KR20080053718A - Ferritic stainless steel having excellent low temperature formability of welded zone - Google Patents

Ferritic stainless steel having excellent low temperature formability of welded zone Download PDF

Info

Publication number
KR20080053718A
KR20080053718A KR1020060125617A KR20060125617A KR20080053718A KR 20080053718 A KR20080053718 A KR 20080053718A KR 1020060125617 A KR1020060125617 A KR 1020060125617A KR 20060125617 A KR20060125617 A KR 20060125617A KR 20080053718 A KR20080053718 A KR 20080053718A
Authority
KR
South Korea
Prior art keywords
stainless steel
less
ferritic stainless
steel
low temperature
Prior art date
Application number
KR1020060125617A
Other languages
Korean (ko)
Other versions
KR100856306B1 (en
Inventor
우인수
김정길
박준식
이종봉
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020060125617A priority Critical patent/KR100856306B1/en
Publication of KR20080053718A publication Critical patent/KR20080053718A/en
Application granted granted Critical
Publication of KR100856306B1 publication Critical patent/KR100856306B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties

Abstract

A ferritic stainless steel is provided to improve low temperature formability of the welded zone by refining solidified grains of a welded zone and reducing residual amounts of C and N. A ferritic stainless steel having excellent low temperature formability of a welded zone comprises, by mass percent, 0.008% or less of C, 0.008% or less of N, 1.0% or less of Si, 1.0% or less of Mn, 10.0 to 20.0% of Cr, 0.15% or less of Al, 0.0009 to 0.002% of Ca, 0.01 to 0.5% of Ti, and the balance of Fe and other inevitable impurities. The stainless steel comprises Ca-based oxides and Ti-based precipitates. The stainless steel comprises Ca-Ti based oxides. The stainless steel comprises grains with a grain size of 300 mum or less in the welded zone and has 10 Hv or less of a hardness difference between the welded zone and a base metal when the stainless steel is applied to the welding operation.

Description

용접부의 저온 가공성이 우수한 페라이트계 스테인리스강 {Ferritic stainless steel having excellent low temperature formability of welded zone}Ferritic stainless steel having excellent low temperature formability of welded zone}

도 1은 산화물을 도포한 GTA용접부의 Sn 급냉응고시험의 모식도이다.BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram of Sn quench solidification test of the GTA welding part which apply | coated oxide.

도 2는 Ca산화물을 도포한 GTA용접부의 급냉응고조직 사진이다.Figure 2 is a quench coagulation structure photograph of the GTA welding coated Ca oxide.

1. 철과강 (Vol.66, 1980, 110p)Iron and Steel (Vol. 66, 1980, 110p)

2. 일본 공개특허공보1997-1252092. Japanese Laid-Open Patent Publication 1997-125209

3. 일본 공개특허공보2000-1602993. JP 2000-160299

4. 일본 공개특허공보1997-217151 4. JP-A 1997-217151

5. 일본 공개특허공보1997-2719005. Japanese Laid-Open Patent Publication 1997-271900

6. 일본 공개특허공보1998-3249566. JP-A-1998-324956

7. 일본 공개특허공보2001-0200467. JP 2001-020046

8. 일본 공개특허공보2001-1818088. JP 2001-181808 A

9. 일본 공개특허공보2001-2885439. Japanese Patent Application Laid-Open No. 2001-288543

10. 일본 공개특허공보2001-29499110. Japanese Laid-Open Patent Publication 2001-294991

11. 일본 공개특허공보2002-28529211. Japanese Laid-Open Patent Publication 2002-285292

12. 일본 공개특허공보2002-33699012. Japanese Laid-Open Patent Publication 2002-336990

13. 일본 공개특허공보2003-22165213. Japanese Laid-Open Patent Publication 2003-221652

본 발명은 용접부의 저온 가공성이 우수한 재료에 관한 것으로, 보다 상세하게는 용접부의 응고결정립을 미세화하고 잔류 C, N량을 줄임으로써 용접부의 저온 가공성을 개선할 수 있는 페라이트계 스테인리스강에 관한 것이다.The present invention relates to a material having excellent low temperature workability of a weld. More particularly, the present invention relates to a ferritic stainless steel that can improve the low temperature workability of a weld by miniaturizing the solidification grains of the weld and reducing the amount of residual C and N.

최근, 지구환경문제에 대하여 관심이 높아짐에 따라서 엄격한 배기가스 규제를 극복할 수 있는 수단으로서 자동차엔진의 효율향상이 요구되고 있으며, 그에 따라서 연소가스의 온도가 높아지고 배기가스 정화 시스템의 사용온도가 증가하고 있다. 이 결과, 자동차 배기계용으로 적용되는 재료는 한층 더 우수한 내열성과 내식성이 요구된다.Recently, as interest in global environmental issues increases, automobile engine efficiency is required as a means of overcoming strict exhaust gas regulations. Accordingly, the temperature of the combustion gas increases and the operating temperature of the exhaust gas purification system increases. Doing. As a result, materials applied for automobile exhaust systems require even better heat and corrosion resistance.

오스테나이트계 스테인리스강은 페라이트계 스테인리스강과 비교해서 고온강도는 높지만, 열팽창이 크기 때문에 열변형이 크고, 가열 및 냉각을 반복하는 경우 열피로가 발생하며, 또한 Cr, Ni을 많이 함유하고 있기 때문에 제조단가도 높은 것이 문제점으로 지적되고 있다. 한편 페라이트계 스테인리스강은 오스테나이트계 스테인리스강에 비하여 가격이 저렴하고, 내식성 및 열피로 특성이 우수하여 자동차 배기계, 주방용, 건축용 자재 등으로 폭넓게 적용되고 있다. Austenitic stainless steels have higher temperature strength than ferritic stainless steels, but due to their high thermal expansion, they have a large thermal strain and are produced because they produce thermal fatigue when repeated heating and cooling, and they contain a lot of Cr and Ni. The high unit cost has been pointed out as a problem. On the other hand, ferritic stainless steel is cheaper than austenitic stainless steel, and has been widely applied to automobile exhaust systems, kitchens, and building materials due to its excellent corrosion resistance and thermal fatigue characteristics.

구조용 재료로 사용되는 페라이트계 스테인리스강판은 용접으로서 이용되는 경우가 많고, 용접부의 품질특성을 확보하는 것이 매우 중요하다. 일례로서 배기계용 재료는 강판 또는 용접파이프(고주파용접, GTA 용접, 레이저용접 등의 방법으로 제조한 파이프)를 소정의 형상으로 가공한 후에 다시 용접을 실시하여 제품으로 된다. 배기계 형상은 상당히 복잡하기 때문에 성형시, 강판 또는 파이프는 가혹한 가공을 받는 부분이 발생한다. 페라이트계 스테인리스강 파이프재는 용접부가 벤딩 또는 확관과 같은 2차 가공이 적용되는 경우, 용접금속 또는 용접열영향부에 용접균열이 발생하여, 모재의 가공성이 우수함에도 불구하고 용접부의 가공성 저하 때문에 모재의 우수한 가공성의 특성을 발휘할 수 없는 경우가 많다. 이러한 현상은 가공온도가 낮은 동절기 또는 가공속도가 빠른 조건에서 성형하면 파이프 용접부에서 취성적인 균열이 현저하게 발생한다.Ferritic stainless steel sheet used as a structural material is often used as welding, it is very important to ensure the quality characteristics of the weld. As an example, the material for the exhaust system is a product obtained by processing a steel sheet or a welding pipe (pipe manufactured by a method such as high frequency welding, GTA welding, laser welding, etc.) into a predetermined shape and then welding again. Since the shape of the exhaust system is quite complicated, during forming, the steel sheet or pipe is subjected to harsh processing. The ferritic stainless steel pipe material has welding cracks in the weld metal or weld heat affected zone when the welding part is subjected to secondary processing such as bending or expansion of the welded part. In many cases, the excellent workability cannot be exhibited. This phenomenon occurs when brittle cracking is prominent in the pipe welded part when forming in winter or at low processing speed.

용접부의 취성균열은 잔류응력, 경화, 결정립 조대화 등에 의해서 발생되는 것으로 보고되고 있다. 잔류응력은 조관 용접후의 변형과 사이징 롤을 통과하며 파이프 형상을 교정하면서 발생된다. 잔류응력을 저감하는 방법으로서는 파이프 전체를 소둔하여 용접부 근방의 변형량을 제거하는 것이 가장 효과적이다. 일본 공개특허공보1997-125209에서는 용접에 의해 제조된 파이프를 850~1000℃의 온도범 위에서 소둔하고, 1℃/sec 이상의 냉각속도로 냉각하는 방법을 제시하고 있다. 이 방법에 의하면 파이프의 가공성 및 인성을 냉연소둔판의 정도까지 향상시키는 일이 가능한 것으로 보고하고 있다. 그러나 소둔을 행하면 제조단가의 상승을 피할 수 없고 또한 내열성 및 내산화성을 높은 수준까지 확보하기 위해서 고합금화한 파이프의 경우에는 소둔에 의해서 충분한 품질특성을 확보할 수 없다.It is reported that brittle cracks in welds are caused by residual stress, hardening, grain coarsening, and the like. Residual stresses are generated through the deformation after pipe welding and through the sizing roll and correcting the pipe shape. As a method of reducing the residual stress, it is most effective to anneal the entire pipe to remove the deformation amount near the welded portion. Japanese Laid-Open Patent Publication No. 1997-125209 discloses a method of annealing a pipe manufactured by welding at a temperature range of 850 to 1000 ° C and cooling at a cooling rate of 1 ° C / sec or more. According to this method, it is reported that the workability and toughness of the pipe can be improved to the extent of the cold rolled annealing plate. However, when annealing is performed, an increase in the manufacturing cost is inevitable, and in the case of a high alloyed pipe for securing high heat resistance and oxidation resistance, sufficient quality characteristics cannot be secured by annealing.

용접부의 경화현상을 제어할 수 있는 방법으로는 불순물 원소인 C, N량을 감소시킬 필요가 있다. 불순물 C, N은 VOD (Vacuum Oxidation Decaburizaton) 정련기술과 같은 제강공정의 개선과 함께 안정화 원소인 Ti, Nb, Zr과 같은 원소를 첨가하여 질화물 또는 탄화물을 형성하는 기술들이 공지되고 있다. 현재 VOD공정으로는 C+N의 량이 100ppm 수준 정도이며 제강공정의 추가에 따른 생산성 및 제조단가의 상승이 문제점으로 지적되고 있다. As a method of controlling the hardening phenomenon of a welded part, it is necessary to reduce the amount of C and N which are impurity elements. Impurities C and N are known to form nitrides or carbides by adding elements such as Ti, Nb and Zr as stabilizing elements together with improvements in steelmaking processes such as VOD (Vacuum Oxidation Decaburizaton) refining techniques. At present, the amount of C + N in the VOD process is about 100 ppm, and the increase in productivity and manufacturing cost due to the addition of the steelmaking process is pointed out as a problem.

Ti, Nb, Zr등 안정화 원소를 첨가하여 질화물 또는 탄화물을 형성함으로써 고용 C, N 량을 감소하기 위해서는 C+N의 8배이상을 첨가하는 것으로 기본으로 하고 용접금속의 경우에는 최근 20배까지 첨가하는 경우도 있다. 그러나, 다량의 Ti, Nb, Zr을 첨가하는 경우에는 조대한 산화 개재물이 형성되어 압연시에 표면결함이 발생하기 쉬우며, Zr의 경우에는 제강시에 노즐 막힘등이 발생하는 문제점을 나타내고 있다. 또한, 용접부와 같이 급가열 급냉각되는 경우에는 석출물이 생성되는 시간이 짧기 때문에 오히려 고용의 Ti, Nb, Zr과 C, N 등의 량이 증가하여 가 공성이 충분히 확보되지 못하는 경우가 있다.To reduce the amount of solid solution C and N by forming nitrides or carbides by adding stabilizing elements such as Ti, Nb, and Zr, it is basically added at least 8 times of C + N. In some cases. However, when a large amount of Ti, Nb, or Zr is added, coarse oxidation inclusions are formed to easily cause surface defects during rolling, and in the case of Zr, nozzle clogging or the like occurs during steelmaking. In addition, in the case of rapid heating quenching such as a welded part, since the time for generating a precipitate is short, rather, the amount of Ti, Nb, Zr, C, N, etc., in solid solution may increase, and processability may not be sufficiently secured.

한편, 강재 및 용접금속부의 응고조직을 미세화하여 가공성을 향상시키는 방법들이 최근 제안되고 있다. 응고조직 제어방법은 크게 용강의 전자유도교반(철과강 제66권 1980년 제6호, 38page)과 같은 설비 개선과 합금성분의 첨가에 의한 개재물의 페라이트 핵생성을 촉진시키는 기술로 구분할 수 있다. 전자유도교반에 의한 방법의 경우에는 응고도중에 용강의 교반위치를 적정화하는 것에 의해서 강재의 40~60%정도 등축정율을 확보하는 것으로 알려지고 있다. 상기 기술은 강재의 가공성은 개선할 수 있으나 용접과 같이 강재를 재용융시키는 경우에는 그 효과를 확보할 수 없는 것이 문제점으로 지적된다.On the other hand, methods for improving the workability by miniaturizing the solidification structure of the steel and weld metal parts have been recently proposed. The method of controlling the coagulation structure can be largely classified into techniques for improving ferrite nucleation by adding equipment and improving alloys, such as electromagnetic induction stirring of molten steel (Vol. 66, No. 6, 1980, page 38). . In the case of the method by electromagnetic induction stirring, it is known that the equiaxed crystallization rate of about 40 to 60% of the steel is secured by optimizing the stirring position of the molten steel during the solidification. The above technique can improve the machinability of the steel, but it is pointed out that a problem cannot be obtained when remelting the steel such as welding.

개재물을 이용한 응고조직 미세화는 TiN (1~2번) 과 산화물(3~10번)을 이용하는 방법 등이 공지되고 있다. 또한 하기의 설명에 있어서 (%)는 wt%을 나타낸다.The microstructure of the coagulation structure using inclusions is known using TiN (Nos. 1 and 2) and oxides (Nos. 3 and 10). In addition, in the following description, (%) represents wt%.

1. 철과강 (Vol.66, 1980, 110p) : 0.4%Ti와 0.016%N을 강에 함유하고, 용강 과열도 △T를 40℃이하로 관리하여 TiN을 생성하는 방법.1. Iron and steel (Vol. 66, 1980, 110p): A method of producing TiN by containing 0.4% Ti and 0.016% N in steel and managing molten steel superheat degree ΔT below 40 ° C.

2. JP2000-160299 : 단독의 TiN 개재물을 0.01%이상 함유하는 것으로서 슬라브 단계에서의 등축정율을 60%확보하는 기술.2. JP2000-160299: A technique for securing an equiaxed crystallization rate of 60% in the slab phase, containing 0.01% or more of TiN inclusions alone.

3. JP1997-217151, JP1997-271900 : 0.001~0.02%Mg과 0.001~0.2%Al을 각각 첨가하여 Mg-Al계 복합산화물을 형성하여 용접부의 응고조직을 미세화하는 기술.3. JP1997-217151, JP1997-271900: A technique for miniaturizing the solidification structure of a weld by adding Mg-Al composite oxide by adding 0.001-0.02% Mg and 0.001-0.2% Al, respectively.

4. JP1998-324956 : 용강중에 산소량을 0.01%이하로 탈산한 후, Mg을 0.0005~0.01%로 첨가하고, 180초 이내에 응고를 개시하는 방법으로 Mg계 산화물의 크기를 0.01~5㎛, 3개/mm2의 분포로 강재 내에 함유하는 것.4.JP1998-324956: After deoxidizing the amount of oxygen to 0.01% or less in molten steel, adding Mg to 0.0005 ~ 0.01% and starting to solidify within 180 seconds. contained in steel with a distribution of / mm 2 .

5. JP2001-020046 : 강중에 Mg과 Al의 함유량 비를 0.3~0.5으로 하여, Mg-Al계 산화물과 Ti계 질화물의 복합 개재물을 형성.5. JP2001-020046: A composite inclusion of Mg-Al-based oxide and Ti-based nitride was formed by setting the content ratio of Mg and Al in steel to 0.3 to 0.5.

6. JP2001-181808 : 0.0005~0.01%Mg을 첨가하고, Mg개재물을 이용하여 응고조직을 미세화하는 것과 함께 열간압연조건을 적정화하여 냉간압연을 실시하지 않고도 소재의 가공성을 향상시키는 방법.6. JP2001-181808: Method of improving workability of materials without adding cold rolling by adding 0.0005 ~ 0.01% Mg, minimizing coagulation structure with Mg inclusions and optimizing hot rolling conditions.

7. JP2001-288543 : Mg과 Ca의 함유량을 0.006%이하로 첨가하여 강재의 응고결정립을 미세하고 가공성, 표면특성 및 내식성을 개선하는 방법.7. JP2001-288543: A method for improving the coagulation grains of steel and improving the workability, surface properties and corrosion resistance by adding Mg and Ca content of 0.006% or less.

8. JP2001-294991 : Mg계 산화물과 TiN 석출물의 복합개재물이 0.01~5㎛, 3개/mm2 이상의 분포로 강재 내에 함유하는 것.8. JP2001-294991: Composite inclusions of Mg-based oxides and TiN precipitates contained in steel in a distribution of 0.01 to 5 µm and 3 / mm 2 or more.

9. JP2002-285292 : 희토류 금속인 Y을 0.001~0.05% 첨가하여, Al-Y, Mg-Y, Al-Mg-Y등의 개재물을 형성하고 응고결정립을 미세화하여 강판 제조공정 및 강관 제조공정에서의 취성균열을 방지하는 방법.9. JP2002-285292: Add 0.001 ~ 0.05% of rare earth metal Y to form inclusions such as Al-Y, Mg-Y, Al-Mg-Y and refine solidification crystal grains in steel sheet manufacturing process and steel pipe manufacturing process How to prevent brittle cracks.

10. JP2002-336990 : 0.01~0.3%Ti 및 0.01~0.2%Al을 첨가하고, 보호가스로서 Ar, O2, CO2, He등을 사용하여 용접금속내의 Ti 및 Al계 질화물을 0.3㎛이상, 1.5×104개/mm2이상으로 분포시키는 방법.10.JP2002-336990: Add 0.01 ~ 0.3% Ti and 0.01 ~ 0.2% Al, and use Ti, Al-based nitride in the weld metal more than 0.3㎛ by using Ar, O 2 , CO 2 , He, etc. How to distribute more than 1.5 × 10 4 / mm 2 .

11. JP2003-221652 : 0.0003~0.003%Ca과 0.01%이하의 O를 포함하며 선택적으로 Zr을 0.01~0.3%첨가하여, 강재내에 CaS 또는 CaO산화물을 형성하고 열간압연시에 페라이트 (111)면의 핵생성 역할를 촉진시키는 방법.11. JP2003-221652: Contains 0.0003 ~ 0.003% Ca and 0.01% or less of O and optionally adds 0.01 ~ 0.3% of Zr to form CaS or CaO oxide in steel material. How to Promote Nucleation Roles.

