials are dispersed and supported.

Description

오존 가스 환원 촉매 담지체의 제조 방법 및 촉매 담지체{SINTERED MESH CATALYST SUPPORT AND MANUFACTURING METHOD OF REDUCTION CATALYST FOR OZONE GAS}Production method and catalyst support for ozone gas reduction catalyst carrier {SINTERED MESH CATALYST SUPPORT AND MANUFACTURING METHOD OF REDUCTION CATALYST FOR OZONE GAS}

본 발명은 오존 가스를 환원하는 촉매 담지체 및 그 제조 방법에 관한 것이다.The present invention relates to a catalyst carrier for reducing ozone gas and a method of manufacturing the same.

종래, 특히 자동차의 배기 가스의 정화 처리에 관한 산화 촉매 또는 환원 촉매는 대부분 예를 들면, 이하의 특허문헌 1?4에 나타내는 바와 같이 제조되고 있다. 즉, 스테인레스 박판으로부터 성형한 또는 소성한 세라믹의 허니콤 구조의 촉매체용 기재를 사용한다. 이 촉매체용 기재에 알루미나를 담지체로 하여 이것에 촉매 물질을 담지시킨다. 반응 물질을 포함하는 기체는 통상적인 예로서, 상기한 바와 같이 제조된 촉매 구조체 중에 성형된 직선적인 유로를 통과함으로써 산화 또는 환원이 행해진다. 또한, 오존 가스의 환원은 입자상의 이산화 망간을 메운 촉매통에 오존 가스를 포함한 기체를 통과시켜서 행하는 경우가 많았다.Conventionally, especially the oxidation catalyst or the reduction catalyst which concerns on the purification process of the exhaust gas of automobiles is manufactured as shown to following patent documents 1-4, for example. That is, the base material for catalyst bodies of the honeycomb structure of the ceramic shape | molded or baked from the stainless steel plate is used. The catalyst substrate is supported by using alumina as a support on the substrate for the catalyst body. The gas containing the reaction substance is oxidized or reduced by passing through a straight flow path formed in a catalyst structure prepared as described above, as a typical example. In addition, the reduction of ozone gas was often performed by passing a gas containing ozone gas through a catalyst vessel filled with particulate manganese dioxide.

(선행기술문헌)(Prior art document)

(특허문헌 1) 일본국 특허공개 소62-237947호 공보 (Patent Document 1) Japanese Patent Application Laid-Open No. 62-237947

(특허문헌 2) 일본국 특허공개 2007-223856호 공보(Patent Document 2) Japanese Unexamined Patent Publication No. 2007-223856

(특허문헌 3) 일본국 특허공개 2005-254217호 공보(Patent Document 3) Japanese Unexamined Patent Publication No. 2005-254217

(특허문헌 4) 일본국 특허공표 2006-41170호 공보(Patent Document 4) Japanese Patent Publication No. 2006-41170

특허문헌 1은 이하의 것이 개시되어 있다. 금속의 표면을 조면화한 후, 상기 표면에 촉매 담지 활성을 갖는 미립자를 결착(結着)하고, 초미립자의 촉매 물질을 담지하는 것. 또한, 해면상의 금속을 사용하는 것.Patent Document 1 discloses the following. After roughening the surface of a metal, it binds microparticles | fine-particles which have a catalyst carrying activity on the said surface, and carry a catalyst material of ultra-fine particles. In addition, using a sponge metal.

특허문헌 2, 4는 이하의 것이 개시되어 있다. 실리카가 전체 질량 베이스로 2.5?10질량% 첨가된 실리카-알루미나계 화합물을 사용하는 것. 이 실리카-알루미나계 화합물로 알루미늄과 실리콘의 금속 알콕시드로부터 겔화 반응에 의해 겔화물을 제작하는 것. 이 겔화물을 동결 건조하여 다공질 구조체를 얻는 것.Patent Documents 2 and 4 disclose the following. Use of the silica-alumina compound to which 2.5-10 mass% of silica was added based on the total mass. A gelation is produced by a gelling reaction from a metal alkoxide of aluminum and silicon with this silica-alumina compound. The gelled product is freeze-dried to obtain a porous structure.

