KR20090056006A - Apparatus and structure for seismic strengthening of building structures - Google Patents

Apparatus and structure for seismic strengthening of building structures Download PDF

Info

Publication number
KR20090056006A
KR20090056006A KR1020070122931A KR20070122931A KR20090056006A KR 20090056006 A KR20090056006 A KR 20090056006A KR 1020070122931 A KR1020070122931 A KR 1020070122931A KR 20070122931 A KR20070122931 A KR 20070122931A KR 20090056006 A KR20090056006 A KR 20090056006A
Authority
KR
South Korea
Prior art keywords
seismic
energy dissipation
damper
composite device
rod member
Prior art date
Application number
KR1020070122931A
Other languages
Korean (ko)
Other versions
KR100927737B1 (en
Inventor
유영찬
최기선
김긍환
조해진
Original Assignee
한국건설기술연구원
테크스타 코리아 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국건설기술연구원, 테크스타 코리아 주식회사 filed Critical 한국건설기술연구원
Priority to KR1020070122931A priority Critical patent/KR100927737B1/en
Publication of KR20090056006A publication Critical patent/KR20090056006A/en
Application granted granted Critical
Publication of KR100927737B1 publication Critical patent/KR100927737B1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/025Structures with concrete columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems

Abstract

An aseismatic reinforcement composite device and an aseismatic reinforcement structure of building are provided to absorb displacement of the column and slab directly and thus to improve stability of the building. An aseismatic reinforcement composite device(18) of building comprises a fixing bar member(20) fixed to an upper slab(12) of the structure to reinforce, first energy dissipating devices(22) arranged at regular intervals along the fixing bar member to absorb the energy delivered vertically, and a second energy dissipating device(24) arranged on the bottom of the fixing bar member to absorb the energy delivered horizontally.

Description

건축 구조물의 내진보강 복합장치 및 내진 보강구조{Apparatus and Structure for Seismic Strengthening of Building Structures} Apparatus and Structure for Seismic Strengthening of Building Structures

본 발명은 건축 구조물의 내진보강 복합장치 및 내진 보강구조에 관한 것으로, 더욱 상세하게는 수직부재(기둥, 벽 등 ; 이하 "기둥"이라고 기재함)와 수평부재(보, 슬래브 등 ; 이하 "슬래브"라고 기재함)에 내진보강 복합장치가 연결되도록 설치됨으로써, 기둥과 슬래브의 변위를 직접 흡수 완화하여 내진 성능을 향상시킬 수 있음은 물론, 건축 구조물의 안전도를 높이기 위한 것이다.The present invention relates to an earthquake-resistant reinforcement composite device and a seismic reinforcement structure of a building structure, and more particularly, a vertical member (columns, walls, etc .; hereinafter referred to as "pillar") and a horizontal member (beam, slab, etc .; hereinafter "slab" By installing the seismic reinforcement composite device to be connected to, it is possible to directly absorb and mitigate the displacement of the column and slab to improve the seismic performance, as well as to increase the safety of the building structure.

일반적으로, 다주택, 빌딩, 건물, 아파트 등과 같은 건축물의 설계시에는 지진으로부터 구조물을 안전하게 보호하기 위한 내진설계(耐震設計)가 함께 이루어지게 된다.In general, when designing a building such as a multi-family house, a building, a building, an apartment, and the like, a seismic design for protecting a structure from an earthquake is made.

그러나, 우리나라에서 건축물에 대한 내진설계가 의무화된 것은 1988년으로, 그 이전에 건설된 건축 구조물은 대부분 내진설계가 되어 있지 않고, 내진설계의 의무화가 시행된 이후에도 내진설계에 대한 기준이 미흡하여 지진 발생시에 건축 구조물의 붕괴로 인한 막대한 인명피해 및 재산피해가 예상된다.However, in 1988, seismic design of buildings was compulsory in Korea, and most of the construction structures built before them were not seismic designed, and even after the mandatory seismic design was enforced, the seismic design standards were insufficient. At the time of occurrence, enormous casualties and property damages due to the collapse of building structures are expected.

또한, 이러한 상기 기존 건축 구조물에 대한 증축, 개축, 대수선 등과 같은 리모델링 공사시에는 현행의 강화된 내진설계기준을 적용하여야 하므로, 기존에 설계된 내진설계로는 건축 구조물의 안전도를 보장할 수 없는 경우가 많다. 따라서, 증가된 지진하중에 저항하기 위해 기둥과 슬래브 등을 보강할 필요성이 제기되고 있으며, 이를 위해서 전단벽을 증설하거나 기둥단면을 확대하는 등의 고전적인 방법이 적용됨으로써, 막대한 공사비와 함께 공사기간이 길어지게 된다.In addition, when the remodeling work such as extension, reconstruction, algebra, etc. for the existing building structure is to be applied, the current strengthened seismic design standards should be applied, so that the safety of the building structure cannot be guaranteed with the existing seismic design. There are many. Therefore, the necessity of reinforcing columns and slabs, etc. to resist increased earthquake loads has been raised. For this purpose, the classical methods such as the expansion of shear walls or the expansion of the cross-sections of the columns are applied. It will be longer.

본 발명은 상기와 같은 문제점을 해결하기 위하여 발명된 것으로서, 건축물을 대상으로 한 보강이나 혹은 기둥 및 슬래브에 대한 단면 확대 없이 내진보강 복합장치가 설치되는 것만으로 내진 성능을 향상시킬 수 있도록 하는 건축 구조물의 내진보강 복합장치 및 내진 보강구조를 제공하는데 그 목적이 있다.The present invention has been invented to solve the above problems, the building structure to improve the seismic performance by installing a seismic reinforcement composite device without reinforcement for the building or expanding the cross section of the column and slab To provide seismic reinforcement composite device and seismic reinforcement structure of

상기와 같은 목적을 달성하기 위한 본 발명에서는 구조물에 장착되어 구조물의 내진 성능을 보강하는 내진보강 복합장치로서, 보강해야할 구조물의 상부 슬래브에 고정 설치되는 고정봉부재와; 상기 고정봉부재를 따라 간격을 가지고 하나 이상 구비되어 수직방향으로 전달되는 에너지를 흡수 완화하는 제 1에너지 소산장치 및 상기 고정봉부재의 하단에 구비되어 수평 방향으로 전달되는 에너지를 흡수 완화하는 제2에너지 소산장치;를 포함하는 건축 구조물의 내진 보강 복합장치가 제공된다. 구조물의 거동에 따라 제1에너지소산장치와 제2에너지소산장치의 위치는 적절히 조합되어 설치할 수 있다.In the present invention for achieving the above object is a seismic reinforcement composite device mounted on the structure to reinforce the seismic performance of the structure, the fixed rod member fixed to the upper slab of the structure to be reinforced; A first energy dissipation device provided with one or more spaced intervals along the fixed rod member to absorb and relax energy transferred in the vertical direction, and a second provided to the lower end of the fixed rod member to absorb and relax energy transmitted in the horizontal direction An earthquake-resistant reinforcement composite device of a building structure including an energy dissipation device is provided. Depending on the behavior of the structure, the positions of the first energy dissipation device and the second energy dissipation device may be properly combined.

또한, 건축 구조물의 내진 성능을 보강하는 구조로서, 기둥과 근접하는 상부 슬래브의 저면에 내진보강 복합장치의 고정봉부재가 직하 방향으로 고정 설치되고; 상기 고정봉부재에 구비된 제1 및 제2 에너지 소산장치가 기둥과 연결됨으로써, 상기 기둥과 슬래브의 변위가 발생하게 될 때, 제 1항의 내진보강 복합장치에 의하여 지진에너지가 흡수 완화되는 건축 구조물의 내진보강 구조가 제공된다.In addition, as a structure to reinforce the seismic performance of the building structure, the fixed rod member of the seismic reinforcement composite device is fixed to the bottom surface of the upper slab adjacent to the column fixed in the direct direction; The first and second energy dissipation devices provided in the fixed rod member is connected to the pillar, so that when the displacement of the pillar and the slab occurs, the seismic reinforcement composite device of claim 1 absorbs and relaxes the seismic energy building structure A seismic reinforcement structure of is provided.

이상에서 살펴본 바와 같이, 본 발명에 따르면, 내진설계가 미흡하게 설계되었거나, 또는 내진설계가 되어 있지 않은 기존 건축구조물에서, 축력과 휨 모멘트에 저항하는 기둥과 슬래브의 직접적인 보강 없이 기둥과 슬래브 간에 내진보강 복합장치가 연결 설치되는 구조로서, 상기 내진보강 복합장치에 의하여 내진성능이 향상되어 건축 구조물의 안전도를 높일 수 있는 효과를 기대할 수 있다.As described above, according to the present invention, seismic design between the columns and the slab without direct reinforcement of the column and the slab resisting the axial force and the bending moment in the existing building structure that is poorly designed or earthquake-resistant design As a structure in which the reinforced composite device is connected and installed, the seismic reinforcement composite device can be expected to have an effect of increasing the safety of a building structure by improving seismic performance.

또한, 위의 효과에 의하여 내진보강에 따른 공사비가 절감되고, 그와 함께 시공이 신속하고 간단하여 공사기간을 단축할 수 있는 효과를 기대할 수 있다.In addition, due to the above effects, the construction cost due to the seismic reinforcement is reduced, and with it, the construction can be expected to reduce the construction period is quick and simple.

이하 첨부된 도면을 참조로 본 발명의 바람직한 실시 예를 상세히 설명하기로 한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1에서는 본 발명에 따른 내진보강 복합장치(18)가 건축 구조물(10)에 설치된 모습이 도시되어 있다.In Figure 1 is shown a seismic reinforcement composite device 18 according to the present invention is installed on the building structure (10).

도면에서 보듯이, 통상의 건축 구조물(10)에는 층간 경계를 구획하며 축력과 휨 모멘트에 저항하는 상부 및 하부 슬래브(12,14)와, 상부 및 하부 슬래브(12,14)를 연결하는 기둥(16)이 설치된다. 이러한 건축 구조물(10)에서 본 발명에 따른 내진보강 복합장치(18)는 층간 사이에 배치되어 상부 슬래브(12)와 기둥(16)이 연결 되도록 설치된다.As shown in the drawing, a typical building structure 10 includes a column connecting upper and lower slabs 12 and 14 and upper and lower slabs 12 and 14 that partition the interlayer boundary and resist axial and bending moments. 16) is installed. In such a building structure 10, seismic reinforcement composite device 18 according to the present invention is disposed between the floors are installed so that the upper slab 12 and the column 16 is connected.

또한, 상기 내진보강 복합장치(18)는, 길이를 가지는 고정봉부재(20)와, 상기 고정봉부재(20)의 길이방향을 따라 간격을 가지고 고정 배치되는 제1 및 제 2에너지 소산장치(22,24)로 구성된다. 고정봉부재는 구조물의 거동에 따라 H형강을 고정봉부재로 사용할 수 도 있다.In addition, the seismic reinforcement composite device 18, the fixed rod member 20 having a length, and the first and second energy dissipation device that is fixedly disposed at intervals along the longitudinal direction of the fixed rod member ( 22,24). The fixed rod member may use H-shaped steel as the fixed rod member depending on the behavior of the structure.

구체적으로, 상기 기둥(16)을 중심으로 하여 양편 상부 슬래브(12)의 저면 에는 길이를 가진 고정봉부재(20)가 직하 방향으로 기둥(16)과 근접하게 고정 설치되며, 상기 고정봉부재(20)를 따라 적어도 하나 이상 연결 고정되는 제1 및 제2 에너지 소산장치(22,24)가 기둥(16)과 각각 개별적으로 연결 된다.Specifically, the fixed rod member 20 having a length is fixed to the bottom surface of the upper slab 12 on both sides of the pillar 16 in the direct direction to be fixed to the pillar 16 in the direct direction, and the fixed rod member ( At least one first and second energy dissipation devices 22 and 24 connected to and fixed along 20 are individually connected to the pillars 16, respectively.

도 2a는 상기 제 1에너지 소산장치(22)의 구성을 나타낸 일예로서, 제 1에너지 소산장치(22)는 수직방향으로 개방되는 수용공(26)이 내부에 형성되는 바디(28)와, 상기 수용공(26)의 내면에 구비되는 마찰패드(S)와 마찰접촉하게 결합되는 마찰부재(30)로 구성된 마찰댐퍼가 사용되어, 상기 바디(28)가 고정봉부재(20)에 결합되고, 마찰부재(30)가 기둥(16)에 연결 고정된다. 마찰패드와 마찰부재의 에너지 소산능력을 증가시키기 위하여 댐핑성능이 증가된 특수 고무판(High Damping Rubber Pad)을 사용할 수 도 있다.2A illustrates an example of a configuration of the first energy dissipation device 22. The first energy dissipation device 22 includes a body 28 having an accommodating hole 26 open therein in a vertical direction. A friction damper composed of a friction member 30 coupled to the friction pad S provided on the inner surface of the accommodation hole 26 in frictional contact is used, and the body 28 is coupled to the fixed rod member 20. The friction member 30 is fixed to the column 16. In order to increase the energy dissipation capacity of the friction pad and the friction member, a special rubber pad with increased damping performance may be used.

도 2b는 상기 제 2에너지 소산장치(24)의 구성을 나타낸 일예로서, 상기 제 2에너지 소산장치(24)는 실린더(34)와, 상기 실린더(34)를 따라 왕복 이동가능하게 결합 되는 피스톤 로드(36)로 구성된 실린더 댐퍼가 사용되어, 상기 실린더(34)가 고정봉부재(20)의 하단에 부착 고정되고, 피스톤 로드(36)가 기둥(16)에 고정된 러 그(38)에 연결 고정된다.2B illustrates an example of the configuration of the second energy dissipation device 24. The second energy dissipation device 24 is a cylinder rod 34 and a piston rod reciprocally coupled along the cylinder 34. A cylinder damper consisting of 36 is used so that the cylinder 34 is attached and fixed to the lower end of the fixed rod member 20 and the piston rod 36 is connected to the lug 38 fixed to the column 16. It is fixed.

그러나 상기 제 1 및 제 2에너지 소산장치(22,24)가 위와 같이 구성되는 것으로 한정될 필요는 없다. 상기 제 1에너지 소산장치(22)는 기둥(16)방향인 수직방향으로 동작하여 전달 에너지를 흡수 및 완충하고, 제 2에너지 소산장치(24)는 수평 방향으로 동작하여 전달 에너지를 흡수 및 완충할 수 있는 것이라면 어떠한 에너지 소산장치의 채용도 무방할 것이다. However, the first and second energy dissipation devices 22 and 24 need not be limited to the above configurations. The first energy dissipation device 22 operates in the vertical direction toward the pillar 16 to absorb and buffer the delivered energy, and the second energy dissipation device 24 operates in the horizontal direction to absorb and buffer the delivered energy. As far as possible, any energy dissipation device may be employed.

도면에서 부재번호 42는 상기 내진보강 복합장치(18)의 노출로 인한 미관상 저해를 방지하는 패널(42) 이다.In the drawing, reference numeral 42 denotes a panel 42 for preventing aesthetic appearance due to exposure of the seismic reinforcing composite apparatus 18.

도 3은 건축 구조물(10)의 변위 발생시 본 발명에 따른 내진보강 복합장치(18)가 에너지 소산 기능이 발휘되는 모습을 나타낸 단면도이다.3 is a cross-sectional view showing the energy dissipation function of the earthquake-resistant reinforcement composite device 18 according to the present invention when the displacement of the building structure 10 occurs.

도면에서 보듯이, 지진파와 동반하는 진동이 건축 구조물(10)에 전달되면서 축력과 휨 모멘트에 대한 저항이 한계에 도달 되게 되면, 기둥(16)은 물론 특히, 상부 슬래브(12)가 기울어지는 형태로 큰 변위를 일으키게 된다.As shown in the figure, when the vibration accompanying the seismic wave is transmitted to the building structure 10 when the resistance to the axial force and the bending moment reaches the limit, as well as the pillar 16, in particular, the upper slab 12 is inclined form This causes a large displacement.

예를 들어 도면에 도시된 바와 같이 변위를 일으키게 되면, 양측 고정봉부재(20)는 수직방향으로 각각 상대적으로 이동을 하게 되고, 그와 동시에 제 1에너지 소산장치(22)의 마찰부재(30) 및 바디(28)가 마찰력이 작용하는 상태로 고정봉부재(20)와 연동하여 변위에 대한 저항과 함께 전달 에너지를 흡수 완화하게 된다.For example, when the displacement caused as shown in the figure, both fixed rod members 20 are relatively moved in the vertical direction, respectively, and at the same time the friction member 30 of the first energy dissipation device 22 And the body 28 absorbs and relaxes the transfer energy together with the resistance to displacement in conjunction with the fixed rod member 20 in a state in which frictional force is applied.

한편, 상기 제 2에너지 소산장치(24)는 피스톤 로드(36)가 실린더(34)의 내부를 따라 수평으로 왕복 이동을 하면서 변위에 대한 저항과 함께 에너지를 흡수 완화하게 된다.Meanwhile, the second energy dissipation device 24 absorbs and relaxes energy with resistance to displacement while the piston rod 36 reciprocates horizontally along the inside of the cylinder 34.

즉, 본 발명은 상기 기둥(16)을 중심으로 하여 양편에 각각 배치된 제1 에너지 소산장치(22) 및 제2 에너지 소산장치(24)가 변위를 일으키는 방향에 따라 서로 상대적으로 대응 동작을 하게 되면서, 기둥(16)과 상부 슬래브(12)에 가해지는 축력과 휨 모멘트에 저항하고, 그와 동시에 변위를 일으키는 전달 에너지를 흡수 완화하게 된다. That is, the present invention allows the first energy dissipation device 22 and the second energy dissipation device 24 disposed on both sides of the pillar 16 to correspond to each other in a direction in which displacement occurs. As a result, the axial force and the bending moment applied to the pillar 16 and the upper slab 12 are absorbed, and at the same time, the absorbed and absorbed energy causing displacement is absorbed.

본 발명에 따른 내진 보강 복합장치(18)를 건축 구조물(10)에 적용하게 되면, 건축 구조물(10)을 대상으로 한 직접적인 내진보강 없이 내진보강 복합장치(18)를 연결 설치하는 것만으로 내진보강과 함께 내진 성능을 향상시킬 수 있음은 물론, 특히 건축 구조물(10)의 변위를 흡수 완화하여 안전도를 높일 수 있게 된다.When the seismic reinforcement composite device 18 according to the present invention is applied to the building structure 10, the seismic reinforcement composite device 18 is simply installed by connecting the seismic reinforcement composite device 18 without direct seismic reinforcement for the building structure 10. Along with this, the seismic performance can be improved, and in particular, the displacement of the building structure 10 can be absorbed and alleviated to increase safety.

한편, 도면에 도시된 내진보강 복합장치(18)에 구비되는 제1 및 제2 에너지 소산장치(22,24)의 설치 개수는 본 발명을 쉽게 설명하기 위한 하나의 예를 설명하기 위한 것이며, 상기 제1 및 제2에너지 소산장치(22,24)를 도시된 개수 이상으로 배치하게 되면 내진에 대한 내진 성능을 더 높일 수 있을 것이다.On the other hand, the number of installation of the first and second energy dissipation devices (22, 24) provided in the seismic reinforcement composite device 18 shown in the drawings is for explaining one example for easily explaining the present invention, If the first and second energy dissipation devices 22 and 24 are arranged in more than the number shown, the seismic performance against the earthquake may be further increased.

또한, 본 발명에 기재된 설명과 도면에 도시된 상기 제1 및 제2에너지 소산장치(22,24)에 대한 구성의 예로 설명된 마찰 댐퍼, 실린더 댐퍼는 앞서 언급되었듯이 본 발명의 가장 바람직한 일 실시 예에 불과할 뿐, 이것이 본 발명의 기술적 사상을 모두 대변하는 것을 의미하는 것이 아니므로, 이들을 대체할 수 있는 다양한 균등물과 변형구조의 예가 더 있을 수 있다. 예를 들면, 동일한 작용을 하는 버퍼, 점성댐퍼, 점탄성 댐퍼, 납댐퍼(Lead Damper), 연강댐퍼(Mild Steel Damper), 고감쇠고무댐퍼(High Damping Rubber Damper), 충격전달장치(Shock Transmission Unit) 등 모두 사용될 수 있음은 자명할 것이다.In addition, the friction damper, cylinder damper described as an example of the configuration for the first and second energy dissipating devices 22 and 24 shown in the description and drawings described in the present invention, as mentioned above, is one of the most preferred embodiments of the present invention. This is only an example, and this does not mean that all of the technical spirit of the present invention, there may be more examples of the various equivalents and modifications that can replace them. For example, buffers, viscous dampers, viscoelastic dampers, lead dampers, mild steel dampers, high damping rubber dampers, shock transmission units, which have the same effect. It will be apparent that both can be used.

나아가, 본 발명에 따른 내진보강 복합장치(18)는 기둥(16)과 슬래브(12,14)를 구비하는 건축 구조물(10)의 층간에 설치 적용되는 것이 가장 바람직하나 그 사용 용도가 이에 한정되지 아니하고, 내진 설계 및 충격과 진동을 흡수 완화가 필요한 다양한 구조물에 적용될 수 있다.Furthermore, the seismic reinforcement composite device 18 according to the present invention is most preferably applied to be installed between the floors of the building structure 10 having the pillars 16 and the slabs 12 and 14, but its use is not limited thereto. In addition, the seismic design and shock and vibration can be applied to a variety of structures that need to absorb absorption.

도 1은 본 발명에 따른 내진보강 구조체가 건축 구조물에 설치된 모습을 나타낸 단면도이다. 1 is a cross-sectional view showing a seismic reinforcing structure is installed in the building structure according to the present invention.

도 2a는 도 1의 "A"부를 확대하여 나타낸 평 단면도이다.FIG. 2A is an enlarged cross-sectional view of part “A” of FIG. 1.

도 2b는 도 1의 "B"부를 확대하여 나타낸 단면도이다.FIG. 2B is an enlarged cross-sectional view of part “B” of FIG. 1.

도 3은 건축 구조물의 변위 발생시 본 발명에 따른 내진 보강 복합장치가 에너지 소산 기능을 발휘하는 모습을 나타낸 단면도이다.3 is a cross-sectional view showing the energy dissipation function of the earthquake-resistant reinforcement composite device according to the present invention when the displacement of the building structure occurs.

*도면의 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

10 : 건축 구조물 12 : 상부 슬래브10: building structure 12: upper slab

14 : 하부 슬래브 16 : 기둥14: lower slab 16: pillar

18 : 내진보강 복합장치 20 : 고정봉부재18: seismic reinforcement composite device 20: fixed rod member

22 : 제1 에너지 소산장치 24 : 제2 에너지 소산장치22: first energy dissipation device 24: second energy dissipation device

26 : 수용공 28 : 바디26: receiving hole 28: the body

30 : 마찰부재 34 : 실린더30: friction member 34: cylinder

36 : 피스톤 로드 38 : 러그36: piston rod 38: lug

Claims (4)

구조물에 장착되어 구조물의 내진 성능을 보강하는 내진보강 복합장치로서,As a seismic reinforcement composite device mounted on the structure to reinforce the seismic performance of the structure, 보강해야할 구조물의 상부 슬래브(12)에 고정 설치되는 고정봉부재(20)와; A fixed rod member 20 fixed to the upper slab 12 of the structure to be reinforced; 상기 고정봉부재(20)를 따라 간격을 가지고 하나 이상 구비되어 수직방향으로 전달되는 에너지를 흡수 완화하는 제 1에너지 소산장치(22); 및A first energy dissipation device (22) provided with one or more spaced intervals along the fixed rod member (20) to absorb and relax energy transmitted in a vertical direction; And 상기 고정봉부재(20)의 하단에 구비되어 수평 방향으로 전달되는 에너지를 흡수 완화하는 제2에너지 소산장치(24);를 포함하여 구성되는 것을 특징으로 하는 건축 구조물의 내진 보강 복합장치.And a second energy dissipation device (24) provided at a lower end of the fixed bar member (20) to absorb and relax energy transmitted in a horizontal direction. 제 1항에 있어서,The method of claim 1, 상기 제1 및 제2 에너지 소산장치(20)로는 마찰댐퍼, 실린더 댐퍼, 점성댐퍼, 점탄성댐퍼, 납댐퍼, 연강댐퍼(Mild Steel Damper), 고감쇠고무댐퍼(High Damping Rubber Damper) 중 어느 하나가 사용되는 것을 특징으로 하는 건축 구조물의 내진 보강 복합장치.As the first and second energy dissipation device 20, any one of a friction damper, a cylinder damper, a viscous damper, a viscoelastic damper, a lead damper, a mild steel damper, and a high damping rubber damper may be used. Seismic reinforcement composite device of the building structure, characterized in that it is used. 건축 구조물(10)의 내진 성능을 보강하는 구조로서,As a structure to reinforce the seismic performance of the building structure 10, 기둥(16)과 근접하는 상부 슬래브(12)의 저면에 청구항 제 1항의 내진보강 복합장치(18)의 고정봉부재(20)가 직하 방향으로 고정 설치되고;A fixing rod member 20 of the seismic reinforcing composite apparatus 18 according to claim 1 is fixedly installed in a lower direction on a bottom surface of the upper slab 12 adjacent to the pillar 16; 상기 고정봉부재(20)에 구비된 제1 및 제2 에너지 소산장치(22,24)가 기둥(16)과 연결됨으로써, 상기 기둥(16)과 슬래브(12)의 변위가 발생하게 될 때, 청구항 제 1항의 내진 보강 복합장치(18)에 의하여 변위가 흡수 완화되는 것을 특징으로 하는 건축 구조물의 내진 보강 구조.When the first and second energy dissipation devices 22 and 24 provided in the fixed rod member 20 are connected to the pillars 16, the displacement of the pillars 16 and the slab 12 occurs. A seismic reinforcing structure for a building structure, characterized in that displacement is absorbed and relaxed by the seismic reinforcing composite device (18) of claim 1. 제 3항에 있어서,The method of claim 3, wherein 상기 기둥(16)을 중심으로 하여 양편 또는 기둥 둘레에 내진 보강 복합장치(18)가 각각 배치되는 것을 특징으로 하는 건축 구조물 내진 보강구조.Seismic reinforcement structure of the building structure, characterized in that the earthquake-resistant reinforcement composite device (18) is disposed around each of the pillars or around the column (16).
KR1020070122931A 2007-11-29 2007-11-29 Seismic strengthening composite system and seismic strengthening structure of building structure KR100927737B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070122931A KR100927737B1 (en) 2007-11-29 2007-11-29 Seismic strengthening composite system and seismic strengthening structure of building structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070122931A KR100927737B1 (en) 2007-11-29 2007-11-29 Seismic strengthening composite system and seismic strengthening structure of building structure

Publications (2)

Publication Number Publication Date
KR20090056006A true KR20090056006A (en) 2009-06-03
KR100927737B1 KR100927737B1 (en) 2009-11-18

Family

ID=40987459

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070122931A KR100927737B1 (en) 2007-11-29 2007-11-29 Seismic strengthening composite system and seismic strengthening structure of building structure

Country Status (1)

Country Link
KR (1) KR100927737B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102493571A (en) * 2011-12-19 2012-06-13 苗启松 Multistage parallel anti-bending support
CN103790252A (en) * 2012-10-31 2014-05-14 沈阳建筑大学 Steel lead lamination shearing damper
CN107859196A (en) * 2017-11-15 2018-03-30 北京工业大学 A kind of replaceable assembled energy-eliminating shock-absorbing node with runback bit function
CN112523425A (en) * 2020-12-17 2021-03-19 中国建筑第七工程局有限公司 High-strength prefabricated bearing column
CN113464600A (en) * 2021-07-22 2021-10-01 同济大学 Damping device
KR20220097592A (en) * 2020-12-30 2022-07-08 단국대학교 산학협력단 External attachment friction viscous damping system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101195488B1 (en) 2010-08-13 2012-10-29 대진대학교 산학협력단 Fast replacement system for collapsed structure
CN105369930B (en) * 2015-05-07 2019-02-15 深圳华森建筑与工程设计顾问有限公司 Realize viscous damper position determines in high-level structure processing method and system
CN105735106B (en) * 2016-04-12 2018-04-03 兰州理工大学 Self-resetting frcition damper for bridge isolation system
CN106122347A (en) * 2016-08-09 2016-11-16 中国电力科学研究院 A kind of amortisseur
CN109610728B (en) * 2018-11-19 2020-11-13 赣州远锦安全科技有限公司 High-strength steel-concrete prefabricated bearing column
KR20210103649A (en) 2020-02-14 2021-08-24 김점성 Hasner ball bracket with seismic resistance to wall fixing of interior and exterior panels for building and solar module fusion structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2743383B1 (en) * 1996-01-09 1999-03-05 Freyssinet Int Stup DAMPING DEVICE FOR ELEMENTS OF A CIVIL ENGINEERING STRUCTURE
JP3204095B2 (en) * 1996-06-19 2001-09-04 鹿島建設株式会社 Seismic control structure of non-installed layer in two-layer or multi-layer oil damper installation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102493571A (en) * 2011-12-19 2012-06-13 苗启松 Multistage parallel anti-bending support
CN103790252A (en) * 2012-10-31 2014-05-14 沈阳建筑大学 Steel lead lamination shearing damper
CN107859196A (en) * 2017-11-15 2018-03-30 北京工业大学 A kind of replaceable assembled energy-eliminating shock-absorbing node with runback bit function
CN107859196B (en) * 2017-11-15 2019-12-13 北京工业大学 Replaceable assembled energy dissipation and vibration reduction node with self-resetting function
CN112523425A (en) * 2020-12-17 2021-03-19 中国建筑第七工程局有限公司 High-strength prefabricated bearing column
CN112523425B (en) * 2020-12-17 2022-05-24 中国建筑第七工程局有限公司 Prefabricated heel post of high strength
KR20220097592A (en) * 2020-12-30 2022-07-08 단국대학교 산학협력단 External attachment friction viscous damping system
CN113464600A (en) * 2021-07-22 2021-10-01 同济大学 Damping device

Also Published As

Publication number Publication date
KR100927737B1 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
KR20090056006A (en) Apparatus and structure for seismic strengthening of building structures
KR101372087B1 (en) Strengthen method for steel frame structure using seismic control device
KR101112577B1 (en) Double Steel Frame Earthquake-Proof Device
Mazza Displacement-based seismic design of hysteretic damped braces for retrofitting in-plan irregular rc framed structures
KR101400423B1 (en) Bi-directional steel damper and seismic retrofit structures using the same
JP5403336B2 (en) Seismic retrofit method for existing high-rise buildings
KR101297416B1 (en) Damping system and construction method of that
KR101403125B1 (en) Seismic control device and strengthen method for steel frame structure using thereof
JP4908039B2 (en) Structure for mounting vibration energy absorber of wooden building
Zhang et al. A methodology for design of metallic dampers in retrofit of earthquake-damaged frame
KR101028239B1 (en) Hybrid vibration control apparatus using viscoelasticity and hysteresis
Rahmat Rabi et al. Energy-based method to design hysteretic bracings for the seismic rehabilitation of low-to-medium rise RC frames
KR102069168B1 (en) Dual damping earthquake-proof structure using high damping rubber and steel
KR101378700B1 (en) Unit modular seismic absorbing apparatus for rahmen structures
KR101449930B1 (en) Outside type vibration control system for construction
JP6589065B2 (en) Vibration control device
KR101070257B1 (en) Structure for Seismic Strengthening of Building Structures
JP2010024656A (en) Joint damper and structure of joint portion
US11299902B2 (en) Damping system utilizing space between stair chamber and inner building
Dall'Asta et al. Design methods for existing rc frames equipped with elasto-plastic or viscoelastic dissipative braces
Antonucci et al. Shaking table testing of an RC frame with dissipative bracings
KR100982240B1 (en) Haunch for resisting earthquake of structure
Shakiba et al. Analytical and numerical investigation of knee brace equipped with a shape memory alloy damper
US20240026678A1 (en) Shock Absorbing Equipment Having Shear-Wall-Like Mechanism with Enhanced Damping Force for a Building and Shock Absorbing System with the Same
KR20190039909A (en) Damping system using space located outer staircase between main building

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121102

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20131105

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20141112

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150925

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180412

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20181108

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20191112

Year of fee payment: 11