KR20080038806A - Enhancement of electro-conductivity of conducting material in lithium ion battery - Google Patents

Enhancement of electro-conductivity of conducting material in lithium ion battery Download PDF

Info

Publication number
KR20080038806A
KR20080038806A KR1020060106225A KR20060106225A KR20080038806A KR 20080038806 A KR20080038806 A KR 20080038806A KR 1020060106225 A KR1020060106225 A KR 1020060106225A KR 20060106225 A KR20060106225 A KR 20060106225A KR 20080038806 A KR20080038806 A KR 20080038806A
Authority
KR
South Korea
Prior art keywords
conductive agent
lithium secondary
secondary battery
negative electrode
active material
Prior art date
Application number
KR1020060106225A
Other languages
Korean (ko)
Other versions
KR100994181B1 (en
Inventor
조민호
김영민
오은석
양승림
류민정
김주현
천기우
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020060106225A priority Critical patent/KR100994181B1/en
Publication of KR20080038806A publication Critical patent/KR20080038806A/en
Application granted granted Critical
Publication of KR100994181B1 publication Critical patent/KR100994181B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

A lithium secondary battery is provided to reduce electric resistance increment attendant on use of excess binder by treating a conducting material with UV-ozone, and thus increase discharge capacity. A lithium secondary battery includes a positive electrode and a negative electrode produced from electrode compositions for manufacturing the positive electrode or negative electrode of the lithium secondary battery, wherein the electrode composition comprises a positive electrode or negative electrode active material, a conducting material capable of providing electron movement routes to the positive electrode or negative electrode active material, and a binder. The conducting material is treated with ultraviolet ray-ozone.

Description

전기 전도성을 향상시킨 도전제를 포함한 리튬 이차전지{Enhancement of electro-conductivity of conducting material in lithium ion battery}Lithium secondary battery including a conductive agent with improved electrical conductivity {enhancement of electro-conductivity of conducting material in lithium ion battery}

본 발명은 리튬 이차전지의 양극 또는 음극 제조에 있어 전극합제에 포함되는 도전제(conducting material)의 전기 전도성 향상에 관한 것으로, 상기 도전제로 사용되는 물질을 자외선-오존(UV-Ozone)으로 처리 하여 도전제의 전기 전도성을 증가시킴으로써, 리튬 이차전지의 방전용량을 증가시키는 것에 관한 것이다. The present invention relates to the improvement of the electrical conductivity of the conductive material (conducting material) included in the electrode mixture in the production of the positive or negative electrode of a lithium secondary battery, by treating the material used as the conductive agent with UV-Ozone The present invention relates to increasing the discharge capacity of a lithium secondary battery by increasing the electrical conductivity of the conductive agent.

오늘날, 정보통신산업의 발전으로 인하여 다양한 휴대용 기기가 사용되고 있는바, 이러한 휴대용 기기의 에너지 공급원으로서 여러 가지 형태의 전지가 사용되고 있다. 휴대용 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 증가하고 있고, 이차전지 중에서 높은 에너지 밀도와 전압을 가지는 리튬 이차전지가 상용화 되어 널리 사용되고 있다.Today, various portable devices are used due to the development of the information and communication industry, and various types of batteries are used as an energy supply source for such portable devices. As technology development and demand for portable devices increase, the demand for secondary batteries is increasing as an energy source, and lithium secondary batteries having high energy density and voltage are commercially used among secondary batteries.

리튬 이차전지는 충방전시 리튬 이온의 흡장(intercalation)-방출(deintercalation) 반응을 이용하는 것이다. 리튬 이차전지는 기본 구성에 있어서 활물질로 흑연(graphite)을 사용하는 음극(anode), 활물질로 리튬 전이금속 산 화물을 사용하는 양극(cathode), 분리막 및 유기용매의 전해질로 구성되어 있다. 최근에서는 음극 활물질로서 흑연보다 용량이 큰 주석 또는 실리콘계 복합물이 관심을 끌고 있다.The lithium secondary battery uses an intercalation-deintercalation reaction of lithium ions during charging and discharging. The lithium secondary battery is composed of an anode using graphite as an active material in a basic configuration, a cathode using a lithium transition metal oxide as an active material, a separator, and an electrolyte of an organic solvent. Recently, tin or silicon-based composites having a larger capacity than graphite have attracted attention as a negative electrode active material.

그러나, 리튬 이차전지의 양극 또는 음극 활물질은 기본적으로 전도성이 없는 것이므로 그 전도도를 높이기 위해 구(球)형으로 된 활물질 입자의 표면에 도전제가 코팅되게 하여 도전 네트워크를 형성하는 것이다.However, since the positive electrode or the negative electrode active material of the lithium secondary battery is basically non-conductive, a conductive network is formed by coating a conductive agent on the surface of spherical active material particles to increase its conductivity.

최근 리튬 이차전지의 음극 활물질로 관심을 끌고 있는 실리콘은 종래의 흑연계 활물질의 최대 이론 용량인 372 mAㆍh/g 보다 월등히 높은 4200 mAㆍh/g을 가지고 있어 용량 증대에 한계가 있는 흑연계 활물질을 대체할 수 있는 물질로 주목 받고 있다. Recently, silicon, which has attracted attention as a negative electrode active material of a lithium secondary battery, has a 4200 mA · h / g which is much higher than the maximum theoretical capacity of the conventional graphite-based active material, 372 mA · h / g, and thus has a limited capacity increase. It is attracting attention as a material that can replace the active material.