상기 기술중 1~2번은 TiN을 용탕중에 정출하여 강재 주편의 응고조직을 미세화하는 것이지만, 용접과 같이 용탕의 온도제어가 곤란한 경우에 적용이 어렵고, 또한 다량의 Ti 및 TiN은 강의 인성을 손상시키기 때문에 페라이트계 스테인리스강의 취성균열의 문제점을 한층 더 심화시킬 가능성이 있다.In the above technique, Nos. 1 and 2 are used to refine TiN in the molten metal to refine the solidification structure of the steel slab, but it is difficult to apply when the temperature control of the molten metal is difficult, such as welding, and a large amount of Ti and TiN impairs the toughness of the steel. Therefore, there is a possibility that the problem of brittle cracking of ferritic stainless steel is further exacerbated.

3~10번의 공지기술은 Mg, Y 등을 단독 또는 복합첨가하여 용탕중에 산화물을 생성하여 응고핵생성을 촉진하는 방법이나, 산화반응성이 우수한 Mg, Y 등은 용강 중에 투입할 경우 회수율 예측이 곤란하여 강재별 품질편차가 자주 발생하고 폭발성등 취급상의 문제도 있어 산업현장에서 실시되기 어렵다.Known techniques 3 to 10 are methods of promoting the coagulation nucleation by forming oxides in molten metal by adding Mg, Y, etc. alone or in combination, but it is difficult to predict the recovery rate when Mg, Y, etc. having excellent oxidation reactivity are added to molten steel. Therefore, quality deviations by steel materials frequently occur, and there are problems in handling such as explosiveness.

11번 공지기술은 용강중에 CaS, CaO를 생성하고 열간압연중에 가공성이 우수한 페라이트 (111)면의 생성을 촉진시키는 방법이다. 그러나 이는 조대한 황화물인 CaS를 형성하여 강재의 표면품질을 저하시키고 개재물과 매트릭스 사이의 계면면적 증가 등에 따른 내식성 저하를 초래하게되는 문제가 발생한다.Known technology No. 11 is a method of producing CaS and CaO in molten steel and promoting the production of ferrite (111) plane having excellent workability during hot rolling. However, this causes a problem in that the formation of coarse sulfide CaS lowers the surface quality of the steel and causes corrosion resistance due to the increase in the interfacial area between the inclusions and the matrix.

이와 같이, 강재의 내식성을 저하시키지 않는 범위내에서 용접부 가공성을 개선할 수 있는 페라이트계 스테인리스강에 대한 필요성이 부각되고 있으나, 그 대안은 제시되고 있지 않은 실정이다.As such, there is a need for a ferritic stainless steel that can improve weldability within a range that does not reduce the corrosion resistance of the steel, but an alternative has not been proposed.

본 발명은 용접부의 저온 가공성이 우수한 페라이트계 스테인리스강을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a ferritic stainless steel excellent in low temperature workability of a welded portion.

상기 목적을 달성하기 위한 본 발명의 페라이트계 스테인리스강은 질량%로, C : 0.008%이하, N : 0.008%이하, Si : 1.0%이하, Mn : 1.0%이하, Cr : 10.0~20.0%, Al : 0.15%이하, Ca : 0.0009 ~ 0.002%, Ti : 0.01 ~ 0.5%, 나머지 Fe 및 불가피한 불순물로 조성된다.Ferritic stainless steel of the present invention for achieving the above object is by mass%, C: 0.008% or less, N: 0.008% or less, Si: 1.0% or less, Mn: 1.0% or less, Cr: 10.0-20.0%, Al : 0.15% or less, Ca: 0.0009 to 0.002%, Ti: 0.01 to 0.5%, remaining Fe and inevitable impurities.

이하 본 발명에 대해서 상세히 설명한다. Hereinafter, the present invention will be described in detail.

본 발명은 페라이트계 스테인리스강 용접부의 저온 가공성 개선을 위하여 용접부의 응고 결정립을 미세화하고, 충분한 탄질화물을 형성하여 잔류 C, N 량을 저감시키는 것을 특징으로 한다.The present invention is characterized in that the solidified crystal grains of the weld portion is refined to improve the low temperature workability of the ferritic stainless steel welded portion, and sufficient carbonitrides are formed to reduce the amount of residual C and N.

이하, 본 발명의 페라이트계 스테인리스강의 성분 한정 이유를 설명한다.Hereinafter, the reason for component limitation of the ferritic stainless steel of this invention is demonstrated.

C, N : C, N은 침입형 원소로써 모재 및 용접부의 가공성을 저하시키는 원소이므로, 가능한 극소량으로 하는 것이 바람직하나, 제강기술상의 제조 가격의 상승을 고려해서 C : 0.008%이하, N : 0.008%이하로 한다.C, N: C, N is an invasive element that deteriorates the workability of the base metal and the welded part. Therefore, it is preferable to minimize the amount of C, N: 0.008% or less, N: 0.008 It should be less than%.

Si, Mn, Al, P, S : 이러한 원소는 불가변적으로 강 중에 존재하지만, 다량으로 존재하면 가공성을 저하시키고, 스테인리스강의 특징인 내식성을 저하시키기 때문에 Si: 1.0%이하, Mn: 1.0%이하, Al : 0.15%이하, P : 0.040%이하, S : 0.010%이하로 하는 것이 타당하다. 특히 S의 경우 CaS를 형성하여 내식성에 큰 문제를 일으킬 수 있는 바, 상기 범위 내로 제어되어야 한다.Si, Mn, Al, P, S: These elements are invariably present in steel, but when present in a large amount, they lower workability and lower corrosion resistance, which is characteristic of stainless steel, Si: 1.0% or less, Mn: 1.0% or less , Al: 0.15% or less, P: 0.040% or less, S: 0.010% or less is appropriate. Particularly, in the case of S, CaS may be formed to cause a large problem in corrosion resistance. Therefore, it should be controlled within the above range.

Cr : Cr은 10%미만에서는 스테인리스강의 기본특성인 내식성이 부족하기 때 문에 Cr량은 10%이상으로 한다. 또한 Cr량이 높으면 용접부의 인성이 악화하는 경우가 있기 때문에 Cr은 20%이하로 한다.Cr: Cr is less than 10%, and the Cr content is 10% or more because the corrosion resistance, which is the basic characteristic of stainless steel, is insufficient. If the Cr content is high, the toughness of the weld section may deteriorate, so the Cr content is 20% or less.

Ca : Ca은 본 발명에서 과제로 되고 있는 용접성을 향상시키는 것에 대한 필수적인 원소이다. 용접성을 향상시키기 위해서는 0.0009%이상의 첨가가 필요하다. 그러나 0.002%를 초과하여 첨가되는 경우에는 산화개재물의 크기가 증가하여 내식성에 악영향을 미치기 때문에 상한은 0.002%로 한다.Ca: Ca is an essential element for improving the weldability which becomes a subject in this invention. In order to improve weldability, addition of 0.0009% or more is required. However, if it is added in excess of 0.002%, the upper limit is set to 0.002% because the size of the oxidation inclusion increases and adversely affects the corrosion resistance.

Ti : 가공성을 향상시키는 원소로서 첨가하며 0.01%이상 첨가시키는 것에 의해 효과가 나타난다. 그러나 0.5%를 초과하여 첨가하는 경우에는 고용 Ti량의 증가에 의해서 가공성이 악화되는 문제점이 있다.Ti: It is added as an element which improves workability, and an effect appears by adding 0.01% or more. However, when added in excess of 0.5%, there is a problem that workability deteriorates due to an increase in the amount of solid solution Ti.

상기한 성분계로 조성되는 강에 요구되는 물성에 따라 합금원소가 포함될 수 있다. 예를 들어 내식성을 향상하고자 하는 경우에는 Mo, Ni, Cu의 적어도 1종을 0.1-2.0%의 조성범위로 추가로 첨가할 수 있다. Mo, Ni, Cu의 적어도 1종의 함량이 0.1%이상 되는 경우 내식성 향상효과를 얻을 수 있으며, 2.0% 초과할 경우에는 가공성이 악화되고 제조가격도 상승된다. 또한, Nb의 경우에는 0.5%까지 포함될 수 있다. Nb의 함량이 0.5%를 초과하는 경우에는 고용 Nb량의 증가에 의해서 가공성이 악화되는 문제점이 있다. Nb를 첨가하여 NbN, NbC등을 형성하여 가공성을 개선하고자 하는 경우에는 0.01-0.5%로 포함되는 것이 바람직하다.The alloying element may be included according to the properties required for the steel formed from the above component system. For example, in order to improve corrosion resistance, at least one of Mo, Ni, and Cu may be further added in a composition range of 0.1-2.0%. When the content of at least one of Mo, Ni and Cu is more than 0.1%, the effect of improving corrosion resistance can be obtained. If the content exceeds 2.0%, the workability is deteriorated and the manufacturing price is increased. In addition, Nb may be included up to 0.5%. If the content of Nb exceeds 0.5%, there is a problem that the workability is deteriorated by an increase in the amount of solid solution Nb. When Nb is added to form NbN, NbC, or the like to improve workability, it is preferably included as 0.01-0.5%.

Ca계 또는 Ca-Ti계 산화물 : 본 발명에 따른 조성범위를 만족하는 강에는 Ca계 또는 Ca-Ti계 산화물이 존재한다. 상기 산화물은 융점이 높기 때문에 용탕 단계에서 형성된 후에 다시 용접을 거친 경우라도 새로 응고되는 조직에 존재하여 응고핵으로 작용하기 때문에 본 발명은 특히 용접부의 저온가공성 향상에 유효하다. Ca는 휘발성이 있어 전기로 공정이나 AOD, VOD공정에서 투입시 잔류되는 양이 줄어드는 문제가 있는바, 연속주조공정의 직전에 투입하는 것이 바람직하다.Ca-based or Ca-Ti-based oxide: Ca-based or Ca-Ti-based oxides are present in the steel that satisfies the composition range according to the present invention. Since the oxide has a high melting point and is present in the newly solidified tissue even after being welded again after being formed in the molten metal phase, the oxide acts as a solidification nucleus, and therefore, the present invention is particularly effective in improving low temperature workability of the weld. Ca has a volatility, so there is a problem that the amount remaining in the electric furnace process, AOD, VOD process is reduced, it is preferable to add immediately before the continuous casting process.

Ti계 또는 Nb계 석출물 : Ti 또는 Nb는 용탕내에서 탄소와 반응하여 TiC 또는 NbC형태로 석출물을 형성하여 잔류 C, N량(free C, N)을 줄임으로써 가공성을 개선한다. 석출물의 주성분은 탄화물이나 일부의 질화물도 존재할 수 있다. Ti는 정련단계 전에 투입되어 Ca보다 먼저 투입되나 TiN의 경우 융점이 Ca계 또는 Ca-Ti계 산화물 보다 낮아 Ca계 또는 Ca-Ti계 산화물이 형성된 후에 그 복합산화물 중 일부의 주위를 TiN이 둘러싸는 형태로 형성되어 복합 게재물을 형성한다. 또한, TiN, TiC의 경우 융점이 낮아 용접부와 같이 급가열, 급냉각되는 경우 다시 잔류 C, N으로 복귀되는 문제가 있어 다량 첨가해야 했으나, 본 발명에서는 산화물과의 복합게재물 형성에 의해 이러한 문제를 해결하였다. Nb의 경우 Ti와 동일하게 질화물을 형성하여 Ca계 또는 Ca-Ti계 산화물과 복합 게재물을 형성하는바, Ti와 선택적으로 또는 함께 투입이 가능하다.Ti-based or Nb-based precipitates: Ti or Nb reacts with carbon in the molten metal to form precipitates in the form of TiC or NbC to improve workability by reducing residual C and N amounts (free C, N). The main component of the precipitate may be carbides or some nitrides. Ti is added before the refining step and is added before Ca. However, in the case of TiN, the melting point is lower than that of Ca- or Ca-Ti-based oxides, so that TiN surrounds some of the composite oxides after Ca- or Ca-Ti-based oxides are formed. Form to form a composite placement. In addition, in the case of TiN and TiC, the melting point is low, and when heated and quenched like a welded part, there is a problem of returning to the remaining C and N again. However, in the present invention, a large amount of TiN and TiC had to be added. Solved. In the case of Nb, nitride is formed in the same manner as Ti to form a composite inclusion with Ca-based or Ca-Ti-based oxide, which can be selectively or combined with Ti.

이하 실시예를 통하여 본 발명을 상세히 설명하나, 이는 본 발명의 바람직한 실시예일뿐 본 발명의 범위가 이러한 실시예의 기재범위에 의하여 제한되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the following examples, which are only preferred embodiments of the present invention, and the scope of the present invention is not limited by the description of these embodiments.

