KR20090019903A - 터치 스크린 액정 디스플레이 - Google Patents

터치 스크린 액정 디스플레이 Download PDF

Info

Publication number
KR20090019903A
KR20090019903A KR1020097000435A KR20097000435A KR20090019903A KR 20090019903 A KR20090019903 A KR 20090019903A KR 1020097000435 A KR1020097000435 A KR 1020097000435A KR 20097000435 A KR20097000435 A KR 20097000435A KR 20090019903 A KR20090019903 A KR 20090019903A
Authority
KR
South Korea
Prior art keywords
touch
display
substrate
touch sensing
electronic device
Prior art date
Application number
KR1020097000435A
Other languages
English (en)
Other versions
KR101062042B1 (ko
Inventor
스티븐 피. 호텔링
웨이 첸
크리스토프 에이치. 크라
존 그리어 엘리아스
웨이 신 야오
존 지. 종
앤드류 버트 호지
브라이언 리차즈 랜드
윌렘 덴 보어
Original Assignee
애플 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 애플 인크. filed Critical 애플 인크.
Priority claimed from US11/760,049 external-priority patent/US8552989B2/en
Priority claimed from US11/760,080 external-priority patent/US8654083B2/en
Publication of KR20090019903A publication Critical patent/KR20090019903A/ko
Application granted granted Critical
Publication of KR101062042B1 publication Critical patent/KR101062042B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04184Synchronisation with the driving of the display or the backlighting unit to avoid interferences generated internally
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0444Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single conductive element covering the whole sensing surface, e.g. by sensing the electrical current flowing at the corners
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Abstract

본원에서는 터치 감지 소자들을 디스플레이 회로와 통합하는 액정 디스플레이 터치 스크린이 개시된다. 통합은 여러 가지 형태를 취할 수 있다. 터치 감지 소자들은 LCD 스택업 내에 완전히 구현될 수 있으나 컬러 필터 플레이트와 어레이 플레이트 사이가 아닌 바깥쪽에 구현될 수 있다. 대안적으로, 일부 터치 감지 소자들은 컬러 필터 플레이트와 어레이 플레이트 사이에 있을 수 있고 다른 터치 감지 소자들은 그 플레이트들 사이에 없다. 다른 대안으로, 모든 터치 감지 소자들이 컬러 필터 플레이트와 어레이 플레이트 사이에 있을 수 있다. 후자의 대안은 종래의 LCD 및 IPS(in-plane-switching) LCD 양쪽 모두를 포함할 수 있다. 일부 형태들에서, 하나 이상의 디스플레이 구조들은 터치 감지 기능도 가질 수 있다. 그러한 디스플레이를 제조하고 동작시키는 기법들은 물론, 그러한 디스플레이를 채용하는 다양한 장치들도 개시된다.
터치 스크린, LCD, IPS(in-plane-switching)

