KR20100043464A - Cr free cu alloys and its manufacturing method with high electrical conductivity and high tensile strength - Google Patents

Cr free cu alloys and its manufacturing method with high electrical conductivity and high tensile strength Download PDF

Info

Publication number
KR20100043464A
KR20100043464A KR1020080102511A KR20080102511A KR20100043464A KR 20100043464 A KR20100043464 A KR 20100043464A KR 1020080102511 A KR1020080102511 A KR 1020080102511A KR 20080102511 A KR20080102511 A KR 20080102511A KR 20100043464 A KR20100043464 A KR 20100043464A
Authority
KR
South Korea
Prior art keywords
weight
electrical conductivity
tensile strength
copper alloy
copper
Prior art date
Application number
KR1020080102511A
Other languages
Korean (ko)
Other versions
KR101125525B1 (en
Inventor
김기태
김명섭
Original Assignee
제아실업주식회사
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제아실업주식회사, 한국생산기술연구원 filed Critical 제아실업주식회사
Priority to KR1020080102511A priority Critical patent/KR101125525B1/en
Publication of KR20100043464A publication Critical patent/KR20100043464A/en
Application granted granted Critical
Publication of KR101125525B1 publication Critical patent/KR101125525B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties

Abstract

PURPOSE: A copper alloy without chrome including high electrical conductivity and high tensile strength and a manufacturing method thereof are provided to obtain an environment-friendly metal. CONSTITUTION: A copper alloy without chrome including high electrical conductivity and high tensile strength contains 0.3~0.9 weight% of iron, 0.1~0.6 weight% of cobalt, 0.01~0.10 weight% of magnesium, 0.1~0.5 weight% of phosphorus, and copper. The conductivity of the copper alloy without chrome including high electrical conductivity and high tensile strength is over 75% IACS. The room temperature tensile strength of the copper alloy is over 530 mega pascals.

Description

크롬을 함유하지 않는 고전기전도도 및 고강도 동합금 및 그 제조방법 {Cr free Cu alloys and its manufacturing method with high electrical conductivity and high tensile strength}Cr free Cu alloys and its manufacturing method with high electrical conductivity and high tensile strength

본 발명은 고전기전도도 및 고강도 동합금에 관한 것으로서, 특히 환경오염물질인 크롬(Cr)을 배제하고 환경친화적인 금속만으로 합금함으로써, 합금된 동합금이 75%IACS 이상의 우수한 전기전도도와 530MPa 이상의 우수한 인장강도를 유지할 수 있는 고전기전도도 및 고강도 동합금 및 그 제조방법에 관한 것이다.The present invention relates to a high-k conductivity and high-strength copper alloy, in particular, by excluding the environmental pollutant chromium (Cr) and alloying only with environmentally friendly metals, the alloyed copper alloy has excellent electrical conductivity of 75% IACS or more and excellent tensile strength of 530MPa or more The present invention relates to a sustainable high conductivity and high strength copper alloy and a method of manufacturing the same.

일반적으로, 주조용 몰드, 용접용 전극 및 방전가공용 전극 부품 등에 사용되는 소재는 75%IACS(International Annealed Copper Standard) 이상의 우수한 전기전도와, 530MPa 이상의 우수한 인장강도를 필요로 한다.In general, materials used in casting molds, welding electrodes, and electrode parts for electric discharge machining require excellent electric conductivity of 75% IAC (International Annealed Copper Standard) and excellent tensile strength of 530 MPa or more.

상기와 같은 특성을 만족하는 소재로는 크롬(Cr)이 0.4~1.2중량% 함유된 동합금이 알려져 있다.As a material satisfying the above characteristics, a copper alloy containing 0.4 to 1.2% by weight of chromium (Cr) is known.

그런데, 상기 크롬(Cr)은 국내에서는 노동부 산업안전보건법과 환경부 대기 환경보전법에서 작업환경과 대기배출 허용농도가 규제되고 있는 물질이다.By the way, the chromium (Cr) is a substance in which the working environment and the air emission allowable concentration are regulated in the Ministry of Labor's Industrial Safety and Health Act and the Ministry of Environment's atmospheric environment conservation law.

따라서, 이러한 유해물질과 관련된 환경규제에 대처하기 위해서, 지금까지 사용되고 있는 크롬(Cr)을 함유한 동합금 소재를 대체할 수 있는 친환경 소재 개발이 절실히 요구되고 있는 실정이다.Therefore, in order to cope with environmental regulations related to such harmful substances, development of environment-friendly materials that can replace copper alloy materials containing chromium (Cr), which is used until now, is urgently required.