그러나 실리콘계 음극 활물질은 리튬 이온의 흡장-방출 반응 시 부피의 팽창이 200 내지 300%로 매우 크므로 계속적인 충방전 시 도포된 음극의 전극합제가 집전체인 구리 막으로부터 탈리 되거나 음극 활물질 상호간 접촉 계면의 변화에 따른 저항 증가로 인해 충방전 사이클이 진행됨에 따라 용량이 급격하게 저하되어 사이클 수명이 짧아지는 문제점을 가지고 있다. 이러한 문제로 인해 종래의 흑연계 음극 활물질용 바인더(binder)인 폴리비닐리덴 플로라이드(polyvinylidene fluoride), 스티렌-부타다이엔 고무(styren-butadiene rubber) 등을 실리콘계 음극 활물질에 적용하는 경우 원하는 효과를 얻기 어렵다. 또한 충방전 시 부피 변화를 줄이기 위하여 과량의 고분자를 바인더로 사용하게 되면 집전체로부터 활물질의 탈리를 감소시킬 수 있으나, 바인더로 사용되는 전기절연성을 가지는 고분자에 의해 전극합제의 전기저항이 높아지게 되고, 상대적으로 활물질의 양이 감소함으로 인해 용량 감소의 문제가 발생하게 된다. However, the silicon-based negative electrode active material has a large volume expansion of 200-300% during the occlusion-release reaction of lithium ions, so that the electrode mixture of the negative electrode applied during the continuous charging and discharging is detached from the copper film, which is the current collector, or the contact interface between the negative electrode active materials. As the charge and discharge cycle proceeds due to the increase in resistance due to the change in capacity, the capacity is drastically lowered, and thus the cycle life is shortened. Due to these problems, polyvinylidene fluoride, styrene-butadiene rubber, and the like, which are conventional binders for graphite-based negative electrode active materials, may have a desired effect. Hard to get In addition, when an excessive polymer is used as a binder to reduce the volume change during charging and discharging, the detachment of the active material from the current collector can be reduced, but the electrical resistance of the electrode mixture is increased by the polymer having the electrical insulation used as the binder. Reducing the amount of the active material relatively causes a problem of capacity reduction.

이와 관련하여 폴리비닐알콜을 리튬 이온전지의 전극의 바인더로 사용하려는 시도가 있었으며 폴리비닐알콜계 바인더는 종래의 바인더에 비하여 접착력이 우수하였다(일본 특허출원공개 제1999-67216호 및 제2004-134206). 그러나 우수한 접착력에 비하여 폴리비닐알콜은 집전체인 구리 막에 활물질이 균일하게 도포되지 않고 전극합제와 집전체의 탈리 현상은 여전히 문제가 되었다.In connection with this, there have been attempts to use polyvinyl alcohol as a binder of an electrode of a lithium ion battery, and polyvinyl alcohol-based binders have superior adhesive strength as compared to conventional binders (Japanese Patent Application Laid-Open Nos. 1999-67216 and 2004-134206). ). However, polyvinyl alcohol does not uniformly apply the active material to the copper film, which is a current collector, and the desorption phenomenon between the electrode mixture and the current collector remains a problem.

따라서 실리콘계 음극 활물질을 사용하는 리튬 이온전지에서 충방전 시 음극 활물질의 큰 부피 변화를 견딜 수 있게 하기 위하여 과중량의 바인더를 사용하게 되는데, 이로 인한 전기 저항의 증가를 방지하고 충방전 효율을 유지하는 기술의 필요성이 대두 되는바, 이를 해결하기 위한 방법으로 도전제로서 신규 물질을 적용하거나, 도전제의 분산성을 높여 활물질과의 접촉 면적을 늘리는 방법이 개발되고 있다.Therefore, in a lithium ion battery using a silicon-based negative active material, an overweight binder is used to withstand a large volume change of the negative electrode active material during charge and discharge. This prevents an increase in electrical resistance and maintains charge and discharge efficiency. There is a need for the technology, a method for solving this problem has been developed to apply a new material as a conductive agent, or increase the dispersibility of the conductive agent to increase the contact area with the active material.

예를 들어 한국 특허출원공개 제2003-0013553호는 리튬/유황 이차전지를 제조함에 있어서 절연체인 유황의 단독 사용이 불가능하므로 도전제로서 탄소나노튜브의 도입을 제시하고 있다.For example, Korean Patent Application Publication No. 2003-0013553 proposes the introduction of carbon nanotubes as a conductive agent, since sulfur, which is an insulator, cannot be used alone in manufacturing lithium / sulfur secondary batteries.

또한 한국 특허출원공개 제 2005-0118864호는 카본 블랙(carbon black)을 도전제로 사용한 리튬 이차전지에서 음극 활물질과 도전제 간의 접촉면적을 높이고 균일한 혼합을 이루기 위해 상기 물질들을 플래니터리 믹서(planetary mixer)를 이용하여 용매에 분산시킨 후 바인더를 첨가하여 리튬 이차전지를 제조하는 방법을 제시하고 있다. In addition, Korean Patent Application Publication No. 2005-0118864 discloses a planetary mixer for increasing the contact area between the negative electrode active material and the conductive material and achieving uniform mixing in a lithium secondary battery using carbon black as a conductive material. A method of manufacturing a lithium secondary battery by dispersing in a solvent using a mixer and then adding a binder is proposed.

한편, 한국등록특허 제268,750호는 리튬이차전지의 양극 도전제로서 카본블랙의 오존 처리에 대해 기재하고 있고, 일본공개특허 제2004-039443호는 도전제를 자외선 처리하여 친수성을 갖도록 함으로써 분산성을 향상시키는 방법을 개시하고 있다.On the other hand, Korean Patent No. 268,750 describes ozone treatment of carbon black as a positive electrode conductive agent of a lithium secondary battery, and Japanese Patent Laid-Open No. 2004-039443 discloses dispersibility by UV treatment of a conductive agent. A method of improving is disclosed.

그러나, 상술한 발명들은 실리콘계 음극 활물질에서 과량의 바인더를 사용하는 경우 음극 도전제에 대해서는 언급한 바 없다.However, the above-mentioned inventions do not mention the negative electrode conductive agent when the excess binder is used in the silicon-based negative electrode active material.

본 발명은 상기와 같은 여건을 감안하여 창출된 것으로 탄소계 도전제를 사용하는 이차전지에 있어, 상기 도전제를 자외선-오존(UV-Ozone) 처리함으로써 과량의 바인더를 사용한 경우에 있어 수반되어 증가하는 전기저항을 감소시키고, 방전용량을 증가시킨 이차전지를 제공함에 그 목적이 있다.The present invention has been made in view of the above-mentioned conditions, and in the secondary battery using a carbon-based conductive agent, an increase in the case of using an excessive amount of binder by UV-Ozone treatment of the conductive agent. It is an object of the present invention to provide a secondary battery having a reduced electrical resistance and an increased discharge capacity.