Description

터치 스크린 액정 디스플레이{TOUCH SCREEN LIQUID CRYSTAL DISPLAY}
본원에서는 터치 감지 소자들을 디스플레이 회로와 통합하는 액정 디스플레이 터치 스크린이 개시된다.
<관련 출원에 대한 상호 참조>
본원은 다음의 각 출원들의 우선권을 주장하며, 다음의 출원들은 모두 본원에 참고로 통합된다.
Figure 112009001234249-PAT00001
2006년 6월 9일에 출원된, 미국 가 특허 출원 60/804,361호;
Figure 112009001234249-PAT00002
2007년 1월 8일에 출원된, 미국 가 특허 출원 60/883,879호;
Figure 112009001234249-PAT00003
본원과 동시에 출원된, "Touch Screen Liquid Crystal Display"라는 명칭의, 미국 특허 출원 11/760,036호(대리인 사건 번호 119-0107US1);
Figure 112009001234249-PAT00004
본원과 동시에 출원된, "Touch Screen Liquid Crystal Display"라는 명칭의, 미국 특허 출원 11/760,049호(대리인 사건 번호 119-0107US2);
Figure 112009001234249-PAT00005
본원과 동시에 출원된, "Touch Screen Liquid Crystal Display"라는 명칭의, 미국 특허 출원 11/760,060호(대리인 사건 번호 119-0107US3); 및
Figure 112009001234249-PAT00006
본원과 동시에 출원된, "Touch Screen Liquid Crystal Display"라는 명칭의, 미국 특허 출원, 11/760,080호(대리인 사건 번호 119-0107US4).
본원은 다음의 출원들에 관련되고, 다음의 출원들은 모두 본원에 참고로 통합된다.
Figure 112009001234249-PAT00007
2006년 3월 3일에 출원된, "Multi-Functional Hand-Held Device"라는 명칭의, 미국 특허 출원 11/367,749호;
Figure 112009001234249-PAT00008
2004년 5월 6일에 출원된, "Multipoint Touch Screen"이라는 명칭의, 미국 특허 출원 10/840,862호;
Figure 112009001234249-PAT00009
2006년 5월 2일에 출원된, "Multipoint Touch Scren Controller"라는 명칭의, 미국 특허 출원 11/381,313호;
Figure 112009001234249-PAT00010
2006년 3월 3일에 출원된, "Multi-Functional Hand-Held Device"라는 명칭 의, 미국 특허 출원 11/367,749호; 및
Figure 112009001234249-PAT00011
2007년 1월 3일에 출원된, "Double-Sided Touch Sensitive Panel with ITO Metal Electrodes"라는 명칭의, 미국 특허 출원 11/650,049호.
현재는 많은 유형의 핸드헬드 전자 장치가 존재하고, 이들 각각은 어떤 종류의 사용자 인터페이스를 이용한다. 사용자 인터페이스는 액정 디스플레이(LCD)와 같은 디스플레이의 형태의 출력 장치, 및 기계적으로 작동될 수 있고(예를 들면, 스위치, 버튼, 키, 다이얼, 조이스틱, 조이 패드) 또는 전기적으로 작동될 수 있는(예를 들면, 터치 패드 또는 터치 스크린), 하나 이상의 입력 장치를 포함할 수 있다. 디스플레이는 텍스트, 멀티미디어 데이터, 및 그래픽과 같은 시각 정보를 제공하도록 구성될 수 있고, 입력 장치들은 명령을 발행하거나, 선택을 하거나, 또 는 전자 장치에서 커서 또는 선택자(selector)를 움직이는 등의 동작들을 수행하도록 구성될 수 있다.
근래에는 다양한 장치들을 단일 핸드헬드 장치로 통합하는 것에 관한 연구가 진행되어 왔다. 이는 더 나아가서 다수의 사용자 인터페이스 모델들 및 장치들을 단일 유닛으로 통합하려는 시도로 이어졌다. 그러한 시스템들에서는 실용적이고 미적인 이유로 터치 스크린이 이용될 수 있다. 또한, 멀티 터치 가능(multi-touch capable) 터치 스크린은 그러한 장치에 다양한 이점들을 제공할 수 있다.
지금까지, 터치 스크린은, 싱글 터치이든 멀티 터치이든 간에, 종래의 LCD 스크린을 제조하고, 이 스크린의 정면에 실질적으로 투명한 터치 감지 장치를 배치하는 것에 의해 생성될 수 있었다. 그러나, 이는 상당한 제조 비용을 포함하여, 다수의 불리점들을 나타낸다.
본 발명의 일 실시예에 따르면, 통합 액정 디스플레이 터치 스크린이 제공된다. 터치 스크린은 디스플레이 제어 회로가 위에 형성되어 있는 제1 기판(예를 들면, TFT 플레이트 또는 어레이 플레이트) 및 제1 기판에 인접한 제2 기판(예를 들면, 컬러 필터 플레이트)을 포함하는 복수의 층들을 포함할 수 있다. 터치 스크린은 하나 이상의 터치 감지 소자들을 더 포함할 수 있고, 모든 터치 감지 소자들은 기판들 사이에 있을 수 있다.
기판들 사이의 터치 감지 소자들은 제2 기판 상에 적층된 복수의 터치 구동 전극들과 함께, 복수의 터치 감지 전극들로 분할된 도전성 블랙 매트릭스를 포함할 수 있다. 대안적으로, 기판들 사이의 터치 감지 소자들은 제2 기판 상에 적층된 복수의 터치 구동 전극들과 함께, 폴리머 블랙 매트릭스일 수 있는, 블랙 매트릭스의 배후의 복수의 금속 터치 감지 라인들을 포함할 수 있다. 어느 쪽의 경우이든, 복수의 터치 구동 전극들은 또한 LCD에 대한 VCOM으로서 작용하도록 구성될 수 있 다.
기판들 사이의 터치 감지 소자들은 또한 기판 상에 적층된 패터닝되지 않은 인듐-주석 산화물(ITO) 터치 감지층, 터치 감지층의 주변에 배열된 복수의 스위치들, 스위치들 중의 제1 서브세트(예를 들면, 2개의 서로 접한 측면들로부터의)가 그에 접속되어 있는 제1 버스, 및 복수의 스위치들 중의 제2 서브세트(예를 들면, 다른 2개의 서로 접한 측면들로부터의)가 그에 접속되어 있는 제2 버스를 포함할 수 있다. 터치 감지층은 제2 기판 상에 적층될 수 있고, 또한 LCD에 대한 VCOM으로서 작용할 수 있다. 스위치들은 박막 트랜지스터들을 포함할 수 있다.
기판들 사이의 터치 감지 소자들은 또한 복수의 로우들로 패터닝된 ITO 터치 감지층, 복수의 로우들의 제1 단부에 배열되어 제1 버스에 접속된 복수의 스위치들, 및 복수의 로우들의 제2 단부에 배열되어 제2 버스에 접속된 복수의 스위치들을 포함할 수 있다. 터치 감지층은 제2 기판 상에 적층될 수 있고, 또한 LCD에 대한 VCOM으로서 작용할 수 있다. 스위치들은 박막 트랜지스터들을 포함할 수 있다.
기판들 사이의 터치 감지 소자들은 또한 제2 기판 상에 적층된 분할된 ITO 층, 및 또한 제2 기판 상에 형성된 복수의 스위치들을 포함할 수 있고, 스위치들은 각 ITO 세그먼트가 주어진 시간에 디스플레이 VCOM, 터치 구동, 또는 터치 감지 중 하나로서 구성되도록 한다. 스위치들은 박막 트랜지스터들을 포함할 수 있다.
기판들 사이의 터치 감지 소자들은 또한 제2 기판 상에 적층되고 복수의 터치 감지 전극들로 패터닝된 제1 ITO 층과 함께, 제2 기판 상에 적층되고 복수의 터 치 구동 전극들로 패터닝된 제2 ITO 층을 포함할 수 있다. 터치 구동 전극들은 또한 디스플레이 Vcom용으로 이용될 수 있다.
기판들 사이의 터치 감지 소자들은 또한 제2 기판 상에 적층되고 복수의 터치 구동 전극들로 패터닝된 제1 ITO 층과 함께, 제2 기판 상에 적층되고 복수의 터치 감지 전극들로 패터닝된 제2 ITO 층을 포함할 수 있다. 터치 감지 전극들은 또한 디스플레이 Vcom용으로 이용될 수 있다.
기판들 사이의 터치 감지 소자들은 또한 제2 기판 상에 적층되고 복수의 터치 구동 전극들 및 복수의 터치 감지 전극들로 분할된 ITO 층을 포함할 수 있다. 터치 구동 전극들은 저항 감소 금속 세그먼트들을 포함할 수있다. 터치 감지 소자들은, 터치 감지에 유효하게 기여하지 않는, 예를 들면, 사용자의 손가락 또는 다른 터치 물체가 장치와 상호작용할 수 있는 터치 표면까지 장치의 외부로 통과하지 않는, 터치 구동 전극들과 터치 감지 전극들 간의 전계의 일부를 차단하도록 구성된 복수의 가드 트레이스들(guard traces)을 더 포함할 수 있다.
기판들 사이의 터치 감지 소자들은 또한 제2 기판 상에 적층되고 복수의 개별적으로 어드레싱 가능한 터치 픽셀들로 패터닝된 ITO 층을 포함할 수 있다. 각 터치 픽셀은 구동 전극 및 감지 전극을 포함할 수 있다. 각 구동 전극에 접속된 복수의 구동 라인들 및 각 감지 전극에 접속된 복수의 감지 라인들도 제공될 수 있다. 구동 및/또는 감지 라인들은 도전성 블랙 매트릭스로부터 형성될 수 있고, 또는, 폴리머 블랙 매트릭스일 수 있는, 블랙 매트릭스의 배후에 위치하는 금속 트레이스들일 수 있다.
기판들 사이의 터치 감지 소자들은 또한 제2 기판 상에 적층되고 각 디스플레이 픽셀에 대응하는 적어도 2개의 플레이트들로 분할된 제1 ITO 층, 제2 기판 상에 배치되고 각 디스플레이 픽셀에 대응하는 아일랜드로 분할된 제2 ITO 층, 및 디스플레이의 VCOM 전극과 적어도 2개의 플레이트들 중 하나와의 사이에 접속된 스위치를 포항할 수 있다. 이러한 배열은 VCOM이 터치 구동 라인으로서 이용되도록 할 수 있다. 이러한 배열은 또한 디스플레이 데이터 라인이 터치 감지 라인으로서 이용되도록 할 수 있다.
기판들 사이의 터치 감지 소자들은 또한 제2 기판 상에 배치된 복수의 터치 감지 전극들로 패터닝된 ITO 층과 함께, 복수의 터치 구동 전극들로서 작용하도록 더 구성된 디스플레이 선택 라인 회로를 포함할 수 있다. 디스플레이 선택 라인 회로는 제1 기판 상에 형성될 수 있다.
다른 실시예에서는, 상술한 실시예들에 따른 통합 LCD 터치 스크린을 결합하는 전자 장치가 제공된다. 전자 장치는 데스크톱 컴퓨터, 태블릿 컴퓨터, 및 노트북 컴퓨터의 형태를 취할 수 있다. 전자 장치는 또한 핸드헬드 컴퓨터, PDA(personal digital assistant), 미디어 플레이어, 및 휴대용 전화기(mobile telephone)의 형태를 취할 수 있다. 일부 실시예에서, 장치는 전술한 것 중 하나 이상, 예를 들면, 휴대용 전화기 및 미디어 플레이어를 포함할 수 있다.
다음의 설명은 어떤 당업자라도 본 발명을 만들고 사용할 수 있게 하기 위해 제공되며, 특정 응용 및 그의 요건들과 관련하여 제공된다. 개시된 실시예들에 대한 다양한 변경들은 당업자들이 쉽사리 알 수 있을 것이고, 여기서 정의된 일반 원리들은 본 발명의 정신 및 범위에서 일탈하지 않고 다른 실시예들 및 응용들에 적용될 수 있다. 따라서, 본 발명은 제시된 실시예들에 제한되지 않고, 청구항들과 일관된 최광의 범위가 주어져야 할 것이다.
1. LCD 및 터치 감지 배경 기술
여기서는 터치 감지 기술을 액정 디스플레이들에 통합하는 기법들이 개시된다.
당업자에게 알려진 바와 같이, LCD는 복수의 층들, 가장 기본적으로는, 상부 글라스, 액정, 및 하부 글라스를 포함한다. 상부 및 하부 글라스들은 특정 디스플레이 픽셀에 대한 액정을 포함하는 셀들의 경계를 제공하도록 패터닝될 수 있다. 상부 및 하부 글라스들은 또한 액정의 배향을 조작함으로써 픽셀의 컬러 및 휘도를 제어하기 위하여 액정 셀들을 가로지르는 전압이 변경되도록 하는 박막 트랜지스터들 및 도전성 재료의 다양한 층들로 패터닝될 수 있다.
참고로 통합된 출원들에서 설명된 바와 같이, 터치 표면, 및 구체적으로는, 멀티 터치 가능한(multi-touch capable) 투명 터치 표면은 일련의 층들로부터 형성될 수 있다. 이 일련의 층들은 복수의 터치 감응 전극들이 그 위에 배치되어 있을 수 있는, 적어도 하나의 기판, 예를 들면, 글라스를 포함할 수 있다. 예를 들면, 상호 커패시턴스(mutual capacitance) 배열은 비도전층, 즉, 글라스에 의해 분리된 복수의 구동 전극들 및 복수의 감지 전극들을 포함할 수 있다. 구동 및 감지 전극 들 간의 용량 결합은 도전성 물체(예를 들면, 사용자의 손가락)에 의해 영향을 받을 수 있다. 이 용량 결합의 변화는 특정 터치의 위치, 형상, 사이즈, 움직임, ID(identity) 등을 결정하는 데 이용될 수 있다. 그 후 이들 파라미터들은 컴퓨터 또는 기타 전자 장치의 동작을 제어하도록 해석될 수 있다. 후술되는 자기 커패시턴스(self capacitance) 배열들도 당업자에게 알려져 있다.
LCD 및 터치 센서의 층상 구조(layered structure)를 통합함으로써, 다양한 이익들이 달성될 수 있다. 이 통합은 상술한 층상 구조들을 조합하거나 인터리브(interleave)하는 것을 포함할 수 있다. 통합은 중복되는 구조들을 제거하고 및/또는 이중 목적(예를 들면, 터치 기능을 위한 하나의 목적 및 디스플레이 기능을 위한 다른 목적)를 찾아내는 것을 더 포함할 수 있다. 이는 일부 층들이 제거되도록 할 수 있고, 이는 터치 스크린 LCD의 비용 및 두께를 저감시킬 수 있을 뿐만 아니라, 제조를 단순화할 수 있다. 각종의 상이한 배열들이 가능하고, 그 중 일부는 여기서 더 상세히 논의된다.
구체적으로, 통합 터치 스크린 LCD의 다양한 실시예들이 이하에서 논의된다. 그러나, 당업자는 이 도면들과 관련하여 여기서 주어지는 상세한 설명은 예시적인 것으로 총망라한 것이 아니며, 이들 실시예들에 대한 많은 변형들이 가능하다는 것을 알 것이다. 또한, 비록 개시된 실시예들 중 다수는 멀티 터치 가능한 배열들에 관한 것이지만, 그 교시 내용 중 다수는 싱글 터치 디스플레이에도 적용될 수 있다.
1.1. 멀티 터치 감지
복수의 동시의 또는 거의 동시의 터치 이벤트들을 인지하는 것은 도 1에서 도시된 바와 같은 멀티 터치 감지 배열들에 의해 달성될 수 있다. 멀티 터치 감지 배열(100)은 터치 감응 표면(101)에 걸쳐서, 동시에, 거의 동시에, 상이한 시점들에서, 또는 어떤 시간 기간에 걸쳐서, 복수의 터치 속성들(예를 들면, ID(identification), 위치, 속도, 사이즈, 형상, 및 크기)을 검출 및 모니터할 수 있다. 터치 감응 표면(101)은 실질적으로 서로 독립적으로 기능하고 터치 감응 표면 상의 상이한 포인트들을 나타내는 복수의 센서 포인트들, 좌표들, 또는 노드들(102)을 제공할 수 있다. 감지 포인트들(102)은 격자(grid) 또는 픽셀 어레이로 배치될 수 있고, 각 감지 포인트는 동시에 신호를 생성할 수 있다. 감지 포인트들(102)은 터치 감응 표면(101)을 좌표계, 예를 들면, 직교 좌표계 또는 극 좌표계로 매핑하는 것으로 간주될 수 있다.
터치 감응 표면은, 예를 들면, 태블릿 또는 터치 스크린의 형태로 될 수 있다. 터치 스크린을 생성하기 위하여, 커패시턴스 감지 포인트들 및 다른 관련된 전기적 구조들이 인듐 주석 산화물(ITO)과 같은 실질적으로 투명한 도전성 매체를 이용하여 형성될 수 있다. 감지 포인트들(102)의 개수 및 구성은 변경될 수 있다. 감지 포인트들(102)의 개수는 일반적으로 원하는 해상도 및 감도에 좌우된다. 터치 스크린 응용에서, 감지 포인트들(102)의 개수는 또한 터치 스크린의 원하는 투명도에 좌우될 수 있다.
아래에서 더 상세히 설명되는 것과 같은, 멀티 터치 감지 배열을 이용하면, 멀티 터치 센서(101)의 노드들(102)에서 생성된 신호들은 특정 시점에서의 터치들 의 이미지를 생성하는 데 이용될 수 있다. 예를 들면, 터치 감응 표면(101)과 접촉하거나 그에 근접하는 각 물체(예를 들면, 손가락, 스타일러스 등)는 도 2에서 도시된 바와 같이 콘택트 패치 영역(contact patch area)(201)을 생성할 수 있다. 각 콘택트 패치 영역(201)은 몇 개의 노드들(102)을 커버할 수 있다. 커버된 노드들(202)은 물체를 검출할 수 있지만, 나머지 노드들(102)은 그렇지 않다. 그 결과, 터치 표면 평면의 픽셀화 이미지(pixelated image)(터치 이미지, 멀티 터치 이미지, 또는 근접 이미지라고 불릴 수 있음)가 형성될 수 있다. 각 콘택트 패치 영역(201)에 대한 신호들은 함께 그룹화될 수 있다. 각 콘택트 패치 영역(201)은 각 포인트에서의 터치의 양에 기초하여 고 포인트(high point) 및 저 포인트(low point)를 포함할 수 있다. 콘택트 패치 영역(201)의 형상뿐만 아니라, 이미지 내의 고 포인트 및 저 포인트는 서로 근접해 있는 콘택트 패치 영역들(201)을 구별하는 데 이용될 수 있다. 더욱이, 현 이미지를 이전 이미지와 비교하여 물체들이 시간에 걸쳐서 어떻게 움직일 수 있는지, 및 그의 결과로 호스트 장치에서 어떤 대응하는 액션이 수행되어야 하는지를 결정할 수 있다.
저항성(resistive), 용량성(capacitive), 광학(optical) 등을 포함하여, 다수의 상이한 감지 기술들이 이들 감지 배열과 관련하여 이용될 수 있다. 커패시턴스 기반 감지 배열에서는, 물체가 터치 감응 표면(101)에 접근할 때, 그 물체와 그 물체에 근접하는 감지 포인트들(102) 사이에 작은 커패시턴스가 형성된다. 이 작은 커패시턴스에 의해 야기되는 감지 포인트들(102) 각각에서의 커패시턴스의 변화들을 검출함으로써, 그리고 감지 포인트들의 위치를 알아차림으로써, 감지 회 로(103)는 복수의 터치들을 검출 및 모니터할 수 있다. 이 용량성 감지 노드들은 자기 커패시턴스 또는 상호 커패시턴스에 기초할 수 있다.
자기 커패시턴스 시스템에서는, 어떤 기준, 예를 들면, 접지에 대하여 감지 포인트의 "자기" 커패시턴스가 측정된다. 감지 포인트들(102)은 공간적으로 분리된 전극들일 수 있다. 이 전극들은 도전성 트레이스들(105a(구동 라인들) 및 105b(감지 라인들))에 의해 구동 회로(104) 및 감지 회로(103)에 결합될 수 있다. 일부 자기 커패시턴스 시스템에서는, 각 전극에의 단일 도전성 트레이스가 구동 라인 및 감지 라인 양쪽 모두로서 이용될 수 있다.
상호 커패시턴스 시스템에서는, 제1 전극과 제2 전극 간의 "상호" 커패시턴스가 측정될 수 있다. 상호 커패시턴스 감지 배열에서, 감지 포인트들은 공간적으로 분리된 라인들을 형성하는 패터닝된 도체들의 교차점들에 의해 형성될 수 있다. 예를 들면, 구동 라인들(105a)은 제1 층 상에 형성될 수 있고 감지 라인들(105b)은 제2 층(105b) 상에 형성될 수 있어, 구동 라인들 및 감지 라인들은 감지 포인트들(102)에서 서로 가로지르거나 "교차"할 수 있다. 상이한 층들은 상이한 기판들, 동일 기판의 상이한 측면들, 또는 어떤 유전성 분리(dielectric separation)를 갖는 기판의 동일한 측면일 수 있다. 구동 라인들과 감지 라인들 간의 분리 때문에, 각 "교차점"에 용량 결합 노드가 있을 수 있다.
구동 및 감지 라인들의 배열은 변화할 수 있다. 예를 들면, (도시된) 직교 좌표계에서, 구동 라인들은 수평 로우들로서 형성될 수 있고, 감지 라인들은 수직 컬럼들로서 형성될 수 있어(또는 반대로), 별개의 x 및 y 좌표들을 갖는 것으로 간 주될 수 있는 복수의 노드들을 형성한다. 대안적으로, 극 좌표계에서, 감지 라인들은 복수의 동심원일 수 있고 구동 라인들은 방사상으로 연장하는 라인들일 수 있어(또는 반대로), 별개의 반경 및 각도 좌표들을 갖는 것으로 간주될 수 있는 복수의 노드들을 형성한다. 어느 쪽의 경우든, 구동 라인들(105a)은 구동 회로(104)에 접속될 수 있고, 감지 라인들(105b)은 감지 회로(103)에 접속될 수 있다.
동작 중에, 구동 신호(예를 들면, 주기적인 전압)가 각 구동 라인(105a)에 인가될 수 있다. 구동될 경우, 구동 라인(105a) 상의 영향을 받은 전하는 노드들(102)을 통하여 교차하는 감지 라인들(105b)에 용량 결합할 수 있다. 이는 감지 라인들(105b)에서 검출 가능한, 측정 가능한 전류 및/또는 전압을 일으킬 수 있다. 구동 신호와 감지 라인들(105b) 상에 나타나는 신호 간의 관계는 구동 및 감지 라인들을 결합하는 커패시턴스의 함수일 수 있고, 이는 전술한 바와 같이, 노드(102)에 근접하는 물체에 의해 영향을 받을 수 있다. 커패시턴스 감지 회로(또는 회로들)(103)는 아래에서 더 상세히 설명되는 바와 같이 감지 라인들(105b)을 감지할 수 있고 각 노드에서의 커패시턴스를 결정할 수 있다.
위에서 논의된 바와 같이, 구동 라인들(105a)은, 다른 구동 라인들이 접지되어 있는 동안에, 한 번에 하나씩 구동될 수 있다. 이 프로세스는 모든 구동 라인들이 구동될 때까지 각 구동 라인(105a)에 대하여 반복될 수 있고, 감지된 결과로부터 터치 이미지(커패시턴스에 기초함)가 구성될 수 있다. 일단 모든 라인들(105a)이 구동되면, 시퀀스는 일련의 터치 이미지들을 형성하도록 반복할 수 있다. 그러나, 본 발명의 일부 실시예에서는, 2007년 1월 3일에 출원된, "Simultaneous Sensing Arrangement"라는 명칭의, 미국 특허 출원 11/619,466호에서 설명된 바와 같이, 복수의 구동 라인들이 실질적으로 동시에 또는 거의 동시에 구동될 수 있다.
도 3은 전술한 배열에 대응하는 상호 커패시턴스 회로(300)의 단순화된 개략도를 도시한다. 상호 커패시턴스 회로(300)는 구동 라인(105a) 및 감지 라인(105b)을 포함할 수 있고, 이들은 공간적으로 분리됨으로써 용량 결합 노드(102)를 형성할 수 있다. 구동 라인(105a)은 전압원(301)으로 표현된 구동 회로(104)에 전기적으로(즉, 도전성 있게) 결합될 수 있다. 감지 라인(105b)은 커패시턴스 감지 회로(803)에 전기적으로 결합될 수 있다. 구동 라인(105a) 및 감지 라인(105b) 양쪽 모두는, 일부 경우에, 얼마간의 기생 커패시턴스(302)를 포함할 수 있다.
전술한 바와 같이, 구동 라인(105a)과 감지 라인(105b)의 교차점에 근접하는 도전성 물체의 부재시에, 노드(102)에서의 용량 결합은 꽤 일정한 상태로 있을 수 있다. 그러나, 전기 도전성 물체(예를 들면, 사용자의 손가락, 스타일러스 등)가 노드(102)에 근접하여 오면, 용량 결합(즉, 로컬 시스템의 커패시턴스)은 변화한다. 이 용량 결합의 변화는 감지 라인(105b)에 의해 운반되는 전류(및/또는 전압)를 변화시킨다. 커패시턴스 감지 회로(103)는 이 커패시턴스 변화 및 노드(102)의 위치를 알아차리고 이 정보를 소정의 형태로 프로세서(106)(도 1)에 보고한다.
도 1을 참조하여, 감지 회로(103)는 터치 표면(101)으로부터 데이터를 획득하고 그 획득된 데이터를 프로세서(106)에 공급할 수 있다. 일부 실시예에서, 감지 회로(103)는 원시 데이터(raw data)(예를 들면, 각 감지 포인트(102)에 대응하 는 커패시턴스 값들의 어레이)를 프로세서(106)에 송신하도록 구성될 수 있다. 다른 실시예에서, 감지 회로(103)는 원시 데이터 자체를 처리하고 처리된 터치 데이터를 프로세서(106)에 전달하도록 구성될 수 있다. 어느 쪽의 경우든, 프로세서는 그 후 그것이 수신하는 데이터를 이용하여 컴퓨터 시스템(107) 및/또는 그 위에서 실행중인 하나 이상의 애플리케이션의 동작을 제어할 수 있다. 이들 라인들을 따르는 다양한 구현들이 위에서 참조된 출원들에서 설명되어 있고, 터치 패드들 및 터치 스크린들을 갖는 각종의 컴퓨터 시스템들을 포함한다.
일부 실시예에서, 감지 회로(103)는 하나 이상의 마이크로컨트롤러를 포함할 수 있고, 그 각각은 하나 이상의 감지 포인트들(102)을 모니터할 수 있다. 마이크로컨트롤러들은 펌웨어와 협력하여 터치 감응 표면(101)로부터의 신호들을 모니터하고, 모니터된 신호들을 처리하고, 이 정보를 프로세서(106)에 보고하는 특수 용도의 집적 회로(ASIC)들일 수 있다. 마이크로컨트롤러들은 또한 디지털 신호 프로세서(DSP)들일 수 있다. 일부 실시예에서, 감지 회로(103)는 각 감지 라인(105b)에서 커패시턴스를 측정하고 측정된 값들을 프로세서(106)에 또는 컴퓨터 시스템(107) 내의 호스트 컨트롤러(도시되지 않음)에 보고하는 하나 이상의 센서 IC들을 포함할 수 있다. 임의의 개수의 센서 IC들이 이용될 수 있다. 예를 들면, 하나의 센서 IC가 모든 라인들에 대하여 이용될 수 있고, 또는 복수의 센서 IC들이 단일 라인 또는 라인들의 그룹에 대하여 이용될 수 있다.
도 4는 전술한 것과 같은, 멀티 터치 감지 배열을 동작시키기 위한 고레벨 프로세스(400)를 도시한다. 이 프로세스는 블록 401에서 시작하고 여기서는 복수 의 감지 포인트들(102)이 구동될 수 있다. 블록 401에 이어서, 프로세스 흐름은 블록 402로 진행할 수 있고, 여기서는 감지 포인트들(102)로부터의 출력들이 판독될 수 있다. 예를 들면, 각 감지 포인트(102)에 대한 커패시턴스 값이 획득될 수 있다. 블록 402에 이어서, 프로세스는 블록 403으로 진행할 수 있고 여기서는 한 시점에서의 터치의 이미지 또는 다른 형태의 데이터(신호 또는 신호들)가 생성될 수 있고 그 후 터치 센서에 접촉하거나 그에 근접하는 물체들이 어디에 위치할 수 있는지를 결정하기 위해 분석될 수 있다. 블록 403에 이어서, 프로세스는 블록 404로 진행할 수 있고, 여기서는 각 물체에 대한 형상, 사이즈, 위치, 방향, 속도, 가속, 압력 등의 하나 이상의 변화를 결정하기 위해 현 이미지 또는 신호가 하나 이상의 과거 이미지들 또는 신호들과 비교될 수 있다. 이 정보는 그 후, 포인트 또는 커서를 움직이는 것으로부터 복잡한 제스처 기반 상호작용에 이르기까지, 컴퓨터 시스템(107)에서 액션을 수행하는 데 이용될 수 있다(단계 405에서).
1.2. 반투과반사형 LCD
반투과반사형(transflective) LCD와의 터치 감지 기술의 통합을 더 잘 이해하기 위하여, 반투과반사형 LCD에 대한 간략한 소개가 도움이 될 수 있다. 다음은 LTPS(low temperature poly-silicon) 반투과반사형 LCD에서 발견되는 전형적인 서브픽셀 셀에 대한 개관이다.
1.2.1. 회로 기초
도 5는 LTPS 반투과반사형 서브픽셀(500)에 대한 대표적인 레이아웃을 도시한다. 원하는 그레이 레벨을 나타내는 전압이 데이터 버스(501)에 인가되고 선택 라인(502)이 어서트(assert)될 경우 서브픽셀의 커패시터들 CST 및 CLC에 디스플레이 정보가 전송될 수 있다. 선택 라인(502) 어설션(assertion) 레벨은 게이트 구동 플러스 공급 전압에 가까울 수 있다. 선택 라인(502)이 어서트되는 시간 동안에, VCST(및 도시되지 않은 VCOM) 상의 전압은 일정할 수 있다. 금속, 폴리, 능동(active), 산화물, 및 ITO를 포함하는, 도 5에서 도시된 모든 회로 소자들은 LCD의 하부 글라스 상에 제조될 수 있다.
도 6은 상면도(601) 및 측면도(602)를 포함하는, LTPS(low temperature poly-silicon) LCD(600)의 단순화된 모델을 보여준다. 상면도(601)는 디스플레이 영역(604) 및 비디스플레이(non-display) 영역(605) 양쪽 모두에서의 하부 글라스(608) 상의 VCST 라우팅(603)의 투명도(see-through view)를 보여준다. 측면도(602)는 디스플레이의 단면을 보여준다.
각 디스플레이 로우는 VCST(606) 및 선택(도시되지 않음)을 위한 수평 트레이스들을 포함할 수 있다. 선택 트레이스들은, 도시되지 않은, 폴리실리콘 박막 트랜지스터(p-Si TFT)들로 이루어진 게이트 구동 회로에 접속한다. VCST 트레이스들(606)은 디스플레이 에지로부터 디스플레이 에지까지 연장할 수 있고, 예를 들면, 좌측에 도시된 바와 같이, 함께 접속할 수 있다. VCST 트레이스들은 또한, 도전성 도트(607)를 통하여, 상부 글라스(610) 상의 ITO 평면(609)에 접속할 수 있다. 전형적으로, 각 코너에 하나씩, 4개의 도전성 도트들이 VCOM 평면을 VCOMDrive(611)에 접속하는 데 이용될 수 있다. 도 6은 간소화를 위하여 하나의 도트(607)만을 보여준다. VCST 및 상부 ITO(609)의 전압은 VCOMDrive에 의해 설정될 수 있고, 이 VCOMDrive는 LCD 드라이버 IC(도시되지 않음)에 의해 제공될 수 있다. VCST는 또한 VCOMDrive(611) 이외의 다른 구동원에 접속될 수 있다.
도 7은 서브픽셀에 대한 회로도(700)를 도시하고 어느 글라스 기판 상에 다양한 컴포넌트들이 제조될 수 있는지를 보여준다. 하부 글라스(701)는 모든 TFT 픽셀 회로(703)의 통합을 위한 기판일 수 있다. 이것은 선택 라인 드라이버들 및 제어 로직을 포함할 수 있다. 하부 글라스는 또한 LCD 드라이버(도시되지 않음)와 같은, 칩 온 글라스(COG) 컴포넌트들을 위한 기판으로서 작용할 수도 있다. 커패시터 CLC의 상위 전극(304)은 상부 글라스(702) 상에 있을 수 있다. 전극(704)은 전체 디스플레이 영역을 커버하고 하부 전극(705)에 대한 대향 전극(counter electrode)을 형성하여 CLC를 만드는 ITO 평면일 수 있다. 상위 전극(704)은 또한, 예를 들면, 4개의 코너에 위치하는 도전성 도트들(706)(하나만 도시됨)을 통하여, 하부 글라스(701) 상의 VCOMDrive(707)에 접속할 수 있다.
1.2.2. V COM
액정(LC)을 가로지르는 전압의 DC 성분을 최소화하거나 제거함으로써 일부 바람직하지 못한 이미지 아티팩트들(image artifacts)을 감소시키거나 제거할 수 있다. 그러므로, IC를 가로지르는 전계는 2개의 전계 방향 간의 전체적인 균형을 유지하면서 주기적으로 플립(flip)될 수 있다. 완벽한 전계 균형을 얻는 것은 어려울 수 있고, 이로 인해 불필요한 이미지 아티팩트들을 생성할 수 있는 작은 DC 오프셋들이 생길 수 있다. DC 오프셋들로 인한 깜박임(flicker)을 마스킹하기 위하여, 도트 반전과 같은, 당업자에게 알려진 몇몇 반전 방식들 중 하나가 채용될 수 있다.
1.2.3. V COM 변조
일부 실시예에서는, 데이터 드라이버들의 전압 범위를 감소시키는 것이 바람직할 수 있다. 그러므로, VCOM ITO 평면 및 VCST 트레이스들은 LC를 가로질러 AC 전압을 생성하기 위해 접지 전압에서 공급 전압 레일까지(from ground to the supply rail) 변조될 수 있다. 그러나, 이것은 이용 가능한 반전 방법들을 프레임 및 라인 타입들만으로 제한할 수 있다.
VCOMDrive 요건들은 아주 단순할 수 있다: 그의 전압은 한 로우의 픽셀들에 대하여 전하 전송이 완료되어, 그들의 그레이 레벨들을 설정할 때까지 일정하게 유지될 수 있다. 일단 디스플레이 픽셀들이 설정되면, 서브픽셀 안팎으로의 기생 경로들이 작게 유지된다는 조건으로 VCOMDrive는 LC 상태에 크게 영향을 미치지 않고 변화할 수 있다.
1.2 4. 일정한 V COM
VCOM 변조는 LCD와의 터치 감지의 통합을 복잡하게 할 수 있다. 이러한 복잡 화를 극복하기 위한 다양한 기법들은 아래에서 논의된다. 액정을 가로지르는 전압의 DC 성분을 최소화하는 대안적인 방법이 채용될 수 있다. 한 가지 그러한 대안적인 방법은, 본원에 참고로 통합되는, J. Hector 및 p. Buchschacher 공저, "Low Power Driving Options for an AMLCD Mobile Display Chipset", SID 02 Digest, pp. 695-697에서 개시되어 있다. 이 대안적인 방법은 VCOM이 일정한 전압에 머무르도록 할 수 있고, 전압 범위가 큰(large-voltage range) 데이터 드라이버를 필요로 하지 않고, 낮은 전력을 소비할 수 있다. 일정한 VCOM을 이용하는 것의 다양한 이점들은 아래에서 설명된다.
1.3. LCD 제조
LCD 패널들의 제조는 마더 글라스(mother-glass)라 불리는 대형 글라스들 상에서 일괄 프로세스를 이용하여 행해질 수 있다. 2개의 마더 글라스가 이용될 수 있다: 컬러 필터, 블랙 매트릭스, 및 CLC에 대한 상위 전극에 대한 기판을 제공할 수 있는 상부 마더 글라스; 및 능동 매트릭스 TFT 어레이 및 구동 회로에 대한 기판을 제공할 수 있는 하부 마더 글라스.
LCD를 제조하는 기본적인 프로세스 흐름(800)이 도 8에 도시되어 있다. 2개의 대형 마더 글라스의 시트들, 즉 LCD의 상부를 위한 시트와 하부를 위한 시트가 개별 처리 단계들(801 및 802)을 거친 후에 정렬되고(블록 803), 함께 압착되고, 가열되어(블록 804) 상부 및 하부 글라스 간의 시일(seal)들을 경화시킴으로써 안정된 패널 구조가 생성될 수 있다. 대형 패널은 그 후 스크라이브(scribe)되어 원 하는 치수의 보다 작은 모듈들로 쪼개진다(블록 805). 개별 모듈들은 그들의 에지들이 그라인드(grind)된(블록 806) 후에 액정들로 충전된다(블록 807). 충전 후에, 모듈들은 실링(seal)될 수 있다(블록 808). 편광자들 및 전기 컴포넌트들이 부착될 수 있다(블록 809). 프로세스의 종료 시에 또는 종료 무렵에 연성 인쇄 회로(FPC)들이 그들의 기판들에 부착될 수 있다(블록 810).
완성된 LCD 모듈(900)이 도 9에 도시되어 있다. 도시된 LCD 모듈은 하부 글라스(902)에 부착된 칩 온 글라스(COG) LCD 드라이버(901)를 포함하고 또한 하부 글라스(902)에 부착된 FOG(flex on glass) 연성 인쇄 회로(FPC)(903)를 포함한다. 양쪽 컴포넌트들은 ACA(anisotropic conductive adhesive)를 이용하여 하부 글라스 패드들에 전기적으로 접속되고 제자리에 유지될 수 있다. 하부 글라스(902)는 상부 글라스(904)를 넘어서 연장하여 COG LCD 드라이버(901), FPC(903), 및 기타 지지 컴포넌트들을 설치하기 위한 선반부(shelf)(905)를 제공할 수 있다. 핸드헬드 장치들의 경우, LCD에 대한 컨트롤들 및 데이터를 관리하는 시스템 프로세서 보드는 백라이트(906)의 아래에 배치될 수 있다.
터치 감지를 지지하는 데 이용될 수 있는 추가의 컴포넌트들(예를 들면, FPC들)도 선반부(905)에 부착될 수 있다. 다른 부착 포인트들도 가능하다. 그 상세는 후술되는 관련 실시예들과 관련하여 논의된다.
1.4. LCD 및 터치 감지의 결합
여기서 논의되는 스택업도들은 도 10 및 11의 블록도들과 관련하여 더 잘 이해될 수 있다. 위에서 시작하여, 터치 감지 전극들(1001, 1101)은 LCD 상부 글라 스(1002, 1102)의 상부(사용자 측)에 적층될 수 있다. 터치 구동 전극들(1003, 1103)은 상부 글라스(1002, 1102)의 하부 측에 패터닝될 수 있다. 도전성 도트들(1004, 1104)은 구동 전극들(1003, 1103)을 드라이버(1005, 1105)에 접속할 수 있고, 드라이버(1005, 1105)는 또한 하부 글라스(1006, 1106) 상에 위치할 수 있다. 하부 글라스(1006, 1106) 상의 선반부(1007, 1107)는 LCD 드라이버 칩(1008, 1108) 및 터치 센서 드라이버 칩(1009)을 하우징할 수 있고, LCD 드라이버 칩과 터치 센서 드라이버 칩은 서로 인터페이스하거나(도 10) 단일 컴포넌트로 통합될 수 있다(도 11). 마지막으로, 또한 선반부에 접합된 FPC(1010, 1110)는 호스트 장치(1011, 1111)를 접속할 수 있다.
2. 통합 옵션들
통합에 필수적인 터치 감지를 갖는 LCD의 일부 실시예들은 상부 글라스 및 하부 글라스를 포함할 수 있다. 이 2개의 글라스 층들 사이의 액정층을 통과하는 광의 양에 영향을 미치도록 디스플레이 제어 회로가 이들 글라스 층들 중 한쪽 및/또는 양쪽 모두에 형성될 수 있다. 상부 및 하부 글라스의 외부 에지들 사이의 공간을 여기서는 액정 모듈(LCM; liquid crystal module)이라고 부른다.
전형적인 LCD 스택업(1200)은 도 12에서 도시된 바와 같이 전형적으로 추가의 층들을 포함한다. 도 12에서, 하드 코팅된(hard-coated) PMMA 층(1201)은 LCD 편광자(1202) 및 상부 글라스(1203)를 보호할 수 있고, 하부 글라스(1204)와 백라이트(1206) 사이에 제2 편광자(1205)가 포함될 수 있다.
터치 감지 기술을 LCD에 통합하는 것은 다양한 기법들을 이용하여 달성될 수 있다. 예를 들면, 디스플레이 및/또는 제조 비용, 디스플레이 사이즈, 디스플레이 복잡성, 디스플레이 내구성, 디스플레이 기능성, 및 이미지 디스플레이 품질 등과 같은 인자들이 변화하는 상이한 실시예들에 있어서, 상이한 터치 감지 소자들 및/또는 층들이 LCD 디스플레이에 통합될 수 있다. 일부 실시예에서는, LCM의 외부의 LCD 디스플레이 상에 터치 감지 소자들을 통합함으로써 터치 감지 능력이 LCD에 포함될 수 있다. 다른 실시예에서는, 터치 감지 소자들이 LCM의 외부뿐 아니라 LCM의 내부(예를 들면, 2개의 글라스 층들 사이) 양쪽 모두에 추가될 수 있다. 또 다른 실시예에서는, 터치 감지 소자들의 세트가 LCM의 내부(예를 들면, 2개의 글라스 층들 사이)에만 추가될 수 있다. 다음의 섹션들은 위에서 언급한 실시예들 각각에 대한 다수의 컨셉트를 설명한다.
2.1. 액정 모듈( LCM )의 외부의 터치 감지
LCM의 외부에 터치 감지 소자들을 추가할 경우 전형적인 LCD 제조 관행에 거의 내지 전혀 영향을 미치지 않고 LCD 디스플레이에 터치 감지 능력이 추가될 수 있다. 예를 들면, 터치 감지 시스템 및 LCD 디스플레이 시스템은 개별적으로 제조되고 최종 단계에서 통합되어 터치 감지 능력을 갖는 LCD를 형성할 수 있다. LCD의 외부에 터치 감지 소자들을 포함시키는 경우는 또한 터치 감지 소자들이 사용자에 의해 터치되는 영역에 가까이 배치되도록 할 수 있어, 잠재적으로 디스플레이와 터치 컴포넌트들 사이의 전기적 간섭을 감소시킬 수 있다.
컨셉트 C 및 컨셉트 N으로서 식별된 다응 2개의 실시예들은 그러한 외부의 터치 감지 소자들을 통합할 수 있다.
2.1.1. 컨셉트 C
본 발명의 일 실시예인, 컨셉트 C는 LCD로부터 터치 기능이 분리되도록 하는 도 13에서 도시된 스택업을 이용한다. 컨셉트 C에서는, 2개의 추가의 인듐-주석 산화물(ITO) 층들(IT01(1301) 및 IT02(1302))이 컬러 필터(CF) 플레이트(예를 들면, 상부 글라스 층)의 위에 패터닝될 수 있다. 이들 층들은 터치 센서, 예를 들면, 상호 커패시턴스 터치 센서의 터치 감지 및 터치 구동 소자들을 위해 이용될 수 있다. 이들 ITO 층들은 (도 1 및 2에서 도시되고, 전술한 멀티 터치 감지 설명에서 설명된 바와 같이) 컬럼들 및/또는 로우들로 패터닝될 수 있고, 글라스 기판 또는 얇은(예를 들면, 5-12mm) SiO2 층과 같은 유전체(1305)에 의해 분리될 수 있다.
일부 실시예에서, 터치 소자들에서 사용되는 전극 패턴은 시각적 아티팩트(visual artifacts)를 감소시키도록 최적화될 수 있다. 예를 들면, 도 14는 시각적 아티팩트를 감소시킬 수 있는 마름모꼴 전극 패턴을 도시한다.
컨셉트 C에서는, 터치 감지 데이터를 운반하는 FPC들이 상부 글라스(1303)의 상부 표면에 부착될 수 있다.
2.1.2. 컨셉트 N
본 발명의 일 실시예인, 컨셉트 N은 자기 커패시턴스 감지를 이용하여 컬러 필터(CF) 플레이트의 외부 표면 상에 용량성 감지를 구현할 수 있다. 컨셉트 N은 터치 감지 컴포넌트들이 CF 플레이트(1501)(상부 글라스)의 위에 위치할 수 있는 도 15에서 도시된 스택업을 이용할 수 있다. 컨셉트 N에 기초한 LCD들은, 예를 들면, 종래의 TFT 플레이트(1504)에 대하여 이용되는 동일한 LTPS 프로세스를 이용하여 CF 플레이트(1501) 상에 패터닝된 ITO(1500) 및 2개의 금속층들을 갖는 TFT들(1503)을 형성함으로써 표준 LCD 프로세싱을 변경하지 않고 구성될 수 있다. 터치 ITO 층(1500)은 복수의 터치 픽셀들(1612)(도 16)로 패터닝될 수 있다. 터치 ITO 층(1500)은 사용자에 의해 터치되는 표면으로도 작용할 수 있는 플라스틱 커버(1702)(도 17에 도시됨)에 의해 보호될 수 있다.
도 16은 컨셉트 N에 대한 셀프 커패시턴스 터치 픽셀 회로를 도시한다. 각 ITO 터치 픽셀(1612)은 2개의 TFT, 예를 들면, 입력 TFT(1604) 및 출력 TFT(1608)에 접속될 수 있다. 입력 TFT(1604)는 ITO 터치 픽셀(1612)을 충전시킬 수 있고, 반면 출력 TFT(1608)는 ITO 터치 픽셀(1612)을 방전시킬 수 있다. 이동되는 전하의 양은 ITO 터치 픽셀(1602)의 커패시턴스에 좌우될 수 있고, 그 커패시턴스는 손가락의 근접에 의해 변경될 수 있다. 자기 커패시턴스 터치 감지의 추가 상세에 대해서는 위에서 및, 본원에 전체적으로 참고로 통합되는, 2001년 11월 27일에 발행된, "Method and Apparatus for Integrating Manual Input"이라는 명칭의, 미국 특허 6,232,846호에서 설명되어 있다.
일 실시예에서는, 도 16 및 18에서 출력 컬럼(1610) 'CO' 및 출력 게이트들(1606) 'R3'에 대하여 도시된 바와 같이, 출력 컬럼(1610)은 수직으로 터치 픽셀들에 의해 공유될 수 있고, 출력 게이트들(1606)은 수평으로 터치 픽셀들에 의해 공유될 수 있다.
2.2. 부분적으로 통합된 터치 감지
LCM의 내부에 터치 감지 소자들을 통합하는 것은 다양한 이점들을 제공할 수 있다. 예를 들면, LCM의 내부에 추가된 터치 감지 소자들은 디스플레이 기능을 위해서만 사용되었을 ITO 층들 또는 다른 구조들을 터치 감지 기능도 제공하도록 "재사용"할 수 있을 것이다. 기존의 디스플레이 층들에 터치 감지 특징들을 통합하는 것은 또한 층들의 총수를 감소시킬 수 있고, 이는 디스플레이의 두께를 감소시키고 제조 프로세스를 단순화할 수 있다.
다음의 실시예들은 LCM의 내부와 외부에 터치 감지 소자들을 포함할 수 있다. LCM 내에 터치 감지 소자들을 통합할 경우 2개의 기능들 간의 간섭 및 잡음이 생길 수 있기 때문에, 다음의 디자인들은 또한 둘 간의 전기적 간섭에 의해 야기되는 디스플레이 및/또는 터치 감지 출력들에 대한 부정적인 영향들을 감소시키거나 제거하면서 소자들이 공유되도록 하는 기법들을 포함할 수 있다.
2.2.1. 컨셉트 A
컨셉트 A는, 상부 글라스와 편광자(2003) 사이에, 상부 글라스(2002)의 사용자 측에 배치된 멀티 터치 가능한("MT") ITO 감지층(IT01)(2001)을 갖는, 도 20에서 도시된 기본 스택업(2000)을 이용할 수 있다. 위로부터 시작하여, 터치 감지층들은: IT01(2001)(N개의 감지(또는 구동) 라인들로 패터닝될 수 있는 ITO 층) 및 IT02(2004)(M개의 감지(또는 구동) 라인들로 패터닝될 수 있는 ITO 층)를 포함할 수 있다. IT02 층(2004)은 또한 LCD에 대한 VCOM 전극으로도 작용할 수 있다.
2.2.1.1. 컨셉트 A: 터치 센서 전극
터치 센서 전극 어레이는 도 21(좌측)에 도시된 바와 같이 2개의 패터닝된 ITO 층들을 포함할 수 있다. 도 21은 터치 센서 전극들의 하나의 가능한 구현의 단순화된 도시이다. 관찰자(viewer)에게 더 가까이 있는 층인 IT01(2101)은 감지층 또는 감지 라인이라고도 불리는 터치 출력층일 수 있다. 터치 구동층(2102)은 IT02 층 상에 위치할 수 있다. IT02는 또한 커패시터 CLC(도 7 참조)의 상위 전극을 형성할 수 있다. 도 21(우측)은 또한 3개의 감지 픽셀들(2103a, 2103b, 및 2103c)와 함께 관련된 커패시터들의 상세를 보여준다. 감지 라인 및 구동 라인 양쪽 모두는 5 mm 피치 및 10 내지 30 마이크로미터 갭을 가질 수 있다. 이 갭은 육안으로는 보이지 않을 만큼 작을 수 있지만, 그럼에도 단순 근접 마스크(simple proximity mask)를 이용해 에칭하기에는 용이할 만큼 클 수 있다. (도면 내의 갭들은 크게 과장되어 있다.)
도 22는 케이블링 및 서브시스템 배치의 상면도(2201) 및 측면도(2202)를 갖는, 컨셉트 A에 대한 하나의 가능한 물리적 구현을 보여준다. 상면도(2201)는 접히지 않은 상태의 FPC(2203)(아래에서 더 상세히 논의됨)의 대략 위치들을 보여준다. 도 14는 단지 개별 터치 레벨 시프터/디코더 COG가 이용될 수 있는 하나의 물리적 구현을 나타낸다. 개별 터치 컴포넌트들의 수를 최소화하는 대안 아키텍처는 아래에서 논의된다. 기계적 안정성을 위하여, FPC는 측면도(2202)에서 도시된 바와 같이 구부려질 수 있고, 그에 따라 T-탭(2204) 및 B-탭(2205) 본드들에 대한 응 력이 최소화된다. 도 23은 주요 하부 글라스 컴포넌트들의 하나의 가능한 아키텍처(2300), 및 터치 감지를 위해 이용되는 상부 글라스 상의 분할된 IT02 층(2301)을 보여주는 고레벨 블록도이다. 상부 글라스 상의 IT02의 세그먼트들(2302)은 각각 도전성 도트(2303)를 하부 글라스 상의 대응하는 패드에 접속한다. 하부 글라스 상의 패드들은 각각 아래에서 논의되는 터치 드라이버에 접속할 수 있다.
2.2.1.2 컨셉트 A: 도전성 도트
LCD의 코너들에 위치하는 도전성 도트들은 VCOM 전극을 구동 회로들에 접속하는 데 이용될 수 있다. 터치 구동 라인들을 터치 구동 회로에 접속하기 위해 추가의 도전성 도트들이 이용될 수 있다. 도트들은 터치 구동 신호들(아래에서 더 상세히 논의됨)의 위상 지연에 현저하게 추가하지 않도록 충분히 낮은 저항을 가질 수 있다. 이것은 도전성 도트들의 저항을 10 옴 이하로 제한하는 것을 포함할 수 있다. 요구되는 리얼 에스테이트(real estate)를 감소시키기 위해 도전성 도트들의 사이즈도 제한될 수 있다.
도 24에서 도시된 바와 같이, 신장된 도전성 도트들(2401)은 도트 저항 및 리얼 에스테이트 양쪽 모두의 요건들을 감소시키기 위해 이용될 수 있다. 터치 구동 세그먼트들(2402)은 폭이 약 5 mm일 수 있고, 이는 도트 저항을 감소시키는 큰 면적을 제공할 수 있다.
2.2.1.3. 컨셉트 A: 연성 회로 및 터치/ LCD 드라이버 IC
종래의 디스플레이(예를 들면, 도 9)는 디스플레이의 저레벨 동작을 제어할 수 있는 LCD 드라이버 회로(IC)(901)를 가질 수 있다. 시스템 호스트 프로세서는 명령 및 디스플레이 데이터를 LCD 드라이버(901)에 보냄으로써 디스플레이에 대하여 고레벨 제어를 행사할 수 있다. 멀티 터치 시스템들은 또한 하나 이상의 드라이버 IC들을 가질 수 있다. 통합된 참고 문헌들에서 설명된, 하나의 예시적인 멀티 터치 가능한 시스템은 3개의 IC, 즉, 멀티 터치 컨트롤러, 외부 레벨-시프터/디코더, 및 ARM 프로세서와 같은 컨트롤러를 포함한다. ARM 프로세서는 멀티 터치 컨트롤러에 대하여 저레벨 제어를 행사할 수 있고, 후자는 그 후 레벨-시프터/디코더를 제어할 수 있다. 시스템 호스트 프로세서는 ARM 프로세서에 대하여 고레벨 제어를 행사할 수 있고 그로부터 터치 데이터를 수신할 수 있다. 일부 실시예에서, 이들 드라이버들은 단일 IC로 통합된다.
도 25는 터치/LCD 드라이버 통합 회로(2501)에 대한 예시적인 고레벨 블록도를 도시한다. 이 IC는 2가지 주요 기능, 즉, 1) LCD 제어 및 업데이트, 및 2) 터치 스캐닝 및 데이터 처리의 기능을 갖고 있다. 이들 2가지 기능들은 LCD 제어를 위한 LCD 드라이버 부분(2502) 및 터치 스캐닝 및 처리를 위한 ARM 프로세서(2503) 및 멀티 터치 컨트롤러(2504)에 의해 통합될 수 있다. 터치 회로들은 어느 하나가 다른 하나를 방해하지 못하도록 LCD 스캐닝과 동기화될 수 있다. 호스트와, LCD 드라이버 또는 ARM 프로세서 간의 통신은 호스트 데이터 및 제어 버스(2505)를 통하여 이루어질 수 있다. 더 완전히 통합된 터치/LCD 드라이버에 대해서는 아래에서 논의된다.
도 26에서 도시된 바와 같이, 다양한 터치 및 디스플레이 층들에 대한 신호 들을 불러 모으는 FPC(2601)는 3개의 커넥터 탭, 즉, T-탭(2602), B-탭(2603), 및 호스트 탭(2604)을 가질 수 있다. T-탭은 상부 글라스 상의 감지 라인 패드들에 접속할 수 있다. T-탭 트레이스들(2605)은 B-탭(2603) 상의 대응하는 패드들에 접속할 수 있고, B-탭은 또한 하부 글라스 상에 부착될 수 있다. B-탭(2603)은 또한 호스트가 터치/LCD 드라이버 IC에 접속하게 할 수 있는 호스트 탭(2604)으로부터의 통과 루트들(pass-through routes)(2606)을 제공할 수 있다. FPC(2601)는 또한 터치 및 LCD 동작을 지원하는 다양한 컴포넌트들(2607)에 대한 기판을 제공할 수 있고, 또한 2개의 패드들(2608)을 통하여 백라이트 FPC에 접속할 수 있다.
FPC(2601)는 상부 및 하부 글라스 양쪽 모두에 접합된 TAB일 수 있다. 대안적으로는, 다른 접합 방법들이 이용될 수 있다.
2.2.1.4. 컨셉트 A: 하부 글라스 상에 통합된 터치 구동
레벨 시프터/디코더 칩은, 개별 전압 승압기(voltage booster)(예를 들면 3V 대 18V 승압기)와 함께, 터치 감지를 위한 고전압 구동 회로를 제공할 수 있다. 일 실시예에서, 터치/LCD 드라이버 IC는 레벨 시프터/디코더 칩을 제어할 수 있다. 대안적으로, 전압 승압기 및/또는 레벨 시프터/디코더는 터치/LCD 드라이버 IC에 통합될 수 있다. 예를 들면, 그러한 통합은 고전압(18Y) LTPS 프로세스를 이용하여 실현될 수 있다. 이는 레벨 시프터/디코더 칩 및 전압 승압기를 하부 글라스의 주변부에 통합하는 것을 가능하게 할 수 있다. 레벨 시프터/디코더는 또한 아래에서 논의되는 바와 같이 VCOM 변조 및 터치 구동을 위한 전압들을 제공할 수 있다.
2.2.1.5. 컨셉트 A: LCD V COM 과의 터치 구동 공유
위에서 논의된 바와 같이, 컨셉트 A는 터치 감지 라인들로서 기능할 수 있는, 하나의 ITO 층을 표준 LCD 스택업에 추가할 수 있다. 터치 구동층은 IT02로도 표시된, LCD의 VCOM 평면과 공유될 수 있다. 디스플레이 동작을 위해서는, 표준 비디오 리프레시 레이트(예를 들면, 60 fps)가 이용될 수 있다. 터치 감지를 위해서는, 적어도 초당 120회의 레이트가 이용될 수 있다. 그러나, 터치 스캐닝 레이트는 또한 디스플레이 리프레시 레이트와 일치할 수 있는 초당 60 스캔과 같은 보다 느린 레이트로 감소될 수도 있다. 일부 실시예에서는, 디스플레이 리프레시 또는 터치 스캐닝의 어느 쪽도 중단(interrupt)하지 않는 것이 바람직할 수 있다. 그러므로, (동일한 또는 상이한 레이트에서 일어나고 있을 수 있는) 디스플레이 리프레시 또는 터치 스캐닝을 감속하거나 중단하는 일 없이 IT02 층의 공유를 허용할 수 있는 방식에 대하여 이제 설명한다.
도 27에는 동시의 디스플레이 업데이트 및 터치 스캐닝이 도시되어 있다. 이 예에서는, 5개의 멀티 터치 구동 세그먼트들(2700, 2701, 2702, 2703, 2704)이 도시되어 있다. 각 터치 구동 세그먼트는 M개의 디스플레이 로우들과 겹칠 수 있다. 디스플레이는 초당 60 프레임으로 스캔될 수 있는 반면 멀티 터치 센서 어레이는 초당 120회 스캔될 수 있다. 도면은 하나의 디스플레이 프레임의 시간 전개(time evolution)가 16.67 msec 지속하는 것을 보여준다. 현재 업데이트되고 있는 디스플레이의 영역은 바람직하게는 능동 터치 구동 세그먼트와 겹치지 않아야 한다.
패치(2705)는 디스플레이 로우들이 어디서 업데이트되고 있는지를 나타낸다. 패치(2706)는 능동 터치 구동 세그먼트를 나타낸다. 도 27의 상좌측 코너에서, 디스플레이 프레임의 시작에서는 첫 번째 M/2개 디스플레이 라인들이 리프레시될 수 있다. 동시에, 터치 감지를 위하여 터치 구동 세그먼트 1(2701)이 구동될 수 있다. 도면의 우측으로 이동하여, 시간 t=1.67ms에서, 다음 그림은 다음 M/2개 디스플레이 로우들이 리프레시되고 있고, 동시에 터치 구동 세그먼트 2(2702)가 구동될 수 있음을 보여준다. 이 패턴의 약 8.3 msec 후에는, (제2 로우의 시작) 각 터치 구동 세그먼트가 1회 구동되었을 수 있고, 디스플레이의 1/2이 리프레시되었을 것이다. 다음 8.3 msec에서는, 전체 터치 어레이가 다시 스캔될 수 있고, 따라서 120 fps의 스캐닝 레이트를 제공하는 한편, 디스플레이의 나머지 1/2이 업데이트된다.
디스플레이 스캐닝은 전형적으로 라인 순서대로 진행하기 때문에, 터치 구동 세그먼트들은 디스플레이 및 터치 활동의 겹침을 방지하기 위해 순차적인 순서에 어긋나게 구동될 수 있다. 도 27에 도시된 예에서는, 터치 구동 순서는 첫 번째 8.3 msec 동안에는 1,2,3,4,0이었고, 두 번째 8.3 msec 기간에는 1,2,4,3,0이었다. 실제 순서는 터치 구동 세그먼트들의 수 및 디스플레이 로우들의 수에 따라서 변화할 수 있다. 그러므로, 일반적으로, 터치 구동 사용의 순서를 프로그램하는 능력은 바람직할 수 있다. 그러나, 어떤 특수한 경우들에 있어서는, 고정된 시퀀스 순서로 충분할 수 있다.
업데이트되고 있는 디스플레이의 영역으로부터 더 멀리 떨어져서 능동 터치 구동 세그먼트를 분리하는 것이 바람직할 수도 있다(이미지 품질 이유로). 이것은 도 27에서 도시되어 있지 않지만, 충분한 개수의 터치 구동 세그먼트들(예를 들면, 6개 이상의 세그먼트들)이 주어지면 용이하게 행해질 수 있다.
그러한 기법들은 고주파 디스플레이 구동 소자를 지원하는 다중화(multiplex) 회로를 요구하지 않고 디스플레이 및 터치 감지 소자들에 대한 상이한 리프레시 레이트들을 효과적으로 가능하게 할 수 있다.
2.2.1.6. 컨셉트 A: V CST 구동 옵션들
도 6에서 도시된 바와 같이, VCST 및 VCOM은 함께 접속될 수 있고 따라서 LC를 가로질러 원하는 AC 파형을 달성하도록 함께 변조될 수 있다. 이것은 VCOM 변조를 이용할 때 적당한 디스플레이 리프레시를 달성하는 데 도움을 줄 수 있다. VCOM이 터치 구동을 위하여 이용되는 경우, VCST도 변조할 필요는 없다. 이것은 후술되는 개회로 VCST 옵션으로서 간주될 수 있다. 그러나, VCST가 VSTM으로 변조되면, 터치 구동 신호 VSTM 상의 용량성 부하가 감소될 수 있고, 이는 터치 신호의 보다 작은 위상 지연을 초래할 수 있다. 이것은 후술되는 구동 VCST 옵션으로서 간주될 수 있다.
도 28은 개회로 VCST 옵션을 도시한다. 하부 도면(2802)은 하나의 터치 구동 세그먼트(2803)가 어떻게 M개의 디스플레이 로우들(2804)와 겹칠 수 있는지를 도시한다. 상부 글라스 상에 위치하는 터치 구동 세그먼트들(2803)은 도전성 도트(2805)를 통하여 하부 글라스 상의 회로들에 전기적으로 접속할 수 있다. 터치 구동 세그먼트 아래의 M개의 로우의 M개의 VCST 라인들이 디스플레이(2806)의 에지 상에서 함께 접속할 수 있다. 상부 도면(2801)은 그의 개별 저장 커패시터 CST를 갖는 서브픽셀에 대한 기본 회로를 보여준다. 상부 도면 내의 영역(2807)은 단일 터치 구동 세그먼트에 의해 커버되는 서브픽셀들의 M개의 인접한 로우들을 나타낼 수 있다. 특정 터치 구동/디스플레이 그룹에 대한 디스플레이 동작 및 터치 감지는 위에서 논의된 바와 같이 상이한 시간들에서 일어날 수 있다. 디스플레이 드라이버가 M개의 로우들 내의 서브픽셀들의 상태를 설정할 준비가 되면, 스위치들(2808, 2809)은 VCOMDrive(2810)를 M개의 VCST 라인들(2804)에 및 터치 구동 세그먼트(VCOM)에 접속할 수 있다. VCOMDrive 전압은 LCD 드라이버에 의해, 반전의 위상에 따라서, 접지 전압 또는 공급 전압 레일로 설정될 수 있다. 나중에, 이 터치 구동/디스플레이 그룹이 터치 사용을 위해 이용 가능하게 되면, 스위치들(2808, 2809)은 터치 구동 세그먼트를 VSTM(2811)에 접속하고 VCST를 VCOMDrive에서 분리하여, 그것을 개회로 상태(open state)로 되게 할 수 있다.
도 29는 구동-VCST 옵션을 도시한다. 하부 도면(2902)은 하나의 터치 구동 세그먼트(2903)가 어떻게 M개의 디스플레이 로우들(2904)과 겹칠 수 있는지를 도시 한다. 상부 글라스 상에 위치하는 터치 구동 세그먼트들(2903)은 도전성 도트(2905)를 통하여 하부 글라스 상의 회로들에 전기적으로 접속할 수 있다. 특정 터치 구동 세그먼트 아래의 로우들의 M개의 VCST 라인들은 디스플레이(2906)의 에지 상에서 함께 접속할 수 있다. 상부 도면(2901)은 개별 저장 커패시터 CST를 갖는 서브픽셀에 대한 기본 회로를 보여준다. 상부 도면 내의 영역(2907)은 단일 터치 구동 세그먼트에 의해 커버되는 서브픽셀들의 M개의 인접한 로우들을 나타낼 수 있다. 디스플레이 동작 및 터치 감지는 상이한 시간들에서 일어날 수 있다. 디스플레이 드라이버가 M개의 로우들 내의 서브픽셀들의 상태를 설정할 준비가 되면, 스위치(2908)는 VCOMDrive(2910)를 M개의 VCST 라인들(2904)에 및 터치 구동 세그먼트(VCOM)에 접속할 수 있다. VCOMDrive 전압(2910)은 LCD 드라이버에 의해, 반전의 위상에 따라서, 전형적으로 접지 전압 또는 공급 전압 레일로 설정될 수 있다. 나중에, 이 터치 구동/디스플레이 그룹이 터치 사용을 위해 이용 가능하게 되면, 스위치(2908)는 VCST 및 터치 구동 세그먼트(VCOM)를 VSTM(2911)에 접속할 수 있다.
2.2.1.7. 컨셉트 A: MT -구동 용량성 부하
컨셉트 A의 터치 구동 라인 상의 용량성 부하는, 예를 들면, 픽셀 ITO 및 금속 루트들의 망(mesh)에 의해 커버될 수 있는 하부 글라스와 터치 구동층 간의 얇은(예를 들면, ~4 ㎛) 갭 때문에, 높을 수 있다. 액정들은 다소 높은 최대 유전 상수(예를 들면, 약 10)를 가질 수 있다.
터치 구동 세그먼트의 커패시턴스는 자극하는 터치 펄스 VSTM의 위상 지연에 영향을 미칠 수 있다. 만일 커패시턴스가 너무 높고, 따라서 너무 많은 위상 지연이 있다면, 결과의 터치 신호는 부정적으로 영향을 받을 수 있다. 본 발명자들에 의해 수행된 분석에 따르면 IT02 시트 저항을 약 30 Ω/sq 이하로 유지하면 위상 지연을 최적의 한계 내에 유지할 수 있다.
2.2.1.8. 컨셉트 A: 전기적 모델 및 V COM 유도 잡음
IT02는 터치 구동 및 LCD VCOM 양쪽 모두에 대하여 동시에 이용될 수 있기 때문에, VCOM의 변조는 터치 신호에 잡음을 추가할 수 있다.
예를 들면, 다른 터치 구동 세그먼트가 터치 감지를 위해 이용되고 있는 것과 동시에 하나의 터치 구동 세그먼트가 VCOM으로 변조되고 있는 경우 터치 신호에 잡음 성분이 추가될 수 있다. 추가되는 잡음의 양은 VSTM에 대한 VCOM 변조의 위상, 진폭, 및 주파수에 좌우된다. VCOM의 진폭 및 주파수는 LCD에 대하여 이용되는 반전 방법에 좌우된다.
도 30은 터치 감지 및 LCD VCOM 변조 양쪽 모두를 위해 터치 구동이 이용되는 상황에 대한 전기적 모델을 도시한다. 이 모델은 VCOM 변조가 전하 증폭기(3002)의 입력에 잡음을 추가할 수 있는 입력 경로를 보여준다.
일부 실시예에서, 전하 증폭기(3002)는 VCOM(3003)에 의해 유도되는 잡음을 수용할 추가의 공간(headroom)을 필요로 할 수 있다. 또한, 후속 필터링 회로들(예를 들면, 도시되지 않은 동기식 복조기)은 VCOM 변조로 인한 잡음 신호를 제거할 필요가 있을 수 있다.
2.2.1.9. 컨셉트 A: V STM 효과
VSTM 변조는, 소정의 조건 하에서, 변조되고 있는 터치 구동 세그먼트 아래의 서브픽셀들의 전압에 부정적인 영향을 미칠 수 있다. 만일 서브픽셀 RMS 전압이 감지할 수 있을 정도로 변화하면, 디스플레이 아티팩트들이 생성될 수 있다. 결과로 생길 수 있는 디스플레이 일그러짐(display distortion)을 최소화하기 위해 다음의 기법들 중 하나 이상의 채용될 수 있다.
2개의 측면으로부터의 터치 구동은 LC 픽셀 전압의 일그러짐을 감소시킬 수 있다. 도 31에서 도시된 바와 같이, 양쪽으로부터의 터치 구동은 VSTM을 도전성 도트들(3102)을 통하여 양쪽에 있는 CST 라인들에 접속함으로써 하부 글라스 상의 기존의 저저항 CST 루트들(3101)을 채용함으로써 달성될 수 있다. 대안적으로, 단일 종단형(single-ended) 터치 구동은 모든 픽셀들에 대하여 균일한 픽셀 오프셋 전압을 생성할 수 있고, 이는 데이터 구동 레벨들을 조절함으로써 감소되거나 제거될 수 있다. 또한, ITO 시트 저항을 감소시키는 것은 디스플레이 아티팩트들을 감소시키는 데 도움을 줄 수 있다. 마지막으로, 터치 신호 내의 잡음의 양을 감소시키기 위해 VSTM의 위상 및 주파수를 VCOM의 위상 및 주파수에 결합할 수도 있다.
2.2.1.10. 컨셉트 A: 제조에의 영향
컨셉트 A에 대한 제조 프로세스는 전형적인 LCD 제조 프로세스에 관하여 추가의 단계들을 포함할 수 있다. 일부는 완전히 새로운 단계들일 수 있고 일부는 기존의 단계들에 대한 변형들일 수 있다. 도 32는 컨셉트 A에 대한 제조 프로세스 흐름을 도시한다. 블록들 3201, 3202, 및 3204는 새로운 단계들을 나타내고, 블록들 3205, 3206, 및 3207은 변경된 단계를 나타내고, 양쪽 모두 종래의 LCD 제조 프로세스들(예를 들면, 도 8의 것)에 관계가 있다.
IT01을 적용 및 패터닝하는 것(블록 3201, 3202)은 공지된 방법들을 이용하여 행해질 수 있다. ITO는 LCD프로세싱의 나머지 동안에 보호될 수 있다. 제거 가능한 보호 코팅을 제공하기 위해 포토레지스터가 이용될 수 있다. 대안적으로, 실리콘 이산화물이 영구적인 보호 피복을 제공할 수 있다. IT02를 적응 및 패터닝하여(블록 3204) 유사한 방식으로 터치 구동 세그먼트들을 형성할 수 있다.
위상 지연의 분석에 따르면 IT01 및 IT02의 시트 저항은, 어느 한쪽 평면 상의 용량성 부하가 작다는 것을 조건으로, 소형 디스플레이(<= 4" 대각선)에 대하여 400 Ω/sq 정도로 높을 수 있다. 위에서 논의된 바와 같이, 컨셉트 A에 있어서의 용량성 부하는 IT02에 대한 최대 시트 저항을 약 30 Ω/sq 이하로 제한하는 것이 바람직할 수 있는 정도의 크기의 것일 수 있다.
2.2.2. 컨셉트 A60
컨셉트 A60은 물리적으로 컨셉트 A와 유사할 수 있고 디스플레이 업데이트 및 터치 스캐닝을 동기화시키는 문제에 대해 상이한 접근법을 제공할 수 있다. 이 것은 터치 신호(즉, VSTM)에 대한 자극으로서 VCOM의 1-라인 반전을 이용하는 것에 의해 달성될 수 있다. 이는 도 33에 도시되어 있고, 도 33은 다른 터치 세그먼트들은 일정한 전압에 유지될 수 있는 동안에 하나의 터치 구동 세그먼트(3301)가 어떻게 변조될 수 있는지를 보여준다. 이러한 접근법에 의하면, 터치 신호로부터 불필요한 VCOM 유도 전압을 제거하는 문제가 제거될 수 있다. 더욱이, 디스플레이 업데이팅 및 터치 센서 스캐닝을 공간적으로 분리할 필요가 없다. 그러나, 이 접근법을 이용하면, 본원에 참고로 통합된, 2006년 5월 2일에 출원된, "Multipoint Touch Screen Controller"라는 명칭의, 미국 특허 출원 11/381,313에서 설명된 다중 주파수 변조와는 대조적으로 단일 주파수(즉, VCOM 변조 주파수, 예를 들면, ~14.4 kHz)에서 복조가 햄해질 수 있다. 더욱이, 이 접근법을 이용하면, 터치 센서 스캔 레이트가 비디오 리프레시 레이트(예를 들면 초당 60)에 고정될 수 있다.
2.2.3 컨셉트 B
도 34에서 도시된 컨셉트 B는 컨셉트 A와 유사하여, 다수의 동일한 전기적, 케이블링, 및 구조적 양태들을 공유할 수 있다. 그러나, 컨셉트 B는 터치 구동층을 VCOM 층에 통합할 수 있다. 그러므로 컨셉트 B는 LCD 및 터치 감지를 위해 이용되는 ITO 층들의 개수 및 스택 위치가 상이할 수 있다. 유사점들 때문에, 이제 컨셉트 A와 컨셉트 B 간의 차이점들을 강조하여 컨셉트 B에 대하여 설명한다.
컨셉트 B는 컨셉트 A의 공유된 IT02 층을 2개의 ITO 층들로 분할하여, 하나 의 층은 터치 감지(IT02)(3402)를 위해 이용하고 하나의 층은 LCD VCOM(IT03)(3403)을 위해 이용할 수 있다. 위로부터 시작하여, 터치 감지를 위해 사용되는 층들은: N개의 터치 감지 라인들로 패터닝될 수 있는 ITO 층인, IT01(3401); M개의 터치 감지 라인들로 패터닝될 수 있는 ITO 층인, IT02(3402); 및 LCD에 대한 VCOM 전극으로서 작용할 수 있는 ITO 층인, IT03(3403)을 포함할 수 있다. 터치 구동층(IT02)(3402)은 상부 글라스(3404)의 하위 표면 상에, 컬러 필터(3405) 위에 적층될 수 있다.
터치 구동 소자들로부터 VCOM을 분리하는 것은 간섭을 감소시킬 수 있다.
2.2.3.1. 컨셉트 B: 터치 센서 전극들
컨셉트 B는 컨셉트 A에 대하여 위에서 설명된 것들과 실질적으로 유사한 터치 센서 전극들을 포함할 수 있다.
2.2.3.2. 컨셉트 B: 도전성 도트들
컨셉트 A에서와 같이, 컨셉트 B는 터치 구동 세그먼트들을 전용 회로에 접속하기 위해, LCD의 코너들에 위치할 수 있는, 추가의 도전성 도트들(3406)을 이용할 수 있다. VCOM은 터치 감지와 공유될 필요가 없기 때문에, 컨셉트 B는 VCOM을 그의 구동 회로에 접속하는 코너 도트들을 유지할 수 있다. 또한(아래에서 논의되는 바와 같이), 컨셉트 B는 VCOM에 대하여 한층 더 많은 도전성 도트들을 추가할 수 있다.
2.2.3.3. 컨셉트 B: 연성 회로 및 터치/ LCD 드라이버 IC
컨셉트 B는 컨셉트 A에 대하여 설명된 것들과 실질적으로 유사한 FPC 및 터치/LCD 드라이버 IC를 이용할 수 있다.
2.2.3.4. 컨셉트 B: LCD 스캐닝과의 동기화
컨셉트 B에 있어서는, 비록 VCOM 층이 터치 구동층과 분리될 수 있지만, 그럼에도 업데이트되고 있는 디스플레이 영역으로부터 능동 터치 구동을 물리적으로 분리하기 위해 터치 스캐닝을 LCD 업데이팅과 동기화하는 것이 바람직할 수 있다. 컨셉트 A에 대하여 이전에 설명된 동기화 방식들은 컨셉트 B에 대해서도 이용될 수 있다.
2.2.3.5 컨셉트 B: MT -구동 용량성 부하
컨셉트 A와 마찬가지로, 컨셉트 B의 터치 구동 라인 상의 용량성 부하는 높을 수 있다. 터치 구동(IT02)(3402)과 VCOM 평면(IT03)(3403) 사이의 얇은(예를 들면, ~5 ㎛) 유전체로 인해 큰 커패시턴스가 있을 수 있다. 터치 자극 신호에서 바람직하지 못한 위상 지연을 감소시키는 한 가지 방법은 평행 금속 트레이스들의 추가를 통하여 ITO 구동 라인 저항을 저하시키는 것을 수 있다. 위상 지연은 레벨 시프터/디코더의 출력 저항을 감소시키는 것에 의해서도 감소될 수 있다.
2.2.3.6 컨셉트 B: 전기적 모델 및 V COM -유도 잡음
전체 VCOM 평면이 터치 구동층에 결합될 수 있기 때문에, VCOM 변조에 의해 유도된 잡음에 의해 멀티 터치 전하 증폭기 동작이 붕괴될 수 있다. 이러한 효과를 완화하기 위하여 컨셉트 B는 일정한 VCOM 전압을 가질 수 있다.
역으로, IT02(3402)와 IT03(3403)(VCOM 및 터치 구동) 간의 결합은 LC 픽셀 상에 잘못된 데이터 전압이 저장되게 할 수 있는 VCOM 전압과의 간섭을 야기할 수 있다. VSTM에 의한 VCOM의 변조를 감소시키기 위하여, VCOM을 하부 글라스에 접속하는 도전성 도트들의 개수가 증가될 수 있다. 예를 들면, 관찰 영역(viewing area)의 각 코너에 있는 VCOM 도트들에 더하여, 각 에지의 중간에 도전성 도트들이 배치될 수 있다.
VCOM-VSTM 결합의 결과로 생기는 일그러짐은 VSTM을 VCOM과 동기화하고 정확한 시간에 픽셀 TFT를 오프시킴으로써 더 감소될 수 있다. 예를 들면, 라인 주파수가 28.8 kHz이고, 터치 구동 주파수가 이것의 배수(예를 들면, 172.8, 230.4, 및 288 kHz)이면 VCOM 일그러짐은 모든 픽셀들에 대하여 동일한 위상 관계를 가질 수 있고, 이는 VCOM 일그러짐이 보이는 것을 감소시키거나 제거할 수 있다. 또한, 만일 일그러짐이 대부분 감소되었을 때 픽셀 TFT들의 게이트들이 오프된다면, LC 픽셀 전압 오류가 감소될 수 있다. 컨셉 A와 마찬가지로, 터치 신호 내의 잡음의 양을 감소시키기 위해 VSTM의 위상 및 주파수가 VCOM의 위상 및 주파수에 결합될 수 있다.
2.2.3.7. 컨셉트 B: 제조에의 영향
컨셉트 A와 마찬가지로, 컨셉트 B도 LCD 제조 프로세스에 단계들을 추가할 수 있다. 도 35는 컨셉트 B에 대한 제조 프로세스 흐름을 도시하고, 블록들 3501, 3502, 3503, 및 3504는 종래의 LCD 제조 프로세스(예를 들면, 도 8에서 도시된 것)에 관하여 새로운 단계들을 나타내고, 블록들 3506, 3507, 3508 및 3509는 기존의 단계에 대한(예를 들면, 도 8에 대한) 변경을 나타낸다.
컨셉트 A와 마찬가지로, 공지된 방법들을 이용하여 IT01이 적용(블록 3501) 및 패터닝(블록 3502)될 수 있다. IT01 및 IT02의 시트 저항도 컨셉트 A에 대하여 설명된 것과 실질적으로 유사하다. 컨셉트 B에 있어서는, IT02 층 적층(블록 3503)은 글라스에 직접 적용될 수 있기 때문에 상투적인 것일 수 있다. 터치 구동 세그먼트들에 접속하는 도전성 도트들에 대한 IT02 층과 하부 글라스 사이의 전기적 액세스는 섀도우 마스크를 이용하여 에칭하는 것(블록 3504)에 의해 용이하게 달성될 수 있다.
30 및 100 Ω/sq 사이의 시트 저항을 가질 수 있는, IT03(예를 들면, LCD의 VCOM 층)도 종래의 방법들을 이용하여 적용될 수 있다(블록 3505). 그러나, 위에서 논의된 바와 같이, VCOM 전압 일그러짐은 IT03 층의 저항을 감소시킴으로써 감소될 수 있다. 필요하다면, 터치 구동 세그먼트들과 평행으로 연장하는 금속 트레이스들을 추가함으로써 IT03에 대한 보다 낮은 유효 저항이 달성될 수 있다. 금속 트레이스들은 픽셀 개구들(pixel openings)을 방해하지 않도록 블랙 매트릭스와 정렬될 수 있다. VCOM 층의 원하는 저항을 제공하기 위해 금속 트레이스들의 밀도가 조절될 수 있다(디스플레이 로우마다 하나와 약 32개의 디스플레이 로우마다 하나 사 이에서).
2.2.4. 컨셉트 B'
컨셉트 B'는 IT02 구동층을 제거하고 대신에 도전성 블랙 매트릭스(예를 들면, 상부 글라스 아래의 CrO2의 층)를 터치 구동층으로서 이용하는 컨셉트 B의 변형으로서 이해될 수 있다. 대안적으로, 골리머 블랙 매트릭스일 수 있는, 블랙 매트릭스의 배후에 금속 구동선들이 숨겨질 수 있다. 이는 (1) ITO 층을 제거하고; (2) VCOM 층에 대한 VSTM의 영향을 감소시키고; (3) 제조 프로세스를 단순화하는 것을 포함한, 몇 가지 이익들을 제공할 수 있다. 터치 구동을 위해 블랙 매트릭스를 이용하는 것에 의해 컬러 필터 위에 ITO 층을 패터닝할 필요가 제거될 수 있기 때문에 제조 프로세스가 단순화될 수 있다.
도 36은 컨셉트 B'의 측면도(3601) 및 상면도(3602)를 도시한다. 알 수 있는 바와 같이, 측면도(3601)는 터치 감지를 위해 이용되는 상부 ITO 층(3603)을 제외하고는 표준 LCD 스택업과 매우 많이 비슷하다. 도 36의 하부 도면은 블랙 매트릭스(3604)가 어떻게 개별 터치 구동 세그먼트들로 분할될 수 있는지를 보여준다. 망 패턴(mesh pattern)은, 각 구동 세그먼트가 다른 세그먼트들로부터 전기적으로 분리될 수 있다는 것을 제외하고는, 종래의 블랙 매트릭스의 패턴을 따를 수 있다. 터치 구동을 위해 블랙 매트릭스 망을 이용하는 것에 의해 야기될 수 있는 감소된 터치 신호 강도를 보상하기 위해, 전하 증폭기 이득이 증가될 수 있다(예를 들면, 약 4X).
터치 감지층이 VCOM 층으로부터 보호될 수 없기 때문에, VCOM 변조는 터치 신호와 간섭할 수 있다. 더욱이, 터치 구동은 여전히 VCOM 전압과 간섭할 수 있다. 이들 양쪽 문제들은 컨셉트 A에서 설명된 바와 같이 VCOM 층을 분할하고 및/또는 위에서 설명된 바와 같이 디스플레이 업데이팅과 터치 감지를 공간적으로 분리함으로써 처리될 수 있다. 이들 문제들을 처리하기 위해 일정한 VCOM 전압이 이용될 수도 있다.
2.2.5. 컨셉트 K
컨셉트 K는 도 37(회로도) 및 38(스택업도)에서 도시되어 있다. 컨셉트 K는 CST-온-게이트 구성이 이용될 때 TFT LCD 내의 선택 펄스들이 부분적으로 픽셀 ITO에 전송될 수 있다는 사실을 이용한다.
도 38의 디스플레이 스택업에서 도시된 바와 같이, 관찰자는 CF 플레이트(3802)보다는 능동 어레이 플레이트(3801)에 면할 수 있다. 능동 어레이 상의 ITO 픽셀들(3803)은 터치 센서에 VSTM 펄스들을 제공할 수 있고, 디스플레이 로우들은 대안적으로 VSTM 펄스들을 위해 및 디스플레이 어드레싱을 위해 이용된다. 플라스틱 편광자(3805) 상의 ITO 감지층(3804)은 어레이 플레이트(3801)의 배면에 적층(laminate)되어 터치 감지층을 제공할 수 있다. 얇은 글라스 층(예를 들면, 0.2 mm)은 신호 대 잡음 비를 개선하는 데 도움을 줄 수 있다.
디스플레이 업데이트 동안에는, 픽셀 데이터를 업데이트하기 위해 로우들이 개별적으로 선택될 수 있다(도 39에서 도시된 바와 같이) 터치 감지를 위한 VSTM을 생성하기 위해, 복수의 로우들(4001)이 동시에 선택될 수 있고, 한편 TFT들을 오프 상태로 유지하기 위해 높은 데이터 전압(4003)이 컬럼 라인들(4002)에 인가될 수 있다(도 40에서 도시된 바와 같이). 컬럼 드라이버는 터치 구동 간격들을 조절하기 위해 디스플레이 메모리로부터의 데이터 신호들의 타이밍을 조절할 수 있다.
일 실시예에서는, 터치 펄스 시퀀스가 터치 스캔 간격 동안에 약 30개의 로우들(4001)에 동시에 펄스를 발생시킬 수 있다. 도 41은 LCD의 서브픽셀 전압에 대한 터치 구동 펄스(VSTM)의 영향을 보여준다. VSTM 펄스들로부터의 추가된 전압은 VCOM의 DV 오프셋 및/또는 디스플레이 데이터 그레이 레벨들의 감마 보정에 의해 보상될 수 있다.
컨셉트 K는 다수의 이점들을 허용할 수 있다. 디스플레이 픽셀들 및 터치 센서들이 구동 회로를 공유하기 때문에, 레벨 시프터/디코더가 제거될 수 있다. 또한, 종래의 CF 플레이트가 이용될 수 있다. 더욱이, 상부 글라스와 하부 글라스 사이에 여분의 도전성 도트들이 요구되지 않는다. 버스라인 반사들은 디스플레이의 부분들에 대한 반사율(R)을 증가시킬 수 있고, 따라서 R을 감소시킬 수 있는 버스라인들 아래의 여분의 막(예를 들면 Cr 아래의 CrO)의 사용을 필요로 할 수 있다.
2.2.5. 컨셉트 X'
컨셉트 X'는 도 42(회로도) 및 도 43(스택업도)에서 도시되어 있다. 컨셉트 X'는 VSTM 펄스들이 TFT 픽셀 스위치들에 대한 게이트 펄스들(예를 들면, 15 내지 18V 진폭(swing))과 유사할 수 있다는 사실을 이용한다. 컨셉트 X'에서, 터치 구동 세그먼트들(4301)은 LTPS 능동 어레이의 일부일 수 있고 픽셀 저장 커패시터 CST에 대한 대향 전극을 형성할 수 있다. CST는 2개의 ITO 층들(4301, 4302) 사이에 형성될 수 있다. 이 실시예에서는, 컬러 필터 플레이트(4304)보다는 능동 어레이 플레이트(4303)가 디스플레이의 사용자 측에 있을 수 있다.
도 42에서 도시된 바와 같이, VSTM에 대한 3개의 상이한 주파수들(4201)을 갖는 펄스 시퀀스가 픽셀들의 3개의 로우들(4202)에 의해 그 로우들을 선택하기 위해 공유될 수 있다. ITO 터치 구동 세그먼트들(4203)은 어드레싱된 로우들에 인접한 로우들의 세트 아래에서 패터닝될 수 있다. 터치 구동 세그먼트들(4203)은 VSTM에 접속되지 않은 경우 TFT들(4204)에 의해 GND에 접속될 수 있다.
컨셉트 X'를 구성하는 프로세싱 단계들에 대해 행해질 수 있는 변화들은 다음을 포함할 수 있다. 첫째로, 패터닝된 감지 ITO가 어레이 기판의 외면상에 추가될 수 있다. 둘째로, LTPS 프로세싱 동안에 감지 ITO 상에 SiO2 보호가 추가될 수 있다. 보호 레지스트가 이용될 수도 있다. 셋째로, LTPS 어레이에 대한 SiO2 장벽층(전형적인 LTPS 프로세스들에서 발견될 수 있음) 아래에 터치 구동 ITO가 적층되어 패터닝될 수 있다. 마지막으로, 터치 구동 ITO 층과 접촉하기 위해 장벽 SiO2 내에 비아들이 패터닝될 수 있다. 이 단계는 후속의 프로세스 단계와 조합될 수 있다.
컨셉트 X'는 다수의 이점들을 허용할 수 있다. 예를 들면, 디스플레이 및 터치 센서들이 구동 회로를 공유하기 때문에, 레벨 시프터/디코더 칩이 제거될 수 있다. 또한, CF 플레이트에 대해 어떤 변경도 요구되지 않으므로, 종래의 컬러 필터 프로세싱이 이용될 수 있다. 더욱이, 2개의 ITO 층들 사이에 저장 커패시터 CST가 위치할 수 있기 때문에, 높은 투과율이 달성될 수 있다. 또 다른 이점은 어레이 플레이트(4303)와 CF 플레이트(4304) 사이의 여분의 도전성 도트들이 제거될 수 있다는 점이다.
2.3. 완전히 통합된 터치 감지
본 발명의 실시예들의 제3 세트는 터치 감지 소자들을 LCM 내부에 완전히 통합한다. 부분적으로 통합된 터치 감지와 마찬가지로, LCM 내의 기존 층들은 터치 감지 기능도 제공하는 이중 임무를 만족시킬 수 있고, 그에 의해 디스플레이 두께를 감소시키고 제조를 단순화할 수 있다. 완전히 통합된 터치 감지층들은 또한 글라스 층들 사이에서 보호될 수 있다.
일부 실시예에서, 완전히 통합된 LCD는 이전 실시예들에서 설명될 것들과 유사한 VCOM 층을 포함할 수 있다. 다른 실시예에서, 완전히 통합된 터치 감지 LCD는 IPS(in-plane-switching) LCD 구성들을 포함할 수 있고, 이 구성들에 대해서는 다음의 섹션들에서 더 상세히 설명된다.
2.3.1. 완전히 통합된 V COM 기반 LCD
2.3.1.1. 컨셉트 A'
컨셉트 A'는 터치 감지층으로서 이용되는 (상부 글라스 아래의) 블랙 매트릭스 층을 지지하여 ITO 감지층(도 20의 IT01(2001))을 제거하는 컨셉트 A의 변형으로서 간주될 수 있다. 대안적으로, 폴리머 블랙 매트릭스일 수 있는, 블랙 매트릭스의 배후에 금속 감지 라인들이 숨겨질 수 있다. 그 결과, 컨셉트 A'는 또한 FPC 상의 T-탭 및 상부 글라스에의 대응하는 접합을 제거할 수 있다. 터치 감지 라인들은 도전성 도트들을 통하여 하부 글라스에 라우팅될 수 있고 터치/LCD 드라이버 칩에 직접 접속할 수 있다. 더욱이, FPC는 표준 LCD FPC일 수 있다. 제조 단계들 및 컴포넌트들의 제거로 인해 컨셉트 A 및 B에 비하여 비용이 감소될 수 있다.
도 44는 터치 감지층에 대한 도전성 블랙 매트릭스의 대체가 달성될 수 있는 한 가지 방법을 도시한다. 도 44는 원색 섹션들(primary color sections)(4404) 사이에 연장하는 그의 블랙 매트릭스(4403)를 갖는 하나의 픽셀의 상부의 측면도(4401)를 포함한다. 터치 구동 세그먼트들(4405)은 평탄화 유전층(4406)에 의해 블랙 매트릭스 라인들(4403)로부터 분리될 수 있다. 도 44는 또한 수직으로 연장하는 블랙 매트릭스 라인들(4403)을 갖는 디스플레이의 상면도(4402)를 보여준다. 대략 96개의 블랙 매트릭스 라인들(예를 들면, 32개 픽셀만큼의 분량)이 전하 증폭기(4907)의 마이너스 단자에 함께 접속할 수 있다. 터치 구동 세그먼트들(4405)은 위에서 설명된 바와 같이 구동될 수 있다. 상부 글라스(4408)에 접근하는 손가락은 수직 블랙 매트릭스 라인들(4403)과 터치 구동 세그먼트(4405) 사이의 전계를 교란할 수 있다. 이 교란은 전하 증폭기(4407)에 의해 증폭되고 본 명세서의 다른 곳에서 설명된 바와 같이 더 처리될 수 있다.
디스플레이 내의 터치 감지 라인들(44D3)의 깊이 때문에, 손가락 또는 터치 물체와 감지 라인들(4403) 간의 최소 거리는 제한될 수 있다. 이는 터치 신호의 강도를 감소시킬 수 있다. 이는 터치 감지층 위의 층들의 두께를 감소시켜, 손가락 또는 다른 터치 물체가 감지 라인들에 더 가까이 접근하도록 함으로써 처리될 수 있다.
2.3.1.2. 컨셉트 X
컨셉트 X는 도 45 및 46에서 도시되어 있다. 도 45에서 도시된, 컨셉트 X에 대한 스택업은 표준 LCD의 그것과 기본적으로 동일할 수 있다. 터치 감지층(4501)이 VCOM 층(IT02) 내에 삽입(embed)될 수 있고, 이는 VCOM 전압 평면을 제공하고 터치 센서의 출력으로서 작용하는 이중 목적을 만족시킬 수 있다. 터치 구동층도 기존 LCD 층 내에 삽입될 수 있다. 예를 들면, 터치 구동은 하부 글라스(4503) 상에 위치할 수 있고 LCD 선택 라인 회로의 일부일 수 있다(도 5 참조). 따라서 선택 회로는 서브픽셀 TFT들에 대한 게이트 신호들 및 터치 구동 신호 VSTM을 제공하는 이중 목적을 만족시킬 수 있다. 도 46은 VCOM 층에 삽입된 그의 플로팅 픽셀들(floating pixels)(4601)을 갖는 터치 감지층의 하나의 가능한 배열을 보여주는 컨셉트 X의 상면도이다.
2.3.1.3. 컨셉트 H
컨셉트 H는 도 47-50에 도시되어 있다. 컨셉트 H는 디스플레이의 상부 글라 스 또는 플라스틱 층 외부에 어떤 ITO도 포함할 필요가 없다. 그 결과, 제조 프로세스는 기존 디스플레이 제조 프로세스들과 매우 유사할 수 있다.
도 47에서 도시된 바와 같이, 스크린의 터치 감지 부분은 투명한 저항성 시트(4701)로서, 예를 들면, 패터닝되지 않은 ITO 층이 위에 적층되어 있는 글라스 또는 플라스틱 기판일 수 있다. 디스플레이의 VCOM 층은 이 터치 감지 부분을 위해 이용될 수 있다. 이 층은 패터닝될 필요가 없기 때문에, 위에서 논의된 일부 실시예들과 비교하여 제조 프로세스로부터 포토리소그래피 단계가 제거될 수 있다. 여기서 참고를 위하여, 측면들은 도면에서 도시된 바와 같이 북(north), 남(south), 동(east), 및 서(west)로 불릴 것이다.
저항성 시트의 주위 둘레에 복수의 스위치들(4702)이 배열될 수 있다. 이들 스위치들은 글라스 상의 TFT들로서 구현될 수 있다. 또한 각 스위치 위치에는, 디스플레이의 경계 영역에서, (상부 글라스 상의) VCOM을 하부 글라스 상의 TFT 층에 접속할 수 있는, 복수의 도전성 도트들(4703)이 도시되어 있다. 스위치들(4702)은 2개의 버스들에 함께 접속될 수 있다. 예를 들면, 북 및 동 스위치들은 하나의 버스(4704)에 접속되고 남 및 서 스위치들은 제2 버스(4705)에 접속될 수 있다.
터치 감지를 위하여, 스위치들(4702)은 다음과 같이 작동될 수 있다. 북 및 남 스위치들은 Y 방향 커패시턴스를 측정하기 위해 이용될 수 있다. 좌측 및 우측 스위치들은 X 방향 커패시턴스를 측정하기 위해 이용될 수 있다. 북동 및 남서 코너들에 있는 스위치들은 X와 Y 양쪽 모두의 측정을 위해 이용될 수 있다. 커패시 턴스는 도 49에서 도시된 변조 파형 VMOD를 이용하며 저항성 시트(4701)를 자극함으로써 측정될 수 있다. 시트를 원하는 전압으로 구동하기 위해 요구되는 전류(즉, 전하)가 측정되어 터치의 위치를 결정하는 데 이용될 수 있다.
구체적으로는, 도 49의 파형들에서 도시된 바와 같이, 터치가 없을 때는, 기준선 커패시턴스들(4902)은 시트(4701)를 VMOD 전압으로 자극하기 위해 요구되는 전류(전하)를 나타낼 수 있다. 터치가 있을 때는, 손가락의 커패시턴스 때문에 보다 큰 전류(4903)(전하)가 요구될 수 있다. 이 보다 큰 전류는 아래쪽의 파형 그룹에서 도시되어 있다. 그 후 도 49에서 도시된 기준선 및 신호 파형들의 단순 수학적 조합에 의해 터치의 위치가 결정될 수 있다.
X 방향(즉, 동-서) 측정 동안의 터치 스크린에 대한 등가 회로가 도 48에 도시되어 있다. C_PARA(4801)는 시트의 분포된 기생 저항일 수 있고, C_FINGER(4802)는 터치, 예를 들면, 동쪽으로의 노정의 대략 75%에 위치하는 터치의 커패시턴스일 수 있다. 블록도들은 플레이트가 어떻게 VMOD로 구동될 수 있고 전하가 어떻게 측정되고, 조합되고, 처리되어, 호스트에 송신될 수 있는지를 나타낸다.
도 50은 컨셉트 H가 어떻게 LCD와 통합될 수 있는지를 나타낸다. 구체적으로는, 도전성 도트들(5001)이 TFT 층에 접속할 수 있고, 이는 저항성 시트(5002)(VCOM)가 디스플레이 동작을 위해 변조되게 할 수 있다. 터치 감지 동작 및 디스플레이 동작은 시간 다중화(time multiplex)될 수 있다. 예를 들면, 16ms LCD 업데이트 주기에 대응하는, 60Hz 스크린 리프레시 레이트를 가정하여, 이 시간의 일부는 LCD에 정보를 기입하기 위해 이용될 수 있고, 다른 부분은 터치 감지를 위해 이용될 수 있다. LCD 업데이팅 동안에는, VMOD는 LCD 드라이버 회로로부터의 VCOM일 수 있다. 터치 감지 동안에는, 원하는 SNR, 기생 커패시턴스 등과 같은, 터치 시스템의 정확한 상세에 따라서 상이한 주파수들 및 진폭들을 갖는 파형들이 이용될 수 있다. 또한 블록도 형태로 도시된, 이 실시예의 터치 감지 회로는 LCD 드라이버에 통합될 수도 있고 또는 개별 회로일 수도 있다는 것을 알아야 한다.
2.3.1.4. 컨셉트 J
컨셉트 J는, 컨셉트 H와 같이, 디스플레이의 상부 글라스 또는 플라스틱 층 외부에 어떤 ITO도 포함할 필요가 없다. 컨셉트 J의 물리적 구성은 도 51에서 도시되어 있다. 터치 감지 표면은 컨셉트 H와 같은 저항성 시트(5101)이지만, 다수의 로우 스트립들(5102)로 패터닝될 수 있다. 패터닝은 포토리소그래피, 레이저 삭마(laser deletion), 또는 다른 알려진 패터닝 기법들에 의해 달성될 수 있다. 저항성 시트(5101)를 복수의 스트립들(5102)로 패터닝함으로써, 상부 및 하부(북 및 남)를 따라 있는 스위치들이 제거되고, 동 및 서 스위치들(5103)은 로우 스트립들에 접속된 채로 놔둘 수 있다. 각 로우(5102)는, 예를 들면, 도 52에서 도시된 VMOD 파형(5201)을 이용하여 순차적으로 자극될 수 있다. 각 로우(5102)를 변조 전압으로 구동하기 위해 요구되는 전류(전하)는 해당 로우의 커패시턴스의 함수일 수 있고, 그 커패시턴스는 주어진 로우에 대한 기생 커패시턴스(도 53의 C_PARA(5301))와 손가락 또는 다른 터치 물체의 커패시턴스(도 53의 C_FINGER(5302))의 조합일 수 있다.
도 52에서 도시된 바와 같이, 터치(5202)가 있을 때의 신호는 기준선 신호(5203)와 수학적으로 조합되어 터치의 좌표가 계산될 수 있다. Y 출력들은 각 로우에 대한 Z 출력들의 중심들(centroids)에 의해 결정될 수 있다. X 출력들은 각 로우에 대한 X 출력들의 가중 평균에 의해 결정될 수 있다.
도 54는 컨셉트 J 터치 센서가 어떻게 LCD와 통합될 수 있는지를 보여준다. 도전성 도트들(5401)이 상부 글라스 상의 VCOM을 하부 글라스 상의 TFT 층에 접속할 수 있다. 터치 및 디스플레이 동작들은 시간 다중화될 필요가 없다. 오히려, 디스플레이의 일부가 업데이트되고 있는 동안, 다른 부분이 터치에 대하여 스캔될 수 있다. 그와 같이 행하기 위한 다양한 기법들은 다른 실시예들에 관련하여 위에서 논의되었다. 터치 감지는 상이한 주파수들 및 진폭들을 이용할 수 있지만, LCD 로우 반전과 위상 동기화될 수 있다. 스위치들(5402)은 글라스 상의 TFT들로서 구현될 수 있다. 측정 회로는 LCD 컨트롤러와 통합될 수도 있고 또는 개별 컴포넌트일 수도 있다.
2.3.1.5. 컨셉트 L
컨셉트 L에서는, 분할된 ITO 층이 LCD 디스플레이의 상이한 영역들에 걸쳐서 동시에 복수의 기능들을 제공할 수 있도록 컬러 필터 글라스에 능동 TFT 층들이 추가될 수 있다. 컨셉트 L에 대한 스택업도는 도 55에서 도시되어 있다. 컨셉트 L 은 표준 LCD 디스플레이와 동일한 개수의 ITO 층을 포함할 수 있다. 그러나, 하부 글라스(5511) 상의 IT01(5509) 및 다른 구조들(5507, 5508)은 표준 상태로 있을 수 있지만, 컬러 필터 글라스(5505) 상의 능동 TFT 층(5501)은 IT02(5504)의 영역(예를 들면, 수평 로우)이 VCOM의 역할, 터치 구동, 또는 터치 감지 사이에 스위칭되게 할 수 있다.
도 56은 수평으로 분할된 IT02 층(5504)을 갖는 컨셉트 L 디스플레이를 도시한다. 디스플레이의 상이한 영역들은 동시에: VCOM 변조를 겪고 있거나(영역 5601) 및/또는 기입되고 있고(영역 5602); 터치 자극을 제공하고 있고(영역 5603); 터치 감지를 제공하기 위해 측정되고 있고(영역 5604); 및 홀드 상태(hold state)를 유지하고 있다(영역 5605). 능동 TFT 층(5501) 내의 트랜지스터들은 각 수평 로우에 대한 신호들을 지정된 시간 간격 동안 원하는 기능으로 스위칭할 수 있다. 각 영역은, 불균일성을 실질적으로 제거하기 위해, 동일한 시퀀스로, 각 상태에 대해 동등한 노출을 가질 수 있다. 터치 자극을 제공하는 것은 LC를 가로지르는 전압을 교란할 수 있기 때문에, LCD 픽셀 기입은 임의의 교란의 시간 지속 기간을 감소시키기 위해 터치 자극 단계 바로 뒤에 일어날 수 있다. 영역에 대한 LCD 픽셀 기입은 VCOM 변조 동안에 일어날 수 있고, 한편 인접한 세그먼트들은 픽셀 기입 동안에 균일한 경계 조건들을 유지하기 위해 VCOM 변조를 겪고 있을 수 있다.
컬러 필터 플레이트는 능동 어레이에 대하여 이용되는 프로세스와 유사한 프로세스를 이용하여 형성될 수 있다. 추가의 TFT 층들을 형성하는 것은 추가의 단 계들을 수반할 수 있지만, 2개의 기판들의 백엔드 프로세싱은 여전히 표준 LCD의 그것과 실질적으로 유사할 수 있다. 이들 기법들은 그러한 디스플레이들이 저저항률 ITO를 이용하지 않고 더 큰 사이즈의 패널들로 스케일링되게 할 수 있다.
2.3.1.6. 컨셉트 M1 M2
도 57 및 58은 각각 컨셉트 M1 및 M2에 대한 스택업도들을 도시한다. 컨셉트 M1 및 M2는 터치 감지를 위해 패터닝된 ITO 및 금속의 층들을 컬러 필터 글라스에 추가할 수 있다. 컨셉트 M1과 M2는 유사하지만, 한 가지 차이점은 IT01 및 IT02 층들의 상이한 이용과 관련이 있다. 컨셉트 M1은 IT01(5701)을 터치 감지를 위해 이용할 수 있고 IT02(5702)를 VCOM(LCD 픽셀 전압들을 설정/홀딩하고 있을 때) 및 터치 구동(픽셀 전압들을 기입하고 있지 않을 때)의 양쪽 모두를 위해 이용할 수 있다. 컨셉트 M2는 IT01(5801)을 터치 구동을 위해 이용할 수 있고, IT02(5802)를 VCOM 및 터치 감지를 위해 이용할 수 있다. 개념 M1 및 M2 양쪽 모두에 있어서, 상부 글라스(5703, 5803)는 트랜지스터 또는 다른 능동 컴포넌트들을 포함할 필요가 없다.
개념 M1 또는 M2의 어느 쪽이든, 디스플레이의 하나의 영역은 디스플레이 업데이팅 동안한 VCOM을 유지하게 하는 한편 다른 영역은 터치에 대하여 독립적으로 스캔될 수 있도록 하기 위해 VCOM이 분할될 수 있다. 이는 터치 감지 및 디스플레이 기능들 간의 간섭을 감소시킬 수 있다.
도 59, 60, 및 61은 3개의 영역들(5901, 5902, 5903; 도 59)로 분할된 예시 적인 디스플레이(컨셉트 M2에 대응함)를 도시하고, 여기서 2개의 영역은 동시에 터치-스캔될 수 있는(예를 들면, 영역 5901, 5902) 한편 제3 영역의 디스플레이 픽셀들은 업데이트될 수 있다(예를 들면, 영역 5903). 도 61의 좌측에서, IT01 및 M1(금속 1) 층들 내의 27개의 수직 구동 라인들(6101)은 각각 9개의 터치 컬럼들을 갖는 3개의 상이한 영역들을 제공할 수 있다. 각 구동 라인(터치 컬럼마다 3개)은 아래로 어레이 글라스로의 도전성 도트(도시되지 않음)를 가질 수 있고, 드라이버 ASIC에 라우팅될 수 있다.
도 61의 우측은 제1 세트의 교대 로우들(6102)에 대한 VCOM 및 VHOLD 및 제2 세트의 교대 로우들(6103)에 대한 VCOM, VHOLD, 및 VSENSE를 포함하는, IT02 층의 분할된 수행 로우들에 대한 가능한 모드들을 도시한다. 각 IT02 로우는 도전성 도트(도시되지 않음)를 통하여 아래로 어레이 글라스에 접속할 수 있고, 그로부터 LTPS TFT 스위치들을 이용하여 로우들의 모드가 스위칭될 수 있다. 도 61의 우측은 21개의 감지 로우들을 보여주고, 그 중 14개는 언제든지 감지될 수 있다(비록 다른 로우들의 수가 더 많을 수 있지만).
도 62는 도 59, 60, 및 61에서 도시된 예시적인 디스플레이에서 터치 감지를 위한 회로도를 보여준다. VSTM 드라이버(600)는, Rmetcol의 저항 및 Cdrv의 기생 커패시턴스를 가질 수 있는, 금속 구동 컬럼(6202)을 통하여 신호를 보낼 수 있다. 터치 커패시턴스 Csig는, Rito2row의 저힝 및 Cito2row의 기생 커패시턴스를 가질 수 있는, ITO 로우를 가로질러 측정될 수 있다. 터치 감지 전하는 또한 전하 증폭기(6204) 에 도달하기 전에 2개의 추가 저항 Rsw1 및 Rborder에 의해 영향을 받을 수 있다.
60fps의 디스플레이 프레임 업데이트는 120fps의 터치 스캔 레이트에 대응할 수 있다. 원한다면(예를 들면, 소형 멀티 터치 디스플레이에서) 설계자들은 터치 스캔 레이트를 감소시키기로(예를 들면, 60fps) 결정함으로써, 전력을 절약하고 어쩌면 복잡성을 감소시킬 수 있다. 그 결과, 디스플레이의 일부 영역들은 그 영역에서 디스플레이 업데이트도 일어나지 않고 터치 스캐닝도 일어나지 않을 때 "홀드 상태"로 남겨질 수 있다.
도 63은 디스플레이 역역들이 (도 50에서와 같이) 수직으로 대신에 수평으로 스캔되고 업데이트될 수 있는 디스플레이를 보여준다. 터치 구동 및 터치 감지 영역들은, 터치 구동 로우(6301)에 가해지는 자극이, 감지 필드 라인들(6305)에 의해 지시된 바와 같이, 2개의 감지 로우들(6302 및 6303)로부터 동시에 감지될 수 있도록, 인터리브(interleave)될 수 있다.
블랙 마스크 층은 ITO 층들 내의 금속들 및/또는 갭들을 숨기기 위해 이용될 수 있다. 예를 들면, 금속 구동 라인들, IT02 내의 에칭된 갭들, 및 IT01 내의 에칭된 갭들은 (도 64에서 도시된 바와 같이) 블랙 마스크의 배후에 완전히 또는 부분적으로 숨겨질 수 있다. 이는 이들 항목들이 디스플레이의 사용자에게 끼칠 수 있는 시각적 영향을 감소시키거나 제거할 수 있다.
2.3.1,7. 컨셉트 M3
도 65에서 도시된 바와 같이, 컨셉트 M3은 컨셉트 M1 및 M2와 유사할 수 있 지만, 터치 구동 및 터치 센스는 단 하나의 분할된 ITO 층(6501)에 통합된다. 위에서 설명된 다양한 실시예들은 구동 및 감지 전극들을 개별 층들 상에 포함시켰지만, 컨셉트 M3은 구동 및 감지 전극들을 동일 평면에 포함시킬 수 있다. 터치 감지 소자들을 다른 전기적 필드들 및/또는 효과들로부터 보호하기 위해 유전층(6502)이 추가될 수 있다.
도 66 및 67은 3개의 영역들(6601, 6602, 6603)로 분할된 친셉트 M3 디스플레이를 도시하고, 각 영역은 디스플레이 프레임의 모든 각 사이클 업데이트 동안에 터치 자극/감지 단계, LCD 픽셀 기입 단계, 및 흘드 단계를 통하여 교대할 수 있다. 도 68은 디스플레이의 분할을 가능하게 하는 배선 상세 및 레이아웃 배열을 도시한다. IT01 로우들(6801)은, 도전성 도트들(6802)을 통하여, 로우에 대한 전압을 VCOM과 VHOLD 사이에서 스위칭하는 TFT 글라스 상의 LTPS 스위치들에 접속할 수 있다. 각 컬럼에 대하여 3개의 감지 라인들(6803)이 이용될 수 있고(각 영역에 대하여 하나의 감지 라인), 그 라인들은 능동 영역에 대한 신호가 대응하는 시간 프레임에서 측정될 수 있도록 다중화된다. 한 영역에 대한 터치 스캐닝 동안에, 그 영역 내의 한 로우에 대응하는 터치 구동 소자들이 활성화될 수 있고, 그 로우에 대한 컬럼들 모두가 동시에 감지될 수 있다. 디스플레이의 한 영역이 터치에 대하여 스캔되는 시간 동안, 다른 영역은 VCOM을 변조하고 및/또는 디스플레이 픽셀들을 업데이트하고 있을 수 있다.
ITO의 저항을 감소시키기 위해 ITO의 영역들에 금속 세그먼트들(도 68의 6805)이 추가될 수 있다. 예를 들면, 터치 신호의 위상 지연을 감소시키기 위해 IT01 구동 전극들(6804)에 짧은 금속 세그먼트들이 추가될 수 있다. 이들 금속 라인들은 블랙 마스크 층의 배후에 숨겨질 수 있다.
도 69에서 도시된 바와 같이, 가드 트레이스들(6903)은 손가락 또는 다른 터치 물체에 의해 영향을 받게 될 곳인 글라스를 통하여 위로 통과하지 않는 터치 및 감지 전극들 간의 전계 라인들을 차단하기 위해 이용될 수 있다. 이것은 잡음을 감소시키고 디스플레이에 대한 터치들의 측정 효과를 강화할 수 있다. 도 70은 가드 트레이스들이 없는 디스플레이의 상면도(7001) 및 단면도(7002)를 도시하고, 여기서는 폭이 좁은 갭이 터치 감지 소자들, 예를 들면, 구동 전극들(7003) 및 감지 전극들(7004)의 로우들을 분리한다. 터치 감지가 활성일 때 IT02 층(6905)(VCOM)을 접지시키는 것은 터치 감지 및 디스플레이 기능들을 서로로부터 보호할 수 있다. 도 69는 IT01 상의 터치 감지 소자들, 예를 들면, 구동 전극들(6904) 및 감지 전극들(6905)의 로우들 사이에 접지된 가드 트레이스들(6903)을 포함하는 디스플레이의 상면도(6901) 및 단면도(6902)를 도시한다.
2.3.1.8. 컨셉트 P1 P2
컨셉트 P1 및 P2는, 컨셉트 M3와 같이, 동일 평면에 터치 구동 및 터치 감지 전극들을 제공할 수 있다. 그러나, 컨셉트 P1 및 P2는, 도 71에서 도시된 바와 같이, 개별적으로 어드레싱 가능한 터치 픽셀들의 추가의 이점을 제공할 수 있다. 각 터치 픽셀은 구동 전극(7102), 감지 전극(7103), 및 개별적으로 라우팅되어 디 스플레이의 경계 상의 버스에 접속될 수 있는 대응하는 구동 라인들(7104) 및 감지 라인들(7105)을 포함할 수 있다. 이들 라인들은 도전성 블랙 마스크를 이용하여 형성될 수 있고, 그에 따라 디스플레이에 이미 존재하는 블랙 마스크 영역들이 터치 감지를 위한 추가의 서비스를 제공하게 할 수 있다. 대안적으로, 그 라인들은 폴리머 블랙 매트릭스일 수 있는 블랙 매트릭스의 배후에 배치된 금속 라인들일 수도 있다.
도 72는 컨셉트 P1에 대한 스택업도를 도시한다. 컨셉트 P1은 여러 가지 점에서 표준 LCD 프로세스와 상이할 수 있다. 예를 들면, 표준 폴리머 블랙 마스크의 일부는 저저항 금속 백킹(metal backing)을 갖는 블랙 크롬(black chrome)으로 변경될 수 있다. 그 후 이들 도전성 라인들은 터치 픽셀들로 및 터치 픽셀들로부터 신호를 라우팅하는 데 이용될 수 있다. 추가의 마스크 단계에서 블랙 마스크의 배후에 패터닝된 ITO의 층(7202)이 추가될 수 있다. 각 터치 픽셀에 대한 구동 및 감지 신호들을 LTPS TFT 플레이트로 라우팅하기 위해 STN 스타일 도전성 도트들(7203)이 추가될 수 있다(예를 들면, 터치 픽셀마다 2개의 도트를 이용하여). 터치 구동과 VCOM 사이의 커패시턴스를 감소시키기 위해 컬러 필터 층 및 경계 평탄화 층(bordering planarization layer)(7204)을 두껍게 할 수도 있다.
도 73은 컨셉트 P2에 대한 스택업도를 도시한다. 컨셉트 P1에 관하여 위에서 설명된 4가지 변경들을 통합하는 것에 더하여, 컨셉트 P2는 또한 분할된 VCOM을 생성하는 데 이용될 수 있는 패터닝된 ITO 층(7301)을 포함할 수 있다. VCOM을 분 할하는 것으로 터치 구동 및 디스플레이 동작을 분리할 수 있고, 그에 의해 잠재적으로 신호 대 잡음비를 개선할 수 있다. 도 74는 컨셉트 P2에 대한 VCOM 신호 결합을 강조하는 회로도를 도시한다. 귀환 전류에 대하여 독립적인 버스들(Vholdbus1 및 Vholdbus2)을 유지함으로써 결합 전하를 감소시킬 수 있다. 또한, 터치 픽셀들의 절반에 대하여 상보적 구동(complementary drive)을 이용함으로써 Vholdbus1 내의 귀환 전류를 감소시킬 수 있다.
도 71 및 75는 감지 및 구동 픽셀들로 및 감지 및 구동 픽셀들로부터의 터치 감지 및 터치 구동 라인들의 예시적인 라우팅을 도시한다. 디스플레이의 측면들에 있는 버스 라인들(7501, 7502)로부터 각 개별 터치 픽셀(7101)로 수평으로 구동 및 감지 라인들의 세트가 라우팅될 수 있다. 이들 라인들은 블랙 마스크 층의 배후에 숨겨질 수도 있고, 또는 도전성 블랙 마스크 층에 통합될 수도 있다. 이 라우팅은 또한 단일 층 상에 있을 수도 있다. 개별 터치 픽셀들에 대한 신호들은 LTPS TFT들을 이용하여 버스 라인들을 통하여 어스레싱되고 다중화될 수 있다.
전체 로우들이 아니라, 개별 픽셀들을 구동하는 능력은 기생 커패시턴스를 감소시키는 데 이용될 수 있다. 개별적으로 어드레싱 가능한 터치 픽셀들은 또한 터치 어레이가, 단지 한 로우씩(row-by-row)이 아니라, "랜덤 액세스" 모드로 스캔되도록 할 수 있다. 이는 터치 감지 및 디스플레이 업데이팅을 인터레이싱(interlacing)하는 데 있어서 유연성을 증가시킬 수 있다. 예를 들면 도 76은 가능한 스캔 패턴을 도시한다. 시스템이 임의의 원하는 패턴으로 터치 픽셀들을 스캔할 수 있기 때문에, 인접한 로우들 및 인접한 픽셀들이 결코 동시에 구동되지 않도록 함으로써, 신호 손실 또는 보다 낮은 신호 대 잡음비를 초래할 수 있는 프린지 필드(fringe field)를 회피하는 스캔 패턴이 설계될 수 있다. 도 76에서, 정사각형들(7601 및 7602)은 각각 하나의 구동 전극 및 하나의 감지 전극을 포함한다. 정사각형들(7601)은 위상이 같은(in phase) 구동에 대응하는 반면 정사각형들(7602)은 180도 위상이 다른(out-of-phase) 구동 신호에 대응한다. 도면에서, 2개의 로우들(합하여 20개 픽셀)은, 한 번에 4개의 픽셀이 스캔되어, 5개의 시퀀스에서 커버될 수 있다.
2.3.1.9. 컨셉트 D
다른 실시예인 컨셉트 D는 2개의 분할된 ITO 층들 및 각 터치 픽셀에 대한 추가의 트랜지스터를 이용하여 멀티 터치를 지원할 수 있다. 도 77은 컨셉트 D에 대한 회로도를 도시한다. 디스플레이 업데이트 동안에, 회로는 표준 LCD 디스플레이에서와 같이 기능할 수 있다. 게이트 구동(7700)은 2개의 트랜지스터(Q1(7702) 및 Q2(7704))를 구동함으로써, VCOM 버스(7706) 및 데이터 라인들(7708)로부터의 신호들이 LC를 제어하는 커패시터들의 세트(CST(7710), CLC1(7712), 및 CLC2(7714))로 전하를 전송하게 할 수 있다. 트랜지스터 Q2(7704)가 오프되면 VCOM(7706)이 CST(7710)로부터 분리되어, VCOM 라인(7706)이 터치 감지를 위해 이용되도록 할 수 있다. 구체적으로, VCOM 라인(7706)은, CIN(7716) 및 COUT(7718)을 통하여, (터치 감 지 라인으로서 작용할 수 있는) 데이터 라인(7708)을 통하여 전하 증폭기(7720)로 전하를 보내는 데 이용될 수 있다. 디스플레이에 접근하는 도전성 물체(사용자의 손가락, 스타일러스 등)는 전하 증폭기(7720)에 의해 측정될 수 있는 방식으로 시스템의 커패시턴스들을 교란할 수 있다.
도 78 및 79는 컨셉트 D 기반 디스플레이 내의 서브픽셀에 대한 스택업도들을 도시한다. 도 78에서, IT01 층은 2개의 플레이트, A(7722) 및 C(7726)로 분할될 수 있다. IT02 층은, 서브픽셀들 위에 위치하고 IT01 층 내의 플레이트들에 대한 대향 전극들로서 작용할 수 있는, 아일랜드들(예를 들면, B(7724))로 분할될 수 있다. 디스플레이 업데이트 동안에는, 아일랜드(7724)와 플레이트(A(7722), C(7726)) 사이의 전압 차이를 이용하여 액정(7804)을 제어할 수 있다. 터치 감지 동안에는, 서브픽셀의 전체에 걸쳐 있는 커패시턴스들(예를 들면, 도 79의 C1, C2, Cin, Cout, 및 Cst)에 대한 교란들을 측정하여 도전성 물체의 근접을 결정할 수 있다.
도 80은 컨셉트 D에 대한 결합된 배선 및 스택업도를 도시한다. 도 81은 컨셉트 D의 일 실시예의 물리적 실현을 도시한다.
2.3.2. 완전히 통합된 IPS 기반 LCD
도 82에서 개략적으로 도시된, IPS(in-plane switching)은, 보다 넓은 시야각을 갖는 LCD 디스플레이를 생성하기 위해 이용될 수 있다. (트위스티드 네마틱 LCD와 같은) 일부 LCD들은 수직으로 배열된 전극 쌍들(예를 들면, 도 20에서 도시된 것과 같은)을 이용하지만, IPS LCD들에서는, 액정들(8203)의 배향을 제어하기 위해 이용되는 양쪽 전극들(8201, 8202)이 동일한 층에서(예를 들면, 단일 평면에서) 서로에 대해 평행일 수 있다. 이런 식으로 전극들을 배향시키면 액정을 통하여 수평 전계(8200)를 생성할 수 있고, 이는 액정들을 패널의 정면에 대해 평행으로 유지시킬 수 있고, 그에 따라 시야각을 증가시킬 수 있다. IPS 디스플레이 내의 액정 분자들은 위 또는 아래의 층들에 고정(anchor)되지 않고(예를 들면, 도 82에서 도시된 바와 같이), 대신에 자유로이 회전하여 그들 자신을 전계(8200)와 정렬시키면서 서로에 대해 그리고 디스플레이 전극들의 평면에 대해 평행 상태를 유지할 수 있다. 도 83은 IPS를 이용할 수 있는 디스플레이 내의 서로 맞물린 전극들(8301, 8302)의 쌍의 보다 사실적인 배열을 보여준다.
IPS 디스플레이들은 터치 구동 또는 터치 감지를 위해 이용될 수도 있는 VCOM 층이 없기 때문에, 본 발명의 일부 실시예는 디스플레이 업데이팅을 위해 이용되는 동일한 전극들이 터치 감지를 위해 이용될 수도 있도록 함으로써 터치 감지 능력을 제공할 수 있다. 이들 전극들은 추가의 회로에 의해 보완될 수 있다. 위에서 논의된 일부 실시예에서는, 터치 픽셀들이 다수의 디스플레이 픽셀들과 겹칠 수 있다. 이와 대비하여, 아래에서 논의되는 IPS 실시예들은 디스플레이 제어 및 터치 감지를 위해 이용되는 동일한 전극들을 이용할 수 있기 때문에, 거의 내지 전혀 추가의 비용 없이 보다 높은 터치 해상도가 얻어질 수 있다. 대안적으로, 다수의 터치 픽셀들을 그룹화하여 보다 낮은 해상도를 갖는 결합된 터치 신호를 생성할 수 있다.
2.3.2.1 컨셉트 E
하나의 IPS 실시예인 컨셉트 E가 도 84에서 도시되어 있다. 전술한 바와 같이, IPS 기반 터치 감지 디스플레이 내의 전극들은 동일 평면에 있을 수 있고 (도 84에서 도시된 것과 같은) 서로 맞물린 구조를 가질 수 있다. 전극 A(8400) 및 전극 B(8402)는 디스플레이 업데이트 동안에 액정층을 배향시키는 데 이용될 수 있지만, 이 동일한 전극들은 또한 (추가의 소자들과 함께) 터치 감지를 달성하는 데 이용될 수도 있다. 예를 들면, 컨셉트 E는 픽셀이 디스플레이 업데이팅을 겪고 있는지 터치 감지를 겪고 있는지에 기초하여 신호 라인들에 세트에 대한 구동들을 변경하기 위해 추가의 스위치들(8404)을 이용할 수 있다. 컨셉트 E는 또한 전극들이 디스플레이 업데이팅 또는 터치 감지를 위해 이용될 때를 제어하기 위해 커패시턴스들(CIN_A(8406), COUT_A(8408), CIN_B(8410), 및 COUT_B(8412)) 및 2개의 트랜지스터(트랜지스터 Q1(8414) 및 트랜지스터 Q2(8418))를 포함할 수 있다.
터치 감지 동안에는, 트랜지스터들 Q1(8414) 및 Q2(8418)가 오프되어, 전극들을 디스플레이 신호들로부터 분리하고 전극들이 커패시컨스를 측정하는 데 이용되도록 한다. 그 후 VCOM 금속 라인(8416)이 터치 자극 신호(8418)에 접속될 수 있다. 이 자극 신호는 CIN_A(8406) 및 CIN_B(8410)를 통하여 COUT_A(8408) 및 COUT_B(8412)에 보내질 수 있고, COUT_A(8408) 및 COUT_B(8412)는 전하 증폭기(8422)에 접속할 수 있다. CIN과 COUT 사이의 커패시턴스 CSIG(도시되지 않음)는 터치를 감지하는 데 이용될 수 있다. 감지 픽셀이 터치되고 있는 경우, 전하 증폭 기(8422)에 전달되는 전하는 주로 상기 2개의 CIN 및 COUT 커패시터들의 쌍들 사이의 커패시턴스에 좌우될 수 있다. 물체(손가락 등)가 전극들에 접근하면, CSIG 커패시턴스가 교란(예를 들면, 저하)될 수 있고 전송된 전하의 양의 전하로서 전하 증폭기(8422)에 의해 측정될 수 있다. CIN 및 COUT에 대한 값들은 터치 신호 강도를 최적화하기 위한 전하 증폭기(8422)에 대한 원하는 입력 범위에 적합하도록 선택될 수 있다.
전극들은 터치 감지 동안에 고주파 신호를 이용함으로써 디스플레이 상태에 부정적으로 영향을 미치지 않고 터치 감지를 수행하는 데 이용될 수 있다. LC 분자들은 크고 비극성(non-polar)이기 때문에, LC를 가로지르는 RMS 전압에 DC 성분을 부과하거나 변경하지 않는 고주파 전계를 이용함으로써 디스플레이 상태를 변경하지 않고 터치들이 검출될 수 있다.
도 85는 컨셉트 E에 대한 스택업도를 도시한다. 설명한 바와 같이, 모든 터치 소자들이 TFT 플레이트(8501) 상에 형성될 수 있다.
2.3.2.2. 컨셉트 Q
IPS 기반 터치 감지 디스플레이의 또 다른 실시예인 컨셉트 Q도 LCD의 TFT 글라스 소자들(금속 라우팅 라인, 전극 등)이 디스플레이 및 터치 감지 양쪽 모두의 기능을 위해 이용되도록 한다. 그러한 실시예의 잠재적인 이점은 디스플레이 공장 장비에 대한 어떤 변경도 요구되지 않는다는 것이다. 종래의 LCD 제조에 대한 유일한 추가는 터치 감지 전극들을 추가하는 것을 포함한다.
컨셉트 Q는 도 105 및 106에서 도시된 2가지 타입의 픽셀들을 포함한다. 픽셀 타입 A는 도 105에서 도시되어 있다. 각 픽셀(10501)은 3개의 단자, 즉, 선택 단자(10502), 데이터 단자(10503), 및 공통 단자(10504)를 포함한다. A 타입 픽셀들 각각은 터치 감지 컬럼들을 형성하는 컬럼들(10505)을 따라서 접속된 그들의 공통 단자를 갖는다. 픽셀 타입 B는 도 106에서 도시되어 있다. 각 픽셀(10601)은 또한 3개의 단자, 즉, 선택(10602), 데이터(10603), 및 공통(10604)을 포함한다. B 타입 픽셀들 각각은 터치 감지 로우들을 형성하는 로우들(10605)을 따라서 접속된 그들의 공통 단자를 갖는다. 픽셀들은 도 107에서 도시된 바와 같이 복수의 터치 감지 로우들(10702) 및 복수의 터치 감지 컬럼들(10703)과 함께 배열되어 있다. 구동 자극 및 감지 회로를 포함할 수 있는 터치 감지 칩(10701)이 상기 로우들 및 컬럼들에 접속될 수 있다.
터치 감지 칩은 다음과 같이 동작할 수 있다. 제1 시간 기간 동안에는, LCD가 업데이트되는 동안에 모든 로우들 및 컬럼들이 접지에 유지될 수 있다. 일부 실시예에서, 이것은 약 12ms의 기간일 수 있다. 다음 시간 기간 동안에는 A 타입 픽셀들, 즉, 터치 컬럼들이 자극 파형에 의해 구동될 수 있는 한편 B 타입 픽셀들, 즉 터치 로우들 각각에서의 커패시턴스가 감지될 수 있다. 다음 시간 기간 동안에는, B 타입 픽셀들, 즉, 터치 로우들이 자극 파형에 의해 구동될 수 있는 한편 A 타입 픽셀들, 즉 터치 컬럼들 각각에서의 커패시턴스가 감지될 수 있다. 이 프로세스는 그 후 반복될 수 있다. 상기 2개의 터치 감지 기간들은 약 2ms일 수 있다. 자극 파형은 다양한 형태를 취할 수 있다. 일부 실시예에서 그것은 제로 DC 오프 셋을 갖는 약 5V 피크-피크의 정현파(sine wave)일 수 있다. 다른 시간 기간들 및 파형들이 이용될 수도 있다.
2.3.2.3. 컨셉트 G
IPS 기반 터치 감지 디스플레이에서 발생할 수 있는 한 가지 문제점은 터치와 LC 사이의 차폐물의 부재는 손가락(또는 다른 터치 물체)이 디스플레이 출력에 영향을 미칠 수 있음을 의미한다는 것이다. 예를 들면, 스크린에 터치하는 손가락이 LC를 제어하는 데 이용되는 전계들에 영향을 미쳐, 디스플레이가 일그러지게 할 수 있다. 이러한 문제점에 대한 한 가지 해법은 사용자와 디스플레이 서브픽셀들 사이에 차폐물(예를 들면, 투명한 ITO 층)을 두는 것일 수 있다. 그러나, 그러한 차폐물은 또한 터치 감지를 위해 이용되는 전계들을 차단함으로써, 터치 감지를 방해할 수도 있다.
일 실시예인 컨셉트 G는 도 86의 스택업도에서 도시된 바와 같이 디스플레이의 층들을 뒤집음(flipping)으로써 이러한 문제점을 극복할 수 있다. 이것은 사용자로부터 TFT 플레이트(8602)의 반대 측에 LC(8600)를 배치할 수 있다. 그 결과, LC(8600)를 제어하는 데 이용되는 전계 라인들은 일반적으로 LCD의 터치 측면으로부터 멀리 향하게 될 수 있다. 이것은 이제는 터치 물체와 LC(8600) 사이에 있는, 게이트 라인들, 및 전극들과 같은, 금속 영역들이 LC에 대한 부분적인 또는 완전한 차폐를 제공하도록 할 수 있다.
2.3.2.4. 컨셉트 F
또 다른 실시예인 컨셉트 F(도 87에서 도시됨)는 (비접촉식(non-touch) IPS 디스플레이에 관하여) LCD 데이터 버스를 변하지 않은 채로 놔두면서 그리고 추가의 ITO 층들을 필요로 하거나 또는 층들의 정렬을 더 어렵게 하지 않으면서 디스플레이 교란을 감소시킬 수 있다. (컨셉트 E 및 G에서와 같이) 공유되는 데이터 라인을 이용하는 대신에, 컨셉트 F는 출력 감지 라인들(8700)로서 작용할 수 있는 라우팅된 금속 라인들의 세트를 금속층(M1) 내에 추가함으로써 잠재적인 디스플레이 교란을 감소시킬 수 있다. 이들 출력 감지 라인들(8700)은 도 87에서 및 도 88에서 도시된 컨셉트 F 서브픽셀에 대한 스택업도에서 도시된 바와 같이, 디스플레이의 전체 영역을 가로질러 디스플레이 회로의 아래에 수직으로 연장할 수 있다. 출력 감지를 위해 개별 금속층을 이용함으로써, 컨셉트 F는 컨셉트 E(도 84)에 대하여 도시된 트랜지스터들 중 하나가 제거되도록 할 수 있다. 또한 컨셉트 F는 컨셉트 G에 관련하여 위에서 설명된 바와 같이 잠재적인 디스플레이 교란을 더 감소시키기 위해 디스플레이의 층들을 뒤집을 수 있다.
3. 가능하게 하는 기술들
위에서 설명된 실시예들 중 다수의 실시예들에 각종의 양태들이 적용될 수 있다. 이들의 예에 대하여 아래에서 설명한다.
3.1. DITO
다수의 실시예들에서는, 기판의 2개의 측면들 상에 ITO가 적층되어 패터닝될 수 있다. 그와 같이 행하기 위한 다양한 기법들 및 프로세스들이, 본원에 전체적으로 참고로 통합된, 2007년 1월 3일에 출원된, "Double-Sided Touch Sensitive Panel with ITO Metal Electrodes"라는 명칭의, 미국 특허 출원 11/650,049호에서 설명되어 있다.
3.2. 패터닝된 ITO 를 금속으로 대체
다양한 실시예들은 터치 감지 전극들을 형성하는 패터닝된 ITO 층을 제거하고 이 층을, 예를 들면, 상부 글라스 상의 층들 중 하나 위에 적층된 매우 얇은 금속 라인들로 대체할 수 있다. 이것은 ITO 프로세싱 단계를 제거하는 것을 포함하여, 다수의 이점들을 가질 수 있다. 또한, 감지 라인 전극들은 매우 얇게(예를 들면, 10 마이크로미터 정도) 만들어질 수 있어, 그것들은 디스플레이의 시각적 인식을 방해하지 않는다. 이러한 라인 두께의 감소는 또한 기생 커패시턴스를 감소시킬 수 있고 이는, 위에서 설명된 바와 같이, 터치 스크린 동작의 다양한 양태들을 향상시킬 수 있다. 마지막으로, 디스플레이로부터의 광은 실질적으로 ITO로 커버된 층을 통과하지 않기 때문에, 컬러 및 투과율이 개선될 수 있다.
3.3. 터치 감지 기판에 플라스틱 사용
위에서 설명된 다양한 실시예들은 글라스 기판과 관련하여 설명되었다. 그러나, 일부 실시예에서는, 이들 기판 중 하나 이상을 플라스틱으로 대체함으로써 비용 절약 및 두께 감소가 달성될 수 있다. 도 89 및 90은 도 89에서 도시된 글라스 기반 시스템들, 및 도 90에서 도시된 플라스틱 기반 시스템들 간의 몇몇 차이들을 도시한다. 비록 하나의 특정 실시예에 관련하여 도시되어 있지만, 플라스틱 기판을 대용하는 원리는 상기 컨셉트들 중 어느 것에든지 적용될 수 있다.
도 89는 글라스 기반 시스템의 스택업을 도시한다. 도시된 치수들은 현재의 기술을 이용한 예시이지만, 당업자라면 특히 다양한 제조 기술들이 진보함에 따라 서 다른 두께가 이용될 수 있다는 것을 이해할 것이다. 위로부터 시작하여, 약0.8mm의 예시적인 두께를 갖는 커버(8901)가, 인덱스 매칭 층(8902)(예를 들면, 대략 0.18mm 두께) 위에 있을 수 있다. 인덱스 매칭 층 아래에는 상부 편광자(8903)가 있을 수 있다. 상부 편광자(8903)는 대략 0.2mm의 두께를 가질 수 있다. 다음 층은 각 측면 상에 ITO가 패터닝되어 있는 글라스 층(8904)(예를 들면, 약 0.5mm 두께)일 수 있다. 그 상부 측면 상에, 예를 들면, FPC(8905)에 접합될 수 있는, 감지 전극들이 패터닝될 수 있다. 글라스 층(8904)의 저면 상에는 LCD에 대한 구동 전극들 및 VCOM 층이 패터닝될 수 있다. 이 아래에는 약 0.3mm의 예시적인 두께를 갖는 다른 글라스 층(8906)이 있을 수 있고, 이 글라스 층 상에는 디스플레이를 위한 TFT 층들이 형성될 수 있다. 이 글라스 층의 상부는 또한 디스플레이 및 터치 감지 양쪽 모두의 회로(8908)에 접속하는 FPC(8907)에 접합될 수 있다. 이 아래에는 하부 편광자가 있을 수 있고, 그 아래에는 디스플레이 백라이트(8910)가 있을 수 있다.
상부로부터 하부까지 전체 두께는 대략 2.0mm일 수 있다. 다양한 ASIC들 및 개별 회로가 글라스 상에 위치할 수도 있고 또는 FPC들을 통하여 접속될 수도 있다. 패터닝된 ITO는 다른 플라스틱 층, 예를 들면, 상부 커버의 하부 측면 등에 배치될 수 있다.
도 90은 터치 감지층(9002)을 플라스틱 편광자(9003)로 이동시킴으로써 중간 글라스 층(9001)이 두께가 감소될 수 있는 유사한 배열을 도시한다. 플라스틱 편 광자(9003) 상에 터치 감지층(9002)을 패터닝하는 것은 다양한 공지의 방법들에 의해 달성될 수 있다. 글라스의 양쪽 측면 모두에서 패터닝될 필요가 없기 때문에 두께의 감소가 달성될 수 있다. 핸들링 문제 때문에, LCD 프로세스들에서 이용되는 글라스는, 예를 들면, 약 0.5mm의 두께로 처리될 수 있고, 그 후, 처리 후에, 예를 들면, 약 0.3mm로 연마(grind down)될 수 있다. 양쪽 측면에 회로 소자들을 갖는 것은 글라스를 연마하는 것을 배제한다. 그러나, 도 90의 실시예에서는 글라스(9001)의 한쪽 측면에서만 전극들이 패터닝되어 있기 때문에, 글라스가 연마될 수 있어, 약 0.2mm의 전체 두께 감소를 제공할 수 있다. 이러한 배열은 저온도 접합 프로세스를 이용하여 접합될 수 있는, 편광자에 대한 FPC 접속(9004)을 포함할 수 있다. 상이한 유전 상수를 갖는 재료들이 이용될 수 있어, 유연성을 제공하고 용량성 감지 회로들의 동작을 향상시킬 수 있다는 점에서, 플라스틱 기판을 이용하는 것의 추가의 이점이 발생할 수 있다.
플라스틱 기판 실시예에 대한 변형이 도 91에서 도시되어 있다. 함께 부착될 수 있는 복수의 플라스틱 기판들(9102, 9103) 상에 전극들(9101)(예를 들면, 구동 및 감지 라인들)이 패터닝될 수 있다. 플라스틱 기판들은 보다 얇기 때문에(예를 들면, 글라스 기판의 두께의 대략 절반) 그러한 기법들은 한층 더 얇은 터치 스크린들을 허용할 수 있다.
도 92에서 도시된 다른 변형에서는, 폴리에스테르 기판(9201)이 양쪽 측면에 패터닝된 전극들(9202)을 가질 수 있다. 이러한 실시예는 두 측면 간의 접속을 위해 기판(9201)을 통하여 액세스 홀(9203)을 포함할 수 있다. 폴리에스테르 기 판(9201)은 핸드헬드 컴퓨터와 같은 장치의 커버(9204)에 배치될 수 있다. 또 다른 변형은, 상부 표면 상에 ITO 전극들(9302)이 패터닝되어 있는 폴리에스테르 기판(9301)과, 그 기판(9301)을 통하여, 역시 상부 표면 상에 ITO 전극(9305)이 패터닝되어 있는 제2 글라스 기판으로 통하는 액세스 홀(9303)을 도시하는 도 93에서 도시되어 있다.
도 94는 장치, 예를 들면 핸드헬드 컴퓨터(9401)의 업사이드 다운도(upside down view)를 도시한다. 업사이드 다운이라 함은, 장치의 사용자 표면이 하부 표면(도시되지 않음)인 것을 의미한다. 사용자 표면의 배면 상에 ITO 터치 감지 전극들(9402)이 패터닝될 수 있고, 대향 표면 상에 배치된 ITO를 갖는 스택업(9403)이 장치 조립 동안에 거기에 배치된다. 이 컨셉트의 또 다른 변형은 여기서 논의된 다양한 실시예들 중 하나에 따라서 몰딩된 플라스틱 커버(9702)의 내면 상에 및 층들(9503)의 스택업의 위에 패터닝된 ITO 전극들(9501)을 보여주는 도 95에서 도시되어 있다. 도 95의 도면에서는, 장치의 사용자 표면이 상부 표면(9504)일 수 있다.
도 96, 97, 및 98은 여기서 설명된 바와 같이 터치 감지를 위해 적합할 수 있는 ITO 전극들의 패턴이 위에 배치되어 있는 폴리에스테르 기판을 제조하는 데 있어서의 단계들의 시퀀스를 도시한다. 도 96은 ITO(9602)의 분리된 정사각형들의 격자로 패터닝된 패터닝된 폴리에스테르 시트(9601)를 도시한다. ITO 저항률은 약 200 옴 이하일 수 있다. 개별 전극들은 대략 1mm × 1mm이고, 그 사이의 갭들은 30 마이크로미터일 수 있다. 도시된 실시예에서, 시트(9601)는 대략 50mm × 80mm 이고, 이는 핸드헬드 컴퓨터, 멀티미디어 플레이어, 휴대용 전화기, 또는 유사 장치에 대하여 적합한 사이즈일 수 있지만, 당업자라면 여러 가지 다른 사이즈 및/또는 응용을 생각해낼 수 있을 것이다. 단면도에서 도시된 바와 같이, 시트는 25 마이크로미터 정도로 작은 두께일 수 있지만, 25 내지 200 마이크로미터의 치수들이 이용될 수도 있다. 명백히, 이는 장치 두께의 면에서 상당한 이점을 제공할 수 있다.
도 97에서는, 패터닝된 기판(9702)에 FPC들(9701)이 접합될 수 있다. 도 98에서는, 예를 들면, 대략 0.8mm 두께의 PMMA의 층일 수 있는 커버(9801)가 광학적으로 투명한 접착제를 이용하여 PET 기판(9802)에 부착될 수 있다.
3.4. LCD 컨트롤러와의 레벨 시프터 /디코더 통합
일부 실시예에서는, 터치 구동 세그먼트들로의 VSTM 신호의 전달을 지원하기 위해 LCD(도 6 참조)의 주변 영역에 추가의 회로(능동, 수동, 또는 양쪽 모두)가 배치될 수 있다. 주변 영역 회로 및 그의 디자인 룰들의 상세는 특정 제조 프로세스 상세 및 어느 TFT 기술(즉, PMOS, NMOS 또는 CMOS)이 이용되는지에 좌우될 수 있다. 다음 4개의 하위 섹션들은 상이한 구동 회로 통합 배열들을 고려하여 주변 터치 구동 회로들을 실현하기 위한 접근법들을 설명한다.
3.4.1. 개별 레벨 시프터 /디코더 칩
하나의 접근법에서는, 개별 레벨 시프터/디코더 COG가 하부 글라스 상에 부착될 수 있다(도 22 참조). 이 배열에서는 주변 영역에서 금속 트레이스들이 요구 될 수 있다. 트레이스들의 개수는, 소형 디스플레이에 대하여 20개 미만일 수 있는, 터치 구동 세그먼트들의 개수에 좌우된다. 이 접근법의 디자인 목적은, 터치 구동 트레이스들 간의 간격, 및 터치 구동 트레이스들과 주변 영역의 다른 LCD 회로들 간의 간격에 의해 영향을 받을 수 있는, 용량 결합을 감소시키는 것을 포함할 수 있다. 낮은 트레이스 임피던스도 인접한 터치 구동 트레이스들 간의 용량 결합을 감소시킬 수 있다.
예를 들면, 가장 긴 트레이스, 레벨 시프터/디코더 출력 저항, 도전성 도트, 및 ITO 구동 세그먼트의 결합된 저항은 약 450 옴으로 제한될 수 있다. 터치 구동 ITO의 저항은 약 330 옴일 수 있고(30 Ω/sq 및 11 squares의 ITO 시트 저항을 가정하여), 이는 다른 컴포넌트들에 대하여 120 옴을 남겨둘 수 있다. 다음의 표는 터치 구동 회로 내의 각 점포넌트에 대한 이 저항의 하나의 할당 예를 보여준다.
레벨 시프터/디코더 출력 금속 트레이스 도전성 도트 ITO 세그먼트
10 옴 100 옴 10 옴 330 옴
원하는 트레이스 저항을 얻기 위해 보다 폭이 넓은 트레이스들 및/또는 보다 낮은 시트 저항이 이용될 수 있다. 예를 들면, 100 옴의 트레이스 저항에 대해서는, 시트 저항이 200 mΩ/sq라면 0.18 mm 이상의 트레이스 폭이 바람직할 수 있다.
물론, 가장 긴 터치 구동 트레이스들만이 가장 큰 폭을 필요로 한다. 상응하여 보다 짧은 다른 터치 구동 트레이스들은 상응하여 보다 작은 폭들을 가질 수 있다. 예를 들면, 가장 짧은 트레이스가 5 mm이면, 그의 폭은 대략 0.01 mm일 수 있다.
도 99는 컨셉트 A에 대한 레벨 시프터/디코더 COG의 단순화된 도면을 도시한 다. (컨셉트 B에 대해서는, 트랜지스터 Q1 및 ENB_LCD[x] 디코더가 제거될 수 있다.) 레지스터된 디코더 블록(9902)은 한 번에 하나씩 로딩될 수 있는 3개의 개별 레지스터된 디코더들을 포함할 수 있다. 이 3개의 디코더들 중 하나는 터치/LCD 드라이버로부터의 2개의 신호에 의해 선택될 수 있고 5비트 데이터를 이용하여 프로그램될 수 있다. 디코더 출력들은 레벨 시프터/디코더의 각 출력 섹션과 관련된 3개의 트랜지스터들 Q1, Q2, Q3를 제어할 수 있다. 각 출력 섹션은 3개의 상태, 즉, 1) LCD(Q1 온, Q2 및 Q3 오프), 2) 터치(Q2 온, Q1 및 Q3 오프), 또는 3) GND(Q3 온, Q1 및 Q2 오프) 중 하나의 상태에 있을 수 있다. 전술한 바와 같이, Q2의 출력 저항은 VSTM 위상 지연을 감소시키기 위해 대략 10 옴 이하일 수 있다. 컨셉트 B에 대해서는, LCD 디코더 및 Q1이 제거될 수 있다.
3.4.2. 주변 영역에 완전히 통합된 레벨 시프터 /디코더
레벨 시프터/디코더 기능(도 99)은 또한 하부 글라스의 주변 영역에 완전히 통합될 수 있다. 이러한 접근법에 의하면, TFT 기술의 타입은 전력 소비에 관련되게 된다. CMOS TFT 기술은 보다 낮은 전력 소비를 제공할 수 있지만, 그것은 NMOS 또는 PMOS보다 더 비용이 들 수 있다. 그러나, 특정 디자인 상수들에 따라서 임의의 기술이 이용될 수 있다.
터치 구동 저항을 더 감소시키기 위하여, 트랜지스터 폭은 비교적 낮은 LTPS TFT 이동도(예를 들면, ~50 cm2/V*sec)를 보상하도록 확대될 수 있다.
3.4.3. 터치/ LCD 드라이버에 부분적으로 통합된 레벨 시프터 /디코더
일부 실시예에서, 레벨 시프터/디코더 기능은 터치/LCD 드라이버에 부분적으로 통합되고 주변 영역에 부분적으로 통합될 수 있다. 이러한 접근법은, 예를 들면, 주변 영역에서 CMOS를 제거함으로써 비용을 저감할 수 있는 것과, 주변 영역에서 로직을 제거함으로써 전력 소비를 저감할 수 있는 것을 포함한 몇 가지 이점들을 가질 수 있다. 도 100은 이러한 접근법에서 이용될 수 있는 변경된 터치/LCD 드라이버(10001) 및 주변 트랜지스터 회로(10002)를 도시한다. 레벨 시프터 및 승압 회로(10003)는 하부 글라스 상에 통합되고 세그먼트 드라이버들과 터치/LCD 칩 사이에 배치될 수 있다. 각 터치 구동 세그먼트에 대하여 하나의 세그먼트 드라이버가 있을 수 있다. 각 터치 구동 세그먼트는 3개의 상태, 즉, GND, VSTM에 의해 변조된, 또는 VCOM에 의해 변조된 상태 중 하나의 상태에 있을 수 있다. 이러한 배열에서는 레벨 시프터 회로들은 하부 글라스 상에서 저전압 터치/LCD 칩이 트랜지스터 스위치들을 제어할 수 있게 하기 위해 요구된다.
3.4.4. 터치/ LCD 드라이버에 완전히 통합된 레벨 시프터 /디코더
일부 실시예에서, 레벨 시프터/디코더 기능은 터치/LCD 드라이버에 완전히 통합될 수 있다. 레벨 시프터/디코더 기능을 터치/LCD 드라이버로 이동시킴으로써, 개별 레벨 시프터/디코더 COG가 제거될 수 있다. 더욱이, 주변 영역으로부터 CMOS 및 로직을 제거하는 이점이 달성될 수 있다.
도 101은, VSTM을 생성하는 승압 회로(10102)를 포함할 수 있는, 완전 통합된 터치/LCD 드라이버(10101)의 단순화된 블록도를 도시한다. (커패시터, 다이오드, 및 인덕터와 같은) 주변 컴포넌트들이 요구될 수도 있지만, 모든 다른 접근법들과 마찬가지로, 간소화를 위해 도시하지 않았다.
4. 사용, 폼 팩터
이하에서는 여기서 설명된 통합 터치 스크린 LCD의 예시적인 응용들에 대하여 설명한다. PDA, 멀티미디어 플레이어, 휴대용 전화기, GPS 장치 등과 같은 장치들을 포함하여, 헨드헬드 컴퓨터들은 하나의 유리한 응용일 수 있다. 또한, 본 터치 스크린은 태블릿 컴퓨터, 노트북 컴퓨터, 데스크톱 컴퓨터, 정보 키오스크 등에서 응용을 찾을 수도 있다.
도 102는 본 발명의 일 실시예에 따른, 터치 스크린(10201)의 응용의 사시도이다. 터치 스크린(10201)은 아마도 포인트 또는 커서는 물론 기타 정보를 포함하는 그래픽 사용자 인터페이스(GUI)를 사용자에게 디스플레이하도록 구성될 수 있다. 예로서, 터치 스크린은 사용자가 입력 포인터를 이동시키거나 또는 디스플레이(10202) 상의 GUI에서 단순히 포인팅함으로써 그래픽 사용자 인터페이스 상에서 선택을 하게 할 수 있다.
일반적으로, 터치 스크린들은 터치 스크린의 표면(10204) 상의 터치 이벤트를 인지하고 그 후 이 정보를 호스트 장치에 출력할 수 있다. 호스트 장치는, 예를 들면, 데스크톱, 랩톱, 핸드헬드 또는 태블릿 컴퓨터 등의 컴퓨터에 대응할 수 있다. 호스트 장치는 터치 이벤트를 해석할 수 있고 그 터치 이벤트에 기초하여 액션을 수행할 수 있다. 도 102에서 도시된 터치 스크린은 터치 스크린의 터치 감응 표면(10204) 상의 상이한 위치들에서 동시에 일어나는 복수의 터치 이벤트들을 인지하도록 구성될 수 있다. 도시된 바와 같이, 터치 스크린은, 예를 들면, 주어진 시간에 터치 스크린의 표면 상에서 일어나는 각 터치 포인트 T1-T4에 대한 개별 추적 신호들 S1-S4를 생성할 수 있다.
복수의 터치 이벤트들은 호스트 장치에서 단일 또는 다중 액션들을 수행하기 위해 개별적으로 또는 함께 이용될 수 있다. 개별적으로 이용되는 경우, 제1 터치 이벤트는 제1 액션을 수행하는 데 이용될 수 있는 반면 제2 터치 이벤트는 제2 액션과는 상이할 수 있는 제2 액션을 수행하는 데 이용될 수 있다. 그 액션들은, 예를 들면, 커서 또는 포인터와 같은 개체의 이동, 스크롤링 또는 패닝(panning), 제어 설정 조정, 파일 또는 문서 열기, 메뉴 보기, 선택하기, 명령 실행, 호스트 장치에 접속된 주변 장치의 조작 등을 포함할 수 있다. 함께 이용되는 경우, 제1 및 제2 터치 이벤트들은 하나의 특정 액션을 수행하기 위해 이용될 수 있다. 그 특정 액션은 예를 들면 컴퓨터 또는 컴튜터 네트워크에 로그온하는 것, 컴퓨터 또는 컴퓨터 네트워크의 제한된 영역들에의 권한 있는 개인의 액세스를 허용하는 것, 컴퓨터 데스크톱의 사용자의 선호 배열과 관련된 사용자 프로파일을 로딩하는 것, 웹 콘텐트에의 액세스를 허용하는 것, 특정 프로그램을 시작하는 것, 메시지를 암호화 또는 암호해독하는 것 등을 포함할 수 있다.
다시 도 102를 참조하면, 터치 스크린(10201)은 독립 실행형 장치(stand alone unit)일 수도 있고 또는 다른 장치들과 통합될 수도 있다. 독립 실행형인 경우, 터치 스크린(10201)은 그 자신의 하우징을 포함할 수 있는 주변 장치(예를 들면, 모니터)와 같이 거동할 수 있다. 독립 실행형 디스플레이 배열은 유선 또는 무선 접속을 통하여 호스트 장치에 연결될 수 있다. 통합되는 경우, 터치 스크린(10201)은 하우징을 공유할 수 있고 호스트 장치에 하드 와이어(hard wire)됨으로써 단일 장치를 형성할 수 있다. 예로서, 터치 스크린(10201)은 데스크톱, 랩톱 또는 태블릿 컴퓨터와 같은 범용 컴퓨터, PDA와 같은 핸드핼드 기기 및 음악 재생기와 같은 미디어 플레이어, 또는 카메라, 프린터, 휴대용 전화기 등과 같은 주변 장치들을 포함하면서도 이들에 제한되지 않는 각종의 호스트 장치 내에 배치될 수 있다.
도 103은 본 발명의 일 실시예에 따른 컴퓨터 시스템(10301)의 블록도를 도시한다. 컴퓨터 시스템(10301)은 데스크톱, 랩톱, 태블릿 또는 핸드헬드 등의 개인용 컴퓨터 시스템에 대응할 수 있다. 예로서, 컴퓨터 시스템은 임의의 애플(Apple) 또는 PC 기반 컴퓨터 시스템에 대응할 수 있다. 컴퓨터 시스템은 또한 정보 키오스크, ATM(automated teller machines), POS(point of sale machines), 산업용 머신, 게임용 머신, 아케이드 머신, 자동 판매기, 항공사 전자 티켓 단말, 식당 예약 단말, 고객 서비스 스테이션, 도서관 단말, 학습 장치 등과 같은 공공 컴퓨터 시스템에 대응할 수도 있다.
도시된 바와 같이, 컴퓨터 시스템(10301)은 명령들을 실행하고 컴퓨터 시스템(10301)과 관련된 동작들을 수행하도록 구성된 프로세서(10302)를 포함할 수 있다. 예를 들면, 메모리로부터 검색된 명령들을 이용하여, 프로세서(10302)는 컴퓨팅 시스템(10301)의 컴포넌트들 사이의 입력 및 출력 데이터의 수신 및 조작을 제어할 수 있다. 프로세서(10302)는 단일 칩 프로세서일 수도 있고 또는 복수의 컴 포넌트들로 구현될 수도 있다.
대부분의 경우, 프로세서(10302)는 운영 체제와 함께 컴퓨터 코드를 실행하고 데이터를 생성 및 이용하도록 동작한다. 컴퓨터 코드 및 데이터는 프로세서(10302)에 작용상 연결될 수 있는 프로그램 저장 블록(10303) 내에 상주할 수 있다. 프로그램 저장 블록(10303)은 컴퓨터 시스템(10301)에 의해 이용되고 있는 데이터를 보유하는 장소를 제공한다. 예로서, 프로그램 저장 블록은 ROM(read-only memory)(10304), RAM(random access memory)(10305), 하드 디스크 드라이브(10306) 등을 포함할 수 있다. 컴퓨터 코드 및 데이터는 또한 이동식 저장 매체 상에 상주하고 필요할 때 컴퓨터 시스템 상에 로딩되거나 설치될 수 있다. 이동식 저장 매체는, 예를 들면, CD-ROM, PC-CARD, 플로피 디스크, 자기 테이프, 및 네트워크 컴포넌트를 포함할 수 있다.
컴퓨터 시스템(10301)은 또한 프로세서(10302)에 작용상 연결될 수 있는 입출력(I/O) 컨트롤러(10307)를 포함할 수 있다. I/O 컨트롤러(10307)는 프로세서(10302)와 통합될 수도 있고 또는 그것은 도시된 바와 같이 개별 컴포넌트일 수도 있다. I/O 컨트롤러(10307)는 하나 이상의 I/O 장치들과의 상호작용을 제어하도록 구성될 수 있다. I/O 컨트롤러(10307)는 프로세서와 통신하기를 원하는 I/O 장치들과 프로세서 사이에 데이터를 교환함으로써 동작할 수 있다. I/O 장치들 및 I/O 컨트롤러는 데이터 링크(10312)를 통하여 통신할 수 있다. 데이터 링크(10312)는 단방향 링크 또는 양방향 링크일 수 있다. 일부 경우에, I/O 장치들은 유선 접속을 통하여 I/O 컨트롤러(10307)에 접속될 수 있다. 다른 경우에, I/O 장치들은 무선 접속을 통하여 I/O 컨트롤러(10307)에 접속될 수 있다. 예로서, 데이터 링크(10312)는 PS/2, USB, 파이어와이어, IR, RF, 블루투스 등에 대응할 수 있다.
컴퓨터 시스템(10301)은 또한 프로세서(10302)에 작용상 연결될 수 있는 디스플레이 장치(10308), 예를 들면, 여기서 설명된 것과 같은 통합 터치 스크린 LCD를 포함할 수 있다. 디스플레이 장치(10308)는 개별 컴포넌트(주변 장치)일 수도 있고 또는 프로세서 및 프로그램 저장 장치와 통합되어 데스크톱 컴퓨터(필요 부품을 모두 갖춘 머신(all in one machine)), 랩톱, 핸드헬드 또는 태블릿 등을 형성할 수도 있다. 디스플레이 장치(10308)는, 예를 들면, 포인트 또는 커서는 물론 사용자에게 디스플레이되는 기타 정보를 포함하는 그래픽 사용자 인터페이스(GUI)를 디스플레이하도록 구성될 수 있다.
디스플레이 장치(10308)는 또한 프로세서(10302)에 작용상 연결될 수 있는 통합 터치 스크린(10309)(명료함을 위하여 개별적으로 도시되어 있지만 실제로는 디스플레이와 통합됨)을 포함할 수 있다. 터치 스크린(10309)은 사용자로부터 입력을 수신하고 이 정보를 프로세서(10302)에 보내도록 구성될 수 있다. 터치 스크린(10309)은 터치 및 그 표면 상의 터치들의 위치, 형상, 사이즈 등을 인지할 수 있다. 터치 스크린(10309)은 그 터치들을 프로세서(10302)에 보고할 수 있고, 프로세서(10302)는 그의 프로그래밍에 따라서 그 터치들을 해석할 수 있다. 예를 들면, 프로세서(10302)는 특정 터치에 따라서 작업을 개시할 수 있다.
여기서 설명된 터치 스크린 LCD는, 본 명세서에 참고로 통합된, 2006년 3월 3일에 출원된, "Multi-functional Hand-held Device"라는 명칭의, 미국 특허 출원 11/367,749호에서 개시된 것들과 같은 다기능 핸드헬드 장치들에서 특히 유리한 응용을 찾을 수 있다.
예를 들면, 여기서 설명된 원리들은 각종의 전자 장치들 및 컴퓨터 시스템들에 대한 입력 장치들을 고안하는 데 이용될 수 있다. 이들 전자 장치들 및 컴퓨터 시스템은, 도 104에서 도시된, 데스크톱 컴퓨터(10401), 노트북 컴퓨터(10402), 태블릿 컴퓨터(10403), 핸드헬드 컴퓨터(10404), PDA(personal digital assistants)(10405), 미디어 플레이어(10406), 휴대용 전화기(10407) 등을 포함하는 각종의 타입 중 임의의 것일 수 있다. 또한, 이 전자 장치들 및 컴퓨터 시스템들은 이들 타입의 조합들, 예를 들면, PDA, 미디어 플레이어 및 휴대용 전화기의 조합인 장치일 수도 있다. 전술한 실시예들의 다른 변형들, 치환들, 및 조합들도 가능하다.
또한, 여기에 있는 원리들은, 비록 용량성 멀티 터치 시스템에 관련하여 설명되었다 하더라도, 터치 또는 근접 감지가 다른 기술들에 의존하는 시스템들에도 적용될 수 있다. 그러므로 다음의 청구항들은 전술한 것의 모든 변형들, 치환들, 조합들 및 등가물들을 포함하는 것으로 해석되어야 한다.
본 발명은 첨부 도면들과 함께 다음의 설명을 참조함으로써 가장 잘 이해될 수 있다.
도 1은 멀티포인트 감지 배열을 도시한다.
도 2는 멀티포인트 감지 시스템 상의 다수의 콘택트 패치들(contact patches)을 도시한다.
도 3은 상호 커패시턴스(mutual capacitance) 회로의 단순화된 개략도를 도시한다.
도 4는 멀티포인트 감지 배열을 동작시키는 프로세스를 도시한다.
도 5는 LTPS 반투과반사형(transflective) 서브픽셀에 대한 대표적인 레이아웃을 도시한다.
도 6은 위로부터 및 측면으로부터 본 LTPS의 단순화된 모델을 도시한다.
도 7은 서브픽셀에 대한 회로도를 도시하고 어느 글라스 기판 상에 컴포넌트들이 제조되는지를 보여준다.
도 8은 LCD를 제조하는 기본적인 프로세스 흐름을 도시한다.
도 9는 완성된 소형 사이즈 LCD 모듈을 도시한다.
도 10은 개별 터치 드라이버 및 LCD 드라이버 칩들을 갖는 터치 스크린 LCD의 블록도를 도시한다.
도 11은 통합 LCD 및 터치 드라이버 칩을 갖는 터치 스크린 LCD의 블록도를 도시한다.
도 12는 터치 스크린 LCD의 기본 스택업(stackup)을 도시한다.
도 13은 터치 스크린 LCD의 대안 실시예를 도시한다.
도 14는 전극 패턴을 도시한다.
도 15는 터치 스크린 LCD의 스택업도(stackup diagram) 실시예를 도시한다.
도 16은 도 15에서 도시된 터치 스크린 LCD의 터치 픽셀 회로를 도시한다.
도 17은 플라스틱 커버에 의해 보호되는 터치 감지층을 도시한다.
도 18은 터치 스크린의 영역에 대한 출력 게이트들의 연결된 세트(linked set) 및 출력 컬럼을 도시한다.
도 19는 터치 스크린 LCD의 터치 픽셀의 레이아웃을 도시한다.
도 20은 터치 스크린 LCD의 일 실시예에 대한 스택업도를 도시한다.
도 21은 터치 센서 어레이를 도시한다.
도 22는 케이블링 및 서브시스템 배치의 상면도 및 측면도를 갖는, 컨셉트 A 및 B에 대한 물리적 구현을 도시한다.
도 23은 하부 글라스 컴포넌트들의 하나의 가능한 아키텍처를 보여주는 고레벨 블록도를 도시한다.
도 24는 신장된 도전성 도트들을 도시한다.
도 25는 터치/LCD 드라이버 통합 회로에 대한 고레벨 블록도를 도시한다.
도 26은 여기서 설명된 다양한 LCD 실시예들에서 사용하기 위한 연성 인쇄 회로(flexible printed circuit)를 도시한다.
도 27은 동시의 디스플레이 업데이팅 및 터치 스캐닝을 위한 프로세스를 도 시한다.
도 28은 개회로 VCST 터치 구동 옵션을 도시한다.
도 29는 구동-VCST 터치 구동 옵션을 도시한다.
도 30은 터치 감지 및 LCD VCOM 변조 양쪽 모두를 위해 터치 구동이 이용되는 상황에 대한 전기적 모델을 도시한다.
도 31은 도전성 도트들을 통하여 양쪽의 Cst 라인들에 VSTM을 접속하는 것을 도시한다.
도 32는 터치 스크린 LCD에 대한 제조 프로세스 흐름을 도시한다.
도 33은 터치 자극 신호로서 VCOM의 1-라인 반전(one-line inversion)을 이용하는 것을 도시한다.
도 34는 터치 스크린 LCD의 대안 실시예에 대한 스택업도를 도시한다.
도 35는 터치 스크린 LCD에 대한 제조 프로세스 흐름을 도시한다.
도 36은 터치 구동층 대신에 도전성 블랙 매트릭스를 이용하는 실시예를 도시한다.
도 37은 터치 스크린 LCD의 실시예에 대한 회로도를 도시한다.
도 38은 터치 스크린 LCD에 대한 스택업도를 도시한다.
도 39는 터치 스크린 LCD의 디스플레이 픽셀들의 한 로우씩의 업데이트(row-by-row update)를 도시한다.
도 40은 터치 스크린 LCD 내의 터치 감응(touch sensitlve) 디스플레이 로우들의 세트에 대한 터치 감지 프로세스를 도시한다.
도 41은 터치 스크린 LCD의 상이한 영역들에 위치하는 3개의 픽셀들에 대한 터치들을 검출하는 프로세스를 도시한다.
도 42는 터치 스크린 LCD의 다른 실시예의 회로도를 도시한다.
도 43은 도 42에서 도시된 실시예의 스택업도를 도시한다.
도 44는 터치 감지층 대신에 도전성 블랙 매트릭스를 이용하는 실시예를 도시한다.
도 45는 터치 스크린 LCD의 다른 실시예의 스택업도를 도시한다.
도 46은 도 55에서 도시된 실시예의 상면도를 도시한다.
도 47은 터치 스크린 LCD의 다른 실시예를 도시한다.
도 48은 도 47의 실시예의 등가 회로를 도시한다.
도 49는 도 47-48의 실시예에서 터치 감지를 위해 이용될 수 있는 파형들을 도시한다.
도 50은 도 47의 실시예에 대한 터치 스크린 통합의 추가 양태들을 도시한다.
도 51은 터치 스크린 LCD의 다른 실시예를 도시한다.
도 52는 도 51 및 53의 실시예에서 터치 감지를 위해 이용될 수 있는 파형들을 도시한다.
도 53은 도 51의 실시예의 등가 회로를 도시한다.
도 54는 도 51의 실시예에 대한 터치 스크린 통합의 추가 양태들을 도시한다.
도 55는 터치 스크린 LCD의 스택업도를 도시한다.
도 56은 터치 스크린 LCD를 업데이트하는 프로세스를 도시한다.
도 57은 터치 스크린 LCD의 실시예에 대한 스택업도를 도시한다.
도 58은 터치 스크린 LCD의 실시예에 대한 스택업도를 도시한다.
도 59는 독립적으로 업데이트되거나 터치-스캔될 수 있는 3개의 영역들로 분할된 예시적인 LCD 디스플레이를 도시한다.
도 60은 3개의 영역들을 갖는 터치 스크린 LCD의 업데이트 및 터치-스캐닝을 도시한다.
도 61은 터치 스크린 LCD에 대한 전극 레이아웃을 도시한다.
도 62는 터치 스크린 LCD에 대한 회로 컴포넌트들을 도시한다.
도 63은 터치 스크린 LCD에 대한 업데이트 배열의 스냅숏을 도시한다.
도 64는 블랙 매트릭스의 배후에 완전히 또는 부분적으로 숨겨질 수 있는 ITO 내의 금속 라인들 및 갭들을 도시한다.
도 65는 터치 스크린 LCD에 대한 스택업도를 도시한다.
도 66은 3개의 영역들로 분할된 터치 스크린 LCD를 도시한다.
도 67은 터치 스크린 LCD에서 디스플레이 업데이트 및 터치-스캐닝을 수행하는 프로세스를 도시한다.
도 68은 터치 스크린 LCD를 3개의 영역들로 분할하는 ITO 레이아웃 및 배 선(wiring)을 도시한다.
도 69는 가드 트레이스들을 포함하는 터치 스크린 LCD의 영역의 상면도 및 단면도를 도시한다.
도 70은 가드 트레이스들을 포함하지 않는 터치 스크린 LCD의 영역의 상면도 및 단면도를 도시한다.
도 71은 6개의 터치 픽셀들 및 그들의 신호 배선을 포함하는 예시적인 디스플레이의 영역을 도시한다.
도 72는 터치 스크린 LCD의 다른 실시예에 대한 스택업도를 도시한다.
도 73은 터치 스크린 LCD의 다른 실시예에 대한 스택업도를 도시한다.
도 74는 터치 스크린 LCD에 대한 VCOM 신호 결합을 강조하는 회로도를 도시한다.
도 75는 예시적인 디스플레이를 도시한다.
도 76은 터치 스크린 LCD에 대한 가능한 스캔 패턴을 도시한다.
도 77은 도 79의 실시예에 대한 회로도를 도시한다.
도 78은 세그먼트 ITO 층들을 도시한다.
도 79는 터치 스크린 LCD의 다른 실시예에 대한 스택업도를 도시한다.
도 80은 도 79의 실시예에 대한 결합된 배선 및 스택업도를 도시한다.
도 81은 도 79의 실시예의 물리적 실현을 도시한다.
도 82는 IPS(in-plane switching) LCD 셀들을 도시한다.
도 83은 IPS LCD 셀들에 대한 전극들의 구성을 도시한다.
도 84는 IPS 기반 터치 스크린 LCD의 실시예에 대한 회로도를 도시한다.
도 85는 도 84에 대응하는 스택업도를 도시한다.
도 86은 IPS 기반 터치 스크린 LCD의 다른 실시예에 대한 스택업도를 도시한다.
도 87은 컨셉트 F에 대한 스택업도, IPS 기반 터치 스크린 LCD의 실시예를 도시한다.
도 88은 도 87의 실시예에 대응하는 스택업도를 도시한다.
도 89는 올 글라스(all glass) 터치 스크린 LCD의 측면도를 도시한다.
도 90은 플라스틱 층을 포함하는 터치 스크린 LCD의 측면도를 도시한다.
도 91은 다중 플라스틱 층들을 갖는 터치 스크린을 도시한다.
도 92는 PET 층을 통한 접속을 갖는 2개의 측면 상에 패터닝된 PET 층을 갖는 터치 스크린을 도시한다.
도 93은 조합 PET/글라스 터치 스크린을 도시한다.
도 94는 터치 스크린 LCD 장치 어셈블리를 도시한다.
도 95는 투명한 플라스틱 하우징의 내면 상에 패터닝된 터치 층을 갖는 터치 LCD를 도시한다.
도 96은 터치 스크린 LCD와 함께 이용될 수 있는 패터닝된 PET 기판을 도시한다.
도 97은 도 96의 PET 기판에 접합된 연성 인쇄 회로를 도시한다.
도 98은 도 97의 어셈블리에 부착된 커버를 도시한다.
도 99는 레벨 시프터/디코더 칩 온 글라스(chip on glass)의 단순화된 도면을 도시한다.
도 100은 변경된 터치/LCD 드라이버 및 주변 트랜지스터 회로를 도시한다.
도 101은 완전 통합된 터치/LCD 드라이버의 단순화된 블록도를 도시한다.
도 102는 터치 스크린 LCD의 응용을 도시한다.
도 103은 터치 스크린을 통합하는 컴퓨터 시스템의 블록도를 도시한다.
도 104는 본 발명에 따른 터치 스크린 LCD와 함께 사용될 수 있는 각종 전자 장치 및 컴퓨터 시스템 폼 팩터들을 도시한다.
도 105는 복수의 터치 감지 컬럼들을 형성하도록 접속된 복수의 IPS LCD 서브픽셀들을 도시한다.
도 106은 복수의 터치 감지 로우들을 형성하도록 접속된 복수의 IPS LCD 서브픽셀들을 도시한다.
도 107은 통합 터치 감지를 갖는 IPS LCD를 도시한다.

Claims (34)

  1. 통합 터치 감지(integral touch sensing)를 갖는 IPS(in-plane-switching) 액정 디스플레이를 포함하는 터치 스크린으로서,
    디스플레이 제어 회로가 위에 형성되어 있는 제1 기판;
    상기 제1 기판에 인접하는 제2 기판; 및
    상기 제1 기판과 상기 제2 기판 사이에 배치된 적어도 하나의 터치 감지 소자를 포함하고,
    상기 디스플레이 제어 회로는 각 디스플레이 서브픽셀에 대한 한 쌍의 전극들을 포함하고, 모든 터치 감지 소자들은 상기 제1 기판과 상기 제2 기판 사이에 배치되는 터치 스크린.
  2. 제1항에 있어서, 상기 제1 기판과 상기 제2 기판 사이의 상기 적어도 하나의 터치 감지 소자는,
    디스플레이 서브픽셀에 대한 상기 한 쌍의 전극들 중 하나인 터치 구동 전극;
    각 디스플레이 서브픽셀에 대한 상기 한 쌍의 전극들 중 하나인 터치 감지 전극; 및
    상기 전극들을 디스플레이 기능과 터치 기능 사이에서 스위칭하는 하나 이상의 스위치들
    을 포함하는 터치 스크린.
  3. 제2항에 있어서, 상기 하나 이상의 스위치들은 TFT들을 포함하는 터치 스크린.
  4. 제2항에 있어서, VCOM이 터치 구동 신호의 소스로서 이용되는 터치 스크린.
  5. 제2항에 있어서, 디스플레이 데이터 라인이 터치 감지 라인으로서 이용되는 터치 스크린.
  6. 제2항에 있어서, 상기 제1 기판과 상기 제2 기판 사이의 상기 적어도 하나의 터치 감지 소자는 상기 제1 기판 상에 배치된 복수의 금속 감지 라인들을 더 포함하는 터치 스크린.
  7. 제2항에 있어서, 상기 제2 기판은 상기 제1 기판보다 사용자에 더 가까이 위치하는 터치 스크린.
  8. 제2항에 있어서, 상기 제1 기판은 상기 제2 기판보다 사용자에 더 가까이 위치하는 터치 스크린.
  9. 제1항에 있어서, 제1 복수의 디스플레이 서브픽셀들이 복수의 터치 감지 로우(row)들을 형성하도록 접속되고 제2 복수의 디스플레이 서브픽셀들이 복수의 터치 감지 컬럼(column)들을 형성하도록 접속되는 터치 스크린.
  10. 통합 액정 디스플레이 터치 스크린이 결합된 전자 장치로서, 상기 터치 스크린은,
    디스플레이 제어 회로가 위에 형성되어 있는 제1 기판;
    상기 제1 기판에 인접하는 제2 기판; 및
    상기 제1 기판과 상기 제2 기판 사이에 배치된 적어도 하나의 터치 감지 소자를 포함하고,
    상기 디스플레이 제어 회로는 각 디스플레이 서브픽셀에 대한 한 쌍의 전극들을 포함하고, 모든 터치 감지 소자들은 상기 제1 기판과 상기 제2 기판 사이에 배치되는 전자 장치.
  11. 제10항에 있어서, 상기 전자 장치는 데스크톱 컴퓨터, 태블릿 컴퓨터(tablet computer), 및 노트북 컴퓨터로 이루어진 그룹으로부터 선택되는 전자 장치.
  12. 제10항에 있어서, 상기 전자 장치는 핸드헬드 컴퓨터, PDA(personal digital assistant), 미디어 플레이어, 및 휴대용 전화기(mobile telephone) 중 적어도 하 나를 포함하는 전자 장치.
  13. 제10항에 있어서, 상기 제1 기판과 상기 제2 기판 사이의 상기 적어도 하나의 터치 감지 소자는,
    디스플레이 서브픽셀에 대한 상기 한 쌍의 전극들 중 하나인 터치 구동 전극;
    각 디스플레이 서브픽셀에 대한 상기 한 쌍의 전극들 중 하나인 터치 감지 전극; 및
    상기 전극들을 디스플레이 기능과 터치 기능 사이에서 스위칭하는 하나 이상의 스위치들
    을 포함하는 전자 장치.
  14. 제13항에 있어서, 상기 전자 장치는 데스크톱 컴퓨터, 태블릿 컴퓨터, 및 노트북 컴퓨터로 이루어진 그룹으로부터 선택되는 전자 장치.
  15. 제13항에 있어서, 상기 전자 장치는 핸드헬드 컴퓨터, PDA(personal digital assistant), 미디어 플레이어, 및 휴대용 전화기(mobile telephone) 중 적어도 하나를 포함하는 전자 장치.
  16. 제13항에 있어서, VCOM이 터치 구동 신호의 소스로서 이용되는 전자 장치.
  17. 제16항에 있어서, 상기 전자 장치는 데스크톱 컴퓨터, 태블릿 컴퓨터, 및 노트북 컴퓨터로 이루어진 그룹으로부터 선택되는 전자 장치.
  18. 제16항에 있어서, 상기 전자 장치는 핸드헬드 컴퓨터, PDA(personal digital assistant), 미디어 플레이어, 및 휴대용 전화기(mobile telephone) 중 적어도 하나를 포함하는 전자 장치.
  19. 제13항에 있어서, 디스플레이 데이터 라인이 터치 감지 라인으로서 이용되는 전자 장치.
  20. 제19항에 있어서, 상기 전자 장치는 데스크톱 컴퓨터, 태블릿 컴퓨터, 및 노트북 컴퓨터로 이루어진 그룹으로부터 선택되는 전자 장치.
  21. 제19항에 있어서, 상기 전자 장치는 핸드헬드 컴퓨터, PDA(personal digital assistant), 미디어 플레이어, 및 휴대용 전화기(mobile telephone) 중 적어도 하나를 포함하는 전자 장치.
  22. 제13항에 있어서, 상기 제1 기판과 상기 제2 기판 사이의 상기 적어도 하나의 터치 감지 소자는 상기 제1 기판 상에 배치된 복수의 금속 감지 라인들을 더 포함하는 전자 장치.
  23. 제22항에 있어서, 상기 전자 장치는 데스크톱 컴퓨터, 태블릿 컴퓨터, 및 노트북 컴퓨터로 이루어진 그룹으로부터 선택되는 전자 장치.
  24. 제22항에 있어서, 상기 전자 장치는 핸드헬드 컴퓨터, PDA(personal digital assistant), 미디어 플레이어, 및 휴대용 전화기(mobile telephone) 중 적어도 하나를 포함하는 전자 장치.
  25. 제10항에 있어서, 제1 복수의 디스플레이 서브픽셀들이 복수의 터치 감지 로우들을 형성하도록 접속되고 제2 복수의 디스플레이 서브픽셀들이 복수의 터치 감지 컬럼들을 형성하도록 접속되는 전자 장치.
  26. 제25항에 있어서, 상기 전자 장치는 데스크톱 컴퓨터, 태블릿 컴퓨터, 및 노트북 컴퓨터로 이루어진 그룹으로부터 선택되는 전자 장치.
  27. 제25항에 있어서, 상기 전자 장치는 핸드헬드 컴퓨터, PDA(personal digital assistant), 미디어 플레이어, 및 휴대용 전화기(mobile telephone) 중 적어도 하 나를 포함하는 전자 장치.
  28. 통합 액정 디스플레이 터치 스크린이 결합된 휴대용 전화기로서, 상기 터치 스크린은,
    디스플레이 제어 회로가 위에 형성되어 있는 제1 기판;
    상기 제1 기판에 인접하는 제2 기판; 및
    상기 제1 기판과 상기 제2 기판 사이에 배치된 적어도 하나의 터치 감지 소자를 포함하고,
    상기 디스플레이 제어 회로는 각 디스플레이 서브픽셀에 대한 한 쌍의 전극들을 포함하고, 모든 터치 감지 소자들은 상기 제1 기판과 상기 제2 기판 사이에 배치되는 휴대용 전화기.
  29. 제28항에 있어서, 상기 제1 기판과 상기 제2 기판 사이에 배치된 상기 적어도 하나의 터치 감지 소자는,
    디스플레이 서브픽셀에 대한 상기 한 쌍의 전극들 중 하나인 터치 구동 전극;
    각 디스플레이 서브픽셀에 대한 상기 한 쌍의 전극들 중 하나인 터치 감지 전극; 및
    상기 전극들을 디스플레이 기능과 터치 기능 사이에서 스위칭하는 하나 이상의 스위치들
    을 포함하는 휴대용 전화기.
  30. 제29항에 있어서, VCOM이 터치 구동 신호의 소스로서 이용되는 휴대용 전화기.
  31. 제29항에 있어서, 디스플레이 데이터 라인이 터치 감지 라인으로서 이용되는 휴대용 전화기.
  32. 제29항에 있어서, 상기 제1 기판과 상기 제2 기판 사이에 배치된 상기 적어도 하나의 터치 감지 소자는 상기 제1 기판 상에 배치된 복수의 금속 감지 라인들을 더 포함하는 휴대용 전화기.
  33. 제28항에 있어서, 제1 복수의 디스플레이 서브픽셀들이 복수의 터치 감지 로우들을 형성하도록 접속되고, 제2 복수의 디스플레이 서브픽셀들이 복수의 터치 감지 컬럼들을 형성하도록 접속되는 휴대용 전화기.
  34. 통합 터치 감지(integral touch sensing)를 갖는 IPS(in-plane-switching) 액정 디스플레이를 포함하는 터치 스크린을 동작시키는 방법으로서,
    상기 디스플레이는 복수의 터치 감지 로우들을 형성하도록 접속된 제1 복수 의 디스플레이 서브픽셀들 및 복수의 터치 감지 컬럼들을 형성하도록 접속된 제2 복수의 디스플레이 서브픽셀들을 포함하고,
    상기 방법은,
    제1 시간 기간 동안에 상기 터치 감지 로우들 및 컬럼들을 접지에 유지하는 단계;
    상기 제1 시간 기간 동안에 상기 디스플레이를 업데이팅(updating)하는 단계;
    제2 시간 기간 동안에 상기 터치 감지 로우들을 자극하는 단계;
    상기 제2 시간 기간 동안에 상기 터치 감지 컬럼들에서 터치를 감지하는 단계;
    제3 시간 기간 동안에 상기 터치 감지 컬럼들을 자극하는 단계; 및
    상기 제3 시간 기간 동안에 상기 터치 감지 로우들에서 터치를 감지하는 단계
    를 포함하는 방법.
KR1020097000435A 2006-06-09 2007-06-08 터치 스크린 액정 디스플레이 KR101062042B1 (ko)

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
US80436106P 2006-06-09 2006-06-09
US60/804,361 2006-06-09
US88397907P 2007-01-08 2007-01-08
US60/883,979 2007-01-08
US11/760,080 2007-06-08
US11/760,060 2007-06-08
US11/760,049 US8552989B2 (en) 2006-06-09 2007-06-08 Integrated display and touch screen
PCT/US2007/070729 WO2007146783A2 (en) 2006-06-09 2007-06-08 Touch screen liquid crystal display
US11/760,080 US8654083B2 (en) 2006-06-09 2007-06-08 Touch screen liquid crystal display
US11/760,060 US8243027B2 (en) 2006-06-09 2007-06-08 Touch screen liquid crystal display
US11/760,036 US8259078B2 (en) 2006-06-09 2007-06-08 Touch screen liquid crystal display
US11/760,036 2007-06-08
US11/760,049 2007-06-08

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020097000431A Division KR101109355B1 (ko) 2006-06-09 2007-06-08 터치 스크린 액정 디스플레이

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020117001710A Division KR101128543B1 (ko) 2006-06-09 2007-06-08 터치 스크린 액정 디스플레이

Publications (2)

Publication Number Publication Date
KR20090019903A true KR20090019903A (ko) 2009-02-25
KR101062042B1 KR101062042B1 (ko) 2011-09-02

Family

ID=38624401

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020097000431A KR101109355B1 (ko) 2006-06-09 2007-06-08 터치 스크린 액정 디스플레이
KR1020097000435A KR101062042B1 (ko) 2006-06-09 2007-06-08 터치 스크린 액정 디스플레이

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020097000431A KR101109355B1 (ko) 2006-06-09 2007-06-08 터치 스크린 액정 디스플레이

Country Status (7)

Country Link
EP (6) EP2027528B1 (ko)
KR (2) KR101109355B1 (ko)
CN (4) CN101501618B (ko)
AU (2) AU2007257869B2 (ko)
DE (1) DE112007001290T5 (ko)
GB (3) GB2455179B (ko)
WO (2) WO2007146783A2 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100988724B1 (ko) * 2008-12-08 2010-10-20 주식회사 켐트로닉스 터치 스크린 및 그 터치 감지 방법
KR20110066834A (ko) * 2009-12-11 2011-06-17 (주)멜파스 복수의 접촉 입력을 감지하는 방법 및 장치
KR20110136123A (ko) * 2010-06-14 2011-12-21 엘지전자 주식회사 터치 패널 디스플레이 장치
WO2012008751A2 (ko) * 2010-07-16 2012-01-19 (주)멜파스 복수의 접촉 입력을 감지하는 방법 및 장치

Families Citing this family (172)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7663607B2 (en) 2004-05-06 2010-02-16 Apple Inc. Multipoint touchscreen
KR102125605B1 (ko) 2006-06-09 2020-06-22 애플 인크. 터치 스크린 액정 디스플레이
CN104965621B (zh) 2006-06-09 2018-06-12 苹果公司 触摸屏液晶显示器及其操作方法
US8552989B2 (en) 2006-06-09 2013-10-08 Apple Inc. Integrated display and touch screen
US8493330B2 (en) 2007-01-03 2013-07-23 Apple Inc. Individual channel phase delay scheme
US9710095B2 (en) 2007-01-05 2017-07-18 Apple Inc. Touch screen stack-ups
EP2079008A1 (en) 2007-12-26 2009-07-15 TPO Displays Corp. Position sensing display
KR101602345B1 (ko) * 2007-12-26 2016-03-10 티피오 디스플레이스 코포레이션 위치 감지 디스플레이
US8717305B2 (en) * 2008-03-04 2014-05-06 Apple Inc. Touch event model for web pages
JP5481040B2 (ja) * 2008-04-11 2014-04-23 株式会社ジャパンディスプレイ 表示装置とその駆動方法
JP5206250B2 (ja) * 2008-05-02 2013-06-12 セイコーエプソン株式会社 表示装置および電子機器
AU2013201154B2 (en) * 2008-07-03 2014-09-11 Apple Inc. Display with dual-function capacitive elements
US8508495B2 (en) 2008-07-03 2013-08-13 Apple Inc. Display with dual-function capacitive elements
EP2511806A3 (en) * 2008-07-31 2013-01-02 Gunze Limited Capacitive touch switch
TWI389016B (zh) * 2008-08-26 2013-03-11 Acer Inc 整合式畫素結構、整合式觸控液晶顯示裝置及其觸控方法
US9477342B2 (en) 2008-08-26 2016-10-25 Google Technology Holdings LLC Multi-touch force sensing touch-screen devices and methods
KR101009672B1 (ko) 2008-09-12 2011-01-19 엘지디스플레이 주식회사 터치 패널 내장형 액정 표시 장치
US8638314B2 (en) 2008-10-17 2014-01-28 Atmel Corporation Capacitive touch buttons combined with electroluminescent lighting
JP5043204B2 (ja) * 2009-01-20 2012-10-10 シャープ株式会社 光強度センサ付き液晶表示装置
US7995041B2 (en) 2009-02-02 2011-08-09 Apple Inc. Integrated touch screen
US8217913B2 (en) 2009-02-02 2012-07-10 Apple Inc. Integrated touch screen
CN101833184A (zh) * 2009-03-13 2010-09-15 宸鸿光电科技股份有限公司 电容式触控板与液晶显示面板的整合结构
WO2010107961A2 (en) 2009-03-18 2010-09-23 Synaptics Incorporated Integrated display and touch sensor
US8537126B2 (en) * 2009-04-06 2013-09-17 Apple Inc. Integrated touch sensitive display gate driver
GB2469374B (en) * 2009-04-06 2013-09-11 Apple Inc Integrated touch sensitive display gate driver and method
US9401431B2 (en) * 2009-04-21 2016-07-26 Cbrite Inc. Double self-aligned metal oxide TFT
US8599565B2 (en) 2009-04-21 2013-12-03 Fujitsu Component Limited Touchscreen panel, electronic apparatus and method of fabricating touchscreen panel
JP5451181B2 (ja) * 2009-05-25 2014-03-26 株式会社ジャパンディスプレイ 物体の接触または近接を検出するセンサ装置
JP5513933B2 (ja) 2009-06-30 2014-06-04 株式会社ジャパンディスプレイ タッチセンサおよび表示装置
KR100935340B1 (ko) * 2009-07-13 2010-01-06 이성호 터치입력수단이 내장된 표시장치
KR100936369B1 (ko) * 2009-07-13 2010-01-12 이성호 터치입력수단이 내장된 표시장치
US9753597B2 (en) 2009-07-24 2017-09-05 Cypress Semiconductor Corporation Mutual capacitance sensing array
TWI498786B (zh) 2009-08-24 2015-09-01 Semiconductor Energy Lab 觸控感應器及其驅動方法與顯示裝置
US20120146943A1 (en) * 2009-09-03 2012-06-14 Koninklijke Philips Electronics N.V. Touch sensing output device
JP2011075809A (ja) * 2009-09-30 2011-04-14 Toppan Printing Co Ltd 液晶表示パネル
US8970509B2 (en) * 2009-12-09 2015-03-03 Lg Display Co., Ltd. Touch panel and liquid crystal display device including the same
US9805692B2 (en) 2010-02-26 2017-10-31 Synaptics Incorporated Varying demodulation to avoid interference
KR101148837B1 (ko) * 2010-03-03 2012-05-29 (주)멜파스 접촉 감지 장치 및 접촉 판단 방법
KR101726623B1 (ko) * 2010-03-16 2017-04-14 엘지디스플레이 주식회사 터치 패널
CN102193226A (zh) * 2010-03-17 2011-09-21 谊达光电科技股份有限公司 具近接感应功能的面板
TWI434207B (zh) 2010-03-25 2014-04-11 Novatek Microelectronics Corp 觸控感測系統、電子觸控裝置及觸控感測方法
TWI416199B (zh) 2010-03-25 2013-11-21 Winsky Technology Ltd Touch panel
JP5383903B2 (ja) * 2010-04-01 2014-01-08 シャープ株式会社 表示装置
CN102214026B (zh) * 2010-04-06 2013-06-19 联咏科技股份有限公司 触控感测系统、电子触控装置及触控感测方法
KR20110113035A (ko) * 2010-04-08 2011-10-14 (주)멜파스 멀티터치 감지를 위한 접촉 감지 패널 및 접촉 감지 장치
CN102214049B (zh) * 2010-04-09 2015-10-21 上海天马微电子有限公司 电容式触摸感应装置
US9898121B2 (en) 2010-04-30 2018-02-20 Synaptics Incorporated Integrated capacitive sensing and displaying
JP5642500B2 (ja) 2010-07-22 2014-12-17 富士通コンポーネント株式会社 タッチパネルにおける位置検出方法、タッチパネル、タッチパネルの初期化方法
US8451250B2 (en) * 2010-07-22 2013-05-28 Au Optronics Corporation Capacitive touch device and method of driving same
CN102375582A (zh) * 2010-08-09 2012-03-14 盛群半导体股份有限公司 触控式液晶显示面板
CN102375256A (zh) * 2010-08-09 2012-03-14 盛群半导体股份有限公司 触控式液晶显示面板
CN102375629B (zh) * 2010-08-13 2015-05-06 上海天马微电子有限公司 内嵌电容式触摸屏及其驱动方法和驱动装置
KR101481674B1 (ko) * 2010-08-19 2015-01-14 엘지디스플레이 주식회사 터치 패널을 갖는 표시 장치
US8923014B2 (en) 2010-08-19 2014-12-30 Lg Display Co., Ltd. Display device having touch panel
JP5670124B2 (ja) 2010-08-23 2015-02-18 株式会社ジャパンディスプレイ タッチ検出機能付き表示装置、駆動回路、タッチ検出機能付き表示装置の駆動方法および電子機器
KR101761580B1 (ko) * 2010-09-08 2017-07-27 엘지디스플레이 주식회사 터치 센서를 갖는 표시 장치
TWI426435B (zh) * 2010-09-14 2014-02-11 Sentelic Corp Capacitive touch panel and its manufacturing method
EP2432074A1 (de) 2010-09-21 2012-03-21 Printechnologics GmbH Baugruppe mit wenigstens einer UHF-Dipol-Antenne
US9971405B2 (en) * 2010-09-27 2018-05-15 Nokia Technologies Oy Touch sensitive input
JP5766928B2 (ja) * 2010-09-29 2015-08-19 株式会社ジャパンディスプレイ タッチ検出機能付き表示装置および電子機器
KR101188983B1 (ko) 2010-09-30 2012-10-08 삼성디스플레이 주식회사 터치 스크린 패널 내장형 입체 영상 평판표시장치
KR101230146B1 (ko) 2010-10-29 2013-02-05 삼성디스플레이 주식회사 터치 스크린 패널 일체형 액정표시장치 및 그의 구동방법
CN102455536B (zh) * 2010-10-29 2014-11-19 三星显示有限公司 具有集成触摸屏面板的液晶显示器及其驱动方法
KR20120045290A (ko) * 2010-10-29 2012-05-09 삼성모바일디스플레이주식회사 터치 스크린 패널 일체형 액정표시장치
KR101230196B1 (ko) * 2010-10-29 2013-02-06 삼성디스플레이 주식회사 터치 스크린 패널 내장형 액정표시장치
CN102479020B (zh) * 2010-11-25 2014-01-15 汉王科技股份有限公司 一种抗干扰的电磁手写装置及电磁笔位置识别方法
EP2458526A1 (en) * 2010-11-29 2012-05-30 Printechnologics GmbH System and method for retrieving information from a data carrier
US8804056B2 (en) 2010-12-22 2014-08-12 Apple Inc. Integrated touch screens
TWM422117U (en) * 2010-12-30 2012-02-01 Egalax Empia Technology Inc Capacitive touch screen
TWI576746B (zh) * 2010-12-31 2017-04-01 劉鴻達 雙模式觸控感應的顯示器
US8482713B2 (en) * 2011-02-04 2013-07-09 Apple Inc. Laser processing of display components for electronic devices
US9086439B2 (en) 2011-02-25 2015-07-21 Maxim Integrated Products, Inc. Circuits, devices and methods having pipelined capacitance sensing
US8860432B2 (en) 2011-02-25 2014-10-14 Maxim Integrated Products, Inc. Background noise measurement and frequency selection in touch panel sensor systems
US20120218222A1 (en) * 2011-02-25 2012-08-30 Maxim Integrated Products, Inc. Cancelling touch panel offset of a touch panel sensor
WO2012148539A1 (en) 2011-02-25 2012-11-01 Maxim Integrated Products, Inc Capacitive touch sense architecture
KR101461157B1 (ko) * 2011-04-18 2014-11-13 삼성디스플레이 주식회사 터치 스크린 시스템 및 그 구동방법
TW201243665A (en) * 2011-04-22 2012-11-01 Young Lighting Technology Corp Fabrication method of touch device
TWI443571B (zh) * 2011-05-06 2014-07-01 Raydium Semiconductor Corp 觸控感測裝置
KR101330757B1 (ko) 2011-07-28 2013-11-18 엘지이노텍 주식회사 터치윈도우 및 이를 포함하는 액정표시장치
US9470941B2 (en) 2011-08-19 2016-10-18 Apple Inc. In-cell or on-cell touch sensor with color filter on array
CN105022542B (zh) 2011-09-07 2018-06-01 辛纳普蒂克斯公司 非显示更新时间期间的电容性感测
US9268427B2 (en) * 2011-09-23 2016-02-23 Apple Inc. Multi-mode voltages for touchscreens
CN103123548B (zh) 2011-11-18 2016-12-07 宸鸿科技(厦门)有限公司 触控显示装置
TW201321832A (zh) * 2011-11-23 2013-06-01 Hannstar Display Corp 觸控式液晶顯示器及其製作方法
CN103163666B (zh) * 2011-12-08 2015-08-26 上海天马微电子有限公司 液晶显示装置及其扫描检测方法
KR101859515B1 (ko) 2012-02-14 2018-05-21 삼성디스플레이 주식회사 터치 패널
US9304347B2 (en) * 2012-02-27 2016-04-05 Amazon Technologies, Inc. Touch panel assemblies and methods of manufacture
CN103294286A (zh) * 2012-02-27 2013-09-11 晨星软件研发(深圳)有限公司 以显示面板实现触控屏幕的方法与相关装置
KR101474061B1 (ko) * 2012-05-04 2014-12-17 엘지디스플레이 주식회사 근접/모션 및 터치 감지 센서와 그를 구비한 표시장치
US9395583B2 (en) 2012-06-06 2016-07-19 Apple Inc. Column spacer design for a display incorporating a third metal layer
KR101448498B1 (ko) * 2012-06-13 2014-10-08 엘지디스플레이 주식회사 터치 스크린 일체형 표시장치
EP2674838A1 (en) * 2012-06-15 2013-12-18 BlackBerry Limited Electronic device including touch-sensitive display and method of controlling same
US9158405B2 (en) 2012-06-15 2015-10-13 Blackberry Limited Electronic device including touch-sensitive display and method of controlling same
JP6238588B2 (ja) 2012-06-29 2017-11-29 三星ディスプレイ株式會社Samsung Display Co.,Ltd. ハプティック表示装置
EP2873999A4 (en) * 2012-06-29 2016-06-08 Shanghai Tianma Micro Elect Co CAPACITIVE LIQUID CRYSTAL DISPLAY PANEL
US9323403B2 (en) 2012-06-29 2016-04-26 Shanghai Tianma Micro-electronics Co., Ltd. Capacitive touch LCD panel
KR101365818B1 (ko) 2012-07-18 2014-02-21 엘지디스플레이 주식회사 터치 센싱 장치와 그 구동 방법
EP2696264B1 (en) * 2012-08-10 2018-01-10 BlackBerry Limited Electronic device including touch-sensitive display and method of detecting touches
US10073568B2 (en) 2012-08-15 2018-09-11 Synaptics Incorporated System and method for interference avoidance for a display device comprising an integrated sensing device
TWI478031B (zh) * 2012-08-23 2015-03-21 Egalax Empia Technology Inc 電容式觸摸屏
TWI550492B (zh) * 2012-08-23 2016-09-21 禾瑞亞科技股份有限公司 電極結構與電容式偵測方法
CN103293735B (zh) * 2012-08-27 2015-11-25 上海天马微电子有限公司 触控式液晶显示装置
US9389737B2 (en) 2012-09-14 2016-07-12 Samsung Display Co., Ltd. Display device and method of driving the same in two modes
US11314368B2 (en) 2012-09-14 2022-04-26 Samsung Display Co., Ltd. Display device and method of driving the same in two modes
US10073550B2 (en) * 2012-09-20 2018-09-11 Synaptics Incorporated Concurrent input sensing and display updating
CN103870036A (zh) * 2012-12-10 2014-06-18 深圳欧菲光科技股份有限公司 触摸感应元件及触摸屏
CN103186426A (zh) * 2012-12-21 2013-07-03 敦泰科技有限公司 避免触摸检测与液晶显示扫描互相干扰的方法
CN103941897B (zh) * 2013-01-23 2016-12-28 上海天马微电子有限公司 内嵌式触摸屏及其驱动方法
JP6073696B2 (ja) * 2013-01-30 2017-02-01 シナプティクス・ジャパン合同会社 タッチパネルコントローラ及び半導体装置
US9348453B2 (en) 2013-02-04 2016-05-24 Nokia Technologies Oy Touch sensing arrangement with first and second shield electrodes
US9336723B2 (en) 2013-02-13 2016-05-10 Apple Inc. In-cell touch for LED
US9766734B2 (en) * 2013-02-20 2017-09-19 Nvidia Corporation Synchronized touch input recognition
CN104063098A (zh) * 2013-03-22 2014-09-24 群创光电股份有限公司 触控式显示装置与其制造方法
KR102141459B1 (ko) 2013-03-22 2020-08-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정 표시 장치
JP5953258B2 (ja) * 2013-03-29 2016-07-20 株式会社ジャパンディスプレイ 電子機器および電子機器の制御方法
JP2014199495A (ja) * 2013-03-29 2014-10-23 株式会社ジャパンディスプレイ 電子機器、アプリケーション動作デバイス、電子機器の制御方法
JP5845204B2 (ja) * 2013-03-29 2016-01-20 株式会社ジャパンディスプレイ 電子機器および電子機器の制御方法
JP2014202702A (ja) * 2013-04-09 2014-10-27 日本電産リード株式会社 検査装置及び検査方法
CN104123045A (zh) * 2013-04-28 2014-10-29 北京京东方光电科技有限公司 一种触摸屏、液晶显示装置以及红外材料表面改性方法
CN103294319A (zh) * 2013-06-06 2013-09-11 敦泰科技有限公司 电容式触摸屏
WO2014209378A1 (en) * 2013-06-28 2014-12-31 Intel Corporation Voltage regulator with feed-forward and feedback control
CN104281336B (zh) * 2013-07-03 2017-12-26 向火平 基于电容屏的信息输入方法及电容屏输入系统
CN103336623B (zh) * 2013-07-05 2016-12-28 南昌欧菲光显示技术有限公司 滤光片组件及使用该滤光片组件的触摸显示屏
CN103365474A (zh) * 2013-07-05 2013-10-23 南昌欧菲光显示技术有限公司 偏光滤光模块及触摸显示屏
CN103345331A (zh) * 2013-07-05 2013-10-09 南昌欧菲光显示技术有限公司 偏光滤光模块及触摸显示屏
CN103336383B (zh) * 2013-07-05 2016-08-10 南昌欧菲光显示技术有限公司 偏光-滤光模块及触摸显示屏
CN103336632B (zh) * 2013-07-05 2016-07-06 南昌欧菲光显示技术有限公司 滤光片组件及使用该滤光片组件的触摸显示屏
CN103345333B (zh) * 2013-07-05 2017-02-08 南昌欧菲光显示技术有限公司 滤光片组件及使用该滤光片组件的触摸显示屏
CN103345336B (zh) * 2013-07-05 2016-08-10 南昌欧菲光显示技术有限公司 偏光-滤光模块及触摸显示屏
CN103336614A (zh) * 2013-07-05 2013-10-02 南昌欧菲光显示技术有限公司 偏光-滤光模块及使用该偏光-滤光模块的触摸显示屏
TWI506341B (zh) * 2013-07-18 2015-11-01 Ye Xin Technology Consulting Co Ltd 觸摸顯示屏
CN103455225A (zh) * 2013-08-15 2013-12-18 深圳欧菲光科技股份有限公司 电容触控组件及触控装置
US9244581B2 (en) 2013-09-30 2016-01-26 Synaptics Incorporated Modulated power supply for reduced parasitic capacitance
KR101712346B1 (ko) * 2014-09-19 2017-03-22 주식회사 하이딥 터치 입력 장치
CN116560524A (zh) 2013-12-13 2023-08-08 苹果公司 用于自电容触摸传感器的集成触摸和显示架构
US9582186B2 (en) * 2013-12-20 2017-02-28 Mediatek Inc. Signature verification between a mobile device and a computing device
CN103777830B (zh) * 2014-01-08 2017-02-08 北京京东方光电科技有限公司 触摸屏和显示装置
TWI470505B (zh) * 2014-01-29 2015-01-21 Wistron Corp 觸控面板
US9582099B2 (en) 2014-03-31 2017-02-28 Synaptics Incorporated Serrated input sensing intervals
KR102405610B1 (ko) * 2014-04-14 2022-06-07 삼성디스플레이 주식회사 터치 감지 구조물 및 표시 장치
US10268295B2 (en) * 2014-04-16 2019-04-23 Apple Inc. Structure for pixelated self-capacitance
JP6613044B2 (ja) 2014-04-22 2019-11-27 株式会社半導体エネルギー研究所 表示装置、表示モジュール、及び電子機器
TWI655442B (zh) 2014-05-02 2019-04-01 日商半導體能源研究所股份有限公司 輸入/輸出裝置
US10133382B2 (en) 2014-05-16 2018-11-20 Apple Inc. Structure for integrated touch screen
US9367188B2 (en) 2014-05-23 2016-06-14 Apple Inc. RC matching in a touch screen
WO2015183334A1 (en) 2014-05-28 2015-12-03 Pylemta Management Llc Narrow border touch screen
EP2975501B1 (en) * 2014-07-18 2023-08-02 Semtech Corporation A measuring circuit and measuring method for a capacitive touch-sensitive panel
JP5893709B2 (ja) * 2014-10-28 2016-03-23 株式会社ジャパンディスプレイ 表示装置および電子機器
CN104503610B (zh) * 2014-12-04 2017-10-27 上海天马微电子有限公司 一种触控扫描方法及触控显示面板、显示装置
US10175827B2 (en) 2014-12-23 2019-01-08 Synaptics Incorporated Detecting an active pen using a capacitive sensing device
CN104570512A (zh) * 2014-12-30 2015-04-29 厦门天马微电子有限公司 一种阵列基板、显示面板和显示装置
US10394391B2 (en) 2015-01-05 2019-08-27 Synaptics Incorporated System and method for reducing display artifacts
CN107407988B (zh) 2015-01-05 2020-07-10 辛纳普蒂克斯公司 输入设备、处理系统和用于操作输入设备的方法
WO2016128054A1 (en) * 2015-02-12 2016-08-18 Applied Materials, Inc. Layer stack adapted for use in an electro-optical device, electro-optical device, and method for manufacturing a layer stack adapted for use in an electro-optical device.
CN104777932A (zh) * 2015-04-01 2015-07-15 深圳市华星光电技术有限公司 一种触控液晶显示器及其触控液晶面板
US9733756B2 (en) * 2015-05-12 2017-08-15 Synaptics Incorporated Integrated display device and sensing device with force sensing
CN104881177A (zh) * 2015-06-22 2015-09-02 蚌埠玻璃工业设计研究院 一种防静电干扰的触控屏幕
CN106557212A (zh) * 2015-09-30 2017-04-05 南昌欧菲光科技有限公司 触摸显示装置
US10037112B2 (en) 2015-09-30 2018-07-31 Synaptics Incorporated Sensing an active device'S transmission using timing interleaved with display updates
KR102392683B1 (ko) 2015-11-30 2022-05-02 엘지디스플레이 주식회사 터치스크린 내장형 표시장치
KR102525982B1 (ko) 2015-12-28 2023-04-27 삼성디스플레이 주식회사 액정 표시 장치 및 이의 제조 방법
US10592022B2 (en) 2015-12-29 2020-03-17 Synaptics Incorporated Display device with an integrated sensing device having multiple gate driver circuits
CN105589603A (zh) * 2016-02-18 2016-05-18 厦门天马微电子有限公司 触控结构、触控显示面板、触控显示装置
KR102562627B1 (ko) * 2016-03-21 2023-08-03 삼성디스플레이 주식회사 디스플레이 장치
CN106970495A (zh) * 2016-09-14 2017-07-21 北京小米移动软件有限公司 阵列基板及其制作方法、显示面板、显示装置和电子设备
WO2018073690A1 (en) 2016-10-21 2018-04-26 Semiconductor Energy Laboratory Co., Ltd. Touch sensor, display device, display module, and electronic device
KR101886683B1 (ko) * 2017-05-22 2018-08-09 주식회사 하이딥 차광층을 포함하는 터치 입력 장치 및 차광층 포함하는 터치 입력 장치 제조 방법
TWI615765B (zh) * 2017-06-12 2018-02-21 友達光電股份有限公司 觸控感測基板以及整合偏光與觸控功能之結構
CN107402678A (zh) * 2017-08-11 2017-11-28 业成科技(成都)有限公司 触控显示装置
CN107505980B (zh) * 2017-08-16 2019-10-22 江苏集萃有机光电技术研究所有限公司 显示屏和电子设备
TWI703542B (zh) * 2019-06-05 2020-09-01 友達光電股份有限公司 背光訊號處理方法及顯示裝置
JPWO2021064509A1 (ko) 2019-10-04 2021-04-08

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US760049A (en) 1902-06-17 1904-05-17 Richmond & Backus Company Binder.
US760060A (en) 1902-12-05 1904-05-17 George H Dorr Camera.
US760036A (en) 1903-09-08 1904-05-17 Gen Electric Steam-turbine.
US760080A (en) 1903-11-16 1904-05-17 Amedee Racicot Polishing-disk.
US5459463A (en) 1990-05-25 1995-10-17 Sextant Avionique Device for locating an object situated close to a detection area and a transparent keyboard using said device
EP0574213B1 (en) * 1992-06-08 1999-03-24 Synaptics, Inc. Object position detector
US5861875A (en) * 1992-07-13 1999-01-19 Cirque Corporation Methods and apparatus for data input
JP3358744B2 (ja) * 1993-05-06 2002-12-24 シャープ株式会社 液晶表示装置
KR100235592B1 (ko) * 1997-01-22 1999-12-15 구본준 평행전계형 액정표시장치
JP3394187B2 (ja) * 1997-08-08 2003-04-07 シャープ株式会社 座標入力装置および表示一体型座標入力装置
KR100293435B1 (ko) * 1997-10-31 2001-08-07 구본준, 론 위라하디락사 위치검출액정디스플레이장치(pslcd)및이의제조방법
US7663607B2 (en) * 2004-05-06 2010-02-16 Apple Inc. Multipoint touchscreen
EP1717682B1 (en) 1998-01-26 2017-08-16 Apple Inc. Method and apparatus for integrating manual input
JP2001525096A (ja) * 1998-02-26 2001-12-04 モネック・モービル・ネットワーク・コンピューティング・リミテッド 電子デバイス、好ましくは電子ブック
KR100354904B1 (ko) 1998-05-19 2002-12-26 삼성전자 주식회사 광시야각액정표시장치
US6259490B1 (en) 1998-08-18 2001-07-10 International Business Machines Corporation Liquid crystal display device
US6483498B1 (en) * 1999-03-17 2002-11-19 International Business Machines Corporation Liquid crystal display with integrated resistive touch sensor
JP2001075074A (ja) * 1999-08-18 2001-03-23 Internatl Business Mach Corp <Ibm> タッチセンサ一体型液晶表示素子
JP3986225B2 (ja) 1999-11-26 2007-10-03 カシオ計算機株式会社 積層型表示装置
EP1391807A4 (en) * 2001-05-21 2008-01-02 Sony Corp USER DEVICE, COMPUTER USER INPUT DEVICE, METHOD FOR CONTROLLING THE COMPUTER ASSOCIATED WITH THE USER ENTRY DEVICE, AND STORAGE MEDIUM
KR100642183B1 (ko) * 2001-08-22 2006-11-06 샤프 가부시키가이샤 터치 센서, 터치 센서가 부착된 표시 장치, 및 위치데이터 생성 방법
WO2003073159A1 (en) * 2002-02-20 2003-09-04 Planar Systems, Inc. Light sensitive display
WO2003075207A2 (en) * 2002-03-01 2003-09-12 Planar Systems, Inc. Reflection resistant touch screens
JP2003271311A (ja) * 2002-03-18 2003-09-26 Alps Electric Co Ltd 座標入力装置およびこれを用いた液晶表示装置
US7463246B2 (en) * 2002-06-25 2008-12-09 Synaptics Incorporated Capacitive sensing device
US11275405B2 (en) 2005-03-04 2022-03-15 Apple Inc. Multi-functional hand-held device
AU2003250425A1 (en) 2002-09-06 2004-03-29 Koninklijke Philips Electronics N.V. Touch sensing
JP2004117646A (ja) * 2002-09-25 2004-04-15 Sharp Corp タッチセンサ付き液晶表示装置およびその製造方法
US7352355B2 (en) * 2002-10-28 2008-04-01 Delphi Technologies, Inc. Transparent overlay input device
GB0229236D0 (en) * 2002-12-12 2003-01-22 Koninkl Philips Electronics Nv AMLCD with integrated touch input
US6970160B2 (en) 2002-12-19 2005-11-29 3M Innovative Properties Company Lattice touch-sensing system
KR100519370B1 (ko) * 2002-12-24 2005-10-07 엘지.필립스 엘시디 주식회사 편광판 일체형 터치 패널의 제조 방법
GB2398916A (en) * 2003-02-28 2004-09-01 Sharp Kk Display and sensor apparatus
US7755616B2 (en) * 2003-03-28 2010-07-13 Lg Display Co., Ltd. Liquid crystal display device having electromagnetic type touch panel
US7129935B2 (en) 2003-06-02 2006-10-31 Synaptics Incorporated Sensor patterns for a capacitive sensing apparatus
EP1644918A2 (en) * 2003-06-20 2006-04-12 Cirque Corporation Single-layer touchpad and methods of use
TWI278690B (en) * 2004-06-25 2007-04-11 Hannstar Display Corp Input-sensor-integrated liquid crystal display panel
KR101133753B1 (ko) * 2004-07-26 2012-04-09 삼성전자주식회사 감지 소자를 내장한 액정 표시 장치
JP2008032756A (ja) * 2004-11-17 2008-02-14 Sharp Corp タッチパネル表示装置及びタッチパネル
CN2779440Y (zh) * 2005-02-01 2006-05-10 北京汇冠新技术有限公司 用于一体化液晶红外触摸屏的液晶开关扫描光路系统
US8279180B2 (en) 2006-05-02 2012-10-02 Apple Inc. Multipoint touch surface controller
CN100592201C (zh) 2006-06-02 2010-02-24 鸿富锦精密工业(深圳)有限公司 光学镜头测试装置及测试方法
US8026903B2 (en) 2007-01-03 2011-09-27 Apple Inc. Double-sided touch sensitive panel and flex circuit bonding
US8040326B2 (en) * 2007-06-13 2011-10-18 Apple Inc. Integrated in-plane switching display and touch sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100988724B1 (ko) * 2008-12-08 2010-10-20 주식회사 켐트로닉스 터치 스크린 및 그 터치 감지 방법
KR20110066834A (ko) * 2009-12-11 2011-06-17 (주)멜파스 복수의 접촉 입력을 감지하는 방법 및 장치
KR20110136123A (ko) * 2010-06-14 2011-12-21 엘지전자 주식회사 터치 패널 디스플레이 장치
WO2012008751A2 (ko) * 2010-07-16 2012-01-19 (주)멜파스 복수의 접촉 입력을 감지하는 방법 및 장치
WO2012008751A3 (ko) * 2010-07-16 2012-05-31 (주)멜파스 복수의 접촉 입력을 감지하는 방법 및 장치

Also Published As

Publication number Publication date
GB0822136D0 (en) 2009-01-14
WO2007146779A3 (en) 2008-04-24
EP2330491A2 (en) 2011-06-08
EP2330492A2 (en) 2011-06-08
WO2007146783A3 (en) 2008-09-04
CN101501618B (zh) 2012-06-06
AU2008101177A4 (en) 2009-01-08
GB2455179A (en) 2009-06-03
GB2456221B (en) 2011-01-12
GB2455179B (en) 2011-01-12
EP2330492A3 (en) 2011-11-23
CN101501618A (zh) 2009-08-05
EP2330493A2 (en) 2011-06-08
EP2027526A2 (en) 2009-02-25
EP2330493A3 (en) 2011-11-23
EP2330493B1 (en) 2016-11-02
WO2007146779A2 (en) 2007-12-21
KR20090028626A (ko) 2009-03-18
CN101467119A (zh) 2009-06-24
GB0822138D0 (en) 2009-01-14
WO2007146783A2 (en) 2007-12-21
CN101467119B (zh) 2013-02-13
EP2330492B1 (en) 2017-10-18
EP2330494A2 (en) 2011-06-08
KR101062042B1 (ko) 2011-09-02
EP2027528B1 (en) 2012-08-01
EP2330494A3 (en) 2011-11-23
EP2027528A2 (en) 2009-02-25
AU2008101177B4 (en) 2009-07-09
GB2455208B (en) 2010-08-11
CN101467120B (zh) 2012-12-12
CN101467120A (zh) 2009-06-24
EP2330491A3 (en) 2011-08-31
AU2007257869B2 (en) 2011-02-17
GB0820662D0 (en) 2008-12-17
DE112007001290T5 (de) 2009-07-02
CN101501613A (zh) 2009-08-05
GB2456221A (en) 2009-07-15
CN101501613B (zh) 2014-10-01
KR101109355B1 (ko) 2012-02-21
GB2455208A (en) 2009-06-03
AU2007257869A1 (en) 2007-12-21

Similar Documents

Publication Publication Date Title
KR101062042B1 (ko) 터치 스크린 액정 디스플레이
KR101128543B1 (ko) 터치 스크린 액정 디스플레이
US8432371B2 (en) Touch screen liquid crystal display
EP2259172A2 (en) Touch screen liquid crystal display
AU2017200964B2 (en) Touch screen liquid crystal display

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150729

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160727

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170804

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180730

Year of fee payment: 8