특허문헌 3, 4는 이하의 것이 개시되어 있다. 팔라듐, 백금, 및/또는 로듐의 질산염 또는 염화물의 수용액 또는 유기 용매 용액을 사용하는 것. 이 유기 용매 용액에 산소 이온 전도와 전자 전도의 혼합 전도 산화물을 분산시키고, 상기 용매를 증발 제거하는 것. 상기 용매의 증발 제거 후, 600℃이상에서 가열 처리해서 질소산화물 제거용 촉매 재료를 얻는 것.Patent Documents 3 and 4 disclose the following. Using aqueous solutions or organic solvent solutions of nitrates or chlorides of palladium, platinum, and / or rhodium. Disperse | distribute the mixed conduction oxide of oxygen ion conduction and electron conduction in this organic solvent solution, and remove the said solvent by evaporation. After evaporating and removing the said solvent, it heat-processes at 600 degreeC or more, and obtains the catalyst material for nitrogen oxide removal.

특허문헌 1?4는 이하의 것이 개시되어 있다고 할 수 있다. 촉매와 촉매에 접촉시켜서 산화 또는 환원 반응을 시키는 물질(이하, 반응 물질)과의 접촉 면적의 향상에 관한 것. 또는 촉매 물질끼리의 결합을 방지하거나 미립자화, 균일 분산화 등에 관한 것. 그러나, 특허문헌 1?4는 상기의 것이 개시되어 있지만, 촉매 담지체용 기재의 개선에 대해서 하등 고려되지 않고 있었다.Patent Literatures 1 to 4 can be said to disclose the following. It relates to the improvement of the contact area of a catalyst with a substance which is brought into contact with the catalyst for an oxidation or reduction reaction (hereinafter referred to as a reaction substance). Or preventing the bonding of the catalyst materials or refining the particles, homogeneously dispersing, or the like. However, Patent Documents 1 to 4 disclose the above, but no consideration has been given to the improvement of the substrate for the catalyst carrier.

즉, 특허문헌 1?4는 반응 물질을 촉매와 접촉시키는 면적이 어느 정도 넓은 것이 파악될 수 있다. 그러나, 특허문헌 1?4는 허니콤 구조체에 형성하는 유로가 직선적이다. 따라서, 특허문헌 1?4는 촉매 물질과 반응 물질의 접촉 가능성을 높여서 반응 효율을 상승시키기 위해서, 유로를 길게 하는 것이 필요하다. 이것으로부터 특허문헌 1?4는 그 구조체를 작게 하는 것이 곤란했다.That is, Patent Literatures 1 to 4 can grasp that the area of contacting the reactant with the catalyst is somewhat large. However, in patent documents 1-4, the flow path formed in a honeycomb structure is linear. Therefore, Patent Documents 1 to 4 need to lengthen the flow path in order to increase the contact efficiency between the catalyst material and the reaction material and to increase the reaction efficiency. From this, it was difficult for patent documents 1-4 to make the structure small.

또한, 특허문헌 1?4는 상기한 바와 같이 반응 물질이 유체 중에 존재하고, 또한, 그 유체를 한쪽측으로부터 다른 쪽측으로 통과시킨다. 그러나, 특허문헌 1?4에 있어서의 세라믹제의 허니콤 구조체는 기본적으로 강성이 부족하고, 매우 물러서 충격에 약하다는 문제가 있다. 또한, 특허문헌 1?4에 있어서의 스테인레스 박판제의 허니콤 구조체는 유로를 일정 이상으로 작게 성형하는 것이 곤란하고, 코스트도 높아진다는 문제점이 있었다.As described above, Patent Documents 1 to 4 present a reaction substance in the fluid, and further, passes the fluid from one side to the other side. However, the honeycomb structure made of ceramics in Patent Literatures 1 to 4 has a problem in that it is basically insufficient in rigidity, very weak, and weak in impact. In addition, the honeycomb structural body made of stainless steel sheet in Patent Documents 1 to 4 has a problem in that it is difficult to form a flow path smaller than a certain size and the cost is high.