본 발명의 다른 목적은 탄소계 도전제를 자외선-오존 처리함으로써 도전제의 전기저항을 감소시켜 종래에 이차전지를 구성함에 있어 투입되는 도전제의 중량비를 획기적으로 감소시킨 이차전지를 제공하는 것이다.Another object of the present invention is to provide a secondary battery by dramatically reducing the weight ratio of the conductive agent introduced in the conventional secondary battery by reducing the electrical resistance of the conductive agent by ultraviolet-ozone treatment of the carbon-based conductive agent.

본 발명의 상기 목적 및 기타 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.The above and other objects of the present invention can be achieved by the present invention described below.

상기의 목적을 달성하기 위하여, 본 발명은 양극 또는 음극 활물질, 상기 양극 또는 음극 활물질에 전자의 이동경로를 제공하는 도전제 및 바인더를 포함하는 리튬 이차전지의 양극 또는 음극 제조를 위한 전극합제로부터 제조된 양극 및 음극을 포함하는 리튬 이차전지로서 상기 도전제가 자외선-오존 처리된 것을 특징으로 하는 리튬 이차전지를 제공한다. In order to achieve the above object, the present invention is prepared from an electrode mixture for manufacturing a positive electrode or a negative electrode of a lithium secondary battery comprising a positive electrode or a negative electrode active material, a conductive agent and a binder for providing a movement path of electrons to the positive or negative electrode active material It provides a lithium secondary battery comprising a positive electrode and a negative electrode, characterized in that the conductive agent is UV-ozone treated.

상기 전극합제는 양극 또는 음극 활물질 65 내지 85중량%, 바인더 10 내지 30중량% 및 도전제 0.1 내지 5중량%을 포함하는 것일 수 있다.The electrode mixture may include 65 to 85% by weight of the positive electrode or negative electrode active material, 10 to 30% by weight of the binder and 0.1 to 5% by weight of the conductive agent.

바람직하게, 상기 전극합제는 도전제 0.1 내지 1중량%를 포함하는 것일 수 있다.Preferably, the electrode mixture may include 0.1 to 1% by weight of a conductive agent.

또한, 상기 도전제는 증기성장탄소섬유(VGCF), 천연 흑연, 인조 흑연, 석유계 핏치, 석탄계 핏치 및 탄소나노튜브로 이루어진 그룹에서 선택되는 1종 이상일 수 있다. In addition, the conductive agent may be at least one selected from the group consisting of vapor growth carbon fiber (VGCF), natural graphite, artificial graphite, petroleum pitch, coal-based pitch and carbon nanotubes.

상기 음극 활물질은 실리콘, 실리콘/그래파이트 및 실리콘옥사이드/그래파이트로 이루어진 그룹에서 선택되는 1종일 수 있다. The negative active material may be one selected from the group consisting of silicon, silicon / graphite, and silicon oxide / graphite.

상기 바인더는 불소계 고분자, 스티렌-부타다이엔 고무의 수계 고분자 및 폴리비닐알콜 고분자로 이루어진 그룹에서 선택되는 1종일 수 있다.The binder may be one selected from the group consisting of a fluorine-based polymer, an aqueous polymer of styrene-butadiene rubber, and a polyvinyl alcohol polymer.

특히, 본 발명은 실리콘, 실리콘/그래파이트 및 실리콘옥사이드/그래파이트로 이루어진 그룹에서 선택되는 1종의 음극 활물질 65 내지 85중량%; 증기성장탄소섬유(VGCF), 천연 흑연, 인조 흑연, 석유계 핏치, 석탄계 핏치 및 탄소나노튜브로 이루어진 그룹에서 선택되는 1종 이상을 60 내지 180분간 자외선-오존 처리한 도전 제 0.1 내지 5중량%; 및 불소계 고분자, 스티렌-부타다이엔 고무의 수계 고분자 및 폴리비닐알콜 고분자로 이루어진 그룹에서 선택되는 1종의 바인더 10 내지 30중량%을 포함하는 전극합제로부터 제조된 음극을 포함하는 리튬 이차전지를 제공한다.In particular, the present invention is 65 to 85% by weight of one negative electrode active material selected from the group consisting of silicon, silicon / graphite and silicon oxide / graphite; 0.1-5% by weight of conductive agent subjected to UV-ozone treatment of at least one selected from the group consisting of vapor growth carbon fiber (VGCF), natural graphite, artificial graphite, petroleum pitch, coal-based pitch and carbon nanotubes for 60 to 180 minutes ; And a negative electrode prepared from an electrode mixture comprising 10 to 30 wt% of a binder selected from the group consisting of a fluorine-based polymer, an aqueous polymer of styrene-butadiene rubber, and a polyvinyl alcohol polymer. do.

이때 상기 도전제는 0.1 내지 1중량% 포함되는 것일 수 있다. In this case, the conductive agent may be included in an amount of 0.1 to 1% by weight.

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 양극/전해질/음극으로 구성되는 리튬 이차전지에 있어 상기 양극 또는 음극 제조를 위한 전극합제로서, 양극 또는 음극 활물질에 전기 전도성을 제공하는 도전제가 자외선-오존 처리된 것을 사용하는 것을 특징으로 한다.The present invention is a lithium secondary battery consisting of a positive electrode / electrolyte / negative electrode as an electrode mixture for the production of the positive electrode or negative electrode, characterized in that for use as a conductive agent for providing electrical conductivity to the positive electrode or negative electrode active material UV-ozone treatment do.

특히, 본 발명의 리튬 이차전지는 음극 활물질로서 리튬/실리콘-그래파이트, 리튬/실리콘옥사이드-그래파이트 등의 실리콘계 화합물을 사용하는 것을 특징으로 한다. In particular, the lithium secondary battery of the present invention is characterized in that a silicon compound such as lithium / silicon-graphite, lithium / silicon oxide-graphite is used as the negative electrode active material.

또한 본 발명의 리튬 이차전지에 사용되는 도전제는 탄소계 도전제로서 카본블랙, 증기성장탄소섬유(Vapor Grown Carbon Fiber, VGCF), 단일겹 또는 다중겹 탄소나노튜브(single/multi-walled carbon nanotube)를 단독 또는 혼합하여 사용할 수 있다. In addition, the conductive agent used in the lithium secondary battery of the present invention is a carbon-based conductive agent, carbon black, Vapor Grown Carbon Fiber (VGCF), single or multi-layered carbon nanotubes (single / multi-walled carbon nanotube) ) May be used alone or in combination.

본 발명에서 도전제는 자외선-오존 처리를 한 후 사용된다. 상기 자외선-오존 처리를 위해 자외선-오존 발생 장치를 이용하고, 처리시간은 60 내지 180분간으로 하는 것이 바람직하다. 상기 처리시간을 길게 할수록 전극의 전기저항이 감소하는 변화가 있으나, 180분 이상의 처리시간부터는 전기저항에 큰 차이를 보이지 않 는다. 따라서, 최적의 전기저항 감소를 위해 60 내지 180분간의 자외선-오존 처리가 바람직하다. 특히, VGCF는 자외선-오존 처리 시간을 180분으로 하는 경우, 60분 처리시에 비해 실리콘계 활물질과의 고른 혼화를 가져올 수 있다. In the present invention, the conductive agent is used after the ultraviolet-ozone treatment. The ultraviolet-ozone generating apparatus is used for the ultraviolet-ozone treatment, and the treatment time is preferably 60 to 180 minutes. As the treatment time increases, the electrical resistance of the electrode decreases, but there is no significant difference in the electrical resistance from the treatment time of 180 minutes or more. Therefore, ultraviolet-ozone treatment for 60 to 180 minutes is preferred for optimal reduction of electrical resistance. In particular, when the UV-ozone treatment time is 180 minutes, the VGCF can bring about evenly miscible with the silicon-based active material as compared with the 60-minute treatment.

자외선-오존 처리는 도전제를 페트리디쉬(petri-dish)와 같은 깊이가 얕고 면적이 넓은 용기에 얕고 고르게 분산시킨 후 자외선-오존 발생기에서 20분간 처리하고, 상기 도전제가 분산된 페트리디쉬를 꺼내어 도전제를 다시 섞어 고루 분산 시킨 후 자외선-오존 발생기에서 다시 처리한다. 상기 작업을 반복하여 도전제가 고루 자외선-오존 처리되게 하고, 반복 실시된 자외선-오존 처리 시간의 합이 60 내지 180분이 되도록 하는 것이다. Ultraviolet-ozone treatment disperses the conducting agent in a shallow and wide area such as petri-dish, and then evenly distributes the conducting agent in a UV-ozone generator for 20 minutes, and removes the conducting petri dish in which the conducting agent is dispersed. The agent is remixed and evenly dispersed and processed again in a UV-ozone generator. The above operation is repeated so that the conductive agent is evenly UV-ozone treated, and the sum of repeated UV-ozone treatment times is 60 to 180 minutes.

도전제의 자외선-오존 처리는 첫번째로 도전제에 산재한 불순물을 제거하여 도전제의 순도를 높이는 것이다. 다음으로, 전극합제로서 전극 활물질 및 바인더와 함께 혼화할 때 도전제의 분산성을 높인다. 그 효과로서, 전극합제에서 바인더의 함량을 증가시킬 경우 절연성 물질인 바인더의 증가로 전극합제의 전기저항이 증가할 수 있는바, 상기 자외선-오존 처리된 도전제는 그 순도와 분산성이 향상되어 전극합제의 전기저항을 줄일 수 있다. Ultraviolet-ozone treatment of the conductive agent firstly removes impurities scattered in the conductive agent to increase the purity of the conductive agent. Next, when mixed with an electrode active material and a binder as an electrode mixture, the dispersibility of a electrically conductive agent is improved. As an effect, when the content of the binder in the electrode mixture is increased, the electrical resistance of the electrode mixture may be increased by increasing the binder, which is an insulating material. The UV-ozone treated conductive agent has improved purity and dispersibility. The electrical resistance of the electrode mixture can be reduced.

또한 종래 도전제는 음극 또는 양극 전극합제의 3 내지 20%의 중량비로 사용되었으나, 본 발명의 자외선-오존 처리를 한 도전제의 경우 5% 이내, 바람직하게 1% 이내로 도전제 사용량을 줄일 수 있다. In addition, although the conventional conductive agent was used in a weight ratio of 3 to 20% of the negative electrode or the positive electrode mixture, the conductive agent treated with the UV-ozone treatment of the present invention can reduce the amount of the conductive agent to within 5%, preferably within 1%. .

본 발명은 특히 실리콘, 실리콘/그래파이트 및 실리콘옥사이드/그래파이트로 이루어진 그룹에서 선택되는 1종의 음극 활물질 65 내지 85중량%; 증기성장탄소섬 유(VGCF), 천연 흑연, 인조 흑연, 석유계 핏치, 석탄계 핏치 및 탄소나노튜브로 이루어진 그룹에서 선택되는 1종 이상을 60 내지 180분간 자외선-오존 처리한 도전제 0.1 내지 5중량%; 및 불소계 고분자, 스티렌-부타다이엔 고무의 수계 고분자 및 폴리비닐알콜 고분자로 이루어진 그룹에서 선택되는 1종의 바인더 10 내지 30중량%을 포함하는 전극합제로부터 제조된 음극을 포함하는 리튬 이차전지를 제공한다.The present invention specifically comprises 65 to 85% by weight of one negative electrode active material selected from the group consisting of silicon, silicon / graphite and silicon oxide / graphite; 0.1 to 5 wt% of a conductive agent obtained by UV-ozone treatment of at least one selected from the group consisting of steam growth carbon fiber (VGCF), natural graphite, artificial graphite, petroleum pitch, coal-based pitch and carbon nanotubes for 60 to 180 minutes %; And a negative electrode prepared from an electrode mixture comprising 10 to 30 wt% of a binder selected from the group consisting of a fluorine-based polymer, an aqueous polymer of styrene-butadiene rubber, and a polyvinyl alcohol polymer. do.

