KR20070118865A - Non-volatile memory device and manufacturing method and apparatus therefor - Google Patents

Non-volatile memory device and manufacturing method and apparatus therefor Download PDF

Info

Publication number
KR20070118865A
KR20070118865A KR1020060053106A KR20060053106A KR20070118865A KR 20070118865 A KR20070118865 A KR 20070118865A KR 1020060053106 A KR1020060053106 A KR 1020060053106A KR 20060053106 A KR20060053106 A KR 20060053106A KR 20070118865 A KR20070118865 A KR 20070118865A
Authority
KR
South Korea
Prior art keywords
pressure
high
gas
oxide film
chamber
Prior art date
Application number
KR1020060053106A
Other languages
Korean (ko)
Other versions
KR100833903B1 (en
Inventor
황현상
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Priority to KR1020060053106A priority Critical patent/KR100833903B1/en
Publication of KR20070118865A publication Critical patent/KR20070118865A/en
Application granted granted Critical
Publication of KR100833903B1 publication Critical patent/KR100833903B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • H01L27/112Read-only memory structures [ROM] and multistep manufacturing processes therefor
    • H01L27/115Electrically programmable read-only memories; Multistep manufacturing processes therefor

Abstract

A non-volatile memory device, a manufacturing method of the same, and a manufacturing apparatus of the same are provided to obtain stable and uniform switching characteristics and operational characteristics by forming oxygen vacancy at a boundary of metal/oxide. A pressure control unit(1) controls pressure of gas. A gas inlet(2) is connected to a high-pressure annealing chamber(4) in order to receive the gas from the pressure control unit. A gas outlet(3) is connected to the high-pressure annealing chamber in order to control the internal pressure of the high-pressure annealing chamber by discharging the gas to the outside. The high-pressure annealing chamber is formed to perform a thermal process for a single crystalline oxide layer or a single crystalline oxide layer having upper and lower metal electrodes. A temperature controller(5) is connected to the high-pressure annealing chamber in order to adjust the temperature. A pressure monitor(6) is connected to the high-pressure annealing chamber in order to monitor the internal pressure of the high-pressure annealing chamber. A computer(7) is connected to a pressure monitor and a temperature controller in order to control the internal pressure and the internal temperature of the high-pressure annealing chamber.

Description

비휘발성 기억소자, 그 제조방법 및 그 제조장치{Non-volatile Memory Device And Manufacturing Method And Apparatus Therefor} Non-volatile storage element, a manufacturing method and a manufacturing device {Non-volatile Memory Device And Manufacturing Method And Apparatus Therefor}

도 1은 본 발명의 일 실시예에 따른 비휘발성 기억소자의 히스테리시스 곡선을 나타낸 그래프이다. 1 is a graph showing a hysteresis curve of a non-volatile memory device according to an embodiment of the present invention.

도 2는 본 발명의 일 실시예에 따른 비휘발성 기억소자의 제조장치의 개략도이다. 2 is a schematic view of a manufacturing apparatus of a non-volatile memory device according to an embodiment of the present invention.

도 3은 본 발명의 일 실시예에 따른 비휘발성 기억소자의 전압-저항비를 나타낸 그래프이다. Figure 3 is a voltage of a non-volatile memory device according to an embodiment of the present invention - a graph illustrating a resistance ratio.

도 4는 본 발명의 일 실시예에 따른 비휘발성 기억소자의 cycle stress에 따른 저항변화를 나타낸 그래프이다. 4 is a graph showing the resistance change according to a stress cycle of a non-volatile memory device according to an embodiment of the present invention.

{도면의 주요부분에 대한 부호의 설명} {Description of the Related Art}

1 : 가스압력조절 유닛 2 : 가스유입구 1: gas pressure control unit 2: gas inlet

3 : 가스유출구 4 : 고압 어닐링 챔버 3: gas outlet 4: high-pressure annealing chamber

5 : 온도 조절기 6 : 압력 모니터 5: thermostat 6: Pressure Monitor

7 : 공정제어 컴퓨터 7: The process control computer

본 발명은 비휘발성 기억소자에 관한 것으로서, 보다 상세하게는 상부와 하부에 전극을 형성하고, 상기 전극 사이에, 저항변화에 핵심적인 다량의 산소공공(oxygen vacancy)을 포함하는 산화막을 포함하는 비휘발성 반도체 기억소자와 그의 제조 공정기술에 관한 것이다. The present invention relates to a nonvolatile memory device, and more particularly, a non-containing oxide film, including a central large quantities of oxygen vacancies (oxygen vacancy), the resistance change between the forming an electrode on the upper and lower portions, and the electrode It relates to a volatile semiconductor memory device and its manufacturing process technology.

현재 비휘발성 메모리로 상용화된 플래시 메모리(Flash memory)의 경우, 플로팅 폴리실리콘(floating polysilicon)이나 질화규소(silicon nitride)에 전자를 저장하거나 제거하여 문턱전압(V th )을 변화시켜 기억소자로 이용한다. If the current of the flash memory (Flash memory) commercialized a non-volatile memory, to save the electronic or removing the floating polysilicon (floating polysilicon) or silicon nitride (silicon nitride) changes the threshold voltage (V th) is used as a memory element. 이에 반해, 최근 연구되고 있는 상변화형 메모리(phase change memory, 'PRAM'), 자기 메모리(magnetic memory, 'MRAM') 등은 외부에서 인가한 열이나 자기장을 이용하여 저항변화를 발생시켜서 기억소자로 사용한다. On the other hand, recently a phase-change memory being studied (phase change memory, 'PRAM'), such as a magnetic memory (magnetic memory, 'MRAM') is by generating the resistance change using heat or a magnetic field applied from outside the storage element used to.

또 다른 비휘발성 메모리로서 전압인가에 의해 산화막의 저항이 변화되는 특성을 이용하는 저항성 메모리(ReRAM)에 대한 지금까지 연구 결과를 종합하면, 기본적인 스위칭 특성은 다양한 산화물 재료에서 확인하였으나, 구체적인 스위칭 원리에 대해서는 원인 규명이 미흡한 실정이다. Further although other non Taken together, the findings to date for the resistive memory (ReRAM) using a characteristic that the resistance of the oxide film is changed by applying a voltage as a volatile memory, the basic switching characteristics are found in a variety of oxide materials, for a specific switching principle this situation is insufficient attribution. 제작된 기억소자의 전기적 특성이 불균일하여, 스위칭 횟수와 셋/리셋 전압, 리셋 전류 등이 차세대 기가/테라-비트급 메모리로 상용화하기에는 많은 문제가 있다. The electrical characteristics of the fabricated memory devices non-uniform, the switching frequency and set / reset voltage, the reset current next-generation group / Terra-hagieneun commercialized by biteugeup memory has a number of problems.

본 발명의 목적은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로써, 인가된 전압에 따른 저항변화를 극대화하여 안정적인 메모리 동작이 가능한 비휘발성 기억소자를 제공하는 데 있다. An object of the present invention is to provide a writing that been made, a stable memory operation is possible by maximizing the resistance change in accordance with the applied voltage non-volatile storage element in order to solve the above problems.

본 발명의 다른 목적은 저항 변화를 일으키는 핵심요소인 산소공공을 다량 함유하는 새로운 산화막 제조공정을 제공하여 신뢰성이 우수하고 상용화 가능성이 높은 비휘발성 기억소자를 제공하는 데 있다. Another object of the present invention to provide a new process for manufacturing an oxide film containing a large amount of oxygen public key component that causes resistance change by the reliability is excellent and provides non-volatile storage elements with high possibility of commercialization.