본 발명은 상기의 과제를 해결하고, 또한 이하의 목적을 달성한다. 허니콤 구조 대신에 강성이 우수하고 또한, 촉매 물질과 반응 물질의 접촉 가능성을 보다 높이는 촉매 담지체용의 기재를 제조하는 것. 촉매 물질로서의 입자상의 이산화 망간은 부서지기 쉽고, 수분을 흡수하기 쉽고, 수분을 지나치게 흡수하면 액상화되는 성질이 있어 내구성에 문제가 있으므로 이것을 대신하는 촉매 물질을 채용하는 것.This invention solves the said subject and achieves the following objectives. Instead of the honeycomb structure, producing a substrate for a catalyst carrier which is excellent in rigidity and further increases the possibility of contact between the catalyst material and the reactant material. Particulate manganese dioxide as a catalyst material is brittle, easily absorbs moisture, and has a property of liquefying when absorbed excessively.

본 발명은 강성이 우수하고, 또한 경제성이 우수한 촉매 담지체의 기재, 및 오존 가스의 환원에 현재 일반적으로 사용되는 이산화 망간을 대신하는 내구성과 효율성이 우수한 촉매 물질을 채용한다. 그리고, 본 발명은 이들을 이용하여 상기 촉매 물질을 담지하는 촉매 담지체의 구조를 제공한다. 이 때문에, 본 발명은 1장의 금망(金網)으로 이루어지는 소재, 또는 복수장의 금망을 적층한 소재를 소결한 다공체를 촉매 담지체의 기재로 한다. 또한, 본 발명은 촉매 담지체의 기재의 표면에 촉매 물질을 분산 담지시킨 알루미나 박층을 형성해서 환원 촉매 담지체를 얻는다. 또한, 본 발명은 백금족 금속 또는 그 산화물, 또는 그들 혼합물을 상기 촉매 물질로 한다.The present invention employs a catalyst substrate having excellent rigidity and excellent economy, and a catalyst material having excellent durability and efficiency in place of manganese dioxide which is generally used for the reduction of ozone gas. In addition, the present invention provides a structure of a catalyst carrier for supporting the catalyst material using them. For this reason, in this invention, the porous body which sintered the raw material which consists of one sheet | seat of gold, or the material which laminated | stacked the several sheet | seat of gold | mesh is used as a base material of a catalyst support body. In addition, the present invention forms a thin alumina layer in which a catalyst substance is dispersed and supported on the surface of the substrate of the catalyst carrier to obtain a reduced catalyst carrier. In addition, this invention makes a platinum group metal or its oxide, or its mixture the said catalyst material.

(발명의 효과)(Effects of the Invention)

본 발명의 효과는 다음과 같다. 본 발명은 다공체의 기재를 사용함으로써 담지체가 되는 알루미나 박층의 표면적을 넓게 확보할 수 있다. 또한, 본 발명은 기체 중에 함유되는 반응 물질의 양에 따라서 개구경을 어느 정도 자유롭게 선택할 수 있다. 또한, 본 발명은 금망의 매수에 의해 전체 두께를 유연하게 조정할 수 있다.The effects of the present invention are as follows. This invention can ensure the surface area of the thin alumina layer used as a support body widely by using a porous base material. In addition, according to the present invention, the opening diameter can be freely selected to some extent depending on the amount of the reaction substance contained in the gas. In addition, the present invention can flexibly adjust the overall thickness by the number of gold meshes.

특히, 본 발명은 기재에 소결된 금망을 사용함으로써 확산 결합에 의해 판상의 다공체가 얻어지고, 절단과 굽힘 가공이 가능해서 성형의 자유도가 높다고 하는 이점도 있다. 또한, 본 발명은 개개의 기판마다 촉매 담지량을 변화시키고, 고가인 촉매 물질의 절약을 도모하는 것도 가능해진다.In particular, the present invention also has the advantage that a plate-like porous body can be obtained by diffusion bonding by using a sintered gold mesh for a substrate, and thus cutting and bending can be performed, thereby providing a high degree of freedom in molding. In addition, the present invention can change the amount of supported catalyst for each substrate, and it is possible to save expensive catalyst materials.