한편, 금속의 전기 전도도를 높이기 위해서는 금속의 강화에 기여하는 인자에 의한 영향, 즉 합금원소 첨가량, 소성가공 및 석출물, 금속간 화합물 등 제 2상의 분율을 최소화시켜야 한다. 그런데, 이 경우에는 금속의 인장강도가 낮아지는 문제점이 있다.On the other hand, in order to increase the electrical conductivity of the metal, it is necessary to minimize the influence of the factors that contribute to the strengthening of the metal, that is, the fraction of the second phase, such as the amount of alloying elements added, plastic processing and precipitates, intermetallic compounds. However, in this case, there is a problem that the tensile strength of the metal is lowered.

이와는 반대로, 금속의 인장강도를 높이기 위하여 고용 강화, 석출 강화, 가공 강화 및 분산 강화 등의 여러 강화 기구에 의하여 금속을 강화시키면, 합금원소의 고용, 공공(Vacancy), 전위(Dislocation) 등의 격자 결함(Lattice defect)이 도입되거나 석출물, 금속간 화합물 등 제 2상이 도입되어 금속의 전기 전도도가 저하되는 문제점이 있다.On the contrary, when the metal is reinforced by various reinforcing mechanisms such as solid solution strengthening, precipitation strengthening, processing strengthening and dispersion strengthening in order to increase the tensile strength of the metal, lattice of solid solution, vacancy, dislocation, etc. A defect (Lattice defect) is introduced or a second phase such as a precipitate, an intermetallic compound is introduced, there is a problem that the electrical conductivity of the metal is lowered.

먼저, 석출 강화형 합금은 기지 조직에 미세한 석출물을 분산 석출시킴으로써 높은 인장강도 뿐만 아니라 우수한 내열성을 가질 수 있으나, 고용되어 있는 합금원소에 의해 전기 전도도가 저하되어 높은 전기 전도도를 얻기 어렵다.First, the precipitation-reinforced alloy may not only have high tensile strength but also excellent heat resistance by dispersing and depositing fine precipitates in a matrix, but the electrical conductivity is lowered by the alloying element that is dissolved, and thus it is difficult to obtain high electrical conductivity.

그리고, 가공 강화형 합금은 다른 강화 기구에 비하여 높은 전기 전도도를 유지할 수 있고, 소성 가공시에 합금의 기지조직에 도입된 전위에 의해 높은 강도를 얻을 수 있으나, 재결정에 의해 쉽게 연화되어 내열성을 확보할 수 없다는 단점이 있다.In addition, the process-reinforced alloy can maintain a higher electrical conductivity than other reinforcement mechanisms, and high strength can be obtained by dislocations introduced into the matrix structure of the alloy during plastic working, but it is easily softened by recrystallization to secure heat resistance. The disadvantage is that you can't.

또한, 고용 강화형 합금(Cu-P, Cu-Ni, Cu-Ag, Cu-Cd)은 합금원소의 종류 및 첨가량에 따라서 전기전도도가 급격히 저하되고 높은 강도를 얻기가 어렵다.In addition, the solid-solution-reinforced alloys (Cu-P, Cu-Ni, Cu-Ag, Cu-Cd) have an extremely low electrical conductivity and hardly obtain high strength depending on the type and amount of alloying elements.

상기 고용 강화형 합금중에서 상기 Cu-Ag 합금은 90%IACS 이상의 높은 전기전도도와 우수한 내열성을 갖고 있기 때문에 고전도, 내열부품에 사용되고 있는 소재지만, 첨가 원소인 은(Ag)이 고가인 단점이 있다.Among the solid-solution-reinforced alloys, the Cu-Ag alloy has high electrical conductivity of 90% IACS or more and has excellent heat resistance, but is a material used for high conductivity and heat-resistant parts, but there is a disadvantage that silver (Ag), which is an additional element, is expensive. .

그리고, 상기 Cu-Cd 합금은 높은 전기 전도도 및 인장강도, 우수한 내열성 등을 갖고는 있으나, 상기 카드뮴(Cd)는 발암 물질 및 환경유해 물질로 규정되어 있다.The Cu-Cd alloy has high electrical conductivity, tensile strength, excellent heat resistance, and the like, but the cadmium (Cd) is defined as a carcinogen and an environmentally harmful substance.