(실시예)(Example)

페라이트계 스테인리스강 용접부의 가공성에 미치는 각종 산화물의 첨가 효과을 조사하기 위하여, 도 1에 나타낸 것과 같이 1㎛ 크기의 각종 산화물 분말을 강판 위에 도포하고, GTA용접을 한 후 Sn 용탕에 급냉응고를 실시하였다. 도 2는 Ca계 산화물을 첨가한 경우로서 Ca계 산화물을 중심으로 페라이트 응고가 우선적으로 시작되는 것을 알 수 있다. 즉, 강재에 고온의 산화물이 존재하면 용접 중에 산화물을 중심으로 페라이트 응고가 시작되기 때문에 용접부의 응고결정립이 등축정화 및 미세화되는 것으로 판단된다.In order to investigate the effect of the addition of various oxides on the workability of the ferritic stainless steel welded portion, as shown in FIG. 1, various oxide powders having a size of 1 μm were coated on a steel sheet, subjected to GTA welding, and then quenched and solidified in Sn molten metal. . FIG. 2 shows that ferrite solidification starts preferentially around Ca-based oxides when Ca-based oxides are added. That is, when high temperature oxide is present in steel, ferrite solidification starts around the oxide during welding, so it is determined that the solidification crystal grains of the weld portion are equiaxed and refined.

표 1은 다양한 산화물을 강재위에 도포하고 GTA용접을 실시한 후 용접부의 결정립 크기, 등축정율, 샤르피충격시험에 의한 용접금속부의 DBTT (연성-취성 천이온도 : Ductile Brittle Transition Temperature)과 경도를 측정한 결과이다. Ca과 Zr계 산화물을 첨가한 경우가 무첨가재 및 Mg계 산화물을 첨가한 것 보다 결정립이 미세화되고 용접부의 DBTT특성도 개선되는 것을 알 수 있다. Zr계 산화물을 첨가하는 경우에는 용접부의 품질특성을 크게 개선하지만, 용접시에 텅스텐 전극봉이 심하게 손상되는 문제점이 나타났다. 이 결과로부터, 페라이트계 스테인리스강의 용접시에는 강재내에 Ca계 산화물을 포함하면 용접부의 저온가공성을 개선 할 수 있음을 알 수 있다.Table 1 shows the results of measuring DBTT (ductile-brittle transition temperature) and hardness of welded metal parts by grain size, isotropic crystallinity, and Charpy impact test after coating various oxides on steel and performing GTA welding. to be. It can be seen that the addition of Ca and Zr oxides resulted in finer grains and improved DBTT characteristics of the welded portions than the addition of additives and Mg oxides. The addition of Zr-based oxides greatly improves the quality characteristics of the welds, but shows a problem that the tungsten electrodes are severely damaged during welding. From this result, it can be seen that when welding ferritic stainless steel, Ca-type oxide is included in the steel material, the low temperature workability of the welded part can be improved.

구분division 결정립크기 (㎛)Grain size (㎛) 등출정율 Isometric rate DBTT (℃)DBTT (℃) 경도 (Hv)Hardness (Hv) 무첨가재Additive-free 530530 1.71.7 -18-18 158158 Ca계 산화물 Ca-based oxide 138138 1.41.4 -38-38 168168 Mg계 산화물Mg oxide 183183 2.382.38 -28-28 170170 Zr계 산화물Zr oxide 131131 1.31.3 -34-34 167167

표 2에 표시한 페라이트계 스테인리스강 6종을 현장 실생산 설비를 이용하여 제작하였다. 먼저, 80톤 전기로에서 용제하고 열연, 소둔, 산세, 냉연, 소둔, 산세 등의 공정을 거쳐서 최종제품의 두께 1.5mm의 판재를 생산하였다. 정련공정에서 불순물인 C, N량을 제어하였으며, Ca첨가는 Ca-Si합금의 투입량을 변화시키면서 래들의 용탕에 투입하였다. Ca-Si 합금은 Lump 또는 와이어 형태로 장입하였다. Six types of ferritic stainless steels shown in Table 2 were manufactured using field production facilities. First, a plate of 1.5 mm in thickness of the final product was produced through solvents in an 80 ton electric furnace and hot rolling, annealing, pickling, cold rolling, annealing, and pickling. In the refining process, the amounts of impurities C and N were controlled, and Ca was added to the ladle melt while varying the amount of Ca-Si alloy. Ca-Si alloys were charged in the form of Lumps or wires.

NoNo CC NN NbNb SiSi MnMn PP SS CrCr NiNi TiTi CaCa 1One 0.0070.007 0.0080.008 0.0130.013 0.450.45 0.300.30 0.010.01 0.0020.002 11.311.3 0.090.09 0.230.23 -- 22 0.0060.006 0.0060.006 0.0130.013 0.450.45 0.310.31 0.010.01 0.0020.002 11.311.3 0.090.09 0.230.23 0.00040.0004 33 0.0060.006 0.0060.006 0.0130.013 0.420.42 0.310.31 0.010.01 0.0020.002 11.311.3 0.090.09 0.240.24 0.00090.0009 44 0.0070.007 0.0070.007 0.0130.013 0.450.45 0.300.30 0.010.01 0.0020.002 11.311.3 0.090.09 0.230.23 0.00140.0014 55 0.0080.008 0.0090.009 0.0120.012 0.430.43 0.310.31 0.010.01 0.0030.003 11.211.2 0.090.09 0.220.22 0.00130.0013 66 0.0060.006 0.0070.007 0.0120.012 0.430.43 0.300.30 0.010.01 0.0030.003 11.411.4 0.080.08 0.220.22 0.00220.0022

GTA 용접은 DC type 용접기(최대용접전류 350A)를 사용하였으며, 비드 온 플레이트(bead on plate)로 실시하였다. 용접조건은 용접전류 110A, 용접속도 0.32m/min, 텅스텐 전극경 : 2.5mm, 전극선단각 : 100o, Arc length 1.5mm, 보호가스 Ar (15l/min)이였다. GTA welding was performed using a DC type welding machine (maximum welding current 350A), and a bead on plate. Welding conditions were welding current 110A, welding speed 0.32m / min, tungsten electrode diameter: 2.5mm, electrode tip angle: 100 o , Arc length 1.5mm, protective gas Ar (15l / min).

조관용접은 용접조건 180A, 조관속도 1.0m/min, 텅스텐 전극경 : 2.5mm, 전극선단각 : 100o, Arc length 1.5mm, 보호가스 Ar (15l/min)으로 하고, 파이프 외경은 50.8mm, 두께는 1.5mm으로 제작하였다. 또한 용접비드 하부에 외부공기의 혼입 방지를 위하여 Ar 가스를 이용하여 백 쉴딩(Back shielding) 처리를 하였다.Tube welding is performed with welding condition 180A, pipe speed 1.0m / min, tungsten electrode diameter: 2.5mm, electrode tip angle: 100 o , Arc length 1.5mm, protective gas Ar (15l / min), pipe outer diameter is 50.8mm, The thickness was produced to 1.5mm. In addition, the back shielding treatment was performed using Ar gas to prevent the mixing of external air in the lower part of the welding bead.

용접부의 결정립 크기는 광학현미경을 이용하여 측정하였다. 용접부 단면을 사포 및 연마제를 사용하여 연마하고, 나이탈(Nital)용액으로 전해에칭한 후 관찰하였다. 용접부의 경도분포는 마이크로비커스 경도기를 이용하였고, 하중 200g, 유지시간 10s으로 하여 0.2mm간격으로 측정하였다.Grain size of the weld was measured using an optical microscope. The weld cross section was polished using sandpaper and an abrasive, and observed after electrolytic etching with a Nital solution. The hardness distribution of the welded part was measured using a MicroVickers hardness tester with a load of 200 g and a holding time of 10 s at 0.2 mm intervals.

용접부의 DBTT특성은 시험온도는 -60℃~50℃의 범위에서 1/4Sub-size (1.5㎜t×10㎜w×55㎜l) 시험편에 대하여 샤르피 충격시험을 적용하여 조사하였다. The DBTT characteristics of the welded portion were investigated by applying the Charpy impact test on a 1/4 Sub-size (1.5 mm t × 10 mm w × 55 mm l ) test specimen in the test temperature range of -60 ° C to 50 ° C.

파이프재의 가공성은 -20℃에서 한계균열율 25%까지 확관한 경우, 용접부의 균열발생 유무로서 평가하였다.The workability of the pipe material was evaluated as the presence of cracks in the welded part when the pipe was expanded to a limit crack rate of 25% at -20 ° C.

표 3은 상기 페라이트계 스테인리스강 6종에 대하여 판재 및 파이프재 용접부의 품질특성을 평가한 결과이다. No.1, No.2는 Ca가 무첨가되거나 미량만 첨가된 경우이며, No.3, No.4는 본 발명의 실시예이고, No.5는 N량이 초과된 경우이며, No.6은 Ca가 과다 첨가된 경우이다.Table 3 is a result of evaluating the quality characteristics of the weld plate and pipe material for the six ferritic stainless steel. No. 1 and No. 2 are cases in which Ca is added or only a small amount is added, No. 3 and No. 4 are examples of the present invention, No. 5 is the case where N amount is exceeded, and No. 6 is Ca If too much addition.

No.3과 No.4과 같이 Ca량이 0.0009%이상이고, C+N량이 0.016%이하의 경우에 No.1, No2의실시예에 비해 용접부의 결정립 크기와 용접부와 모재의 경도차가 감소하고, 용접부의 DBTT 특성 및 충격에너지 편차도 개선되는 것을 알 수 있다. 또한 Ca이 0.0014%첨가된 티그(TIG) 파이프재의 경우에는 -20℃에서 벤딩하여도 균열이 발생되지 않았다. 그러나 Ca 과다 첨가재 (No.6)와 Ca이 적정량 첨가되어도 C+N량이 0.016%초과하여 함유된 강재(No.5)의 경우에는 용접부가 경화되어 가공성이 저하되는 것을 알 수 있다.When the amount of Ca is more than 0.0009% and the amount of C + N is not more than 0.016%, as in Nos. 3 and 4, the grain size of the weld and the hardness difference between the weld and the base material are reduced compared to those of Nos. 1 and No2. It can be seen that the DBTT characteristic and impact energy deviation of the welded part are also improved. In the case of a TIG pipe material containing 0.0014% of Ca, cracking did not occur even after bending at -20 ° C. However, in the case of steel material No. 5 containing an excessive amount of C + N exceeding 0.016% even when an excessive amount of Ca additive 6 (No. 6) and Ca are added, it is understood that the weld hardens and the workability is lowered.

NoNo 판재 용접부 품질특성Sheet welded part quality characteristics 파이프 용접부 품질특성Pipe welding part quality characteristics 용접부 결정립크기 (mm)Grain size of weld (mm) 경도차 (용접부-모재, Hv)Hardness Difference (Welding-Material, Hv) DBTT (℃)DBTT (℃) 충격에너지 편차 (J, -20℃)Impact energy deviation (J, -20 ℃) 용접부 균열발생율 (%, -20℃)Crack incidence of welded part (%, -20 ℃) 1One 278278 2121 -18-18 6.066.06 1010 22 530530 1414 -30-30 5.15.1 33 33 270270 77 -47-47 4.84.8 0.50.5 44 216216 77 -57-57 2.02.0 00 55 220220 1010 -42-42 4.54.5 1.01.0 66 230230 1515 -35-35 5.75.7 2.52.5

상술한 바와 같이, 본 발명의 페라이트계 스테인리스강은 Ca와 Ti를 첨가하여 용접부의 응고 결정립을 미세화하고 잔류 C, N량을 줄임으로써 용접부의 저온 가공성이 우수한 페라이트계 스테인리스강을 제공할 수 있는 유용한 효과가 있다.As described above, the ferritic stainless steel of the present invention is useful to provide ferritic stainless steel excellent in low temperature workability of the weld by adding Ca and Ti to refine the solidification grain of the weld and reducing the amount of residual C and N. It works.

Claims (4)

질량%로, C : 0.008%이하, N : 0.008%이하, Si : 1.0%이하, Mn : 1.0%이하, Cr : 10.0~20.0%, Al : 0.15%이하, Ca : 0.0009 ~ 0.002%, Ti : 0.01 ~ 0.5%, 나머지 Fe 및 불가피한 불순물로 조성되는 용접부의 저온 가공성이 우수한 페라이트계 스테인리스강.By mass%, C: 0.008% or less, N: 0.008% or less, Si: 1.0% or less, Mn: 1.0% or less, Cr: 10.0 to 20.0%, Al: 0.15% or less, Ca: 0.0009 to 0.002%, Ti: Ferritic stainless steel with excellent low temperature processability of welded parts, which is composed of 0.01 to 0.5%, remaining Fe and inevitable impurities. 제 1항에 있어서, 상기 스테인리스강에는 Ca계 산화물과 Ti계 석출물을 포함하는 것을 특징으로 하는 용접부의 저온 가공성이 우수한 페라이트계 스테인리스강.The ferritic stainless steel of claim 1, wherein the stainless steel comprises a Ca-based oxide and a Ti-based precipitate. 제 2항에 있어서, 상기 스테인리스강에는 Ca-Ti계 산화물을 포함하는 것을 특징으로 하는 용접부의 저온 가공성이 우수한 페라이트계 스테인리스강.3. The ferritic stainless steel having excellent low temperature workability of a welded portion according to claim 2, wherein the stainless steel comprises Ca-Ti oxide. 제 1 항에 있어서, 상기 스테인리스강은 용접이 적용되는 경우에 용접부의 결정립이 300㎛이하, 용접부와 모재의 경도차가 10Hv이하인 것을 특징으로 하는 용접부의 저온 가공성이 우수한 페라이트계 스테인리스강.The ferritic stainless steel having excellent low-temperature workability of the welded portion according to claim 1, wherein when the welding is applied, the grain size of the welded portion is 300 µm or less, and the hardness difference between the welded portion and the base material is 10 Hv or less.
KR1020060125617A 2006-12-11 2006-12-11 Ferritic stainless steel having excellent low temperature formability of welded zone KR100856306B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060125617A KR100856306B1 (en) 2006-12-11 2006-12-11 Ferritic stainless steel having excellent low temperature formability of welded zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060125617A KR100856306B1 (en) 2006-12-11 2006-12-11 Ferritic stainless steel having excellent low temperature formability of welded zone

Publications (2)

Publication Number Publication Date
KR20080053718A true KR20080053718A (en) 2008-06-16
KR100856306B1 KR100856306B1 (en) 2008-09-03

Family

ID=39800915

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060125617A KR100856306B1 (en) 2006-12-11 2006-12-11 Ferritic stainless steel having excellent low temperature formability of welded zone

Country Status (1)

Country Link
KR (1) KR100856306B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010002150A2 (en) * 2008-07-01 2010-01-07 주식회사 포스코 Ferritic stainless steel having a welded part with an excellent workability, and welded steel pipe using same and method for manufacturing same
CN112654727A (en) * 2018-08-03 2021-04-13 株式会社Posco Ti-and nb-added ferritic stainless steel excellent in low-temperature toughness in weld parts

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101092166B1 (en) * 2008-12-04 2011-12-13 주식회사 포스코 Ferritic stainless steel having excellent corrosion resistance and impact property of TIG welding part and the method for manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3661420B2 (en) * 1998-06-18 2005-06-15 Jfeスチール株式会社 Ferritic stainless steel with good surface properties and excellent corrosion resistance and moldability
US6426039B2 (en) * 2000-07-04 2002-07-30 Kawasaki Steel Corporation Ferritic stainless steel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010002150A2 (en) * 2008-07-01 2010-01-07 주식회사 포스코 Ferritic stainless steel having a welded part with an excellent workability, and welded steel pipe using same and method for manufacturing same
WO2010002150A3 (en) * 2008-07-01 2010-04-08 주식회사 포스코 Ferritic stainless steel having a welded part with an excellent workability, and welded steel pipe using same and method for manufacturing same
KR101008180B1 (en) * 2008-07-01 2011-01-14 주식회사 포스코 Ferritic stainless steel having excellent formability of welded zone, welded pipe using the same and method for manufacturing the welded pipe
JP2011526654A (en) * 2008-07-01 2011-10-13 ポスコ Ferritic stainless steel excellent in workability of welded portion, welded steel pipe using the same, and manufacturing method thereof
CN112654727A (en) * 2018-08-03 2021-04-13 株式会社Posco Ti-and nb-added ferritic stainless steel excellent in low-temperature toughness in weld parts

Also Published As

Publication number Publication date
KR100856306B1 (en) 2008-09-03

Similar Documents

Publication Publication Date Title
JP5029361B2 (en) Hot-rolled steel sheet, cold-rolled steel sheet and methods for producing them
JP5177310B2 (en) High tensile strength steel sheet with excellent low temperature toughness of weld heat affected zone and method for producing the same
WO2015088040A1 (en) Steel sheet and method for manufacturing same
CN104662188A (en) Ferritic stainless steel
JP2010235995A (en) Niobium-added ferritic stainless cool-rolled steel sheet excellent in workability and manufacturability and method for manufacturing the same
JP6036645B2 (en) Ferritic-martensitic duplex stainless steel with excellent low-temperature toughness and method for producing the same
JP5708349B2 (en) Steel with excellent weld heat affected zone toughness
JP5331700B2 (en) Ferritic stainless steel excellent in workability of welds and corrosion resistance of steel materials and method for producing the same
CN111433381B (en) High Mn steel and method for producing same
KR100856306B1 (en) Ferritic stainless steel having excellent low temperature formability of welded zone
JP4273457B2 (en) Structural stainless steel plate with excellent hole expansion workability
KR100825632B1 (en) Ferritic stainless steel having excellent formability of welded zone and corrosion resistance, and method for manufacturing the same
JP7207199B2 (en) Steel material and its manufacturing method
WO2022044510A1 (en) Hot-pressed member and manufacturing method therefor
JP4998365B2 (en) Ultra-low carbon steel sheet and manufacturing method thereof
JP2001020033A (en) Non-heattreated high tensile strength steel excellent in toughness of base material and weld heat-affected zone
KR100825630B1 (en) Ferritic stainless steel having excellent formability of welded zone, and method for manufacturing the same
JP2007277713A (en) Hot dip plated high strength steel sheet for press working and its production method
JP4192576B2 (en) Martensitic stainless steel sheet
JP2006241508A (en) HT490MPa CLASS REFRACTORY STEEL FOR WELDED STRUCTURE HAVING EXCELLENT GALVANIZING CRACK RESISTANCE IN WELD ZONE AND ITS PRODUCTION METHOD
JP3872595B2 (en) Cold rolled steel sheet with low in-plane anisotropy and excellent formability
JP7207250B2 (en) Steel material and its manufacturing method
JP2001020031A (en) Non-heattreated high tensile strength steel excellent in toughness of base material and weld heat-affected zone
JP4013515B2 (en) Structural stainless steel with excellent intergranular corrosion resistance
JP5821792B2 (en) Method for producing continuous cast slab of steel containing B and method for continuous casting

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120731

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130801

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140825

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150827

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160816

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170824

Year of fee payment: 10