따라서, 본 발명을 오존 가스의 환원 처리에 사용함으로써 이상의 이점의 상승 효과로서, 오존 가스의 처리 효율이 향상하고, 또한 경제성이 우수하다.Therefore, as a synergistic effect of the above advantage by using this invention for the reduction process of ozone gas, the processing efficiency of ozone gas improves and it is excellent in economy.

도 1의 (a), (b)는 본 발명의 효과를 확인하기 위한 실험 결과를 도시한 도면이다.1 (a) and (b) are diagrams showing experimental results for confirming the effect of the present invention.

본 발명의 오존 가스 환원 촉매 담지체의 제조 방법은 오존 가스의 환원 촉매 담지체를 1장의 금망으로 이루어지는 소재, 또는 복수장의 금망을 적층한 소재를 소결한 다공체를 촉매 담지체의 기재로 하고, 이 기재의 표면에 백금족 금속, 그 산화물, 또는 그들의 혼합물을 분산 담지시킨 알루미나 박층을 형성해서 오존 가스 환원 촉매 담지체를 얻는다. 또한, 본 발명은 촉매 물질로서 상기 대신에, 촉매 물질이 바나듐 금속 또는 그 산화물의 단체(單體), 또는 그들의 혼합물로 하면 더욱 바람직한 오존 가스 환원 촉매 담지체가 얻어진다.In the method for producing an ozone gas reduction catalyst carrier of the present invention, the catalyst carrier is made of a porous body obtained by sintering a reduction catalyst carrier of ozone gas using a single metal mesh or a material in which a plurality of gold meshes are laminated. On the surface of the substrate, a thin alumina layer in which a platinum group metal, an oxide thereof, or a mixture thereof is dispersed and supported is formed to obtain an ozone gas reduction catalyst carrier. In the present invention, a catalyst material having a vanadium metal or an oxide alone or a mixture thereof as a catalyst material can be obtained in place of the above.

그리고, 본 발명의 오존 가스 환원 촉매 담지체는 예를 들면, 촉매 담지체를 필요에 따라서 복수개 사용하고, 이들 각각에 오존 가스 함유의 기체를 통과시켜서 실시한다. 이렇게 실시하면, 본 발명의 오존 가스 환원 촉매 담지체는 오존 가스를 효율적으로 환원한다.And the ozone gas reduction catalyst carrier of this invention uses a plurality of catalyst carriers as needed, for example, and carries out each of them through the gas containing ozone gas. By doing so, the ozone gas reduction catalyst carrier of the present invention efficiently reduces ozone gas.

본 발명의 알루미나 박층을 형성한 오존 가스 환원 촉매 담지체는 다음과 같이 제조된다. 우선, 알루미나 졸 용액에 촉매 물질이 되는 백금족 금속의 질산염의 분말을 가한 용액을 준비한다. 이 용액을 미리 조면화한 상기 기재에 도포하거나 상기 용액에 상기 기재를 침지해서 촉매 물질을 부착시켜 알루미나 박층을 형성한다. 그 후, 상기 기재를 600℃에서 700℃의 온도로 소성한다. 또한, 본 발명의 오존 가스 환원 촉매 담지체는 다음과 같이 제조된다. 상기 기재의 표면에 미리 백금족 금속의 질산염의 분말을 첨가하지 않는 상기 용액을 기판에 도포하거나 상기 용액에 기재를 침지해서 알루미나 박층을 동일하게 형성한다. 그 후, 상기 기재를 백금족 금속의 질산염 용액에 침지해서 촉매 물질을 부착시킨다. 그 후에 상기 기재를 상기와 같이 600?700℃로 소성한다.An ozone gas reduction catalyst carrier having a thin alumina layer of the present invention is produced as follows. First, the solution which added the powder of the nitrate of the platinum group metal used as a catalyst material to the alumina sol solution is prepared. The solution is applied to the previously roughened substrate or the substrate is immersed in the solution to attach a catalyst material to form a thin alumina layer. Thereafter, the substrate is fired at a temperature of 600 ° C to 700 ° C. In addition, the ozone gas reduction catalyst carrier of the present invention is produced as follows. The solution which does not add the platinum group metal nitrate powder to the surface of the said substrate is apply | coated to a board | substrate, or the substrate is immersed in the said solution, and the thin alumina layer is formed in the same manner. The substrate is then immersed in a nitrate solution of the platinum group metal to attach the catalyst material. Thereafter, the substrate is fired at 600 to 700 ° C as described above.

본 발명에서 제조된 오존 가스 환원 촉매 담지체는 이하와 같이 하여 사용된다. 예를 들면, 복수장의 금망을 적층한 소재를 소결한 다공체를 촉매 담지체의 기재로 하고, 이 기재의 표면에 백금족 금속을 촉매 물질로서 분산 담지시킨 알루미나 박층을 형성한 촉매 담지체를, 필요에 따라서 복수개 용기에 설치한다. 이 용기에 오존 가스를 함유한 기체를 통과시켜서, 인체에 유해한 오존 가스를 무해한 산소로 환원한다.The ozone gas reduction catalyst carrier prepared in the present invention is used as follows. For example, a catalyst carrier having a thin alumina layer in which a porous body sintered a plurality of gold mesh laminated materials is used as a substrate for a catalyst carrier and a platinum group metal is dispersed and supported on the surface of the substrate as necessary. Therefore, it installs in several containers. A gas containing ozone gas is made to pass through this container, and ozone gas harmful to a human body is reduced to harmless oxygen.

본 발명에서 소결된 금망을 채용한 이유는 개구의 자유도가 높기 때문이다. 예를 들면, 시장에서 용이하게 입수할 수 있는 금망은 그 개구가 0.005mm부터 1cm이상까지 풍부하게 존재하고 있다. 이들 금망은 개구, 강성, 공극률이 각각 상위하므로 이들을 조합시켜서 소결하면 강성도 뛰어난 소재가 된다.The reason for employing the sintered gold mesh in the present invention is that the degree of freedom of opening is high. For example, gold meshes readily available on the market have abundant openings ranging from 0.005 mm to more than 1 cm. Since these gold meshes have different openings, stiffnesses, and porosities, respectively, when combined and sintered, they become excellent materials.

또한, 소결된 금망은 개개의 선재가 접하는 선재와 강고하게 융합하고, 선재가 위치 어긋남을 일으키지 않고, 즉, 응력이 가해져도 안정한 개구 상태를 확보할 수 있다는 이점이 있다.Further, there is an advantage that the sintered gold mesh is firmly fused with the wire rods which the individual wire rods come in contact with, and that the wire rods do not cause a displacement, that is, a stable opening state can be ensured even when stress is applied.

촉매 담지체의 기재에 사용하는 금망은 예를 들면, 스테인레스재를 주재료로 하는 것이 바람직하다. 이 이유는 내식성이 우수하고 시장성이 있어 입수가 용이하기 때문이다. 물론, 스테인레스 이외의 동 또는 동합금제, 또는 니켈제 등의 금망이어도 좋지만, 혼합하는 다른 금속은 내식성을 고려한 재료로 하는 것이 바람직하다.As for the gold net used for the base material of a catalyst support body, it is preferable to use a stainless material as a main material, for example. This is because it is easy to obtain because of excellent corrosion resistance and marketability. As a matter of course, copper or copper alloys other than stainless, or gold meshes such as nickel may be used, but other metals to be mixed are preferably made of a material considering corrosion resistance.

또한, 본 발명에 있어서, 촉매 담지체를 설치하고, 기체를 통과시키는 처리에 관해서는 예를 들면, 반응 능력(m3/hour)을 여과 재료량(예를 들면, 1리터 등)으로 제산한 SV값(l/h)을 1000?100000l/h로 행하는 것이 바람직하다. 이 이유는 1000l/h보다 작으면 촉매가 과잉이 되고, 그 능력을 충분하게 사용할 수 없고, 100000l/h보다 크면 촉매 능력을 넘어버려, 환원이 충분하게 행해지지 않을 가능성이 높기 때문이다.In addition, SV form according to the present invention, to install the catalyst carrier, and, for the example with respect to the process of passing the gas, divided by the response ability (m 3 / hour), the filtration amount of material (for example, 1 liter, etc.) It is preferable to carry out the value (l / h) at 1000-100000 l / h. This is because if it is less than 1000 l / h, the catalyst is excessive, the capacity cannot be used sufficiently, and if it is more than 100000 l / h, the catalyst capacity is exceeded and reduction is not likely to be performed sufficiently.