따라서, 금속의 전기전도도의 저하를 최소화하면서도 인장강도를 높일 수 있는 환경 친화적인 금속에 대한 필요성이 제기되어 왔고, 지금까지 많은 연구가 이루어져 왔으나, 현재까지 크롬(Cr)을 함유한 동합금 소재를 대체할 수 있는 우수한 전기전도도와 인장강도를 만족시키는 동합금은 개발되지 못한 실정이다.Therefore, there has been a need for an environmentally friendly metal that can increase the tensile strength while minimizing the decrease in the electrical conductivity of the metal. Although many studies have been made until now, it has replaced the copper alloy material containing chromium (Cr). Copper alloys satisfying excellent electrical conductivity and tensile strength have not been developed.

본 발명은 상기와 같은 문제점을 해결하기 위하여 안출한 것으로서, 유해 물질인 크롬(Cr)을 함유하지 않으면서도 75%IACS 이상의 전기전도도를 가지고, 530MPa 이상의 인장강도를 지니는 요구조건을 만족시키는 고전기전도도 및 고강도 동합금 및 그 제조방법을 제공하는 것이 본 발명의 목적이다.The present invention has been made to solve the above problems, and does not contain chromium (Cr) as a hazardous substance, has a high electrical conductivity of 75% IACS or more, and has a high electrical conductivity to satisfy the requirements of having a tensile strength of 530MPa or more and It is an object of the present invention to provide a high strength copper alloy and its manufacturing method.

상기의 목적을 달성하기 위한 본 발명에 의한 고전기전도도 및 고강도 동합금은, 철(Fe) 0.3~0.9중량%, 코발트(Co) 0.1~0.6중량%, 마그네슘(Mg) 0.01~0.10중량%, 인(P) 0.1~0.5중량% 및 잔부는 구리(Cu)로 구성됨으로써, 전기전도도가 75%IACS 이상이고, 상온 인장강도가 530MPa 이상인 크롬을 함유하지 않는 고전기 전도도 및 고강도 동합금이다.High conductivity and high strength copper alloy according to the present invention for achieving the above object is 0.3 to 0.9% by weight of iron (Fe), 0.1 to 0.6% by weight of cobalt (Co), 0.01 to 0.10% by weight of magnesium (Mg), phosphorus ( P) 0.1-0.5 weight% and remainder are copper (Cu), and are high electric conductivity and high strength copper alloy which does not contain chromium whose electrical conductivity is 75% IACS or more and normal temperature tensile strength is 530 Mpa or more.

또한, 본 발명에 의한 고전기전도도 및 고강도 동합금의 제조방법은 철(Fe) 0.3~0.9중량%, 코발트(Co) 0.1~0.6중량%, 마그네슘(Mg) 0.01~0.10중량%, 인(P) 0.1~0.5중량% 및 잔부는 구리(Cu)로 조성된 조성물을 920℃의 온도에서 1시간 동안 용체화 처리하고, 이를 480℃의 온도에서 3시간 동안 시효 처리 한 후 압연율 20%로 냉간 압연함으로써, 전기전도도가 75%IACS 이상이고, 상온 인장강도가 530MPa 이상인 동합금을 제조할 수 있다.In addition, the method of manufacturing a high-k conductivity and high-strength copper alloy according to the present invention is 0.3 to 0.9% by weight of iron (Fe), 0.1 to 0.6% by weight of cobalt (Co), 0.01 to 0.10% by weight of magnesium (Mg), phosphorus (P) 0.1 ~ 0.5% by weight and the remainder by the solution composition of the copper (Cu) solution solution for 1 hour at a temperature of 920 ℃, aged for 3 hours at a temperature of 480 ℃ after cold rolling at a rolling rate of 20% It is possible to produce a copper alloy having an electrical conductivity of 75% IACS or more and a room temperature tensile strength of 530MPa or more.

상기와 같이 구성된 본 발명에 의한 동합금은 Cu-Fe-Co-Mg-P로 이루어진 동합금으로서, 환경 유해 물질인 크롬(Cr)을 함유하지 않으면서도 75%IACS 이상의 이상의 전기전도도를 가지고, 530MPa 이상의 우수한 인장강도를 요구하는 주조용 몰드, 용접용 전극 및 방전가공용 전극 부품 등의 소재로 다양하게 사용할 수 있는 효과가 있다.The copper alloy according to the present invention configured as described above is a copper alloy composed of Cu-Fe-Co-Mg-P, and does not contain chromium (Cr), which is an environmentally harmful substance, and has an electrical conductivity of 75% IACS or more and excellent of 530 MPa or more. There is an effect that can be used in a variety of materials, such as casting molds, welding electrodes and electrical discharge machining electrode components that require tensile strength.

그리고, 본 발명에 의한 동합금은 기존의 크롬계 동합금과 비교하여 동등한 수준의 전기전도도와 인장강도를 얻을 수 있다.In addition, the copper alloy according to the present invention can obtain the same level of electrical conductivity and tensile strength as compared to the existing chromium-based copper alloy.

본 발명에 의한 고전기전도도 및 고강도 동합금은 철(Fe), 코발트(Co), 마그네슘(Mg), 인(P) 및 구리(Cu)로 조성된 고전기전도도 및 고강도 동합금이다.The high electroconductivity and high strength copper alloy according to the present invention are high electroconductivity and high strength copper alloy composed of iron (Fe), cobalt (Co), magnesium (Mg), phosphorus (P) and copper (Cu).

상기 철(Fe)은 0.3~0.9중량%, 상기 코발트(Co)는 0.1~0.6중량%, 상기 마그네슘(Mg)은 0.01~0.10중량%, 상기 인(P)은 0.1~0.5중량% 및 상기 구리(Cu)는 잔부로 조성된 것이다.The iron (Fe) is 0.3 to 0.9% by weight, the cobalt (Co) is 0.1 to 0.6% by weight, the magnesium (Mg) is 0.01 to 0.10% by weight, the phosphorus (P) is 0.1 to 0.5% by weight and the copper (Cu) is composed of remainder.

또한, 본 발명의 동합금 제조방법은 철(Fe), 코발트(Co), 마그네슘(Mg), 인(P) 및 구리(Cu)로 합금의 조성물을 조성하는 단계와, 상기 조성물로 동합금을 제조하는 단계로 구성된다.In addition, the method of manufacturing a copper alloy of the present invention comprises the steps of forming a composition of the alloy with iron (Fe), cobalt (Co), magnesium (Mg), phosphorus (P) and copper (Cu), and to prepare a copper alloy with the composition It consists of steps.

즉, 본 발명은 상기 각각의 조성량에 따라서 합금원소 사이에 금속간 화합물의 형성이 가능한 합금원소를 첨가하여 기지 금속에 미세한 금속간 화합물을 균일 하게 분산시킴으로써 우수한 전기전도성을 유지하면서 인장강도를 향상시킨 동합금을 제공한다.That is, the present invention improves tensile strength while maintaining excellent electrical conductivity by adding an alloying element capable of forming an intermetallic compound between alloying elements according to the respective composition amounts, thereby uniformly dispersing fine intermetallic compounds in a known metal. Provide copper alloys.

본 발명에 의한 고전기전도도 및 고강도 동합금은 철(Fe) 0.3~0.9중량%, 코발트(Co) 0.1~0.6중량%, 마그네슘(Mg) 0.01~0.10중량%, 인(P) 0.1~0.5중량% 및 잔부는 구리(Cu)로 구성되는데, 상기 각 합금원소의 첨가 및 함량 한정 이유는 다음과 같다.High conductivity and high strength copper alloy according to the present invention is 0.3 to 0.9% by weight of iron (Fe), 0.1 to 0.6% by weight of cobalt (Co), 0.01 to 0.10% by weight of magnesium (Mg), 0.1 to 0.5% by weight of phosphorus (P) and The balance is composed of copper (Cu), the reason for the addition and content of each alloying element is as follows.

철(Fe)은 구리(Cu)에의 고용상태에서는 전기전도도의 저하가 크지만, 석출 강화 열처리에 의하여 인(P)과 반응하여 금속간 화합물을 형성함으로써 구리(Cu)의 전기 전도도를 향상시킬 수 있을 뿐만 아니라 인장강도를 함께 향상시킬 수 있는 합금원소이다.Although iron (Fe) has a large drop in electrical conductivity in the solid solution to copper (Cu), the electrical conductivity of copper (Cu) can be improved by forming an intermetallic compound by reacting with phosphorus (P) by precipitation strengthening heat treatment. In addition, it is an alloy element that can improve tensile strength together.

상기 철(Fe)은 0.3~0.9중량%가 함유되는데, 철의 함량이 0.3중량% 미만이면 강도증가 효과를 얻을 수 없으며, 철의 함량이 0.9중량% 이상이면 강도증가 효과를 충분히 얻을 수 있지만 전기전도도가 75%IACS 이하로 저하되기 때문이다.The iron (Fe) is contained in the 0.3 ~ 0.9% by weight, if the iron content is less than 0.3% by weight can not obtain the strength increase effect, if the iron content is more than 0.9% by weight can sufficiently obtain the strength increase effect, but This is because the conductivity drops below 75% IACS.