상기 목적을 달성하기 위하여 본 발명의 비휘발성 기억소자는, 비휘발성 기억소자에 있어서 상부와 하부에 전극을 형성하고, 상기 전극 사이에 다량의 산소공공(oxygen vacancy)을 포함하는 산화막을 형성하는 것을 특징으로 한다. The nonvolatile memory device of the present invention to achieve the above object, that in the non-volatile storage element and forming an electrode on the top and the bottom, forming an oxide film containing a large amount of oxygen vacancies (oxygen vacancy) between the electrodes It characterized.

본 발명에서, 상기 산화막은 단결정 산화막인 것을 포함한다. In the present invention, the oxide film includes a single crystalline oxide film.

본 발명에서 바람직하게는 상기 단결정 산화막은 티탄산스트론튬(SrTiO 3 ), 산화아연(ZnO 2 ), 산화망간(MnO)으로 구성된 그룹에서 선택된 어느 하나의 산화물에 3족 내지 12족 금속원소로 구성된 그룹에서 선택된 1종 이상의 금속원소가 도핑된 것을 포함한다. Preferably the single crystal oxide film in the present invention strontium titanate (SrTiO 3), zinc oxide (ZnO 2), from the group consisting of Group 3 to Group 12 metal element as in any one of an oxide selected from the group consisting of manganese oxide (MnO) It includes more than the selected one metal element doped.

본 발명에서, 상기 단결정 산화막은 니오브가 도핑된 티탄산스트론튬(Nb- doped SrTiO 3 ), 크롬이 도핑된 티탄산스트론튬(Cr-doped SrTiO 3 ), 란탄이 도핑된 티탄산스트론튬(La-doped SrTiO 3 ), 알루미늄이 도핑된 산화아연(Al-doped ZnO 2 ) 및 Re 0.7 AE 0.3 MnO 3 (Re는 희토류원소, AE는 알칼리토류원소, Mn은 망간, O는 산소)로 구성된 그룹에서 선택하는 것을 포함한다. In the present invention, the single crystal oxide film is a niobium-doped strontium titanate (Nb- doped SrTiO 3), strontium titanate doped with chromium (Cr-doped SrTiO 3), strontium titanate, lanthanum-doped (La-doped SrTiO 3), aluminum zinc oxide doped (Al-doped ZnO 2) and Re 0.7 AE 0.3 MnO 3 comprises selected from the group consisting of (Re is a rare earth element, AE is an alkaline-earth element, Mn is manganese, O is oxygen).

상기 목적을 달성하기 위하여 본 발명의 비휘발성 기억소자의 제조방법은, 비휘발성 기억소자의 제조방법에 있어서 금속 전극 위에 단결정 산화막을 증착하고 그 위에 다시 금속 전극을 증착하는 단계 및 수소, 질소 및 중수소로 구성된 그룹에서 선택한 1종 이상의 가스를 일정 농도 및 압력으로 하여 상기 소자에 가하고 일정 시간 및 온도로 열처리하는 단계를 포함한다. Production process of the non-volatile memory element of the invention in order to achieve the above object, a nonvolatile in the production method of the memory element comprises: depositing a single crystalline oxide film on the metal electrode, and depositing metal electrodes again thereon and hydrogen, nitrogen and deuterium and at least one gas selected from the group consisting of a predetermined concentration and pressure was added to the device and a step of heat treatment at a certain time and temperature.

또한 본 발명의 비휘발성 기억소자의 제조방법은, 수소, 질소 및 중수소로 구성된 그룹에서 선택한 1종 이상의 가스를 일정 농도 및 압력으로 하여 단결정 산화막에 가하고 일정 시간 및 온도로 열처리하는 단계 및 금속 전극 위에 상기 단계의 단결정 산화막을 증착하고 그 위에 다시 금속 전극을 증착하는 단계를 포함한다. In addition, this manufacturing method of a non-volatile memory device of the invention, hydrogen, nitrogen, and the at least one gas selected from the group consisting of heavy hydrogen at a predetermined concentration and pressure was added to the single crystal oxide film is the step of heat treatment at a predetermined time and temperature, and a metal electrode on and a step of depositing a single crystalline oxide film of the step, and depositing a metal back electrode thereon.

본 발명의 비휘발성 기억소자의 제조방법에 있어서, 상기 단결정 산화막은 티탄산스트론튬(Nb-doped SrTiO 3 ), 산화아연(ZnO 2 ), 산화망간(MnO)으로 구성된 그룹에서 선택된 어느 하나의 산화물에 3족 내지 12족 금속원소로 구성된 그룹에서 선택된 1종 이상의 원소가 도핑된 것을 특징으로 한다. In the production method of a non-volatile memory device of the present invention, the single crystal oxide film is any one of an oxide selected from the group consisting of strontium titanate (Nb-doped SrTiO 3), zinc oxide (ZnO 2), manganese oxide (MnO) 3 from the group consisting of a group to the group 12 metal element is characterized in that an at least selected one of elements doped.

본 발명의 비휘발성 기억소자의 제조방법에 있어서, 바람직하게는 상기 단결 정 산화막은 니오브가 도핑된 티탄산스트론튬(Nb-doped SrTiO 3 ), 크롬이 도핑된 티탄산스트론튬(Cr-doped SrTiO 3 ), 란탄이 도핑된 티탄산스트론튬(La-doped SrTiO 3 ), 알루미늄이 도핑된 산화아연(Al-doped ZnO 2 ) 및 Re 0.7 AE 0.3 MnO 3 (Re는 희토류원소, AE는 알칼리토류원소, Mn은 망간, O는 산소)로 구성된 그룹에서 선택하는 것을 포함한다. In the production method of a non-volatile memory device of the present invention, preferably, the unity constant oxide is a niobium-doped strontium titanate (Nb-doped SrTiO 3), strontium titanate chrome-doped (Cr-doped SrTiO 3), lanthanum the doped strontium titanate (La-doped SrTiO 3), zinc oxide, aluminum-doped (Al-doped ZnO 2) and Re 0.7 AE 0.3 MnO 3 (Re is a rare earth element, AE is an alkaline-earth element, Mn is manganese, O It involves selected from the group consisting of oxygen).

본 발명의 비휘발성 기억소자의 제조방법에 있어서, 상기 가스의 농도는 전체 중량대비 10 내지 100중량%인 것이 바람직하다. In the production method of a non-volatile memory device of the present invention, the concentration of the gas is preferably from 10 to 100% by weight of the total weight.

본 발명의 비휘발성 기억소자의 제조방법에 있어서, 상기 가스의 압력은 1 내지 100 기압인 것이 바람직하다. In the production method of a non-volatile memory device of the present invention, the pressure of the gas is preferably from 1 to 100 atmospheres.

본 발명의 비휘발성 기억소자의 제조방법에 있어서, 상기 열처리는 300 내지 600℃에서 10 내지 100분간 수행하는 것이 바람직하다. In the production method of a non-volatile memory device of the present invention, the heat treatment is preferably conducted at 300 to 600 ℃ 10 to 100 minutes.