실리콘, 실리콘/그래파이트 또는 실리콘옥사이드/그래파이트와 같은 실리콘계 음극 활물질은 리튬 이온의 흡·탈장에 의한 부피 변화가 커서 과량의 바인더를 사용하게 되는데, 이로 인해 전기저항의 증가 및 전지의 충방전 용량이 감소되는 문제가 있다. 본 발명의 음극 제조를 위한 전극합제는 증기성장탄소섬유(VGCF), 천연 흑연, 인조 흑연, 석유계 핏치, 석탄계 핏치 또는 탄소나노튜브 등의 탄소계 물질을 자외선-오존 처리하여 도전제로 사용함으로써 종래 도전제와 비교할 때 0.1 내지 5중량% 범위, 더욱 바람직하게 1중량% 이하라는 소량의 사용으로도 원하는 수준의 전기 전도도 및 충방전 용량을 얻을 수 있는 것이다. 따라서, 본 발명은 바람직한 전기 전도도 및 충방전 용량을 얻을 수 있는, 실리콘, 실리콘/그래파이트 또는 실리콘옥사이드/그래파이트의 실리콘계 음극을 포함하는 리튬이차전지를 제공한다.Silicon-based negative electrode active materials such as silicon, silicon / graphite, or silicon oxide / graphite have a large volume change due to the absorption and desorption of lithium ions, thereby using an excessive amount of binder, thereby increasing the electrical resistance and decreasing the charge / discharge capacity of the battery. There is a problem. Electrode mixture for the preparation of the negative electrode of the present invention by using a carbon-based material, such as steam growth carbon fiber (VGCF), natural graphite, artificial graphite, petroleum pitch, coal-based pitch or carbon nanotubes UV-ozone treatment to use as a conductive agent Compared with the conductive agent, even a small amount of 0.1 to 5% by weight, more preferably 1% by weight or less, can achieve desired levels of electrical conductivity and charge and discharge capacity. Accordingly, the present invention provides a lithium secondary battery including a silicon-based negative electrode of silicon, silicon / graphite, or silicon oxide / graphite, which can obtain desirable electrical conductivity and charge / discharge capacity.

이하 실시예를 통하여 본 발명을 더욱 상세히 설명하지만, 본 발명의 범위가 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the scope of the present invention is not limited to Examples.

[실시예 1]Example 1

도전제로서 VGCF를 페트리디쉬(petri-dish)에 얕고 고르게 분산시킨 후 자외선-오존 발생기 [UVO cleaner, 144AX-220, Jelight Company Inc, USA]에서 20분간 처리하고, 상기 도전제가 분산된 페트리디쉬를 꺼내어 도전제를 다시 섞어 고루 분산 시킨 후 자외선-오존 발생기에서 다시 처리하였다. 상기 작업을 반복하여 반복 실시된 자외선-오존 처리 시간의 합이 180분이 되도록 처리하였다. 상기 도전제와 폴리비닐알콜(PVA) 바인더를 혼화하여 동박위에 도포하여 건조 한 후 "바인더+도전제" 필름을 얻었다. 상기 "바인더+도전제" 필름의 전기저항을 측정하여 결과를 하기 표1에 기재하였다.VGCF as a conductive agent was dispersed in a petri dish shallowly and evenly, and then treated with an ultraviolet-ozone generator (UVO cleaner, 144AX-220, Jelight Company Inc, USA) for 20 minutes, and the petri dish with the conductive agent dispersed therein. After taking out, the conductive material was mixed again and dispersed, and then treated again in an ultraviolet-ozone generator. The above operation was repeated so that the sum of repeated UV-ozone treatment times was 180 minutes. The conductive agent and the polyvinyl alcohol (PVA) binder were mixed, coated on copper foil, and dried to obtain a "binder + conductor" film. The electrical resistance of the "binder + conductive" film was measured and the results are shown in Table 1 below.

다음으로 중량비로서 실리콘계 음극 활물질 85%, 바인더로서 중합도 3,000 이상의 폴리비닐알콜(PVA) 14.25%, 그리고 상기 자외선-오존 처리된 도전제 VGCF 0.75%를 혼화하여 음극 전극합제를 제조하고, 상기 음극 전극합제를 음극 집전체인 구리 막에 도포하여 음극을 제조하였다. 상기 음극의 저항값을 측정하여 하기 표1에 기재하였다.Next, a negative electrode mixture was prepared by mixing 85% of a silicon-based negative active material as a weight ratio, 14.25% of a polyvinyl alcohol (PVA) having a polymerization degree of 3,000 or more as a binder, and 0.75% of the UV-ozone treated conductive agent VGCF, to prepare the negative electrode mixture. Was applied to a copper film as a negative electrode current collector to prepare a negative electrode. The resistance value of the negative electrode was measured and shown in Table 1 below.

[실시예 2] Example 2

도전제로 아세틸렌블랙을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 도전제, "바인더+도전제" 필름 및 음극을 제조하였다. 상기 "바인더+도전제" 필름 및 음극의 전기저항을 측정하였다. 결과를 하기 표1에 기재하였다. Except for using acetylene black as the conductive agent, a conductive agent, a "binder + conductive" film and a negative electrode were prepared in the same manner as in Example 1. The electrical resistance of the "binder + conductive" film and the negative electrode was measured. The results are shown in Table 1 below.

[실시예 3]Example 3

도전제로 VGCF와 다겹탄소나노튜브를 1:1로 혼합하여 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 도전제, "바인더+도전제" 필름 및 음극을 제조하였다. 상기 "바인더+도전제" 필름 및 음극의 전기저항을 측정하였다. 결과를 하기 표1에 기재하였다.A conductive agent, a "binder + conductor" film and a negative electrode were prepared in the same manner as in Example 1 except that VGCF and a multilayer carbon nanotube were mixed 1: 1. The electrical resistance of the "binder + conductive" film and the negative electrode was measured. The results are shown in Table 1 below.

[비교예 1]Comparative Example 1

도전제로서 자외선-오존 처리를 하지 않은 VGCF를 음극 합제 총중량의 5%로 사용하고, 실리콘계 음극 활물질 85% 및 폴리비닐알콜 10%로 사용한 것을 제외하고 실시예 1과 동일한 방법으로 "바인더+도전제" 필름 및 음극을 제조하였다. 상기 "바인더+도전제" 필름 및 음극의 전기저항을 측정하였다. 결과를 하기 표1에 기재하였다.The same method as in Example 1 was used except that VGCF without UV-ozone treatment was used as 5% of the total weight of the negative electrode mixture, and 85% silicon-based negative active material and 10% polyvinyl alcohol were used as the "binder + conductive agent". "Film and negative electrode were prepared. The electrical resistance of the "binder + conductive" film and the negative electrode was measured. The results are shown in Table 1 below.

[비교예 2]Comparative Example 2

도전제로 자외선-오존 처리를 하지 않은 아세틸렌블랙을 음극 합제 총중량의 5%로 사용한 것을 제외하고 비교예 1과 동일한 방법으로 "바인더+도전제" 필름 및 음극을 제조하였다. 상기 "바인더+도전제" 필름 및 음극의 전기저항을 측정하였다. 결과를 하기 표1에 기재하였다.A "binder + conductor" film and a negative electrode were prepared in the same manner as in Comparative Example 1 except that acetylene black, which had not been subjected to UV-ozone treatment, was used as 5% of the total weight of the negative electrode mixture. The electrical resistance of the "binder + conductive" film and the negative electrode was measured. The results are shown in Table 1 below.

구분division 전기저항 (Ω/sq.)Electrical resistance (Ω / sq.) 실시예 1Example 1 바인더 + 도전제Binder + Challenger 5.18 x 109 5.18 x 10 9 전극electrode 4.03 x 102 4.03 x 10 2 실시예 2Example 2 바인더 + 도전제Binder + Challenger 6.85 x 109 6.85 x 10 9 전극electrode 8.03 x 102 8.03 x 10 2 실시예 3Example 3 바인더 + 도전제Binder + Challenger 2.79 x 108 2.79 x 10 8 전극electrode 2.13 x 102 2.13 x 10 2 비교예 1Comparative Example 1 바인더 + 도전제Binder + Challenger 6.29 x 1010 6.29 x 10 10 전극electrode 3.67 x 102 3.67 x 10 2 비교예 2Comparative Example 2 바인더 + 도전제Binder + Challenger 9.54 x 1010 9.54 x 10 10 전극electrode 7.98 x 102 7.98 x 10 2

실시예 1 및 2에서 도전제의 중량비는 0.75%로 비교예 1 및 2에서의 중량비 5%보다 도전제의 사용량은 작았으나, 제조된 음극의 전기저항을 측정한 결과, 전기저항의 차이는 10% 이내로 그 차이가 크지 않았다.In Examples 1 and 2, the weight ratio of the conductive agent was 0.75%, and the amount of the conductive agent was smaller than the weight ratio 5% in Comparative Examples 1 and 2, but as a result of measuring the electrical resistance of the manufactured negative electrode, the difference in electrical resistance was 10. The difference was not significant within%.

또한, 자외선-오존 처리를 한 도전제를 음극 합제에 대해 중량비 3%로 사용하고, 실시예 1과 동일한 방법으로 자외선-오존 처리 효과를 확인해 본 결과에 따르면 PVA 바인더와 도전제를 혼화하여 만들어진 필름의 표면 전기 저항은 자외선-오존처리 한 경우 4.68 x 106Ω/sq., 처리하지 않은 경우 6.43 x 108Ω/sq. 이고, 음극의 표면 전기 저항은 각각 1.31 x 10Ω/sq., 3.08 x 102Ω/sq. 로 자외선-오존 처리에 의해 101.5~2 정도의 표면 전기저항의 감소 결과를 얻을 수 있었다.In addition, according to the results of confirming the effect of ultraviolet-ozone treatment using a conductive agent subjected to ultraviolet-ozone treatment in a weight ratio of 3% with respect to the negative electrode mixture and in the same manner as in Example 1, a film made by mixing a PVA binder and a conductive agent The surface electrical resistance of 4.68 x 10 6 Ω / sq with UV-ozone treatment and 6.43 x 10 8 Ω / sq without treatment. And the surface electrical resistance of the cathode is 1.31 x 10 Ω / sq., 3.08 x 10 2 Ω / sq. The UV-ozone treatment resulted in a reduction of the surface electrical resistance of about 10 1.5-2 .

본 발명에 따르면 자외선-오존 처리한 탄소계 도전제를 적용한 실리콘계 음극 활물질 및 고분자 바인더를 이용한 리튬 이차전지의 전극합제에서 상기 자외선-오존 처리로써 도전제의 불순물을 감소시키고, 전극합제 내에서 도전제의 분산도가 높아져 종래 도전제보다 그 사용량을 크게 감소시킨 경우에도 실리콘계 음극 활물질과 도전제의 접촉 면적을 넓힐 수 있다. 따라서, 전극합제의 전기저항을 감소시킬 수 있다. According to the present invention, in the electrode mixture of the lithium secondary battery using the silicon-based negative active material and the polymer binder to which the carbon-based conductive agent treated with UV-ozone is treated, the impurities of the conductive agent are reduced by the ultraviolet-ozone treatment, and the conductive agent in the electrode mixture. Even if the amount of dispersion is increased and the amount of use thereof is greatly reduced compared to the conventional conductive agent, the contact area between the silicon-based negative active material and the conductive agent can be increased. Therefore, the electrical resistance of the electrode mixture can be reduced.

또한 실리콘계 음극 활물질과 과량의 고분자 바인더를 사용할 수 있게 한다. 따라서, 본 발명에 의하면 실리콘계 음극 활물질을 사용하는 경우에도 리튬이온의 흡장 및 방출에 따른 실리콘계 활물질의 부피 팽창을 감소시킬 수 있다.In addition, it is possible to use a silicon-based negative electrode active material and an excessive polymer binder. Therefore, according to the present invention, even when using a silicon-based negative active material, it is possible to reduce the volume expansion of the silicon-based active material due to the occlusion and release of lithium ions.

본 발명은 상술한 실시예를 중심으로 설명되었지만, 본 발명의 범주 및 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Although the present invention has been described with reference to the above-described embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made within the scope and spirit of the present invention, and it is obvious that such changes and modifications belong to the appended claims. will be.

Claims (8)

양극 또는 음극 활물질, 상기 양극 또는 음극 활물질에 전자의 이동경로를 제공하는 도전제 및 바인더를 포함하는 리튬 이차전지의 양극 또는 음극 제조를 위한 전극합제로부터 제조된 양극 및 음극을 포함하는 리튬 이차전지로서, 상기 도전제가 자외선-오존 처리된 것을 특징으로 하는 리튬 이차전지. A lithium secondary battery comprising a cathode and an anode prepared from an electrode mixture for preparing a cathode or an anode of a lithium secondary battery comprising a cathode or an anode active material, a conductive agent and a binder for providing electrons to the cathode or an anode active material. The lithium secondary battery, characterized in that the conductive agent is ultraviolet-ozone treatment. 제 1 항에 있어서, The method of claim 1, 상기 전극합제는 양극 또는 음극 활물질 65 내지 85중량%, 바인더 10 내지 30중량% 및 도전제 0.1 내지 5중량%을 포함하는 것을 특징으로 하는 리튬 이차전지. The electrode mixture is a lithium secondary battery comprising 65 to 85% by weight of the positive electrode or negative electrode active material, 10 to 30% by weight of the binder and 0.1 to 5% by weight of the conductive agent. 제 2 항에 있어서, The method of claim 2, 상기 전극합제는 도전제 0.1 내지 1중량%를 포함하는 것을 특징으로 하는 리튬 이차전지.The electrode mixture is a lithium secondary battery, characterized in that it comprises 0.1 to 1% by weight of a conductive agent. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서, The method according to any one of claims 1 to 3, 상기 도전제는 증기성장탄소섬유(VGCF), 천연 흑연, 인조 흑연, 석유계 핏치, 석탄 계 핏치 및 탄소나노튜브로 이루어진 그룹에서 선택되는 1종 이상인 것을 특징으로 하는 리튬 이차전지. The conductive agent is a lithium secondary battery, characterized in that at least one selected from the group consisting of steam growth carbon fiber (VGCF), natural graphite, artificial graphite, petroleum pitch, coal-based pitch and carbon nanotubes. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서, The method according to any one of claims 1 to 3, 상기 음극 활물질은 실리콘, 실리콘/그래파이트 및 실리콘옥사이드/그래파이트로 이루어진 그룹에서 선택되는 1종인 것을 특징으로 하는 리튬 이차전지. The anode active material is a lithium secondary battery, characterized in that one selected from the group consisting of silicon, silicon / graphite and silicon oxide / graphite. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서, The method according to any one of claims 1 to 3, 상기 바인더는 불소계 고분자, 스티렌-부타다이엔 고무의 수계 고분자 및 폴리비닐알콜 고분자로 이루어진 그룹에서 선택되는 1종인 것을 특징으로 하는 리튬 이차전지.The binder is a lithium secondary battery, characterized in that one kind selected from the group consisting of a fluorine-based polymer, an aqueous polymer of styrene-butadiene rubber and a polyvinyl alcohol polymer. 실리콘, 실리콘/그래파이트 및 실리콘옥사이드/그래파이트로 이루어진 그룹에서 선택되는 1종의 음극 활물질 65 내지 85중량%;65 to 85% by weight of one negative electrode active material selected from the group consisting of silicon, silicon / graphite and silicon oxide / graphite; 증기성장탄소섬유(VGCF), 천연 흑연, 인조 흑연, 석유계 핏치, 석탄계 핏치 및 탄소나노튜브로 이루어진 그룹에서 선택되는 1종 이상을 60 내지 180분간 자외선-오존 처리한 도전제 0.1 내지 5중량%; 및 0.1 to 5% by weight of a conductive agent subjected to UV-ozone treatment of at least one selected from the group consisting of VGCF, natural graphite, artificial graphite, petroleum pitch, coal pitch and carbon nanotube for 60 to 180 minutes ; And 불소계 고분자, 스티렌-부타다이엔 고무의 수계 고분자 및 폴리비닐알콜 고분자로 이루어진 그룹에서 선택되는 1종의 바인더 10 내지 30중량%을 포함하는 전극합제로부터 제조된 음극을 포함하는 것을 특징으로 하는 리튬 이차전지.Lithium secondary, characterized in that it comprises a negative electrode prepared from an electrode mixture comprising 10 to 30% by weight of a binder selected from the group consisting of a fluorine-based polymer, an aqueous polymer of styrene-butadiene rubber and a polyvinyl alcohol polymer battery. 제 7 항에 있어서, The method of claim 7, wherein 상기 도전제는 0.1 내지 1중량% 포함되는 것을 특징으로 하는 리튬 이차전지.The conductive agent is a lithium secondary battery, characterized in that contained 0.1 to 1% by weight.
KR1020060106225A 2006-10-31 2006-10-31 Enhancement of electro-conductivity of conducting material in lithium ion battery KR100994181B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060106225A KR100994181B1 (en) 2006-10-31 2006-10-31 Enhancement of electro-conductivity of conducting material in lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060106225A KR100994181B1 (en) 2006-10-31 2006-10-31 Enhancement of electro-conductivity of conducting material in lithium ion battery

Publications (2)

Publication Number Publication Date
KR20080038806A true KR20080038806A (en) 2008-05-07
KR100994181B1 KR100994181B1 (en) 2010-11-15

Family

ID=39647208

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060106225A KR100994181B1 (en) 2006-10-31 2006-10-31 Enhancement of electro-conductivity of conducting material in lithium ion battery

Country Status (1)

Country Link
KR (1) KR100994181B1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012101450A1 (en) 2011-01-27 2012-08-02 Nexeon Limited A binder for a secondary battery cell
WO2013061079A1 (en) 2011-10-26 2013-05-02 Nexeon Limited An electrode composition for a secondary battery cell
US8637191B2 (en) 2009-07-17 2014-01-28 Lg Chem, Ltd. Lithium secondary battery including water-dispersible binder, conduction agent, and fluoroethylenecarbonate
KR101378046B1 (en) * 2012-05-04 2014-03-27 한국과학기술원 Electrode binder for lithium secondary battery, manufacturing method for the same, and electrode for lithium secondary battery
WO2015016642A1 (en) * 2013-08-01 2015-02-05 주식회사 엘지화학 Conductor composition, slurry composition for forming electrode of lithium secondary battery using same, and lithium secondary battery
US20160268608A1 (en) * 2015-01-14 2016-09-15 Hitachi, Ltd. Lithium secondary battery, power storage apparatus including lithium secondary battery and method of manufacturing lithium secondary battery
US9608272B2 (en) 2009-05-11 2017-03-28 Nexeon Limited Composition for a secondary battery cell
US9647263B2 (en) 2010-09-03 2017-05-09 Nexeon Limited Electroactive material
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
US9871248B2 (en) 2010-09-03 2018-01-16 Nexeon Limited Porous electroactive material
US9871244B2 (en) 2007-07-17 2018-01-16 Nexeon Limited Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US9871249B2 (en) 2007-05-11 2018-01-16 Nexeon Limited Silicon anode for a rechargeable battery
CN110611068A (en) * 2019-09-12 2019-12-24 肇庆市华师大光电产业研究院 Preparation method of novel lithium-sulfur battery diaphragm material

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101964068B1 (en) 2014-11-03 2019-04-01 주식회사 엘지화학 Method for preparing conductive material, conductive material prepared thereby and lithium secondary battery comprising the same
WO2017065586A1 (en) * 2015-10-15 2017-04-20 주식회사 엘지화학 Negative electrode active material and secondary battery including same
KR101931143B1 (en) 2015-10-15 2018-12-20 주식회사 엘지화학 Negative electrode active material and secondary battery comprising the same
KR102111479B1 (en) 2016-03-25 2020-05-15 주식회사 엘지화학 Negative electrode and secondary battery comprising the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3400927B2 (en) * 1997-06-12 2003-04-28 東芝電池株式会社 Method for producing positive electrode for alkaline secondary battery
EP1244168A1 (en) * 2001-03-20 2002-09-25 Francois Sugnaux Mesoporous network electrode for electrochemical cell
JP4867145B2 (en) * 2004-08-23 2012-02-01 パナソニック株式会社 Non-aqueous electrolyte battery
KR100790833B1 (en) * 2005-09-06 2008-01-02 주식회사 엘지화학 Composite Binder Containing Carbon Nanotube and Lithium Secondary Battery Employing the Same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9871249B2 (en) 2007-05-11 2018-01-16 Nexeon Limited Silicon anode for a rechargeable battery
US9871244B2 (en) 2007-07-17 2018-01-16 Nexeon Limited Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US9608272B2 (en) 2009-05-11 2017-03-28 Nexeon Limited Composition for a secondary battery cell
US10050275B2 (en) 2009-05-11 2018-08-14 Nexeon Limited Binder for lithium ion rechargeable battery cells
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
US8637191B2 (en) 2009-07-17 2014-01-28 Lg Chem, Ltd. Lithium secondary battery including water-dispersible binder, conduction agent, and fluoroethylenecarbonate
US9947920B2 (en) 2010-09-03 2018-04-17 Nexeon Limited Electroactive material
US9647263B2 (en) 2010-09-03 2017-05-09 Nexeon Limited Electroactive material
US9871248B2 (en) 2010-09-03 2018-01-16 Nexeon Limited Porous electroactive material
WO2012101450A1 (en) 2011-01-27 2012-08-02 Nexeon Limited A binder for a secondary battery cell
WO2013061079A1 (en) 2011-10-26 2013-05-02 Nexeon Limited An electrode composition for a secondary battery cell
KR101378046B1 (en) * 2012-05-04 2014-03-27 한국과학기술원 Electrode binder for lithium secondary battery, manufacturing method for the same, and electrode for lithium secondary battery
WO2015016642A1 (en) * 2013-08-01 2015-02-05 주식회사 엘지화학 Conductor composition, slurry composition for forming electrode of lithium secondary battery using same, and lithium secondary battery
US10862124B2 (en) 2013-08-01 2020-12-08 Lg Chem, Ltd. Conducting material composition, slurry composition for forming electrode of lithium rechargeable battery and lithium rechargeable battery using the same
US20160268608A1 (en) * 2015-01-14 2016-09-15 Hitachi, Ltd. Lithium secondary battery, power storage apparatus including lithium secondary battery and method of manufacturing lithium secondary battery
CN110611068A (en) * 2019-09-12 2019-12-24 肇庆市华师大光电产业研究院 Preparation method of novel lithium-sulfur battery diaphragm material

Also Published As

Publication number Publication date
KR100994181B1 (en) 2010-11-15

Similar Documents

Publication Publication Date Title
KR100994181B1 (en) Enhancement of electro-conductivity of conducting material in lithium ion battery
Zhang et al. A flexible metallic TiC nanofiber/vertical graphene 1D/2D heterostructured as active electrocatalyst for advanced Li–S batteries
Wang et al. MoS2 nanosheets decorated Ni3S2@ MoS2 coaxial nanofibers: constructing an ideal heterostructure for enhanced Na-ion storage
JP4597666B2 (en) Particles comprising a non-conductive core or a semi-conductive core coated with a hybrid conductive layer, a method for its production, and its use in electrochemical devices
US20110163274A1 (en) Electrode composite, battery electrode formed from said composite, and lithium battery comprising such an electrode
JP6510784B2 (en) Method of manufacturing positive electrode of lithium sulfur secondary battery
Yan et al. Preparation and electrochemical properties of composites of carbon nanotubes loaded with Ag and TiO2 nanoparticle for use as anode material in lithium-ion batteries
CN107492661B (en) Graphene lithium battery conductive slurry and preparation method thereof
EP1288161A1 (en) Electrically conductive fine carbon composite, catalyst for solid polymer fuel cell and fuel battery
KR102166645B1 (en) Anode active material composition, manufacturing method the same and secondary battery comprising the same
KR101445692B1 (en) Anode active material for lithium secondary battery and Lithium secondary battery containing the same for anode
KR101031920B1 (en) Anode active material for lithium secondary battery and Method for preparing thereof and Lithium secondary battery containing the same for anode
CN113659125B (en) Silicon-carbon composite material and preparation method thereof
JP2022550742A (en) High Purity SWCNT Additives for Improving Lithium-ion Battery Performance
CN109860506A (en) Surface treated lithium ion cell positive active matter, preparation method and application
CN113644271B (en) Sodium supplement additive for negative electrode of sodium ion battery and negative electrode material
WO2012141308A1 (en) Carbon black composite and lithium-ion secondary battery using same
TWI805421B (en) Particles of silicon-carbon composite material and method of manufacturing the same
CN107546376A (en) A kind of Graphene electrodes and preparation method thereof
KR20140012354A (en) Manufacturing method of cathode material for mg rechargeable batteries, and cathode material for mg rechargeable batteries made by the same
Yang et al. High-cycling-stability of nanosized sandwich structure silicon/graphene composite as anode for lithium-ion batteries
CN112713265A (en) Composite conductive binder suitable for silicon-based negative electrode, preparation method and application
CN112436104A (en) Negative pole piece and preparation method thereof
KR101795778B1 (en) Silicon carbon composite for anode active material, method for preparing the same and lithium secondary battery the same
KR20200089208A (en) Carbon complex anode material based on core shell nanowire

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131018

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20141017

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150923

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160928

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170919

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20181016

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20191016

Year of fee payment: 10