코발트(Co)는 구리(Cu)에의 고용 상태에서는 전기전도도의 저하가 크지만, 석출 강화 열처리에 의하여 인(P)과 반응하여 금속간 화합물을 형성함으로써 구리(Cu)의 전기 전도도를 향상시킬 수 있을 뿐만 아니라 인장강도를 함께 향상시킬 수 있는 합금원소이다.Cobalt (Co) has a large drop in electrical conductivity in the solid solution to copper (Cu), but the electrical conductivity of copper (Cu) can be improved by forming an intermetallic compound by reacting with phosphorus (P) by precipitation strengthening heat treatment. In addition, it is an alloy element that can improve tensile strength together.

상기 코발트(Co)는 0.1~0.6중량%가 함유되는데, 코발트(Co)의 함량이 0.1중량% 미만이면 인장강도의 증가효과를 얻을 수 없으며, 코발트(Co)의 함량이 0.6중량% 이상이면 인장강도의 증가효과를 충분히 얻을 수 있지만 전기전도도가 75%IACS 이하로 저하되기 때문이다.The cobalt (Co) is contained 0.1 ~ 0.6% by weight, the cobalt (Co) content is less than 0.1% by weight can not obtain the effect of increasing the tensile strength, if the content of cobalt (Co) is more than 0.6% by weight tensile This is because the effect of increasing the strength can be sufficiently obtained, but the electrical conductivity drops below 75% IACS.

마그네슘(Mg)은 융동 중에서 탈산작용을 하고, 석출 강화 열처리에 의하여 인(P)과 반응하여 금속간 화합물을 형성함으로써 구리(Cu)의 전기전도도를 향상시킬 수 있을 뿐만 아니라 인장강도를 함께 향상시킬 수 있는 합금원소이다.Magnesium (Mg) deoxidizes in the molten copper and reacts with phosphorus (P) by precipitation strengthening heat treatment to form an intermetallic compound, which not only improves the electrical conductivity of copper (Cu) but also improves tensile strength together. Alloy element.

상기 마그네슘(Mg)은 0.01~0.10중량%가 함유되는데, 마그네슘(Mg)의 함량이 0.01중량%미만이면 인장강도의 증가효과를 얻을 수 없고, 마그네슘(Mg)의 함량이 0.1중량% 이상이면 전기 전도도가 75%IACS 이하로 저하된다.The magnesium (Mg) is contained 0.01 ~ 0.10% by weight, if the content of magnesium (Mg) is less than 0.01% by weight can not obtain the effect of increasing the tensile strength, if the content of magnesium (Mg) is 0.1% by weight or more Conductivity drops below 75% IACS.

인(P)은 용동 중에서 탈산 작용을 하고, 구리(Cu)에의 고용 상태에서 전기전도도의 저하가 크지만, 석출 강화 열처리에 의하여 철(Fe), 코발트(Co), 및 마그네슘(Mg)와 반응하여 금속간 화합물을 형성함으로써 구리(Cu)의 전기 전도도를 향상시킬 수 있을 뿐만 아니라 인장강도를 함께 향상시킬 수 있는 합금원소이다.Phosphorus (P) deoxidizes in molten copper and decreases the electrical conductivity in solid solution to copper (Cu), but reacts with iron (Fe), cobalt (Co), and magnesium (Mg) by precipitation strengthening heat treatment. By forming an intermetallic compound, not only can the electrical conductivity of copper (Cu) be improved, but also an alloy element that can improve tensile strength together.

상기 인(P)은 0.1~0.5중량%가 함유되는데, 인(P)의 함량이 0.1중량% 미만이면 인장강도의 증가효과를 얻을 수 없으며, 인(P)의 함량이 0.5중량% 이상이면 전기전도도가 75%IACS 이하로 저하된다.The phosphorus (P) is contained in 0.1 to 0.5% by weight, if the content of phosphorus (P) is less than 0.1% by weight can not obtain the effect of increasing the tensile strength, if the content of phosphorus (P) is 0.5% by weight or more Conductivity drops below 75% IACS.

이하 본 발명에 의한 크롬(Cr)을 함유하지 않는 고전기전도도 및 고강도 동합금에 대하여 본 발명의 바람직한 실시예를 상세하게 설명한다.Hereinafter, a preferred embodiment of the present invention will be described in detail with respect to the high conductivity and high strength copper alloy containing no chromium (Cr) according to the present invention.

본 발명에 의한 동합금을 제조하기 위하여 표 1에 나타낸 조성을 갖는 합금을 통상적인 용융교반식 동합금 제조방법으로 빌렛을 제조하였다.In order to manufacture the copper alloy according to the present invention, the alloy having the composition shown in Table 1 was prepared by a conventional melt stirring copper alloy manufacturing method.

즉, 표 1과 같은 조성의 합금을 고주파 용해로를 이용하여 대기중에서 용해한 후, 1,200℃의 온도로 금형에 주조하여 직경 160㎜, 길이 500㎜ 크기의 빌렛을 제조하였다.That is, an alloy having the composition shown in Table 1 was dissolved in the air using a high frequency melting furnace, and then cast into a mold at a temperature of 1,200 ° C. to prepare a billet having a diameter of 160 mm and a length of 500 mm.

그리고, 상기 빌렛을 850℃의 온도에서 열간 압출하여 폭55㎜, 두께 14㎜의 판재로 가공하였고, 이것을 920℃의 온도에서 1시간 용체화 처리하고, 이를 다시 480℃의 온도에서 3시간 시효처리 한 후, 압연율 20%로 냉간압연하여 시험편을 얻었다.The billet was hot-extruded at a temperature of 850 ° C. and processed into a sheet having a width of 55 mm and a thickness of 14 mm. The billet was melted for 1 hour at a temperature of 920 ° C., and then aged for 3 hours at a temperature of 480 ° C. After that, cold rolling was performed at a rolling rate of 20% to obtain a test piece.

상기 시험편에 대한 시험 및 그 방법은 다음과 같다.The test on the test piece and its method are as follows.

먼저 인장강도는 인장시험기로 측정하였고, 전기전도도는 도전율 측정기를 사용하였으며, 경도는 록크웰 경도기로 측정하였다.First, tensile strength was measured with a tensile tester, electrical conductivity was measured with a conductivity meter, and hardness was measured with a Rockwell hardness tester.

[표 1]TABLE 1

합금(중량%)Alloy (% by weight) FeFe CoCo MgMg PP CrCr CuCu 실시예Example 1One 0.540.54 0.140.14 0.0360.036 0.210.21 99.0899.08 22 0.720.72 0.120.12 0.0580.058 0.300.30 98.8298.82 33 0.600.60 0.250.25 0.0250.025 0.260.26 98.8598.85 44 0.880.88 0.240.24 0.0280.028 0.330.33 98.5498.54 비교예Comparative example 55 0.280.28 0.130.13 0.0120.012 0.140.14 99.4199.41 66 0.280.28 0.240.24 0.0390.039 0.180.18 99.2599.25 77 0.210.21 0.370.37 0.0290.029 0.230.23 99.1099.10 88 0.220.22 0.700.70 0.0340.034 0.320.32 98.6798.67 99 0.900.90 99.1099.10

[표 2]TABLE 2

합금alloy 인장강도 (N/mm2)Tensile Strength (N / mm 2 ) 전기전도도 (%IACS)Electrical Conductivity (% IACS) 경도 (HRB)Hardness (HRB) 실시예Example 1One 536536 8383 8383 22 539539 7676 8484 33 536536 8080 8484 44 540540 7878 8383 비교예Comparative example 55 482482 8484 8383 66 502502 8484 8282 77 502502 7575 8484 88 553553 7272 8383 99 530530 7575 8383

상기 표 2에 나타낸 바와 같이, 본 발명에 따른 철(Fe) 0.3~0.9중량%, 코발트(Co) 0.1~0.6중량%, 마그네슘(Mg) 0.01~0.10중량%, 인(P) 0.1~0.5중량% 및 잔부는 대부분의 구리(Cu)와 미량의 불순물로 구성된 조성비에 의해 합금된 동합금은 전기전도도가 75%IACS 이상이고, 상온 인장강도가 530MPa 이상의 값을 나타낸 반면에, 본 발명의 조성비를 벗어나도록 합금된 비교예(크롬이 함유된 동합금은 제외)는 전기전도도 75%IACS 이상이지만 인장강도가 530MPa 이하이거나, 또는 인장강도는 530MPa 이상이지만 전기전도도는 75%IACS 이하로서 전기전도도 75%IACS 이상, 상온 인장강도 530MPa 이상의 값을 동시에 나타내지 못하였다.As shown in Table 2, 0.3 to 0.9% by weight of iron (Fe) according to the present invention, 0.1 to 0.6% by weight of cobalt (Co), 0.01 to 0.10% by weight of magnesium (Mg), 0.1 to 0.5% by weight of phosphorus (P) % And remainder of the copper alloy alloyed by the composition ratio composed of most of the copper (Cu) and trace impurities, the electrical conductivity is 75% IACS or more, the room temperature tensile strength of 530MPa or more, while the composition ratio of the present invention The comparative examples (except for copper alloys containing chromium) have an electrical conductivity of 75% IACS or more but a tensile strength of 530 MPa or less, or a tensile strength of 530MPa or more but an electrical conductivity of 75% IACS or less and an electrical conductivity of 75% IACS or more. At room temperature, tensile strength of more than 530MPa was not displayed at the same time.

이상, 본 발명에 의한 고전기전도도 및 고강도 동합금에 대하여 설명하였다. 상기 본 발명의 기술적 구성은 본 발명이 속하는 기술분야의 당업자가 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.The high electroconductivity and high strength copper alloy according to the present invention have been described above. The technical configuration of the present invention will be understood by those skilled in the art that the present invention can be implemented in other specific forms without changing the technical spirit or essential features.

그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해되어야 하고, 본 발명의 범위는 전술한 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.Therefore, the above-described embodiments are to be understood in all respects as illustrative and not restrictive, the scope of the present invention being indicated by the following claims rather than the foregoing description, and the meanings of the claims and All changes or modifications derived from the scope and equivalent concepts thereof should be construed as being included in the scope of the present invention.

Claims (2)

용접용 전극 및 방전가공용 전극 등에 사용되는 고전기전도도 및 고강도 동합금에 있어서,In the high electroconductivity and high strength copper alloy used for welding electrodes and electrodes for electric discharge machining, 철(Fe) 0.3~0.9중량%, 코발트(Co) 0.1~0.6중량%, 마그네슘(Mg) 0.01~0.10중량%, 인(P) 0.1~0.5중량% 및 잔부는 구리(Cu)로 구성됨으로써, 전기전도도가 75%IACS 이상이고, 상온 인장강도가 530MPa 이상인 것을 특징으로 하는 크롬을 함유하지 않는 고전기 전도도 및 고강도 동합금.0.3-0.9% by weight of iron (Fe), 0.1-0.6% by weight of cobalt (Co), 0.01-0.10% by weight of magnesium (Mg), 0.1-0.5% by weight of phosphorus (P), and the balance by copper (Cu), High-conductivity and high-strength copper alloys containing no chromium, characterized in that the electrical conductivity is 75% IACS or more, and the tensile strength at room temperature is 530 MPa or more. 용접용 전극 및 방전가공용 전극 등에 사용되는 고전기전도도 및 고강도 동합금의 제조방법에 있어서,In the manufacturing method of high electroconductivity and high strength copper alloy used for welding electrode and electrode for electric discharge machining, 철(Fe) 0.3~0.9중량%, 코발트(Co) 0.1~0.6중량%, 마그네슘(Mg) 0.01~0.10중량%, 인(P) 0.1~0.5중량% 및 잔부는 구리(Cu)로 조성된 조성물을 920℃의 온도에서 1시간 동안 용체화 처리하고, 이를 480℃의 온도에서 3시간 동안 시효 처리 한 후 압연율 20%로 냉간 압연함으로써, 전기전도도가 75%IACS 이상이고, 상온 인장강도가 530MPa 이상인 동합금을 제조하는 것을 특징으로 하는 크롬을 함유하지 않는 고전기 전도도 및 고강도 동합금의 제조방법.0.3-0.9% by weight of iron (Fe), 0.1-0.6% by weight of cobalt (Co), 0.01-0.10% by weight of magnesium (Mg), 0.1-0.5% by weight of phosphorus (P) and the balance of copper (Cu) The solution was melted for 1 hour at a temperature of 920 ° C., and aged for 3 hours at a temperature of 480 ° C., followed by cold rolling at a rolling rate of 20%. The electrical conductivity was 75% IACS or more, and the normal temperature tensile strength was 530 MPa. A method for producing a high-strength conductivity and high-strength copper alloy containing no chromium characterized by producing the above-described copper alloy.
KR1020080102511A 2008-10-20 2008-10-20 Cr free Cu alloys and its manufacturing method with high electrical conductivity and high tensile strength KR101125525B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080102511A KR101125525B1 (en) 2008-10-20 2008-10-20 Cr free Cu alloys and its manufacturing method with high electrical conductivity and high tensile strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080102511A KR101125525B1 (en) 2008-10-20 2008-10-20 Cr free Cu alloys and its manufacturing method with high electrical conductivity and high tensile strength

Publications (2)

Publication Number Publication Date
KR20100043464A true KR20100043464A (en) 2010-04-29
KR101125525B1 KR101125525B1 (en) 2012-03-23

Family

ID=42218436

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080102511A KR101125525B1 (en) 2008-10-20 2008-10-20 Cr free Cu alloys and its manufacturing method with high electrical conductivity and high tensile strength

Country Status (1)

Country Link
KR (1) KR101125525B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200087489A (en) 2019-01-11 2020-07-21 변지상 Copper alloy composition for spot-cap tip electrode without chromium and spot-cap tip electrode made using the same
KR20210067772A (en) * 2019-11-29 2021-06-08 한국생산기술연구원 Method of manufacturing high hardness high thermal conductivity Cu-alloy and high hardness high thermal conductivity Cu-alloy by using the same
KR20210097954A (en) 2020-01-31 2021-08-10 에이원인터내셔널(주) Copper alloy composition for oxygen welding tip and oxygen welding tip using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6241831B1 (en) * 1999-06-07 2001-06-05 Waterbury Rolling Mills, Inc. Copper alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200087489A (en) 2019-01-11 2020-07-21 변지상 Copper alloy composition for spot-cap tip electrode without chromium and spot-cap tip electrode made using the same
KR20210067772A (en) * 2019-11-29 2021-06-08 한국생산기술연구원 Method of manufacturing high hardness high thermal conductivity Cu-alloy and high hardness high thermal conductivity Cu-alloy by using the same
KR20210097954A (en) 2020-01-31 2021-08-10 에이원인터내셔널(주) Copper alloy composition for oxygen welding tip and oxygen welding tip using the same

Also Published As

Publication number Publication date
KR101125525B1 (en) 2012-03-23

Similar Documents

Publication Publication Date Title
JP4950584B2 (en) Copper alloy with high strength and heat resistance
CN105714148B (en) A kind of high-strength adonic of spinodal decomposition type
KR101364542B1 (en) Copper alloy material for continuous casting mold and process of production same
CN110512115B (en) High-strength high-elasticity conductive copper-titanium alloy bar and preparation method thereof
JPH0754079A (en) Copper alloy commonly having conductivity and strength
CN106636734A (en) High-strength, high-electric-conductivity and high-stress relaxation-resistance copper alloy elastic material and preparation method thereof
JP2007126739A (en) Copper alloy for electronic material
KR101125525B1 (en) Cr free Cu alloys and its manufacturing method with high electrical conductivity and high tensile strength
JP4459067B2 (en) High strength and high conductivity copper alloy
KR100779754B1 (en) Copper alloy having excellent heat-resistant property and electric conductivity and manufacturing method thereof
JP5021873B2 (en) Titanium plate excellent in ductility and manufacturing method thereof
CN113943875A (en) Cu-Sn-P copper alloy material with high tin content and preparation method thereof
CN113215439A (en) High-strength copper alloy plate and production process thereof
KR100519556B1 (en) Brass alloys which maintain a golden color and manufacturing method thereof
JP5522692B2 (en) High strength copper alloy forging
CN111139373B (en) High-strength metastable elastic copper alloy and preparation method thereof
KR19990048844A (en) Copper (Cu) -nickel (Ni) -manganese (Mn) -tin (Sn) -silicon (Si) alloys for high-strength wire and plate and its manufacturing method
KR20110104658A (en) Cu-cr-mg-p alloys with high electrical conductivity and high tensile strength and manufacturing methods of them
CN117418153B (en) Nickel-based high-temperature alloy foil with stable long-term structure and preparation method and application thereof
KR20120097748A (en) Cu-cr-mg-p-zr alloys with high electrical conductivity and high tensile strength and manufacturing methods of them
JPH0285330A (en) Copper alloy having good press bendability and its manufacture
KR100758150B1 (en) Cd free cu alloys with high electrical conductivity, high tensile strength and thermal resistance
JPH01165733A (en) High strength and high electric conductive copper alloy
JPH04210438A (en) Continuous casting mold material made of high strength cu alloy
JP2002180158A (en) Chromium-zirconium base copper alloy for continuous casting mold

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150602

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160216

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170304

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180103

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee