KR20090119399A - Optical panel containing refelective minute beads for backlight - Google Patents
Optical panel containing refelective minute beads for backlightInfo
- Publication number
- KR20090119399A KR20090119399A KR1020080045421A KR20080045421A KR20090119399A KR 20090119399 A KR20090119399 A KR 20090119399A KR 1020080045421 A KR1020080045421 A KR 1020080045421A KR 20080045421 A KR20080045421 A KR 20080045421A KR 20090119399 A KR20090119399 A KR 20090119399A
- Authority
- KR
- South Korea
- Prior art keywords
- reflective
- optical panel
- backlight
- beads
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 64
- 239000011324 bead Substances 0.000 title claims abstract description 48
- 239000000463 material Substances 0.000 claims abstract description 15
- 238000009792 diffusion process Methods 0.000 claims abstract description 14
- 239000011347 resin Substances 0.000 claims abstract description 8
- 229920005989 resin Polymers 0.000 claims abstract description 8
- 239000011521 glass Substances 0.000 claims abstract description 4
- 239000004033 plastic Substances 0.000 claims abstract description 4
- 239000000203 mixture Substances 0.000 claims abstract description 3
- 238000002310 reflectometry Methods 0.000 claims abstract 2
- 238000000034 method Methods 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 230000008569 process Effects 0.000 description 7
- 239000004973 liquid crystal related substance Substances 0.000 description 6
- 230000000903 blocking effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0205—Diffusing elements; Afocal elements characterised by the diffusing properties
- G02B5/0236—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
- G02B5/0242—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0273—Diffusing elements; Afocal elements characterized by the use
- G02B5/0278—Diffusing elements; Afocal elements characterized by the use used in transmission
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0013—Means for improving the coupling-in of light from the light source into the light guide
- G02B6/0023—Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
- G02B6/0031—Reflecting element, sheet or layer
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133602—Direct backlight
- G02F1/133603—Direct backlight with LEDs
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133602—Direct backlight
- G02F1/133604—Direct backlight with lamps
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133602—Direct backlight
- G02F1/133605—Direct backlight including specially adapted reflectors
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133602—Direct backlight
- G02F1/133606—Direct backlight including a specially adapted diffusing, scattering or light controlling members
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133602—Direct backlight
- G02F1/133611—Direct backlight including means for improving the brightness uniformity
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Mathematical Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Planar Illumination Modules (AREA)
Abstract
Description
본 발명은 백라이트용 광학 패널에 관한 것으로, 더욱 상세하게는 액정디스플레이(LCD) 백라이트용 도광판 또는 확산판으로서 다수 개의 미세한 반사성의 구슬 또는 다면체를 분포시킨 광 확산성 패널을 구비함으로써 광원의 배열과 더불어 백라이트에 균일한 밝기를 제공하도록 하는 미세한 반사성 구슬이 분포된 백라이트용 광학 패널에 관한 것이다.The present invention relates to an optical panel for backlight, and more particularly, to a light guide plate or a diffusion plate for a liquid crystal display (LCD) backlight, comprising a light diffusing panel in which a plurality of fine reflective beads or polyhedrons are distributed, together with an arrangement of a light source. The present invention relates to an optical panel for backlights in which fine reflective beads are distributed to provide uniform brightness to the backlight.
지금까지 백라이트 유닛(Backlight Unit, 이하 'BLU'라 한다)에는 발광체로서 냉음극형광램프(Cold Cathode Fluorescent Lamp, CCFL)가 주로 사용되어 왔으나 수은이 함유된 램프의 사용이 점진적으로 제한됨에 따라 친환경적인 램프 또는 광원의 개발이 절실히 요구되고 있다. 이에 따라 저전압에서 동작할 수 있어 저소비전력에 적합하며, 색조(Color Gamut)가 보다 우수한 발광소자인 발광다이오드(Light Emitting Diode: LED)를 CCFL에 대체하려는 시도가 이루어지고 있다. 지금은 화면 크기가 작은 중소형 LCD에 광원으로 LED가 주로 채택되고 있다.Until now, Cold Cathode Fluorescent Lamps (CCFLs) have been mainly used as backlights in backlight units (BLUs) .However, the use of mercury-containing lamps has been gradually limited. There is an urgent need for the development of lamps or light sources. Accordingly, attempts have been made to replace CCFLs with light emitting diodes (LEDs), which are suitable for low power consumption because they can operate at low voltage and have better color gamut. Nowadays, LED is mainly used as a light source for small and medium-sized LCDs with small screen sizes.
도 1은 CCFL(a)과 LED(b)를 광원으로서 채택한 상향 방출 방식 BLU의 개념을 나타낸 도면이다.1 is a diagram showing the concept of an upward emission type BLU employing CCFL (a) and LED (b) as light sources.
도 1의 (a)에 도시한 바와 같이, 선 광원의 일종인 CCFL 광원을 채택한 상향 방출 방식의 BLU(1)는 CCFL 광원(3)이 확산판(4)의 아랫면에 위치하고 있고, 그 아래에는 반사시트(2)을 구비함으로써 CCFL에서 아래로 방출된 빛을 다시 확산판(4)으로 향하도록 한다. 여기서, CCFL 광원(3)을 둘러싸는 측면에도 반사시트가 구비되나 도시하지 않았다.As shown in (a) of FIG. 1, in the upward emission type BLU 1 employing a CCFL light source, which is a kind of line light source, the CCFL light source 3 is located on the bottom surface of the diffuser plate 4, The reflection sheet 2 directs the light emitted down from the CCFL back to the diffuser plate 4. Here, the reflective sheet is also provided on the side surface surrounding the CCFL light source 3, but is not illustrated.
상기 확산판(4)의 아랫면을 통하여 들어온 빛은 확산판(4) 내의 확산 재료에 의하여 진행 방향이 확산되어 빛이 균일하게 퍼지게 된다. 이후, 상기 확산판(4)의 윗면을 빠져나온 빛은 확산시트(5)를 통하여 빛이 더욱 균일하게 되고 확산시트(5) 위의 프리즘 시트(6, 7)에 의하여 빛의 방향성이 더욱 좋아지고 휘도도 높아진다. 최종적으로 보호막(8)을 통과한 빛은 LCD 패널(도시하지 않음)에 입사하게 된다.Light entering through the lower surface of the diffuser plate 4 is spread by the diffusion material in the diffuser plate 4 so that the light is uniformly spread. Thereafter, the light exiting the upper surface of the diffusion plate 4 becomes more uniform through the diffusion sheet 5, and the direction of light is better due to the prism sheets 6 and 7 on the diffusion sheet 5. High brightness. Finally, the light passing through the protective film 8 is incident on the LCD panel (not shown).
도 1의 (b)에 도시한 바와 같이, 점 광원의 일종인 LED를 광원으로 채택한 상향 방출 방식의 BLU(11)는 광원이 인쇄회로기판(12)에 배열된 LED(13)라는 것을 제외하고, 나머지 요소들의 구성과 기능은 도 1의 (a)의 경우와 동일하다. 단, 인쇄회로기판(12) 상의 LED(13)을 제외한 부분을 반사시트로 덮을 수도 있다.As shown in (b) of FIG. 1, the BLU 11 of the upward emission type adopting LED, which is a kind of point light source, as a light source is that the light source is an LED 13 arranged on the printed circuit board 12. The configuration and functions of the remaining elements are the same as in the case of FIG. However, a portion except for the LED 13 on the printed circuit board 12 may be covered with a reflective sheet.
상기의 BLU(1,11)에 있어서, LCD 시장에서 LCD 화면 크기가 커짐에도 불구하고 BLU의 두께는 적어지는 게 요구되고, 아울러 광원의 개수를 비례적으로 늘이는 것이 억제되고 있다.In the above-described BLUs (1, 11), although the LCD screen size increases in the LCD market, the thickness of the BLU is required to be reduced, and the increase in the number of light sources is suppressed proportionally.
그런데, 광원 사이의 거리와 BLU 두께의 비율이 증가할수록 백라이트 상에서 균일한 조도 또는 휘도를 얻기 어려운 문제점이 있다. 특히, 광원(3, 13) 바로 윗부분의 광학 패널 상에서는 조도 또는 휘도가 주변보다 높아지게 되는 문제가 발생한다.However, as the ratio of the distance between the light sources and the BLU thickness increases, it is difficult to obtain uniform illuminance or luminance on the backlight. In particular, a problem arises in that the illuminance or luminance becomes higher than the surroundings on the optical panel immediately above the light sources 3 and 13.
이러한 문제점을 해소하기 위한 방법으로 종래에 제시된 방법이 도 2a 내지 도 2d에 예시되어 있다.A conventionally presented method for solving this problem is illustrated in FIGS. 2A-2D.
도 2a 내지 도 2d는 종래 상향 방출 방식의 BLU에 사용되는 확산판에 다양한 광학 패턴을 구성함으로써 백라이트의 밝기를 균일하도록 한 실시 예들을 보여주는 도면이다.2A to 2D are diagrams illustrating embodiments in which the brightness of a backlight is uniform by configuring various optical patterns on a diffusion plate used in a conventional BLU of a top emission type.
도 2a에 도시한 예는, 확산판(22)에 있어서 CCFL 광원(21) 위쪽에 확산 패턴 또는 반사 패턴(23)의 크기와 밀도를 높여 광원(21)으로부터 들어오는 과도한 빛을 꺾거나 억제함으로써 확산판(22) 상의 조도 또는 휘도를 균일하도록 하고, 도 2b에 도시한 예는, 확산판(24)에 있어서 LED 광원(미도시) 위에 반사패턴(25)을 분포시켜 LED 광원으로부터 들어오는 과도한 빛을 억제함으로써 확산판(24) 상의 조도 또는 휘도를 균일하도록 한다.In the example shown in FIG. 2A, the diffusion plate 22 diffuses by suppressing or suppressing excessive light coming from the light source 21 by increasing the size and density of the diffusion pattern or the reflection pattern 23 above the CCFL light source 21. The illuminance or luminance on the plate 22 is made uniform, and the example shown in FIG. 2B distributes the reflection pattern 25 on the LED light source (not shown) in the diffuser plate 24 to prevent excessive light from the LED light source. By suppressing, the illuminance or luminance on the diffusion plate 24 is made uniform.
그러나, 이와 같은 실시 예들에서는 광 차단 패턴을 사용하여 광원으로부터 강하게 방사되는 일부의 빛을 차폐하여 균일한 조도 또는 휘도를 얻도록 함으로써 입력 파워에 대비하여 밝기가 낮아지는 문제점이 있다. 아울러, 백라이트 상에서 볼 때 광 차단 패턴(23, 25) 또는 그 윤곽이 드러남으로써 백라이트나 LCD의 품질이 떨어지게 할 우려가 있고, 광 차단 패턴(23, 25)을 CCFL이나 LED 광원에 정렬(align)해야 함으로써 별도의 조립 공정이 더 필요하게 되는 문제점도 있다.However, in such embodiments, there is a problem in that brightness is lowered compared to input power by shielding a part of light strongly emitted from a light source using a light blocking pattern to obtain uniform illuminance or brightness. In addition, when the light blocking patterns 23 and 25 or the outline thereof are seen on the backlight, the quality of the backlight or the LCD may be degraded, and the light blocking patterns 23 and 25 are aligned with the CCFL or the LED light source. There is also a problem in that a separate assembly process is further required.
도 2c는 다른 예로서, CCFL 광원(27) 위와 CCFL 광원(27) 사이에 해당하는 영역에 구멍의 크기와 분포 밀도를 달리하여 반사성 금속판(28)에 구멍을 뚫은 것을 나타낸 것이다. 광원(27) 바로 윗부분의 반사성 금속판(28) 영역에는 구멍의 밀도 내지는 크기를 작게 하고 광원과 광원 사이에 해당하는 윗부분에는 구멍의 밀도 내지는 크기를 크게 하여 빛의 통과율을 다르게 한다.As another example, FIG. 2C illustrates that a hole is formed in the reflective metal plate 28 by varying the size and distribution density of the hole in the region corresponding to the CCFL light source 27 and the CCFL light source 27. In the region of the reflective metal plate 28 immediately above the light source 27, the density or size of the hole is reduced, and the density or size of the hole is increased in the upper portion corresponding to the light source and the light source to change the light passing rate.
CCFL 광원(27)으로부터 방출된 빛은 직접 또는 그 아래와 측면의 반사 시트(26)에 의하여 반사성 금속판(28)의 하면으로 진행하여 구멍이 뚫린 영역(29a)에서는 바로 통과하고, 구멍이 아닌 영역(29b)에서는 입사된 빛이 상기 반사성 금속판(28)에 의하여 반사되어 반사시트(26)로 되돌아가 다시 반사된다. 상기의 과정을 되풀이하면 밝기가 비교적 균일한 빛이 확산시트 내지는 프리즘 시트 등의 광학시트(30)를 통과하여 액정 패널로 입사하게 된다.The light emitted from the CCFL light source 27 travels directly to the lower surface of the reflective metal plate 28 by means of the reflective sheet 26 on the side below or directly and passes directly in the perforated region 29a, and the non-hole region ( In 29b), the incident light is reflected by the reflective metal plate 28 and returned to the reflective sheet 26 to be reflected again. When the above process is repeated, light having a relatively uniform brightness passes through the optical sheet 30 such as the diffusion sheet or the prism sheet and enters the liquid crystal panel.