또한, 촉매 담지체를 설치하고, 기체를 통과시키는 처리에 관해서는 예를 들면, 반응 능력(m3/hour)을 면적(m2)으로 제산한 LV값(cm/sec)을 1O?2OOcm/sec로 행하는 것이 바람직하다. 이 이유는 1Ocm/sec보다 작으면 촉매를 충분하게 기능시키지 않아 촉매 능력에 대한 효율이 낮아지고, 200cm/sec보다 크면 촉매 능력을 초과해버려 전량 처리가 곤란해지기 때문이다.In addition, regarding the treatment in which the catalyst carrier is installed and the gas is passed, for example, the LV value (cm / sec) obtained by dividing the reaction capacity (m 3 / hour) by the area (m 2 ) is 10? 20 cm /. It is preferable to carry out in sec. This is because if it is less than 10 cm / sec, the catalyst does not function sufficiently to lower the efficiency of the catalyst capacity, and if it is more than 200 cm / sec, the catalyst capacity is exceeded, making it difficult to process the whole amount.

이하에, 본 발명의 오존 가스의 환원 처리 방법에 의한 효과를 확인하기 위해서 행한 실험을 설명한다.Below, the experiment which was performed in order to confirm the effect by the reduction process method of the ozone gas of this invention is demonstrated.

(실시예 1)(Example 1)

(제조)(Produce)

기재는 다음과 같이 했다. SUS316제의 16, 20, 60 및 30메쉬의 각 1장, 합계4장의 금망을 적층했다. 이 적층한 금망을 진공 열처리 로에서 진공 및 가압 하에 약 1200?1300℃에서 금망끼리를 소결했다. 소결 후의 금망 전체는 두께 1.8mm, 최소 개구경 0.25mm(250㎛), 공극률 약 60%의 다공체가 되었다. 이것을 직경 50mm의 원판상으로 성형해서 촉매 담지체의 기재로 했다.The description was as follows. Each of 1 sheet of 16, 20, 60, and 30 mesh made of SUS316 and 4 sheets of gold in total were laminated. The laminated gold meshes were vacuum sintered at about 1200 to 1300 ° C. under vacuum and pressure in a vacuum heat treatment furnace. The whole gold mesh after sintering became a porous body with a thickness of 1.8 mm, a minimum opening diameter of 0.25 mm (250 µm), and a porosity of about 60%. This was shape | molded into the disk shape of diameter 50mm, and used as the base material of a catalyst support body.

이어서, 질산 팔라듐을 알루미나 졸 용액 중에 가하고 이 용액 중에 상기의 촉매 담지용의 기재를 침지했다. 그 후, 이것을 건조하고, 대기분위기 하, 약 650℃의 온도에서 소성했다. 이 결과, 상기 기재의 표면에 알루미나 박층을 얻음과 동시에 이 알루미나 박층 중에 촉매 물질인 팔라듐, 팔라듐 산화물, 또는 그들의 혼합물이 분산 담지된 촉매 담지체가 제조되었다. 촉매 담지체는 상기 알루미나 박층의 추정 두께가 0.005mm, 팔라듐 촉매 물질 입자 직경이 약 10?20nm, 촉매 담지량이 약 1.7g/촉매리터가 되었다.Subsequently, palladium nitrate was added to the alumina sol solution and the substrate for catalyst support was immersed in this solution. Then, it dried and baked at the temperature of about 650 degreeC in air | atmosphere atmosphere. As a result, a thin alumina layer was obtained on the surface of the substrate, and a catalyst carrier was prepared in which a palladium, a palladium oxide, or a mixture thereof as a catalyst material was dispersed and supported in the alumina thin layer. The catalyst carrier had an estimated thickness of the thin alumina layer of 0.005 mm, a palladium catalyst material particle diameter of about 10-20 nm, and a catalyst loading of about 1.7 g / liter of catalyst.

(실시)(practice)

상기한 바와 같이해서 제조된 본 발명의 촉매 담지체에 대해서, 오존 발생기(ozonizer)로 발생시킨 오존 가스를 그대로의 상태로 상기의 촉매 담지체 중을 통과시켰다. 이 때, 오존 가스 농도가 5?60000ppm(w)의 범위에 있어서 환원율을 측정했다. 그 측정 결과를, 도 1(a), (b)에 나타낸다.For the catalyst carrier of the present invention prepared as described above, the ozone gas generated by the ozonizer was passed through the catalyst carrier as it is. At this time, the reduction rate was measured in the range of 5-60000 ppm (w) of ozone gas concentration. The measurement result is shown to FIG. 1 (a), (b).

또한, 환원율의 측정은 도 1(a)에서는 SV값(l/h)을 변화시키고, 도 1(b)에서는 LV값(cm/sec)을 변화시켜서 각각 행했다.In addition, the reduction rate was measured by changing SV value (l / h) in FIG. 1 (a), and changing LV value (cm / sec) in FIG. 1 (b).

도 1(a)의 결과로부터는 촉매와의 접촉 시간의 역수인 SV값을 1OOOOOl/h이하로 함으로써, 오존 가스의 90%이상을 환원 분해 가능한 것이 판명됐다. 또한, 도1(b)의 결과로부터는 LV값이 10?20Ocm/sec가 됨으로써 오존 가스의 90%이상의 환원 분해가 가능한 것이 판명됐다.From the results in FIG. 1 (a), it was found that 90% or more of the ozone gas can be reduced and decomposed by setting SV value, which is the inverse of the contact time with the catalyst, to 100Ol / h or less. Also, from the results in Fig. 1 (b), it was found that the LV value is 10-20 cm / sec, which enables reduction reduction of 90% or more of ozone gas.

Claims (3)

1장의 금망으로 이루어지는 소재, 또는 복수장의 금망을 적층한 소재를 소결한 다공체를 촉매 담지체의 기재로 하고, 이 기재의 표면에 백금족 금속 또는 그 산화물, 또는 그들의 혼합물을 분산 담지시킨 알루미나 박층을 형성하는 것을 특징으로 하는 오존 가스 환원 촉매 담지체의 제조 방법.A porous alumina made of a material composed of one gold mesh or a material laminated with a plurality of gold meshes is used as a substrate for the catalyst carrier, and a thin alumina layer is formed on the surface of the substrate by dispersing and carrying a platinum group metal or an oxide thereof or a mixture thereof. Method for producing an ozone gas reduction catalyst carrier, characterized in that. 제 1 항에 있어서,
촉매 물질은 팔라듐 금속 또는 그 산화물의 단체, 또는 그들의 혼합물인 것을 특징으로 하는 오존 가스 환원 촉매 담지체의 제조 방법.
The method of claim 1,
The method for producing an ozone gas reduction catalyst carrier, characterized in that the catalytic material is a palladium metal or an oxide thereof, or a mixture thereof.
제 1 항 또는 제 2 항에 기재된 오존 가스 환원 촉매 담지체의 제조 방법에 의해 제조되는 것을 특징으로 하는 촉매 담지체.
The catalyst support body manufactured by the manufacturing method of the ozone gas reduction catalyst support body of Claim 1 or 2.
KR1020117024718A 2010-04-23 2011-04-21 Sintered mesh catalyst support and manufacturing method of reduction catalyst for ozone gas KR20120022794A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010100190A JP2011230017A (en) 2010-04-23 2010-04-23 Production method for ozone gas reduction catalyst support and catalyst support
JPJP-P-2010-100190 2010-04-23

Publications (1)

Publication Number Publication Date
KR20120022794A true KR20120022794A (en) 2012-03-12

Family

ID=44834257

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020117024718A KR20120022794A (en) 2010-04-23 2011-04-21 Sintered mesh catalyst support and manufacturing method of reduction catalyst for ozone gas

Country Status (4)

Country Link
JP (1) JP2011230017A (en)
KR (1) KR20120022794A (en)
CN (1) CN102481567A (en)
WO (1) WO2011132741A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105312061B (en) * 2014-06-24 2017-12-29 江苏瑞丰科技实业有限公司 Normal temperature removes ozone catalysing material
CN109351182A (en) * 2018-11-27 2019-02-19 蓝天环保设备工程股份有限公司 A kind of Sinter-plate Filter with VOCs remove

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02307509A (en) * 1989-05-19 1990-12-20 Sakai Chem Ind Co Ltd Ozone decomposer
JPH03157143A (en) * 1989-11-16 1991-07-05 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purification of exhaust gas from motorcycle
CN1025532C (en) * 1990-08-22 1994-07-27 黄振钧 Catalyst for removing and separating azone, and their preparing method and use
JP3604740B2 (en) * 1994-06-29 2004-12-22 エヌ・イーケムキャット株式会社 Ozone decomposition catalyst and ozone decomposition method
JP3480867B2 (en) * 1995-05-22 2003-12-22 松下電器産業株式会社 Catalyst body and method for producing the same
JPH09117671A (en) * 1995-10-25 1997-05-06 Matsushita Electric Ind Co Ltd Catalytic member and its preparation
CN1316300A (en) * 2001-01-15 2001-10-10 上海欧臣环境高科技有限责任公司 Catalyst for reducing ozone (O3) and its preparing process
JP2006015184A (en) * 2004-06-30 2006-01-19 Micro Reactor System:Kk Environment-cleaning micro-reactor system
JP2006218351A (en) * 2005-02-08 2006-08-24 Seiko Epson Corp Ozonolysis method, ozonolysis apparatus and treatment apparatus
JP2007252640A (en) * 2006-03-23 2007-10-04 Orion Mach Co Ltd Adsorbing purifying apparatus

Also Published As

Publication number Publication date
JP2011230017A (en) 2011-11-17
WO2011132741A1 (en) 2011-10-27
CN102481567A (en) 2012-05-30

Similar Documents

Publication Publication Date Title
JP4814887B2 (en) Honeycomb catalyst body and manufacturing method thereof
EP1793914B1 (en) Catalyst for purifying exhaust gases
EP1885492B1 (en) Selective oxidation catalyst containing platinum, copper and iron to remove carbon monoxide from a hydrogen-rich gas
JP5419772B2 (en) Zeolite honeycomb structure
KR20020047154A (en) Catalyst for the selective oxidation of carbon monoxide and its preparation
JP5864444B2 (en) Exhaust gas purification catalyst and exhaust gas purification catalyst structure
US11020732B2 (en) Catalyst bed and method for reducing nitrogen oxides
JP5491745B2 (en) Exhaust gas purification catalyst and method for producing the same
JP6276990B2 (en) Structural catalyst body, catalyst module and catalyst layer
JP2009285605A (en) Catalyst for cleaning exhaust gas
JP5227363B2 (en) Exhaust gas purification catalyst
US5391533A (en) Catalyst system for producing chlorine dioxide
US20190001266A1 (en) A catalyst bed and method for reducing nitrogen oxides
CN101716535B (en) Method for preparing waste gas purifying catalyst
KR20120022794A (en) Sintered mesh catalyst support and manufacturing method of reduction catalyst for ozone gas
KR102580976B1 (en) Catalyst for purification through polymer film production and method for purification through polymer film production
WO2010110298A1 (en) Exhaust gas purifying catalyst
JP4626804B2 (en) Exhaust gas purification catalyst
WO2013108756A1 (en) Production method for base metal catalyst for exhaust gas purification
JP4626803B2 (en) Exhaust gas purification catalyst
JP2007144413A (en) Catalyst for cleaning exhaust gas
JP5512374B2 (en) Method for producing catalyst carrier by plasma spraying and catalyst carrier
JP5942894B2 (en) Method for producing exhaust gas purifying catalyst
JP2002233718A (en) Filtering material for air filter
JP5942893B2 (en) Method for producing exhaust gas purifying catalyst

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application