상기 목적을 달성하기 위한 본 발명의 비휘발성 기억소자의 제조장치는, 가스의 압력을 조절하는 압력조절 유닛(1)과, 고압 어닐링 챔버에 연결되어 상기 압력조절 유닛으로부터 가스가 유입되는 가스유입구(2)와, 고압 어닐링 챔버에 연결되어 챔버 내의 압력을 조절하기 위하여 가스를 유출하는 가스유출구(3)와, 단결정 산화막 또는 금속전극을 상부와 하부에 증착한 단결정 산화막에 고압 가스 처리 및 열처리를 가하는 고압 어닐링 챔버(4)와, 고압 어닐링 챔버에 연결되어 챔버 내의 온도를 조절하는 온도조절기(5)와, 고압 어닐링 챔버에 연결되어 챔버 내의 압력을 모니터링하는 압력모니터(6)와, 및 상기 압력모니터 및 온도조절기와 연결되어 챔 버 내의 온도와 압력을 제어하는 컴퓨터(7)로 구성된 것을 포함한다. Gas inlet device for manufacturing a nonvolatile memory device of the present invention for achieving the above objects, is connected to the pressure adjusting unit (1) for adjusting a pressure of the gas, a high pressure annealing chamber in which a gas is introduced from the pressure control unit ( 2) and, connected to the high-pressure annealing chamber for applying the the gas outlet (3) for outlet of gas to control the pressure in the chamber, the high pressure gas treatment, and heat-treating a single crystal oxide layer or a metal electrode on a single crystal oxide film is deposited on the upper and lower portions temperature controller and a high pressure annealing chamber 4, connected to a high-pressure annealing chamber to control the temperature in the chamber 5 and, and is connected to a high-pressure annealing chamber pressure monitor (6) for monitoring the pressure in the chamber, and the pressure monitor and it is connected to the temperature controller comprises a computer configured to 7 for controlling the temperature and the pressure in the chamber.

본 발명은 종래 2개의 차세대 기억 소자인 PRAM과 MRAM과 유사하지만, 전압 펄스를 이용하여 절연막의 저항변화를 일으키는 것이 특징이고 기존의 다결정, 비정질구조의 산화물 대신 단결정 도핑된 산화물을 이용하는 비휘발성 저항변화 기억소자에 적용될 수 있다. The present invention is a conventional two next generation memory of PRAM and MRAM and similar devices, but the voltage is by using a pulse that causes a resistance change of the insulation characteristics and the oxide instead of the conventional polycrystalline, amorphous structure, a non-volatile resistance variable utilizing a single crystal doped oxide It can be applied to the memory element.

즉, 차세대 비휘발성 메모리 소자로서 본 발명의 저항변화 메모리(ReRAM)는 단결정 니오브가 도핑된 티탄산스트론튬(Nb-doped SrTiO 3 ) 등과 금속 계면에 존재하는 쇼트키 장벽을 이용하여 인가하는 펄스(pulse) 전압에 따라 다른 저항 상태를 유지할 수 있어서 소자의 안정적인 스위칭 특성을 도모할 수 있다. That is, the pulse (pulse) to the resistance RAM (ReRAM) of the present invention is applied by using the Schottky barrier present in the metal surface as a single crystal niobium is doped strontium titanate (Nb-doped SrTiO 3) as a next-generation non-volatile memory device in maintaining the other resistance state according to a voltage it is possible to achieve a stable switching characteristic of the device. 다만, 온/오프(On/Off)의 저항비가 상대적으로 낮아서 기가/테라-비트급 메모리 소자 응용시에 문제가 생길 수 있기 때문에 본 발명은 저항 변화를 일으키는 핵심 요소인 산소공공을 효과적으로 조절하여 다량으로 산화막에 형성될 수 있게 하는 것이다. However, on / off (On / Off) resistance ratio is relatively low, group / TB of - in large quantities to the invention effectively controls the oxygen public key component that causes a resistance change because it can result in problems during biteugeup memory device application to be able to be formed on the oxide film.

이를 위하여 금속/단결정 산화막의 계면에 다량의 산소공공을 고압 가스 처리 및 열처리를 수행하여 형성한다. This large amount of the oxygen vacancies at the interface between the metal / oxide single crystal to be formed by performing the high pressure gas treatment, and heat treatment.

본 발명의 일 실시예에서 산화막에 산소공공을 다량 포함하기 위하여 처리되는 고압 가스는 수소, 중수소, 질소 등이 가능하며 특히 수소처리가 바람직하다. High-pressure gas to be treated to contain a large amount of oxygen vacancy in the oxide film in an embodiment of the invention is capable of hydrogen, deuterium, nitrogen and the like and is particularly preferably a hydrogen treatment.

본 발명의 일 실시예에서 비휘발성 기억소자의 금속전극은 일함수가 큰 것으로서 당해 분야에 당업자가 공지의 물질로 알 수 있는 것이면 어느 것이든 무방하 다. The metal electrode of the nonvolatile memory element in one embodiment of the invention is one with either mubang as long as the function is larger as those skilled in the art in the art can be seen in a well-known substance.

본 발명의 일 실시예에서 비휘발성 기억소자의 산화막은 단결정 산화막이 바람직하며, 단결정 산화막은 니오브가 도핑된 티탄산스트론튬(Nb-doped SrTiO 3 ), 크롬이 도핑된 티탄산스트론튬(Cr-doped SrTiO 3 ), 란탄이 도핑된 티탄산스트론튬(La-doped SrTiO 3 ), 알루미늄이 도핑된 산화아연(Al-doped ZnO 2 ) 등에서 선택하는 것이 바람직하다. Oxide film of the nonvolatile memory element in one embodiment of the present invention is preferably a single crystal oxide film, a single crystal oxide layer is strontium titanate (Nb-doped SrTiO 3) The niobium doped, strontium titanate chrome-doped (Cr-doped SrTiO 3) , it is preferred that the lanthanum-doped strontium titanate selected from (La-doped SrTiO 3), zinc oxide doped with aluminum (Al-doped ZnO 2).

상기 금속과 단결정 산화막의 계면에 형성되는 산소공공을 고압 수소 열처리를 통해 다량으로 형성함으로써 저항 변화가 극대화되고 이에 따라 비휘발성 기억소자의 스위치특성이나 동작특성이 극대화될 수 있다. By forming an oxygen vacancy is formed in the interface between the metal and the oxide single crystal in a large quantity through a high-pressure hydrogen heat treatment the resistance change, and this may maximize the switch characteristics or the operating characteristics of the nonvolatile memory element can be maximized accordingly.

이하 비휘발성 기억소자에 관한 구체적인 실시예와 도면을 참조하여 본 발명을 보다 상세하게 설명하고자 한다. With reference to specific embodiments and figures relating to or less non-volatile storage element to be described the present invention in more detail. 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 공지 기능 및 구성에 대한 상세한 설명은 생략한다. Detailed description of known functions and configurations that are determined to unnecessarily obscure the subject matter of the present invention will be omitted.

(실시예 1) (Example 1)

본 발명의 일 실시예에 따른 ReRAM용 소자는 다음과 같은 공정 순서를 이용하여 제작한다. ReRAM device according to an embodiment of the present invention is manufactured using the following process sequence:

● 니오브가 도핑된 티탄산스트론튬(Nb-doped SrTiO 3 ) 또는 알루미늄이 도핑 된 산화아연(Al-doped ZnO 2 ) 단결정 위에 일함수가 큰 금속 전극을 증착하여 쇼트키 장벽(schottky barrier)을 형성한다. ● the niobium is doped strontium titanate (Nb-doped SrTiO 3) or aluminum-doped zinc oxide (Al-doped ZnO 2) deposit a large metal electrode work functions on a single crystal to form a Schottky barrier (schottky barrier).

● 수소 또는 중수소 분위기에서 10 내지 100%의 고농도와 1 내지 100 기압의 고압 조건으로 10 내지 100분 동안 300 내지 600℃의 적정온도에서 열처리를 실시한다. ● it is subjected to heat treatment at an appropriate temperature of 300 to 600 ℃ for a high-pressure condition of 10 to 100 minutes in hydrogen or deuterium in the 10 to 100% of the high density and from 1 to 100 atmosphere pressure.

● 금속/산화막 계면에 존재하는 산소공공에 전자가 충전/방전(charging/discharging) 되는 것을 이용하여 쇼트키 장벽을 조절하여, 흐르는 전류를 조절함으로써, 비휘발성 기억소자로 이용한다. ● the electrons are controlled by a Schottky barrier to be the charging / discharging (charging / discharging) the oxygen vacancies present in the interface metal / oxide film, by controlling the flowing current, and is used as a non-volatile storage element.

(실시예 2) (Example 2)

본 발명의 일 실시예에 따른 ReRAM용 소자는 다음과 같은 공정 순서를 이용하여 제작한다. ReRAM device according to an embodiment of the present invention is manufactured using the following process sequence:

● 니오브가 도핑된 티탄산스트론튬(Nb-doped SrTiO 3 ) 또는 알루미늄이 도핑된 산화아연(Al-doped ZnO 2 ) 단결정을 10 내지 100%의 고농도와 1 내지 100 기압의 고압 조건인 수소 및 중수소 분위기에서 10 내지 100분 동안 300 내지 600℃의 적정온도에서 열처리를 실시한다. ● the niobium-doped strontium titanate (Nb-doped SrTiO 3) or aluminum zinc-doped oxide (Al-doped ZnO 2) single crystal of 10 to 100% of the high concentration of the first to at a high pressure condition is a hydrogen and deuterium atmosphere of 100 atm for 10 to 100 minutes, to a heat treatment at an appropriate temperature of 300 to 600 ℃.

● 일함수가 큰 금속 전극을 증착하여 쇼트키 장벽을 형성한다. ● a large work function is deposited a metal electrode to form a Schottky barrier.

● 금속/산화막 계면에 존재하는 산소공공에 전자가 충전/방전(charging/discharging) 되는 것을 이용하여 쇼트키 장벽을 조절하여, 흐르는 전 류를 조절함으로써, 비휘발성 기억소자로 이용한다. ● by the electrons controlled by a Schottky barrier to be the charging / discharging (charging / discharging) the oxygen vacancies present in the interface metal / oxide film, controls the current flowing, it is used as a non-volatile storage element.

도 1은 본 발명의 일 실시예에 따른 비휘발성 기억소자의 고압 수소 처리구(High Pressure Hydrogen Anneal, 'HPHA') 시편 및 비교 시편(Control sample)의 전압-전류에 대한 히스테리시스 곡선을 나타낸 그래프이다. 1 is a voltage of the high pressure hydrogen treatment (High Pressure Hydrogen Anneal, 'HPHA') sample and comparative sample (Control sample) of a non-volatile memory device according to an embodiment of the present invention - is a graph showing a hysteresis curve for the current.

저항 차이는 전원이 인가된 온(on) 상태의 저항치에 대한 전원이 인가되지 않은 오프(off) 상태의 저항치에 대한 비(R off /R on )로서 나타낸다. Resistance difference represents a ratio (R off / R on) of the resistance value of the power-off is not applied to the resistance value of the state where the power is turned on (on) (off) state.

도 1을 참조하면, 고온 고압의 수소처리 공정을 하지 아니한 기존의 비휘발성 기억소자와 비교할 때 저항 차이가 고압 수소 처리 후 현저하게 증가되어 개선됨을 알 수 있다. 1, other than those for the hydrotreating process of the high temperature and pressure the resistance compare to the existing non-volatile storage elements can be seen the improvement is markedly increased after the treatment high-pressure hydrogen.

도 2는 본 발명의 일 실시예에 따른 비휘발성 기억소자를 생산하기 위한 비휘발성 기억소자의 제조장치의 개략도로서, 고압 수소 처리 및 열처리 장비를 포함하고 있다. 2 is a schematic view of a manufacturing apparatus of a non-volatile memory device for the production of a non-volatile memory device according to an embodiment of the present invention, includes a high pressure hydrogen treatment and the heat treatment equipment.

도 2를 참조하면 본 발명의 일 실시예에 따른 비휘발성 기억소자의 제조장치는 크게 가스의 유입,유출구(2,3)와 가스의 압력, 온도 등을 제어하는 컴퓨터(7)의 제어부와, 비휘발성 기억소자를 처리하는 고압 어닐링 챔버(4)와 온도조절부(5) 및 압력모니터(6)로 구성되어 있다. And the control unit of the computer 7 which is also the manufacturing apparatus of a non-volatile memory device according to an embodiment of the present invention when the reference 2 is largely control the flow of gas, an outlet (2, 3) and the pressure of the gas, temperature and the like, It consists of a non-volatile memory device a high pressure annealing chamber 4 for processing and temperature control portion 5 and the pressure monitor (6).

도 2를 참조하면 압력조절 유닛(1)을 통하여 고압의 가스가 고압 어닐링 챔버(4)에 유입되면 비휘발성 기억소자가 일정 조건의 농도와 압력의 수소, 질소 또 는 중수소 분위기에서 일정시간 동안 처리된다. If the reference to Figure 2 when the high-pressure gas flowing into the high-pressure annealing chamber 4 through the pressure control unit (1) non-volatile storage element is treated for a period of time in the hydrogen concentration and the pressure of constant conditions, nitrogen or deuterium atmosphere do. 압력을 모니터링 하면서 온도조절부는 제어된 일정 온도하에서 고압 어닐링 챔버의 온도를 조절함으로써 열처리과정을 수행한다. A temperature control section control the temperature while monitoring the pressure constant by adjusting the temperature of high-pressure annealing chamber performs the heat treatment process.

고압 어닐링 챔버 내의 온도는 온도조절기(5)에서 조절하며, 내부의 가스 압력은 컴퓨터의 제어를 받아 가스유출기를 통해 적정 압력을 조절한다. Annealing temperature in the high-pressure chamber, and adjusting the temperature regulator (5), the gas pressure in the can under the control of the computer to adjust the appropriate pressure via a gas outlet.

상기 비휘발성 기억소자의 제조장치를 통해 고압 가스 처리와 열처리된 기억소자는 그 산화막에 산소공공이 많이 형성되어 메모리 특성과 저항비가 극대화된다. High-pressure gas treatment with the heat-treated through a storage element manufacturing apparatus of the non-volatile storage element is a lot of oxygen vacancy formation in the oxide film is maximized ratio memory properties and resistance.

도 3은 본 발명의 일 실시예에 따른 비휘발성 기억소자에 대한 고압 수소 처리시 인가전압에 따른 저항비를 어떠한 처리를 하지 않은 기존의 비휘발성 기억소자의 저항비와 비교한 것을 나타낸 그래프이다. 3 is a graph showing a comparison of the resistance ratio of the existing non-volatile storage element is not any processing to the resistance ratio of the high pressure applied during hydrotreating voltage for the nonvolatile memory element according to an embodiment of the present invention.

도 3을 참조하면 인가된 전압이 동일하더라도 비교 시편에 비하여 고압 수소 처리한 본 발명의 시험구의 저항비의 값이 월등히 증가됨을 알 수 있다. Referring to Figure 3, even if it is the same applied voltage can be seen that much of the test value sphere resistance ratio of the present invention a high pressure hydrogen treatment is increased as compared to the comparative sample.

고압 수소 처리한 본 발명의 시편들은 인가 전압이 클수록 저항비의 값이 증가하였다. A high pressure sample of the present invention are a hydrogen treatment increased the value of the resistance ratio the greater the applied voltage. 유사한 저항비의 경우 높이에 대한 펄스폭(pulse width/height)을 현저히 줄여줄 수 있다. For similar resistance ratio can significantly reduce the pulse width (pulse width / height) on the height.

도 4는 본 발명의 일 실시예에 따른 비휘발성 기억소자의 cycle stress에 따른 저항변화를 나타낸 그래프이다. 4 is a graph showing the resistance change according to a stress cycle of a non-volatile memory device according to an embodiment of the present invention.

도 4를 참조하면, cycle stress 시 저항 변화 특성을 어떠한 처리를 하지 않은 기존의 비휘발성 기억소자와 본 발명의 고압 수소 처리를 적용한 비휘발성 기억 소자에서 비교하였는데, 본 발명의 일 실시예에 따른 고압 수소 열처리 공정을 적용하면 안정적인 저항값을 형성한다는 것을 알 수 있다. 4, were compared in non-volatile memory device applying the conventional non-volatile storage elements with a high pressure hydrogen treatment of the present invention is not any processing to cycle stress when the resistance change characteristic, the high-pressure according to one embodiment of the present invention by applying hydrogen heat treatment step can be seen that form a stable resistance value.

본 발명의 일 실시예에서 비휘발성 기억소자에 처리되는 가스는 산화막에 산소공공을 다량 형성시킬 정도로 충분한 환원반응을 일으켜야 하므로 수소나 중수소 또는 질소 등의 가스 농도와 압력은 10 내지 100중량%, 1 내지 100기압이 바람직하고, 온도처리는 10 내지 100분간, 300 내지 600℃가 적당하다. Gas to be treated in a non-volatile storage elements in one embodiment of the present invention is the gas concentration and pressure, such as hydrogen or deuterium, or nitrogen so should produce sufficient reduction enough to form a large amount of oxygen vacancy in the oxide film is from 10 to 100% by weight, 1 to about 100 atmospheres it is preferred, and a temperature treatment of 10 to 100 minutes, from 300 to 600 ℃ is suitable.

상술한 바와 같이, 본 발명의 바람직한 실시예를 참조하여 설명하였지만 해당 기술분야의 숙련된 당업자라면 하기의 특허등록청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. As has been described with reference to a preferred embodiment of the present invention vary the invention within the scope not departing from the spirit and scope of the invention set forth in the patent registered claims to one skilled those skilled in the art, as described above it will be appreciated that modifications and can be changed.

상술한 바와 같이 본 발명에 의하면, 금속/산화물 계면에 다량의 산소공공을 형성함으로써 인가전압에 따른 저항비가 현저하게 증가되어 안정적이고 균일한 스위치 특성과 동작 특성을 가지는 비휘발성 기억소자를 제작할 수 있다. According to the present invention, as described above, the increase in resistance ratio significantly in accordance with the applied voltage, by forming a large number of oxygen vacancies on the metal / oxide interface stable and can be prepared the non-volatile storage element having a switch characteristics and operating characteristics uniform .

또한, 새로운 산화막 제조공정을 통해서, 산화막에 존재하는 산소공공의 스위칭 매카니즘에서의 역할을 극대화시킬 수 있어 ReRAM을 상용화를 가능하게 하는 효과가 있다. In addition, through a new oxide film manufacturing process, it is possible to maximize the role of the switching mechanism of the oxygen vacancies present in the oxide film has the effect of a ReRAM enable commercialization.

Claims (12)

  1. 비휘발성 기억소자에 있어서, 상부와 하부에 전극을 형성하고, 상기 전극 사이에 다량의 산소공공(oxygen vacancy)을 포함하는 산화막을 형성하는 것을 특징으로 하는 비휘발성 기억소자. In the nonvolatile memory element, a nonvolatile memory element, characterized in that for forming the electrodes on the upper and lower portions to form an oxide film containing a large amount of oxygen vacancies (oxygen vacancy) between the electrodes.
  2. 제 1항에 있어서, 상기 산화막은 단결정 산화막인 것을 특징으로 하는 비휘발성 기억소자. According to claim 1, wherein said oxide film is a non-volatile storage element, it characterized in that the single crystal oxide.
  3. 제 2항에 있어서, 상기 단결정 산화막은 티탄산스트론튬(SrTiO 3 ), 산화아연(ZnO 2 ), 산화망간(MnO)으로 구성된 그룹에서 선택된 어느 하나의 산화물에 3족 내지 12족 금속원소로 구성된 그룹에서 선택된 1종 이상의 금속원소가 도핑된 것을 특징으로 하는 비휘발성 기억소자. The method of claim 2 wherein the single crystal oxide layer is strontium titanate (SrTiO 3), zinc oxide (ZnO 2), from the group consisting of Group 3 to Group 12 metal element as in any one of an oxide selected from the group consisting of manganese oxide (MnO) non-volatile storage element, characterized in that the at least selected one metal element doped.
  4. 제 2항에 있어서, 상기 단결정 산화막은 니오브가 도핑된 티탄산스트론튬(Nb-doped SrTiO 3 ), 크롬이 도핑된 티탄산스트론튬(Cr-doped SrTiO 3 ), 란탄이 도핑된 티탄산스트론튬(La-doped SrTiO 3 ), 알루미늄이 도핑된 산화아연(Al-doped ZnO 2 ) 및 Re 0 .7 AE 0 .3 MnO 3 (Re는 희토류원소, AE는 알칼리토류원소, Mn은 망간, O는 산 소)로 구성된 그룹에서 선택하는 것을 특징으로 하는 비휘발성 기억소자. 2 wherein the single crystal oxide film is a niobium-doped with strontium titanate (Nb-doped SrTiO 3), strontium titanate (Cr-doped SrTiO 3) the chromium-doped, lanthanum-doped strontium titanate (La-doped SrTiO to 3 ), 0.7 aluminum doped zinc (Al-doped ZnO 2) and oxidation Re 0 AE 0 .3 MnO 3 (Re is a rare earth element, AE is an alkaline-earth element, Mn is manganese, O is oxygen) the group consisting of non-volatile storage element, characterized in that for selecting from.
  5. 비휘발성 기억소자의 제조방법에 있어서, A method of manufacturing a nonvolatile memory element,
    금속 전극 위에 단결정 산화막을 증착하고 그 위에 다시 금속 전극을 증착하는 단계; Depositing a single-crystal metal oxide film on the electrode, depositing a metallic back electrode thereon; And
    수소, 질소 및 중수소로 구성된 그룹에서 선택한 1종 이상의 가스를 일정 농도 및 압력으로 하여 상기 단계의 소자에 가하고 일정 시간 및 온도로 열처리하는 단계를 포함하는 것을 특징으로 하는 비휘발성 기억소자의 제조방법. Method of manufacturing a nonvolatile memory element, characterized in that it comprises the step of heat treatment in hydrogen, nitrogen, and by the deuterium at least one gas selected from the group consisting of a predetermined concentration and pressure was added to the element of the stage a predetermined time and temperature.
  6. 비휘발성 기억소자의 제조방법에 있어서, A method of manufacturing a nonvolatile memory element,
    수소, 질소 및 중수소로 구성된 그룹에서 선택한 1종 이상의 가스를 일정 농도 및 압력으로 하여 단결정 산화막에 가하고 일정 시간 및 온도로 열처리하는 단계; Step by at least one gas selected from the group consisting of hydrogen, deuterium and nitrogen at a predetermined concentration and pressure of the heat treatment at a predetermined temperature and time is added to the single crystal oxide film; And
    금속 전극 위에 상기 단계의 단결정 산화막을 증착하고 그 위에 다시 금속 전극을 증착하는 단계를 포함하는 것을 특징으로 하는 비휘발성 기억소자의 제조방법. Method of manufacturing a nonvolatile memory element, characterized in that to deposit a single crystalline oxide film of the stage on the metal electrode, and depositing a metal back electrode thereon.
  7. 제 5항 또는 제 6항에 있어서, 상기 단결정 산화막은 티탄산스트론튬(Nb-doped SrTiO 3 ), 산화아연(ZnO 2 ), 산화망간(MnO)으로 구성된 그룹에서 선택된 어느 하나의 산화물에 3족 내지 12족 금속원소로 구성된 그룹에서 선택된 1종 이상의 원소가 도핑된 것을 특징으로 하는 비휘발성 기억소자의 제조방법. Of claim 5 or 6, wherein the single crystal oxide layer is strontium titanate (Nb-doped SrTiO 3), zinc oxide (ZnO 2), manganese (MnO) a group of any of the Group III to the oxide to 12 selected from the consisting of oxidation method for producing a group non-volatile storage element, characterized in that at least one element is selected from the group consisting of metal elements doped.
  8. 제 5항 또는 제 6항에 있어서, 상기 단결정 산화막은 니오브가 도핑된 티탄산스트론튬(Nb-doped SrTiO 3 ), 크롬이 도핑된 티탄산스트론튬(Cr-doped SrTiO 3 ), 란탄이 도핑된 티탄산스트론튬(La-doped SrTiO 3 ), 알루미늄이 도핑된 산화아연(Al-doped ZnO 2 ) 및 Re 0.7 AE 0.3 MnO 3 (Re는 희토류원소, AE는 알칼리토류원소, Mn은 망간, O는 산소)로 구성된 그룹에서 선택하는 것을 특징으로 하는 비휘발성 기억소자의 제조방법. Claim 5 or claim 6, wherein the single crystal oxide film is a niobium-doped strontium titanate (Nb-doped SrTiO 3), chromium-doped strontium titanate (Cr-doped SrTiO 3), lanthanum-doped strontium titanate (La -doped SrTiO 3), zinc oxide doped with aluminum (Al-doped ZnO 2) and Re 0.7 AE 0.3 MnO 3 (Re is a rare earth element, AE is an alkaline-earth element, Mn is manganese, O is from the group consisting of oxygen) method of manufacturing a nonvolatile memory element, characterized in that it is being selected.
  9. 제 5항 또는 제 6항에 있어서, 상기 가스의 농도는 전체 중량대비 10 내지 100중량%인 것을 특징으로 하는 비휘발성 기억소자의 제조방법. In the fifth or claim 6, wherein the method of manufacturing a nonvolatile memory element, characterized in that the concentration of the gas is 10 to 100% by weight of the total weight.
  10. 제 5항 또는 제 6항에 있어서, 상기 가스의 압력은 1 내지 100 기압인 것을 특징으로 하는 비휘발성 기억소자의 제조방법. In the fifth or claim 6, wherein the method of manufacturing a nonvolatile memory element, characterized in that the pressure of the gas is from 1 to 100 atmospheres.
  11. 제 5항 또는 제 6항에 있어서, 상기 열처리는 300 내지 600℃에서 10 내지 100분간 수행하는 것을 특징으로 하는 비휘발성 기억소자의 제조방법. In the fifth or claim 6, wherein the heat treatment process for producing a nonvolatile memory element, characterized in that performing at 300 to 600 ℃ 10 to 100 minutes.
  12. 가스의 압력을 조절하는 압력조절 유닛(1); Pressure regulating unit (1) for adjusting a pressure of the gas;
    고압 어닐링 챔버에 연결되어 상기 압력조절 유닛으로부터 가스가 유입되는 가스유입구(2); It is connected to a high-pressure annealing chamber gas inlet (2) which a gas is introduced from the pressure control unit;
    고압 어닐링 챔버에 연결되어 챔버 내의 압력을 조절하기 위하여 가스를 유출하는 가스유출구(3); A gas outlet (3) for the gas outlet to be connected to a high pressure annealing chamber to control the pressure in the chamber;
    단결정 산화막 또는 금속전극을 상부와 하부에 증착한 단결정 산화막에 고압 가스 처리 및 열처리를 가하는 고압 어닐링 챔버(4); High pressure annealing chamber 4 for applying a high-pressure gas handling and heat treating the single crystal oxide layer or a metal electrode on a single crystal oxide film is deposited on the top and the bottom;
    고압 어닐링 챔버에 연결되어 챔버 내의 온도를 조절하는 온도조절기(5); Is connected to the high pressure chamber annealing temperature regulator 5 for adjusting the temperature in the chamber;
    고압 어닐링 챔버에 연결되어 챔버 내의 압력을 모니터링하는 압력모니터(6); It is connected to a high-pressure annealing chamber pressure monitor (6) for monitoring the pressure in the chamber; And
    상기 압력모니터 및 온도조절기와 연결되어 챔버 내의 온도와 압력을 제어하는 컴퓨터(7)로 구성된 것을 포함하는 비휘발성 기억소자의 제조장치. Apparatus for manufacturing a non-volatile storage element, comprising consisting of a computer 7 for controlling the temperature and the pressure in the pressure monitor, and connected to the thermostat chamber.
KR1020060053106A 2006-06-13 2006-06-13 Non-volatile Memory Device And Manufacturing Method And Apparatus Therefor KR100833903B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060053106A KR100833903B1 (en) 2006-06-13 2006-06-13 Non-volatile Memory Device And Manufacturing Method And Apparatus Therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060053106A KR100833903B1 (en) 2006-06-13 2006-06-13 Non-volatile Memory Device And Manufacturing Method And Apparatus Therefor

Publications (2)

Publication Number Publication Date
KR20070118865A true KR20070118865A (en) 2007-12-18
KR100833903B1 KR100833903B1 (en) 2008-06-03

Family

ID=39137393

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060053106A KR100833903B1 (en) 2006-06-13 2006-06-13 Non-volatile Memory Device And Manufacturing Method And Apparatus Therefor

Country Status (1)

Country Link
KR (1) KR100833903B1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8034655B2 (en) 2008-04-08 2011-10-11 Micron Technology, Inc. Non-volatile resistive oxide memory cells, non-volatile resistive oxide memory arrays, and methods of forming non-volatile resistive oxide memory cells and memory arrays
US8039297B2 (en) 2008-08-29 2011-10-18 Samsung Electronics Co., Ltd. Plasma treating methods of fabricating phase change memory devices, and memory devices so fabricated
US8134137B2 (en) 2008-06-18 2012-03-13 Micron Technology, Inc. Memory device constructions, memory cell forming methods, and semiconductor construction forming methods
US8154906B2 (en) 2008-01-15 2012-04-10 Micron Technology, Inc. Memory cells, memory cell programming methods, memory cell reading methods, memory cell operating methods, and memory devices
US8211743B2 (en) 2008-05-02 2012-07-03 Micron Technology, Inc. Methods of forming non-volatile memory cells having multi-resistive state material between conductive electrodes
US8411477B2 (en) 2010-04-22 2013-04-02 Micron Technology, Inc. Arrays of vertically stacked tiers of non-volatile cross point memory cells, methods of forming arrays of vertically stacked tiers of non-volatile cross point memory cells, and methods of reading a data value stored by an array of vertically stacked tiers of non-volatile cross point memory cells
US8427859B2 (en) 2010-04-22 2013-04-23 Micron Technology, Inc. Arrays of vertically stacked tiers of non-volatile cross point memory cells, methods of forming arrays of vertically stacked tiers of non-volatile cross point memory cells, and methods of reading a data value stored by an array of vertically stacked tiers of non-volatile cross point memory cells
US8431458B2 (en) 2010-12-27 2013-04-30 Micron Technology, Inc. Methods of forming a nonvolatile memory cell and methods of forming an array of nonvolatile memory cells
US8488365B2 (en) 2011-02-24 2013-07-16 Micron Technology, Inc. Memory cells
US8537592B2 (en) 2011-04-15 2013-09-17 Micron Technology, Inc. Arrays of nonvolatile memory cells and methods of forming arrays of nonvolatile memory cells
US8581224B2 (en) 2012-01-20 2013-11-12 Micron Technology, Inc. Memory cells
US8753949B2 (en) 2010-11-01 2014-06-17 Micron Technology, Inc. Nonvolatile memory cells and methods of forming nonvolatile memory cells
US8759809B2 (en) 2010-10-21 2014-06-24 Micron Technology, Inc. Integrated circuitry comprising nonvolatile memory cells having platelike electrode and ion conductive material layer
US8791447B2 (en) 2011-01-20 2014-07-29 Micron Technology, Inc. Arrays of nonvolatile memory cells and methods of forming arrays of nonvolatile memory cells
US8976566B2 (en) 2010-09-29 2015-03-10 Micron Technology, Inc. Electronic devices, memory devices and memory arrays
KR101522439B1 (en) * 2008-05-01 2015-05-21 인터몰레큘러 인코퍼레이티드 Non-volatile resistive-switching memories
US9343665B2 (en) 2008-07-02 2016-05-17 Micron Technology, Inc. Methods of forming a non-volatile resistive oxide memory cell and methods of forming a non-volatile resistive oxide memory array
US9379319B2 (en) 2013-07-29 2016-06-28 Samsung Electronics Co., Ltd. Nonvolatile memory transistor and device including the same
US9406878B2 (en) 2010-11-01 2016-08-02 Micron Technology, Inc. Resistive memory cells with two discrete layers of programmable material, methods of programming memory cells, and methods of forming memory cells
US9412421B2 (en) 2010-06-07 2016-08-09 Micron Technology, Inc. Memory arrays
US9454997B2 (en) 2010-12-02 2016-09-27 Micron Technology, Inc. Array of nonvolatile memory cells having at least five memory cells per unit cell, having a plurality of the unit cells which individually comprise three elevational regions of programmable material, and/or having a continuous volume having a combination of a plurality of vertically oriented memory cells and a plurality of horizontally oriented memory cells; array of vertically stacked tiers of nonvolatile memory cells

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7060586B2 (en) * 2004-04-30 2006-06-13 Sharp Laboratories Of America, Inc. PCMO thin film with resistance random access memory (RRAM) characteristics
DE102004041894B3 (en) * 2004-08-30 2006-03-09 Infineon Technologies Ag Memory device (CBRAM) with memory cells on the basis of an alterable in its resistance value-active solid-electrolyte material and manufacturing method thereof
DE102004046804B4 (en) 2004-09-27 2006-10-05 Infineon Technologies Ag Resistive switching semiconductor memory
DE102005005938B4 (en) 2005-02-09 2009-04-30 Qimonda Ag Resistive memory element with a shorter erase time, methods of making and memory cell arrangement

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8154906B2 (en) 2008-01-15 2012-04-10 Micron Technology, Inc. Memory cells, memory cell programming methods, memory cell reading methods, memory cell operating methods, and memory devices
US10262734B2 (en) 2008-01-15 2019-04-16 Micron Technology, Inc. Memory cells, memory cell programming methods, memory cell reading methods, memory cell operating methods, and memory devices
US9805792B2 (en) 2008-01-15 2017-10-31 Micron Technology, Inc. Memory cells, memory cell programming methods, memory cell reading methods, memory cell operating methods, and memory devices
US9343145B2 (en) 2008-01-15 2016-05-17 Micron Technology, Inc. Memory cells, memory cell programming methods, memory cell reading methods, memory cell operating methods, and memory devices
US8034655B2 (en) 2008-04-08 2011-10-11 Micron Technology, Inc. Non-volatile resistive oxide memory cells, non-volatile resistive oxide memory arrays, and methods of forming non-volatile resistive oxide memory cells and memory arrays
US8674336B2 (en) 2008-04-08 2014-03-18 Micron Technology, Inc. Non-volatile resistive oxide memory cells, non-volatile resistive oxide memory arrays, and methods of forming non-volatile resistive oxide memory cells and memory arrays
KR101522439B1 (en) * 2008-05-01 2015-05-21 인터몰레큘러 인코퍼레이티드 Non-volatile resistive-switching memories
US9577186B2 (en) 2008-05-02 2017-02-21 Micron Technology, Inc. Non-volatile resistive oxide memory cells and methods of forming non-volatile resistive oxide memory cells
US8211743B2 (en) 2008-05-02 2012-07-03 Micron Technology, Inc. Methods of forming non-volatile memory cells having multi-resistive state material between conductive electrodes
US9257430B2 (en) 2008-06-18 2016-02-09 Micron Technology, Inc. Semiconductor construction forming methods
US9111788B2 (en) 2008-06-18 2015-08-18 Micron Technology, Inc. Memory device constructions, memory cell forming methods, and semiconductor construction forming methods
US9559301B2 (en) 2008-06-18 2017-01-31 Micron Technology, Inc. Methods of forming memory device constructions, methods of forming memory cells, and methods of forming semiconductor constructions
US8134137B2 (en) 2008-06-18 2012-03-13 Micron Technology, Inc. Memory device constructions, memory cell forming methods, and semiconductor construction forming methods
US9343665B2 (en) 2008-07-02 2016-05-17 Micron Technology, Inc. Methods of forming a non-volatile resistive oxide memory cell and methods of forming a non-volatile resistive oxide memory array
US9666801B2 (en) 2008-07-02 2017-05-30 Micron Technology, Inc. Methods of forming a non-volatile resistive oxide memory cell and methods of forming a non-volatile resistive oxide memory array
US8039297B2 (en) 2008-08-29 2011-10-18 Samsung Electronics Co., Ltd. Plasma treating methods of fabricating phase change memory devices, and memory devices so fabricated
US8743589B2 (en) 2010-04-22 2014-06-03 Micron Technology, Inc. Arrays of vertically stacked tiers of non-volatile cross point memory cells and methods of reading a data value stored by an array of vertically stacked tiers of non-volatile cross point memory cells
US8411477B2 (en) 2010-04-22 2013-04-02 Micron Technology, Inc. Arrays of vertically stacked tiers of non-volatile cross point memory cells, methods of forming arrays of vertically stacked tiers of non-volatile cross point memory cells, and methods of reading a data value stored by an array of vertically stacked tiers of non-volatile cross point memory cells
US8760910B2 (en) 2010-04-22 2014-06-24 Micron Technology, Inc. Arrays of vertically stacked tiers of non-volatile cross point memory cells, methods of forming arrays of vertically stacked tiers of non-volatile cross point memory cells, and methods of reading a data value stored by an array of vertically stacked tiers of non-volatile cross point memory cells
US9036402B2 (en) 2010-04-22 2015-05-19 Micron Technology, Inc. Arrays of vertically stacked tiers of non-volatile cross point memory cells
US8542513B2 (en) 2010-04-22 2013-09-24 Micron Technology, Inc. Arrays of vertically stacked tiers of non-volatile cross point memory cells, methods of forming arrays of vertically stacked tiers of non-volatile cross point memory cells, and methods of reading a data value stored by an array of vertically stacked tiers of non-volatile cross point memory cells
US8427859B2 (en) 2010-04-22 2013-04-23 Micron Technology, Inc. Arrays of vertically stacked tiers of non-volatile cross point memory cells, methods of forming arrays of vertically stacked tiers of non-volatile cross point memory cells, and methods of reading a data value stored by an array of vertically stacked tiers of non-volatile cross point memory cells
US9887239B2 (en) 2010-06-07 2018-02-06 Micron Technology, Inc. Memory arrays
US10241185B2 (en) 2010-06-07 2019-03-26 Micron Technology, Inc. Memory arrays
US9989616B2 (en) 2010-06-07 2018-06-05 Micron Technology, Inc. Memory arrays
US9412421B2 (en) 2010-06-07 2016-08-09 Micron Technology, Inc. Memory arrays
US9697873B2 (en) 2010-06-07 2017-07-04 Micron Technology, Inc. Memory arrays
US8976566B2 (en) 2010-09-29 2015-03-10 Micron Technology, Inc. Electronic devices, memory devices and memory arrays
US8759809B2 (en) 2010-10-21 2014-06-24 Micron Technology, Inc. Integrated circuitry comprising nonvolatile memory cells having platelike electrode and ion conductive material layer
US8883604B2 (en) 2010-10-21 2014-11-11 Micron Technology, Inc. Integrated circuitry comprising nonvolatile memory cells and methods of forming a nonvolatile memory cell
US9117998B2 (en) 2010-11-01 2015-08-25 Micron Technology, Inc. Nonvolatile memory cells and methods of forming nonvolatile memory cells
US8796661B2 (en) 2010-11-01 2014-08-05 Micron Technology, Inc. Nonvolatile memory cells and methods of forming nonvolatile memory cell
US8753949B2 (en) 2010-11-01 2014-06-17 Micron Technology, Inc. Nonvolatile memory cells and methods of forming nonvolatile memory cells
US9406878B2 (en) 2010-11-01 2016-08-02 Micron Technology, Inc. Resistive memory cells with two discrete layers of programmable material, methods of programming memory cells, and methods of forming memory cells
US9454997B2 (en) 2010-12-02 2016-09-27 Micron Technology, Inc. Array of nonvolatile memory cells having at least five memory cells per unit cell, having a plurality of the unit cells which individually comprise three elevational regions of programmable material, and/or having a continuous volume having a combination of a plurality of vertically oriented memory cells and a plurality of horizontally oriented memory cells; array of vertically stacked tiers of nonvolatile memory cells
US8431458B2 (en) 2010-12-27 2013-04-30 Micron Technology, Inc. Methods of forming a nonvolatile memory cell and methods of forming an array of nonvolatile memory cells
US9034710B2 (en) 2010-12-27 2015-05-19 Micron Technology, Inc. Methods of forming a nonvolatile memory cell and methods of forming an array of nonvolatile memory cells
US8652909B2 (en) 2010-12-27 2014-02-18 Micron Technology, Inc. Methods of forming a nonvolatile memory cell and methods of forming an array of nonvolatile memory cells array of nonvolatile memory cells
US8791447B2 (en) 2011-01-20 2014-07-29 Micron Technology, Inc. Arrays of nonvolatile memory cells and methods of forming arrays of nonvolatile memory cells
US9093368B2 (en) 2011-01-20 2015-07-28 Micron Technology, Inc. Nonvolatile memory cells and arrays of nonvolatile memory cells
US8681531B2 (en) 2011-02-24 2014-03-25 Micron Technology, Inc. Memory cells, methods of forming memory cells, and methods of programming memory cells
US9424920B2 (en) 2011-02-24 2016-08-23 Micron Technology, Inc. Memory cells, methods of forming memory cells, and methods of programming memory cells
US9257648B2 (en) 2011-02-24 2016-02-09 Micron Technology, Inc. Memory cells, methods of forming memory cells, and methods of programming memory cells
US8488365B2 (en) 2011-02-24 2013-07-16 Micron Technology, Inc. Memory cells
US8537592B2 (en) 2011-04-15 2013-09-17 Micron Technology, Inc. Arrays of nonvolatile memory cells and methods of forming arrays of nonvolatile memory cells
US9184385B2 (en) 2011-04-15 2015-11-10 Micron Technology, Inc. Arrays of nonvolatile memory cells and methods of forming arrays of nonvolatile memory cells
US8854863B2 (en) 2011-04-15 2014-10-07 Micron Technology, Inc. Arrays of nonvolatile memory cells and methods of forming arrays of nonvolatile memory cells
US9142766B2 (en) 2012-01-20 2015-09-22 Micron Technology, Inc. Memory cells containing metal oxides
US8581224B2 (en) 2012-01-20 2013-11-12 Micron Technology, Inc. Memory cells
US8962387B2 (en) 2012-01-20 2015-02-24 Micron Technology, Inc. Methods of forming memory cells
US9379319B2 (en) 2013-07-29 2016-06-28 Samsung Electronics Co., Ltd. Nonvolatile memory transistor and device including the same

Also Published As

Publication number Publication date
KR100833903B1 (en) 2008-06-03

Similar Documents

Publication Publication Date Title
Rozenberg et al. Mechanism for bipolar resistive switching in transition-metal oxides
Beck et al. Reproducible switching effect in thin oxide films for memory applications
KR100593448B1 (en) Non-volatile memory cells employing a transition metal oxide layer as a data storage material layer and methods of fabricating the same
US7666526B2 (en) Non-volatile resistance-switching oxide thin film devices
US7889539B2 (en) Multi-resistive state memory device with conductive oxide electrodes
Nian et al. Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides
JP4798689B2 (en) Buffer layer memory cell
Watanabe et al. Current-driven insulator–conductor transition and nonvolatile memory in chromium-doped SrTiO 3 single crystals
EP1555693B1 (en) Method to produce a nonvolatile semiconductor memory device
EP1498952A2 (en) Oxygen content system and method for controlling memory resistance properties
Hur et al. Modeling for bipolar resistive memory switching in transition-metal oxides
CN101192648B (en) Resistive random access memory and method of manufacturing the same
Nagaraj et al. Influence of contact electrodes on leakage characteristics in ferroelectric thin films
JP5156023B2 (en) Correlated electron memory
KR100769538B1 (en) Driving method of variable resistance element and memory device
US8891284B2 (en) Memristors based on mixed-metal-valence compounds
Syu et al. Redox Reaction Switching Mechanism in RRAM Device With $\hbox {Pt/CoSiO} _ {X}\hbox {/}\hbox {TiN} $ Structure
US20050145910A1 (en) Nonvolatile semiconductor memory device
US7968419B2 (en) Back-to-back metal/semiconductor/metal (MSM) Schottky diode
Aggarwal et al. Point defect chemistry of metal oxide heterostructures
JP3343356B2 (en) Electrode structure and creation method for a ferroelectric capacitor integrated on a silicon
US7060586B2 (en) PCMO thin film with resistance random access memory (RRAM) characteristics
Xu et al. A unified physical model of switching behavior in oxide-based RRAM
JP4756570B2 (en) High temperature annealing of Pr1-xCaxMnO3 thin film spin-coated in RRAM applications
US7974117B2 (en) Non-volatile memory cell with programmable unipolar switching element

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130410

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140326

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160610

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190401

Year of fee payment: 12