이러한 도 2c의 구조는 반사성 금속판(28)에 상이한 면적의 구멍과 상이한 밀도의 구멍을 형성하여야 하며, 또한 반사성 금속판(28)을 CCFL 광원(27)에 정렬하여 조립해야 하는 문제점들이 있어 기존의 백라이트 조립 공정을 수정해야 하는 단점이 따른다.The structure of FIG. 2C has a problem in that holes having different areas and different densities must be formed in the reflective metal plate 28, and the reflective metal plate 28 is aligned with the CCFL light source 27 to be assembled. The disadvantage is the need to modify the assembly process.
도 2d는 내벽이 반사성인 상자(33)에서 액정 패널로 향하는 전면(34)에는 미세한 구멍을 균일하게 밀집하여 뚫고 그 반대쪽 면에는 LED 광원(32)을 배열한 백라이트를 나타낸 것이다. LED 광원(32)으로부터 방출된 빛은 일부가 직접 구멍을 통과하고 나머지는 반사된 후 상자(33)의 내벽에 의하여 다시 반사되어 다시 전면(34)을 향한다. 상기 과정을 반복하면 밝기가 비교적 균일한 빛이 액정 패널로 입사하게 된다.FIG. 2D shows a backlight in which the front wall 34 facing the liquid crystal panel in the reflective box 33 with the inner wall is uniformly dense and drilled therein, and the LED light source 32 is arranged on the opposite side. The light emitted from the LED light source 32 passes through the hole directly and the other part is reflected and then reflected back by the inner wall of the box 33 to the front face 34 again. When the above process is repeated, light having a relatively uniform brightness is incident on the liquid crystal panel.
도 2d의 구조는 상기 도 2c의 문제점을 해소할 수 있으나 LED 광원(32)과 전면(34)의 거리를 어느 수준까지 확보해야 하는 한계성이 있다. 또한, 기존의 광학 패널 제조 공정이나 백라이트 조립 공정을 수정해야 하는 단점도 따른다.Although the structure of FIG. 2D may solve the problem of FIG. 2C, there is a limit to secure the distance between the LED light source 32 and the front surface 34 to a certain level. In addition, there is a disadvantage that requires modification of the existing optical panel manufacturing process or backlight assembly process.
상기와 같은 문제점을 해결하기 위해 안출된 본 발명은 LCD용 백라이트에 있어서, 선 광원이나 점 광원을 사용하는 경우, 광원 사이의 거리가 먼 경우, 또는 백라이트의 두께가 얇은 경우에 균일한 밝기를 구현하면서 기존 조립 공정과의 정합성을 유지하기 위해서 광학 패널(예를 들면, 도 1 내지 도 2에 도시한 4, 14, 22, 24, 28, 34)에 미세한 반사성 구슬 또는 반사성 다면체를 분포하여 구성함으로써 균일한 밝기를 획득할 수 있는 미세한 반사성 구슬이 분포된 백라이트용 광학 패널을 제공하는 것을 목적으로 한다.In order to solve the above problems, the present invention provides a uniform brightness when using a line light source or a point light source in the LCD backlight, when the distance between the light sources is far, or when the thickness of the backlight is thin. By distributing fine reflective beads or reflective polyhedrons in an optical panel (for example, 4, 14, 22, 24, 28, and 34 shown in FIGS. 1 and 2) to maintain consistency with existing assembly processes. It is an object of the present invention to provide an optical panel for backlights in which fine reflective beads that can obtain uniform brightness are distributed.
이와 같은 목적을 달성하기 위해 본 발명에 따른 미세한 반사성 구슬이 분포된 백라이트용 광학 패널에 대한 일실시 예는, 광원, 반사시트, 광학 패널, 및 다수의 광학 시트를 구비한 백라이트에 있어서, 상기 광학 패널은 다수 개의 미세한 반사성 구슬, 반사성 다면체 또는 이들을 혼합하여 분포시켜 구성한 것을 특징으로 한다.In order to achieve the above object, an embodiment of a backlight optical panel in which fine reflective beads are distributed according to the present invention includes a light source, a reflective sheet, an optical panel, and a backlight having a plurality of optical sheets. The panel is characterized by consisting of a plurality of fine reflective beads, reflective polyhedron or a mixture of these.
본 발명에 있어서, 상기 광학 패널은 빛에 투명하면서 확산 재료인 유리, 수지, 또는 플라스틱 중 어느 하나를 포함하여 구성된 것을 특징으로 한다.In the present invention, the optical panel is characterized by including any one of glass, resin, or plastic which is transparent to light and is a diffusion material.
본 발명에 있어서, 상기 광학 패널은 두께가 1 mm 내지 10 mm인 것을 특징으로 한다.In the present invention, the optical panel is characterized in that the thickness of 1 mm to 10 mm.
본 발명에 있어서, 상기 반사성 구슬 또는 반사성 다면체의 재질은 반사성질을 갖는 금속 또는 반사성질을 갖거나 반사물질을 도포한 수지인 것을 특징으로 한다.In the present invention, the material of the reflective bead or the reflective polyhedron is a metal having a reflective property or a resin having a reflective property or a resin coated with a reflective material.
본 발명에 있어서, 상기 반사성 구슬 또는 반사성 다면체는 반사율이 90 % 이상인 것을 특징으로 한다.In the present invention, the reflective bead or the reflective polyhedron is characterized in that the reflectance is 90% or more.
본 발명에 있어서, 상기 반사성 구슬 내지는 반사성 다면체는 크기가 10 μm 내지 200 μm인 것을 특징으로 한다.In the present invention, the reflective bead or the reflective polyhedron is characterized in that the size of 10 μm to 200 μm.
본 발명에 있어서, 상기 반사성 구슬 또는 반사성 다면체의 총 체적은 상기 광학 패널 전체 체적의 10 % 내지 30 %인 것을 특징으로 한다.In the present invention, the total volume of the reflective beads or the reflective polyhedron is 10% to 30% of the total volume of the optical panel.
본 발명에 따른 미세한 반사성 구슬이 분포된 백라이트용 광학 패널은 선형 광원인 CCFL 또는 점 광원인 LED를 마주보는 광학 패널에 미세한 반사성 구슬 또는 다면체를 분포시킴으로써 광학 패널 상에 균일한 밝기를 제공하는 효과가 있다.The backlight optical panel in which the fine reflective beads are distributed according to the present invention has an effect of providing uniform brightness on the optical panel by distributing fine reflective beads or polyhedrons in the optical panel facing the CCFL or the point light source LED. have.
또한, 본 발명은 기존의 백라이트 구성 부품인 광학 패널에 구비하기 때문에 별도의 조립 공정이 필요하지 않으므로 조립 비용이 증가하지 않는 장점이 있다.In addition, since the present invention is provided in the optical panel which is a conventional backlight component, there is no need for a separate assembly process, and thus there is an advantage that the assembly cost does not increase.
도 1은 CCFL(a)과 LED(b)를 광원으로서 채택한 상향 방출 방식 BLU의 개념을 나타낸 도면이고,1 is a view showing the concept of an upward emission BLU adopting CCFL (a) and LED (b) as a light source,
도 2a 내지 도 2d는 종래 상향 방출 방식의 BLU에 사용되는 확산판에 다양한 광학 패턴을 구성함으로써 백라이트의 밝기를 균일하도록 한 실시 예들을 보여주는 도면이고,2A to 2D are views showing embodiments in which the brightness of the backlight is uniform by configuring various optical patterns on a diffusion plate used in a conventional BLU of the upward emission type.
도 3은 본 발명에 따른 미세한 반사성 구슬이 분포된 백라이트용 광학 패널에 대한 일실시 예를 보여주는 도면이고,3 is a view showing an embodiment of an optical panel for backlight having a fine reflective bead distributed in accordance with the present invention,
도 4는 본 발명의 광학 패널에 대한 다른 일실시 예로 미세한 반사성 다면체를 분포시킨 것을 보여주는 도면이고,4 is a view showing a distribution of fine reflective polyhedrons in another embodiment of the optical panel of the present invention;
도 5는 본 발명에 따른 미세한 반사성 구슬이 분포된 백라이트용 광학 패널로 구성한 백라이트의 일 예에서 광원에서 방출된 광이 진행하는 양상을 보여주는 단면도이다.FIG. 5 is a cross-sectional view illustrating a state in which light emitted from a light source proceeds in an example of a backlight including a backlight optical panel in which fine reflective beads are distributed according to the present invention.
*** 도면의 주요 부분에 대한 부호의 설명 *** *** Explanation of symbols for the main parts of the drawing ***
12 : 인쇄회로기판 12a : 반사판12: printed circuit board 12a: reflecting plate
13 : LED 41, 43 : 광학패널13: LED 41, 43: optical panel
42 : 반사성 구슬 44 : 반사성 육각면체42: reflective beads 44: reflective hexagonal
50, 50a 내지 50c : 빛50, 50a to 50c: light
이하에서는 본 발명에 따른 미세한 반사성 구슬이 분포된 백라이트용 광학 패널에 대한 바람직한 실시 예를 첨부된 도면들을 참조하여 상세히 설명한다.Hereinafter, with reference to the accompanying drawings, a preferred embodiment of the optical panel for a backlight in which the fine reflective beads are distributed according to the present invention will be described in detail.
도 3은 본 발명에 따른 미세한 반사성 구슬이 분포된 백라이트용 광학 패널에 대한 일실시 예를 보여주는 도면이다.FIG. 3 is a view showing an embodiment of an optical panel for backlight in which fine reflective beads are distributed according to the present invention.
도시한 바와 같이, 본 발명의 백라이트용 광학패널(41)은 내부에 미세한 반사성 구슬(42)이 분포되어 구성된다.As shown, the backlight optical panel 41 of the present invention is configured by distributing fine reflective beads 42 therein.
상기 반사성 구슬(42)의 재질은 반사성 금속이나 반사율이 높은 재료로 코팅된 수지 또는 일정한 반사성질을 갖는 수지 등으로 구성함이 바람직하다. 이때, 상기 반사율은 90 % 이상인 것이 바람직하다. The material of the reflective beads 42 is preferably made of a resin coated with a reflective metal or a material having a high reflectance, or a resin having a constant reflective property. In this case, the reflectance is preferably 90% or more.
또한, 상기 반사성 구슬(42)의 크기는 수 μm 내지 수백 μm까지 가능한데, 더욱 바람직하게는 10 μm 내지 200 μm정도의 범위로 구성하도록 한다.In addition, the size of the reflective beads 42 may be up to several μm to several hundred μm, more preferably 10 μm to 200 μm range.
상기 광학 패널(41) 내의 반사성 구슬(42)의 총 체적은 상기 광학 패널(41)의 총 체적의 10 % 내지 30 % 정도의 범위로 구성함이 바람직하다.The total volume of the reflective beads 42 in the optical panel 41 is preferably configured in a range of about 10% to 30% of the total volume of the optical panel 41.
도 4는 본 발명의 광학 패널에 대한 다른 일실시 예로 미세한 반사성 다면체를 분포시킨 것을 보여주는 도면이다.4 is a view showing a distribution of fine reflective polyhedrons in another embodiment of the optical panel of the present invention.
도시한 바와 같이, 본 발명의 백라이트용 광학패널(43)은 내부에 미세한 반사성 육각면체(44)가 분포되어 구성된다.As shown in the drawing, the optical panel 43 for backlight of the present invention is configured by distributing a fine reflective hexagonal body 44 therein.
상기 반사성 육각면체(44)의 재질 및 크기와 광학 패널(43)의 총 제적에 대한 구성비는 도 3에서 설명한 것과 동일하므로 이하 설명을 생략하기로 한다.Since the ratio of the material and the size of the reflective hexagonal body 44 and the total weight of the optical panel 43 is the same as described with reference to FIG. 3, a description thereof will be omitted.
이와 같이, 도 3과 도 4에 도시된 광학 패널(41, 43) 내에 각각 구형의 구슬과 육면체의 반사성 재료가 분포되어 있으나 그 외에도 다양한 모양의 다면체로 구성하는 것도 가능하다. 즉, 반사성 재료가 타원체일 수도 있고, 사면체, 팔면체일 수도 있으며, 이들 각각을 혼합하여 분포시킬 수 있음은 당연하다.As such, spherical beads and a hexahedral reflective material are distributed in the optical panels 41 and 43 shown in FIGS. 3 and 4, but various shapes of polyhedrons may be formed. That is, the reflective material may be an ellipsoid, a tetrahedron or an octahedron, and it is natural that each of them can be mixed and distributed.
도 5는 본 발명에 따른 미세한 반사성 구슬이 분포된 백라이트용 광학 패널로 구성한 백라이트의 일 예에서 광원에서 방출된 광이 진행하는 양상을 보여주는 단면도이다.FIG. 5 is a cross-sectional view illustrating a state in which light emitted from a light source proceeds in an example of a backlight including a backlight optical panel in which fine reflective beads are distributed according to the present invention.
도 5는 일예로서 도 3에 예시된 광학 패널을 구비한 백라이트에 있어서 광원에서 방출된 광이 진행하는 양상을 보인 것이다.FIG. 5 illustrates an example in which light emitted from a light source travels in a backlight having the optical panel illustrated in FIG. 3.
도시한 바와 같이, 광원은 LED(13)을 예시하였고, 인쇄회로기판(12) 상면 중 LED(13)가 없는 부분에는 반사시트 또는 확산성 반사판(12a)를 배치하여 구성함이 바람직하다.As illustrated, the light source exemplifies the LED 13, and the reflective sheet or the diffuse reflecting plate 12a may be disposed on the portion of the upper surface of the printed circuit board 12 where the LED 13 is not present.
본 발명의 광학 패널(40)은 빛에 투명하면서 빛을 확산시키는 유리, 수지, 플라스틱 등과 같은 재료들 중 어느 하나 이상을 포함하여 구성됨이 바람직하며, 그 두께가 1 mm 내지 10 mm 정도인 것이 바람직하다.The optical panel 40 of the present invention is preferably configured to include any one or more of materials such as glass, resin, plastic, etc., which is transparent to light and diffuses light, and preferably has a thickness of about 1 mm to 10 mm. Do.
참고로, 상기 하부와 측면에 반사판을 구비하고 배열된 광원과 광학 패널의 위에는 확산 시트, 프리즘 시트, 보호막, 조립 샤시, 액정 패널 등이 구비되어 액정디스플레이(LCD)를 구성함은 도시하지 않았다.For reference, a diffuser sheet, a prism sheet, a protective film, an assembled chassis, a liquid crystal panel, and the like are provided on the light source and the optical panel arranged with the reflecting plates on the lower side and the side thereof, and thus the LCD is not illustrated.
우선, 광원인 LED(13)에서 방출된 빛의 이동경로에 대하여 상술하면 다음과 같다.First, the movement path of the light emitted from the LED 13 as a light source will be described in detail.
LED(13)로부터 방출된 빛(50) 중 일부(50a)는 광학 패널(41)로 입사되어 반사성 구슬(42)에 의하여 진로가 측방으로 편향되어 광학 패널(41) 위쪽으로 빠져나간다. 이와 같이 광(50a)는 반사성 구슬(42)이 없을 경우에 예상되는 진로에 비하여 측방으로 크게 편향되게 된다.A portion 50a of the light 50 emitted from the LED 13 enters the optical panel 41 and the path is deflected laterally by the reflective bead 42 to exit above the optical panel 41. As such, the light 50a is largely deflected laterally compared to the course expected in the absence of the reflective beads 42.
LED(13)로부터 방출된 빛(50) 중 일부(50b)는 광학 패널(41)로 입사되어 반사성 구슬(42)에 의하여 진로가 편향되어 광학 패널(41)을 빠져나가 아래쪽으로 향한 후에 반사판(12a)에 의하여 다시 광학 패널(41)로 입사되고 이후에 반사성 구슬(42)에 의하여 편향되어 광학 패널(41) 위쪽으로 빠져나간다. 이때의 광(50b)도 반사성 구슬(42)이 없을 경우에 예상되는 진로에 비하여 측방으로 상당히 크게 편향되게 된다.Some of the light 50 emitted from the LED 13 50b enters the optical panel 41 and is deflected by the reflective bead 42 to exit the optical panel 41 and face downward. 12a) is incident again into the optical panel 41 and then deflected by the reflective bead 42 to exit above the optical panel 41. At this time, the light 50b is also greatly deflected laterally compared to the course expected in the absence of the reflective beads 42.
상기 설명한 방식에 의하여 광원 LED(13)로부터 방출된 광(50)은 반사성 구슬(42)과 반사판(12a) 등에 의하여 몇 번의 반사를 거쳐 측방으로 확산하면서 광학 패널(41)을 벗어나 액정 패널로 진행하게 된다.The light 50 emitted from the light source LED 13 by the above-described method proceeds out of the optical panel 41 to the liquid crystal panel while diffusing laterally through several reflections by the reflective beads 42 and the reflecting plate 12a or the like. Done.
따라서, 점 광원이나 선 광원에서 방출된 빛이 원래 진로에서 편향되어 멀리 퍼지게 되므로 아주 좋은 확산판의 역할을 수행하며, 결과적으로 광원들이 서로 멀리 떨어지거나 백라이트의 두께가 얇은 경우에도 백라이트 상에서 균일한 밝기를 얻을 수 있게 된다.Therefore, the light emitted from the point light source or the line light source deflects from the original path and spreads farther, thus serving as a very good diffuser plate, and as a result, even brightness of the light source is uniformly maintained on the backlight even when the light sources are far from each other or the thickness of the backlight is thin. Will be obtained.
상기 미세한 반사성 구슬 또는 반사성 다면체가 분포된 광학 패널은 LCD용 백라이트에 적용이 되었으나 표시판, 전광판, 광고판, 간판, 등 균일한 광면이 요구되는 용도에도 적용이 가능하다. 또한, 상기 반사성 구슬 또는 반사성 다면체가 분포된 광학 패널은 실내외의 조명에도 적용이 가능하다.The optical panel in which the fine reflective beads or the reflective polyhedrons are distributed has been applied to an LCD backlight, but may be applied to a display panel, an electric signboard, an advertisement board, a signboard, and the like, which require a uniform light surface. In addition, the optical panel in which the reflective bead or the reflective polyhedron is distributed may be applied to indoor and outdoor lighting.
이상에서 설명한 본 발명은 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환 변형 및 변경이 가능하므로 전술한 실시 예 및 첨부된 도면에 한정되는 것은 아니다.The present invention described above is limited to the above-described embodiments and the accompanying drawings as various substitutional modifications and changes are possible within a range without departing from the technical spirit of the present invention for those skilled in the art. It doesn't happen.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080045421A KR20090119399A (en) | 2008-05-16 | 2008-05-16 | Optical panel containing refelective minute beads for backlight |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080045421A KR20090119399A (en) | 2008-05-16 | 2008-05-16 | Optical panel containing refelective minute beads for backlight |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20090119399A true KR20090119399A (en) | 2009-11-19 |
Family
ID=41603108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020080045421A Ceased KR20090119399A (en) | 2008-05-16 | 2008-05-16 | Optical panel containing refelective minute beads for backlight |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20090119399A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102270667A (en) * | 2011-07-27 | 2011-12-07 | 保定天威英利新能源有限公司 | Component for increasing power generation efficiency of N-type monocrystalline silicon photovoltaic cell and manufacturing method thereof |
CN102412327A (en) * | 2011-07-27 | 2012-04-11 | 保定天威英利新能源有限公司 | Reflective glass for N-type photovoltaic cell reflective back plate and manufacturing method thereof |
CN102407627A (en) * | 2011-07-27 | 2012-04-11 | 保定天威英利新能源有限公司 | Catadioptric adhesive film in N-type monocrystalline silicon photovoltaic cell assembly and manufacturing method thereof |
-
2008
- 2008-05-16 KR KR1020080045421A patent/KR20090119399A/en not_active Ceased
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102270667A (en) * | 2011-07-27 | 2011-12-07 | 保定天威英利新能源有限公司 | Component for increasing power generation efficiency of N-type monocrystalline silicon photovoltaic cell and manufacturing method thereof |
CN102412327A (en) * | 2011-07-27 | 2012-04-11 | 保定天威英利新能源有限公司 | Reflective glass for N-type photovoltaic cell reflective back plate and manufacturing method thereof |
CN102407627A (en) * | 2011-07-27 | 2012-04-11 | 保定天威英利新能源有限公司 | Catadioptric adhesive film in N-type monocrystalline silicon photovoltaic cell assembly and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101167301B1 (en) | Back light unit of liquid crystal display device | |
CN104930399B (en) | Surface light emitting device and liquid crystal display device | |
CN100514154C (en) | Light emitting diode backlight unit and liquid crystal display having the same | |
JP3931070B2 (en) | Planar light source device and liquid crystal display device including the same | |
JP4607682B2 (en) | Backlight device of liquid crystal display device and liquid crystal display device using the same | |
EP2166275B1 (en) | Illuminating device and liquid crystal display | |
US20120013811A1 (en) | Lighting device, display device and television receiver | |
US20040228109A1 (en) | Light guide module having uniform light diffusion arrangement and method for making the same | |
CN101344609B (en) | Back light module and optical plate | |
KR20060135207A (en) | LED lamp with improved brightness and backlight assembly using the same | |
KR20130061796A (en) | Optical assembly, backlight unit and display device using the same | |
JP2010272245A (en) | Backlight unit and liquid crystal display equipped with this | |
KR20160022214A (en) | Light guide plate, backlight unit and display device having the same | |
TWM565322U (en) | Direct-lit backlight module and display device | |
US7125141B2 (en) | Apparatus for homogeneously distributing lights | |
KR20160051292A (en) | lens,light emitting apparatus including the lens, and backlight unit including the apparatus | |
TW200532316A (en) | Backlight module of direct type point light source and liquid crystal display device using the same | |
KR20030081971A (en) | Backlight Unit And Method Of Fabricating A Reflecting Plate Thereof | |
KR20080029133A (en) | Back light unit and liquid crystal display device using the same | |
KR20090119399A (en) | Optical panel containing refelective minute beads for backlight | |
CN109358451B (en) | Backlight module and display device thereof | |
KR20010046581A (en) | Backlight device for display | |
KR101418119B1 (en) | Backlight unit and liquid crystal display device having the same | |
KR100939191B1 (en) | Backlight Optical Panel with Reflective Sheet with Fine Holes | |
KR20060028895A (en) | Backlight unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20080516 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20100325 Patent event code: PE09021S01D |
|
E601 | Decision to refuse application | ||
PE0601 | Decision on rejection of patent |
Patent event date: 20100623 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20100325 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |