KR20070086275A - 초소형 전자기계 시스템의 생산에 사용되는 기판의 등온배치 처리를 달성하기위한 시스템 및 방법 - Google Patents

초소형 전자기계 시스템의 생산에 사용되는 기판의 등온배치 처리를 달성하기위한 시스템 및 방법 Download PDF

Info

Publication number
KR20070086275A
KR20070086275A KR1020077013579A KR20077013579A KR20070086275A KR 20070086275 A KR20070086275 A KR 20070086275A KR 1020077013579 A KR1020077013579 A KR 1020077013579A KR 20077013579 A KR20077013579 A KR 20077013579A KR 20070086275 A KR20070086275 A KR 20070086275A
Authority
KR
South Korea
Prior art keywords
process chamber
substrates
housing
gas injection
gas
Prior art date
Application number
KR1020077013579A
Other languages
English (en)
Other versions
KR101154272B1 (ko
Inventor
로버트 더블유. 그랜트
Original Assignee
프라이맥스 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 프라이맥스 인코포레이티드 filed Critical 프라이맥스 인코포레이티드
Publication of KR20070086275A publication Critical patent/KR20070086275A/ko
Application granted granted Critical
Publication of KR101154272B1 publication Critical patent/KR101154272B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/6719Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the processing chambers, e.g. modular processing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/67303Vertical boat type carrier whereby the substrates are horizontally supported, e.g. comprising rod-shaped elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/67303Vertical boat type carrier whereby the substrates are horizontally supported, e.g. comprising rod-shaped elements
    • H01L21/67306Vertical boat type carrier whereby the substrates are horizontally supported, e.g. comprising rod-shaped elements characterized by a material, a roughness, a coating or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/6732Vertical carrier comprising wall type elements whereby the substrates are horizontally supported, e.g. comprising sidewalls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/6732Vertical carrier comprising wall type elements whereby the substrates are horizontally supported, e.g. comprising sidewalls
    • H01L21/67323Vertical carrier comprising wall type elements whereby the substrates are horizontally supported, e.g. comprising sidewalls characterized by a material, a roughness, a coating or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67748Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber horizontal transfer of a single workpiece
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber vertical transfer of a batch of workpieces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67778Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading involving loading and unloading of wafers
    • H01L21/67781Batch transfer of wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor

Abstract

복수의 기판에 대해 등온 및 균일한 유체흐름 처리 조건을 달성하는 기판 처리용 시스템 및 방법이 제공된다. 일 측면에서, 본 발명은 기판 스택 전체를 통해 등온 조건을 달성하기 위해 노출된 표면의 방사율값과 상기 기판의 노출된 표면에 대향하는 프로세스 챔버의 표면의 방사율값을 매칭시키는 것을 이용하는 시스템 및 방법이다. 또다른 측면에서, 본발명은 기판 로딩 구멍에 따라 프로세스 챔버 프로파일에서의 캐비티 또는 기하학적 불규칙성을 제거함으로써 탁월한 유체 흐름의 균일도를 보여주는 프로세스 챔버에서 기판을 처리하는 시스템 및 방법이다. 또다른 측면에서, 본 발명은 프로세스 챔버가 라이너 및 쉘을 포함하고, 상기 라이너는 카본과 같은 고열전도성 물질로 구축되고, 상기 쉘은 스테인레스강과 같은 비투과성 물질로 구축되는 기판 처리용 시스템 및 방법이다.
기판 처리 시스템, 프로세스 챔버, 제 1 하우징, 기판, 제 1 기판, 마지막 기판, 방사율값, 지지수단은, 제 1 기판 지지 플레이트, 제 2 기판 지지 플레이트

Description

초소형 전자기계 시스템의 생산에 사용되는 기판의 등온 배치 처리를 달성하기위한 시스템 및 방법{SYSTEMS AND METHODS FOR ACHIEVING ISOTHERMAL BATCH PROCESSING OF SUBSTRATES USED FOR THE PRODUCTION OF MICRO­ELECTRO­MECHANICAL SYSTEMS}
본 발명은 일반적으로 기판 처리를 위한 시스템 및 방법에 관한 것으로, 상세히는 초소형 전자기계 시스템("MEMS") 제조용 기판 처리를 위한 시스템 및 방법에 관한 것이다. 그러나, 본 발명은 또한 집적회로, 원료 기판(raw substrate), 리드 프레임, 의료 디바이스, 디스크 및 헤드, 평판 패널 디스플레이, 마이크로일렉트로닉 마스크, 및 프로세스 챔버내의 높은 등온 처리 조건을 요구하는 기타 애플리케이션의 제조에 응용될 수 있다.
다른 것 중에서도, MEMS 디바이스 제조는 집적회로("ICs")로 알려진 칩에 대한 전통적인 고체상태 회로에 부가된 물리 소자의 구축을 포함한다. 이러한 물리소자들은 ICs의 기능성을 뚜렷하게 부가할 수 있다. 예를 들면, 가속기, 자이로스코프, 가스밀도 센서, 화학 또는 효소 센서, 광학 프로젝션 또는 방향수정 디바이스, 마이크로-펌프, 및 압력 센서가 제조된다. 대개, 외부 힘에 대한 소자의 물리적 운동 또는 반응은 커패시턴스, 인덕턴스, 진성 저항, 등의 변화를 통해 측정된 다. 다른 예로는, MEMS 소자는 단순히 물리적 힘을 측정하는 것이 아닌 물리적 동작을 야기할 수 있다. 예를 들면, 마이크로-펌핑이나 미러의 각도 변경과 같은 것이 있다.
먼저, 이러한 물리 소자를 형성하기 위한 구축 방법은 반응이온에칭(RIE) 및 불화수소산("HF")과 같은 화학물에서의 화학 배스 에칭 공정이 있는데, 주로 이러한 방법을 수행하기 위해 필요한 기술은 IC 팹에서 쉽게 가용한 것이기 때문이다. 이러한 방법을 가지고 생산될 수 있는 피처와 장비는 순수하게 수직적이다. 상기 피처가 수평으로 크게되거나 언더컷 되는 것 중 하나 이상이 되면, 상기 피처는 액체가 상기 액체 배스 처리의 끝에서 기판의 언더컷 공간으로부터 제거될 수 있도록 충분히 커야만 한다. 언더컷 피처가 작으면 작을수록, 작은 캐필러리 또는 언더컷 피처에서 배출하거나 건조시키는 것은 점점 더 어려운 일이 된다. 벽면 접촉력, 또는 표면 장력에 대해 액체는 얇은 돌출한 피처를 부수고, 디바이스를 파괴하는 경향이 있다. 이러한 결함이 이른바 "스틱션"이다.
스틱션에 추가하여, 다른 문제점과 단점이 HF 배스 에칭에 연관되는데, 즉, 물질의 에칭 선택도(산화물 1 대 산화물 2)를 제어할 수 없다는 것이다. 또 다른 문제점은 알루미늄, 구리, 금, 은, 질화 티타늄, 및 기타 도전성 물질과 같은 MEMS 소자와 접촉하는 데에 사용될 수 있는 금속의 선택도에 관한 것이다.
이전의 MEMS 에칭/구축 기술에서 상술한 단점들을 제거하는 것을 돕기 위해, HF 및 알콜 에칭 공정이 종래의 HF 웨이퍼 에칭 공정의 대안으로 1990년대 초에 개발되었다. 상기 HF/알콜 에칭 공정은 순전히 화학적인 문제 중 일부를 해결하는 데에만 도움을 줄 뿐, "스틱션" 문제, 특히 10 또는 1 마이크론 크기로 오그라들기 시작한 피처에는 도움이 되지 못했다. 그 시점에 고체상태 회로 소자가 마이크론 크기로 이미 제조되었지만, MEMS는 그러한 크기의 산출물을 금지하는 특별한 문제를 나타내는 물리 소자이다. 그러므로, "스틱션"을 만들지않고, 인접한 물질들을 침해하지 않으면서 작은 경로를 에칭할 수 있는 더 나은 공정이 필요했다.
1990년대 중반에, 초임계 CO2 건조라고 하는 공정이 개발되었다. 약 2000 PSI 및 약 30℃에서 동작하고, 이산화탄소("CO2") 가스를 이용하는 상기 공정은 작은 캐필러리로부터 액체를 제거할 수 있다. 상기 공정은 조금 성공적이지만, 그것은 초임계 CO2로 이송하는 동안 MEMS 칩이 국부적으로 건조하도록 하는 개별적인 장비를 필요로하고, 그에 의해 "스틱션"을 야기하기 때문에 성가시게 된다. 따라서, 문제점은 남아있게 된다.
기체상, 기압 HF/알콜 공정이 그런다음 습식 에칭으로 상기 문제들 중 일부를 제거하기 위해 개발되었다. 기체상 HF/알콜이 작은 공간에서 에칭을 할 수 있지만, 그것은 에칭의 부산물에 기인한 액체 잔류물을 자주 남기는데, 상기 부산물 증기압이 상기 처리압력에 비해 매우 낮기 때문이다. 이러한 문제를 해결하기 위해, 감소된 압력의 기체상 HF/알콜이 개발되었다. MEMS 기판용 감소된 압력 기체상 HF/알콜 에칭 공정의 예가 본문에 참고로써 그 전체가 통합되어 있는 Grant 등의 미국 특허 5,439,553에 개시되어 있다.
감소된 압력 기체상 HF/알콜 공정은, "스틱션"의 제거 및, 금속등의 컴패니 온 금속의 침해를 최소화하는 등의 대기 HF/알콜 공정의 결함 중 다수를 극복하였다. 상기 감소된 압력 공정은 단일 기판 리액터/공정 챔버에서 개발되었고, 이것은 그런다음 예를 들면 브룩스 오토메이션 로보틱 핸들러를 이용한 클러스터 툴로 통합된다. 감소된 압력 기체상 HF/알콜 에칭이 실시되는 단일 기판 처리 리액터의 전형적인 예는, 그 전체가 본문에 참고로써 통합된 Grant 등의 미국 특허 5,228,206에 개시되어 있다. 그러나, "스틱션" 및 선택도를 제어하기 위해, 감소된 압력의 HF/알콜 기체의 적용은, 완전한 릴리스 에칭을 달성하기 위해서는 20 내지 30분 이상이 걸리는 상당히 긴 공정임이 입증되었다. 생산시 실행가능하게 되기 위해, 상기 공정은 4분까지 감소될 필요가 있다고 간주되었다. 더구나, 균일하게 에칭하는 것이 중요하며, 전체 기판에 걸쳐 10% 균일도 한계이상으로 잘 유지되어야 한다. 이것은 클러스터 툴의 애플리케이션의 구축 요구사항과 기존의 MEMS 처리툴 내의 처리 상태에서의 비균일성 때문에 난해한 것으로 입증되었다. 고정 상태의 비균일성은 부분적으로 기판의 로딩 및 언로딩의 요구사항, 및 기타 공정 제어 설계 기준에 기인하며, 이것은 유체 동력 및 온도차동 상의 부담을 가져온다.
기판의 배치 처리는 ICs의 분야에서 기판 처리의 쓰루풋을 증가시키는 한 방식이다. 그러나, ICs 분야에서 기판의 배치 처리는 습식 처리 기술을 포함하고, 상술한 이유로, 이것은 MEMS를 구축하는 데에 이용될 수 없다. 추가로, MEMS 구축에서 균일하게 에칭하기 위한 필수사항은 IC 제조에서 보다 더 엄격하다. 따라서, 수용가능한 수율을 가진 MEMS 구축용 기판의 배치를 처리할 수 있는 리액터 시스템은 존재하지 않는다.
이러한 어려움에도 불구하고, 본 발명자는 MEMS 구축용 기판의 배치 처리, 특히 감소된 압력 기체상 HF/알콜 에칭 공정을 구현하기 위한 리액터/프로세스 챔버 시스템을 설계하고 설비하는 작업을 수행하였고, 이것은 증기압 및 성분을 이루는 기체의 분압에 심하게 좌우된다. 그러나 구현상의 문제는 기판-기판 처리의 균일도의 형태로 온다. 보다 특정하게는, 초기 리액터 시스템 설계 및 처리 조건은 기판 스택에서 상부 및 하부 기판이 배치의 잔여부분과 상이하게 에칭되도록 하였다. 또한, 기판이 리액터의 프로세스 챔버로 로딩되는 일반적인 "게이트 구멍(11)" 피처는 상기 리액터에서의 가스 흐름의 소용돌이, 및 요동을 생성하였다. 도 1은 처리동안에, 기판(12)에 관해 프로세스 가스의 소용돌이 동작을 야기하는 프로세스 챔버에서 게이트 구멍(11)을 갖는 MEMS 리액터(10)를 도시한다. 이러한 소용돌이는 유체의 바운드리 층과 기판 상의 에칭 균일도에 영향을 주는 재순환 패턴을 야기한다는 것이 입증되었다. 또한, 순수한 스테인레스 강 또는 니켈 리액터의 온도 제어(HF 기체와의 물질의 친화성에 따라 요구되는)는 어렵다. 상기 처리의 변화도는 기판 모두에 균일하게 MEMS 피처를 에칭하기 위해 극복되어야만된다.
따라서, 본 발명의 목적은 MEMS 구축용 기판의 배치처리를 돕는 시스템 및 방법을 제공하는 것이다.
본 발명의 또다른 목적은 유체 흐름의 동력의 균일도를 개선한 기판의 배치 처리용 시스템 및 방법을 제공하는 것이다.
본 발명의 또다른 목적은 개선된 등온 상태를 가져오는 기판의 배치 처리용 시스템 및 방법을 제공하는 것이다.
본 발명의 또다른 목적은 처리된 모든 기판의 에칭시 증가된 균일도를 개선하기 위해 사용될 수 있는 기판의 배치 처리용 시스템 및 방법을 제공하는 것이다.
본 발명의 또다른 목적은 각각의 기판 베이시스에 대해 쓰루풋을 증가시키고 처리시간을 감소시키는 MEMS 구축용 기판의 처리를 위한 시스템 및 방법을 제공하는 것이다.
본 발명의 또다른 목적은 리액터의 프로세스 챔버내에서 개선된 온도 균일도를 가지는 기판의 배치 처리용 시스템 및 방법을 제공하는 것이다.
이러한 목적 및 기타 목적들은, 일측면에 있어서, 프로세스 챔버를 형성하는 제 1 하우징; 프로세스 챔버에서 적층된 오리엔테이션에서 복수의 기판이 지지될 때, 상기 적층된 오리엔테이션은 노출된 표면을 가진 제 1 기판과 노출된 표면을 가진 마지막 기판을 구비하고, 상기 제 1 및 마지막 기판의 노출된 표면은 방사율값을 가지는 복수의 기판을 프로세스 챔버의 적층된 오리엔테이션에서 지지하는 수단; 을 포함하고, 복수의 기판이 프로세스 챔버내의 적층된 오리엔테이션에서 지지될 때, 제 1 및 마지막 기판의 노출된 표면의 방사율값에 대응하는 방사율값을 가지는 대향하는 표면으로서, 상기 제 1 및 마지막 기판의 노출된 표면에 대향하여 배치된 표면을 포함하는 기판 처리용 시스템인 본 발명에 의해 만족된다. 본문에 사용된 바와 같이, 대향 표면은 기판의 적층이 처리를 위해 프로세스 챔버에서 지지될 때, 제 1 또는 마지막 기판의 노출된 표면 중 하나에 대향하는 시스템의 임의의 구조물의 표면이다.
방사율은 표면의 열 이미턴스의 측정치이다. 그것은 열적으로 흑체 표면(흑체)에 의해 방출된 것에 대한 방출된 에너지의 분수로 정의된다. 흑체는 그것이 흡수한 에너지 모두를 방출하는, 1의 방사율값을 가지는 열에너지의 완전힌 이미터인 물질이다. 그와 반대로, 방사율값이 0인 물질은 완전 열거울이라고 하며, 이러한 상상의 물질은 반사된 에너지의 이해를 가져올 뿐 실제 물질은 아니다. 예를 들면, 물체가 100 유닛의 에너지를 방출하는 포텐셜을 가졌지만, 실제에서는 90 유닛의 에너지만을 방출할 뿐이다. 상기 물체는 0.90의 방사율값을 가지게 될 것이다.
대향하는 표면들이 스테인레스 강이고, 기판들은 실리콘 기판일 때와 같이, 대향하는 표면들과 제 1 및 마지막 기판들의 노출된 표면들의 방사율값이 서로 상응하지 않을 때는, 적층된 오리엔테이션에서의 제 1 및 마지막 기판은 다른 기판들(즉, 중간 기판들)과 상이한 속도로 에칭되는 경향을 더 가진다는 것을 발견하였다. 이것은 제 1 및 마지막 기판 사이에 배치된 기판들과 상기 제 1 및 마지막 기판이 상이한 온도(들)에 있기 때문에 그러하다. 온도가 더 높으면 에칭을 수행하는데에 필요한 기판 표면 상에서의 "부착된(stuck)" 가스의 손실에 기인하여 보다 느린 에칭을 야기한다. 온도가 보다 낮아지면, 에칭 반응으로 더 한층 들어가는 노출된 표면상의 부산물의 점유에 기인하여 에칭이 보다 빨라지고, 그에 의해 에칭 속도를 증가시킬 수 있다.
대향하는 표면으로부터의 열에너지의 방출은 제 1 및 마지막 기판의 열차이의 주된 이유라는 것이 발견되었다. 또한 복사는 대류에 비해, 감소된 압력 조건(예를 들면 500 Torr 미만)에서 기판 온도에 가장 강한 영향을 준다는 것이 발견되었다. 시스템의 대향 표면의 방사율값과 제 1 및 마지막 기판의 노출 표면이 서로 상응한다는 것을 확실히 함으로써, 기판 적층중에 온도의 비균일도를 야기하는 한 가지 원인이 제거되거나 및/또는 감소된다. 즉, 대향하는 표면들의 방사율값을 상기 제 1 및 마지막 기판의 노출된 펴면의 방사율 값과 보다 근사하게 매칭시킴으로써, 적층된 오리엔테이션에서의 모든 기판에 대해 근사한 온도 제어가 이루어진다.
일 실시예에서, 대향하는 표면의 방사율값은 약 0.2의 범위이내에서 노출된 표면의 방사율값에 상응한다. 또다른 실시예에서, 대향하는 표면과 노출된 표면의 방사율값은 거의 동일하다. 일 실시예에서, 기판은 실리콘 기판이고, 대향하는 기판은 실리콘 카바이드이다.
대향하는 표면은 프로세스 챔버를 형성하는 제 1 하우징의 내부표면이 될 수 있거나, 또는 상기 대향하는 표면은 시스템의 다른 구조물(들)의 표면이 될 수 있다. 지지 수단이 제 1 기판 지지 플레이트와 제 2 기판 지지 플레이트를 포함하고, 복수의 기판이 제 1 및 제 2 기판 지지 플레이트 사이에서 적층된 오리엔테이션으로 지지되는 일 실시예에서, 대향하는 표면은 제 1 및 제 2 기판 지지 플레이트의 표면이 될 수 있다. 대향하는 표면이 배치된 구조물에 상관없이, 프로세스 챔버를 형성하는 제 1 하우징의 모든 내부 표면들은 상기 제 1 및 마지막 기판의 노출된 표면들의 방사율값에 상응하는 방사율값을 갖도록 구축될 수 있다.
다른 실시예에서, 제 1 하우징은 쉘 및 상기 쉘 내부에 배치된 라이너를 구비한다. 본 실시예에서, 상기 라이너는 예를 들면 카본기반 물질과 같은 고열전도성 물질로 구축된다. 적절한 카본 기반 물질의 예로는 고밀도 카본, 자연 자본, 다이아몬드, 흑연을 포함한다. 상기 라이너가 카본 기반 물질로 구축될 때, 상기 쉘은 바람직하게는 예를 들면 스테인레스 강과 같은 비투과성 물질로 구축된다. 상기 라이너의 내부 표면은 프로세스 챔버를 형성하고, 바람직하게는 예를 들면 실리콘 카바이드와 같이, 제 1 및 마지막 기판의 노출된 표면의 방사율값에 상응하는 방사율값을 가진다.
프로세스 챔버를 형성하는 하우징 자체가 온도의 균일도에 영향을 줄수 있다는 것이 발견되었다. 고열전도성 물질로 구축된 라이너를 제공함으로써, 온도의 비균일도를 야기하는 제 2 원인이 제거된다. 반대로, 프로세스 챔버가 예를 들면 스테인레스 강과 같은 그다지 좋지않은 열전도체인 물질에 의해 형성될 때, 섭씨 5도 만큼의 온도 변화가 나타났다. 이것은 4개까지의 열구역이 사용되고 제어되었음에도 불구하고, 발생하였다. 이것은, 예를 들면 고밀도 카본과 같은, 안에 덧붙이기위한 고열전도성인 물질을 선택함으로써, 매우 양질의 열전도성(균일한 온도의) 및 매칭된 방사율(노출된 표면에 대해)이 얻어질 수 있다. 매칭된 방사율은 본 실시예에서 카본 라이너의 내부 표면을 실리콘 카바이드로 변경함으로써 얻어질 수 있다.
유체 흐름의 균일도를 달성하기 위해, 본 시스템의 실시예는 가스 주입 매니폴드와 배출 매니폴드를 더 포함할 수 있다. 상기 가스 주입 매니폴드는 쉘에서의 가스 주입포트를 덮기 위해 제공되고, 상기 배출 매니폴드는 쉘에서의 배출 포트를 덮기위해 제공된다. 제 1 가스 확산기 플레이트는 상기 가스 주입포트와 가스주입 매니폴드 사이의 위치에서 상기 가스 주입 포트에 동작가능하게 결합될 수 있다. 제 2 가스 확산기 플레이트는 상기 배출포트와 배출 매니폴드 사이의 위치에서 상기 배출 포트에 동작가능하게 결합될 수 있다.
또다른 실시예에서, 본 시스템은 이동가능한 플레이트를 더 포함할 수 있다. 본 실시예에서, 지지수단이 상기 이동가능한 플레이트에 연결되어 있다. 상기 이동가능한 플레이트는 지지수단이 상기 프로세스 챔버의 외부에 적어도 국부적으로라도 배치되는 로딩 위치와, 상기 지지수단이 전체가 모두 상기 프로세스 챔버 내에 배치되어 있는 처리 위치 사이에서 이동가능하다. 상기 이동가능한 플레이트가 처리 위치에 있을때, 상기 이동가능한 플레이트는 플로어, 벽, 또는 상기 제 1 하우징의 천장 중 적어도 일부분을 형성한다.
또다른 실시예에서, 로딩 챔버를 형성하는 제 2하우징이 제공될 수 있다. 상기 제 2 하우징은 상기 제 1 하우징과 공통벽을 가진다. 상기 로딩 챔버에서 프로세스 챔버로의 통로를 형성하는 구멍이 상기 공통벽에 설치된다. 상기 이동가능한 플레이트는 바람직하게는 상기 로딩 챔버내에 배치된다. 그렇게 함으로써, 상기 이동가능한 플레이트가 상기 로딩 위치에서 처리 위치로 이동할 때, 상기 이동가능한 플레이트는 상기 구멍을 폐쇄시킨다. 상기 제2 하우징은 또한 순환공기에서 로딩 챔버로의 통로를 형성하는 게이트 구멍을 가질수도 있다. 상기 게이트 구멍은 기판들을 상기 로딩 챔버내의 지지수단에 로딩하는데에 사용될 수 있다. 게이트 밸브가 상기 게이트 구멍에 동작가능하게 결합될 수 있다. 게이트 밸브가 폐쇄될 때, 프로세스 챔버와 로딩 챔버는 상기 순환공기로부터 밀폐되어 밀봉된다.
실이 상기 이동가능한 플레이트와 공통벽 사이에 제공될 수 있다. 상기 실이 그 사이에서 가압될 때, 상기 프로세스 챔버는 닫혀진 환경이 된다. 이것은 유체의 흐름의 균일도를 위해 바람직한 것이다.
다른 실시예에서, 가스 소스중 적어도 하나는 상기 가스 주입 포트에 동작가능하게 결합될 수 있다. 바람직하게는, 가스의 소스중 적어도 하나는 알콜 증기 소스 및 불화수소산 증기의 소스를 포함한다. 배출 시스템은 프로세스 챔버로부터 가스를 제거하기 위해 배출포트에 유동적으로 결합될 수 있다. 또한, 예를 들면 드라이 펌프와 같은, 프로세스 챔버에서 감소된 압력 분위기를 생성하는 수단이 제공될 수 있다. 마지막으로, 운모기반의 전열기와 같은, 프로세스 챔버를 가열하는 수단이 제공될 수 있다.
쓰루풋을 최대화하기 위해, 지지수단은 25개 기판을 지지한다. 물론 원한다면, 25 개 기판 이상이 처리될 수 있다. 그러나, 자동 핸들러(예를 들면 Brooks 7면)로 최고의 쓰루풋을 달성하기 위해, 그리고 한번에 완전한 기판 카세트를 처리하기 위해, 25개 기판의 양이 장점을 가지는 것으로 판명되었다. 배치가 보다 커지면 리턴을 감소시킨다.
또다른 측면에서, 본 발명은, 프로세스 챔버를 형성하는 제 1 하우징을 가지는 시스템을 제공하는 단계; 적층된 오리엔테이션에 복수의 기판을 지지하는 단계로서, 상기 적층된 오리엔테이션은 노출된 표면을 가지는 제1 기판과 노출된 표면을 가지는 마지만 기판을 구비하고, 상기 제 1 및 마지막 기판의 노출된 표면은 방사율값을 가지는 단계; 상기 제 1 및 마지막 기판의 노출 표면이 상기 제 1 및 마지막 기판의 노출면의 방사율값에 상응하는 방사율값을 가진 표면에 대향하도록 상기 프로세스 챔버에 복수의 기판을 배치하는 단계; 및 상기 프로세스 챔버내에 적어도 하나의 처리 상태에 따라 복수의 기판을 놓는 단계를 포함하는 것을 특징으로 하는 기판 처리 방법이다.
또다른 측면에서, 본 발명은, 프로세스 챔버를 형성하는 제 1 하우징; 상기 프로세스 챔버로의 통로를 형성하는 제 1 하우징에서의 구멍; 복수의 기판을 지지하기 위한 수단을 갖는 이동가능한 플레이트; 지지수단이 상기 프로세스 챔버의 외부에 적어도 국부적으로 배치되는 로딩 위치와 상기 지지수단이 전체가 상기 프로세스 챔버 내에 배치되는 처리위치 사이에서 상기 이동가능한 플레이트를 움직이는 수단으로서, 상기 처리위치에 있을때 상기 이동가능한 플레이트가 구멍을 폐쇄하도록 하는 수단; 제 1 하우징에 있는 가스 주입 포트; 및 제 1 하우징에 있는 배출 포트;를 포함하는 기판 처리 시스템이다.
이러한 본 발명의 측면은 프로세스 챔버내에서의 균일한 유체 흐름을 달성하는 것을 돕고, 그런 다음 균일한 흐름에 연관된 바운드리 층을 생성하는 것을 돕는다. 균일한 바운드리 층을 달성하는 것은 본 시스템이 에칭에 사용될 때 기판 표면 전체에 걸쳐 균일한 에칭을 달성하는 것을 도울 것이다. 이러한 측면에서, 본 발명은 도 1에 도시된 바와 같이, 횡단 가스흐름을 방해할 수 있는 프로세스 챔버에서의 기판 로드/언로드 피처(예를 들면 게이트 구멍)을 제거함으로써 상기 프로세스 챔버내에서의 균일한 유체 흐름을 달성한다. 횡단 흐름이 다중 기판 리액터의 동작에 바람직하다는 것이 알려지고, 바운드리 층의 두께가 영향을 받고 에칭의 균일도에 두번째로 가장 강한 영향을 주기 때문에, 이러한 장애는 제거되었다.
일 실시예에서, 적어도 하나의 가스 소스가 가스 주입 포트에 유동적으로 결합된다. 에칭에 사용될 때, 적어도 하나의 가스 소스는 알콜 증기 소스와, 불화수소산 증기 소스를 할 수 있다. 배출 시스템은 상기 배출 포트에 동작가능하게 결합될 수 있다.
프로세스 챔버를 순환공기로부터 효과적으로 분리시키기 위해 이동가능한 플레이트와 제 1 하우징 사이에 실이 배치될 수 있다. 적절한 실을 O-링 실을 포함한다. 상기 실은 대류-루프 또는 단락 흐름이 프로세스 챔버내에서 발생하는 것을 방지하는 것을 돕는다.
횡단 흐름을 달성하기 위해, 가스 주입포트와 배출 포트가 제 1 하우징의 대향하는 벽들 상에 배치될 수 있다. 본 실시예에서, 가스 주입 매니폴드가 상기 가스 주 입포트를 덮기 위해 배치되고, 배출 매니폴드가 상기 배출 포트를 덮기위해 배치된다. 보다 균일한 횡단 흐름을 달성하기 위해, 주입 매니폴드와 배출 매니폴드는 상기 가스 주입 포트와 배출 포트 각각에 관해 특정한 패턴으로 구성된 분포 홀을 구비한다. 상기 분포홀의 크기는 가스 주입 포트(또는 배출포트)로부터의 거리가 증가할수록 증가한다. 추가로, 부적당한 속도압을 제거하기 위해, 제 1 가스 확산기 플레이트가 상기 가스 주입 포트와 가스 주입 매니폴드 사이에 배치되고, 제 2 가스 확산기 플레이트가 상기 배출포트와 배출 매니폴드 사이에 배치될 수 있다. 상기 프로세스 챔버는 바람직하게는 상기 주입 매니폴드에서 배출 매니폴드까지 예를 들면, 거의 일정한 장방형 단면의 프로파일처럼, 거의 일정한 단면 프로파일을 가진다. 이것은 모든 기판사이에서 매우 유선형이고 균일한 유체 흐름을 가져온다.
추가적인 실시예에서, 본 발명의 이러한 측면은 프로세스 챔버에서 감소된 압력 분위기를 생성하는 수단을 더 구비한다. 감소된 압력 분위기를 생성하는 수단은 배출 시스템에 동작가능하게 결합될 수 있으며, 다음으로 배출포트에 결합된다. 프로세스 챔버를 가열하기 위한 수단도 제공될 수 있다.
또다른 실시예에서, 본 시스템은 로딩 챔버를 형성하는 제 2 하우징을 더 포함할 수 있다. 상기 제 2 하우징은 상기 제 1 하우징과의 공통벽을 가진다. 본 실시예에서, 구멍이 상기 공통벽을 통해 뻗어나가 로딩 챔버에서 프로세스 챔버로의 통로를 형성한다. 순환 공기에서 로딩 챔버로의 통로를 형성하는 게이트 구멍이 상기 제 2 하우징에 설치된다. 상기 게이트 구멍은 처리를 위해 기판을 시스템으로 로딩하는 데에 이용된다. 게이트 밸브가 상기 게이트 구멍에 동작가능하게 결합될 수 있다. 게이트 밸브가 폐쇄되면, 프로세스 챔버와 로딩 챔버가 순환공기로부터 밀폐하여 밀봉된다.
본 발명의 이러한 측면은 또한 열방사율 매칭, 열전도성 라이너, 및 지지수단의 특성에 연관하여 상술한 특징 모두를 포함할 수도 있다. 그러나, 중복을 피하기 위해, 이러한 특징들의 설명은 당업자가 자신들의 적용가능성을 이해할 것이므로 생략될 것이다.
또다른 측면에서, 본 발명은 기판 처리 방법으로서, 프로세스 챔버를 형성하는 제 1 하우징, 상기 프로세스 챔버로의 통로를 형성하는 제 1 하우징에서의 구멍, 복수의 기판을 지지하는 수단을 가진 이동가능한 플레이트, 상기 지지수단이 프로세스 챔버의 외부에 적어도 국부적으로 배치된 로딩 위치와 상기 지지수단이 상기 프로세스 챔버내에 전체가 배치되는 처리 위치 사이에서 상기 이동가능한 플레이트를 이동시키는 수단, 상기 제 1 하우징에서의 가스 주입 포트, 및 상기 제 1 하우징에서의 배출 포트를 구비한 시스템을 제공하는 단계; 상기 이동가능한 플레이트가 상기 로딩 위치에 있는 동안 상기 지지 수단에 복수의 기판을 지지하는 단계; 상기 처리 위치로 상기 이동가능한 플레이트를 이동시켜, 상기 이동가능한 플레이트로 상기 구멍을 폐쇄하는 단계; 및 상기 가스 주입 포트를 통해 프로세스 챔버로 가스를 흘려보내, 복수의 기판으로 흘려보내고, 배출 포트를 통해 프로세스 챔버로부터 배출하는 단계;를 포함하는 기판 처리 방법이다.
또다른 측면에서, 본 발명은, 기판 처리 시스템으로서, 프로세스 챔버를 형성하는 제 1 하우징; 적층된 오리엔테이션에서의 프로세스 챔버에서 복수의 기판을 지지하는 수단; 제 1 하우징의 대향하는 벽들에 배치된 상기 제 1 하우징의 가스 주입 포트 및 상기 제 1 하우징에서의 배출 포트; 상기 가스 주입 포트를 덮는 가스 주입 매니폴드 및 상기 배출 포트를 덮는 배출 매니폴드; 상기 가스 주입 포트에 동작가능하게 결합된 적어도 하나의 가스 소스; 상기 배출 포트에 동작가능하게 결합된 배출 시스템;을 포함하고, 적어도 상기 가스 주입 매니폴드는 홀의 크기가 상기 가스 주입 포트로부터의 거리가 증가하면서 증가하도록 패턴에서 배열된 복수의 홀을 구비하고, 상기 프로세스 챔버는 상기 가스 주입 매니폴드로부터 배출 매니폴드까지 거의 일정한 장방형 단면 프로파일을 가지는 것을 특징으로 하는 기판 처리 시스템이다. 본 발명의 다른 측면들에 대해서는, 본 발명의 다른 측면들에 대해 상술한 모든 상세한 내용이 본 발명의 시스템의 본 측면에 합쳐질 수 있다.
또다른 측면에서, 본 발명은 기판 처리 방법으로서, 프로세스 챔버를 형성하는 제 1 하우징, 적층된 오리엔테이션에서의 프로세스 챔버에서 복수의 기판을 지지하는 수단, 제 1 하우징의 대향하는 벽들 상에 배치된 제 1 하우징에서의 가스 주입 포트 및 제 1 하우징에서의 배출 포트, 상기 가스 주입 포트를 덮는 가스 주입 매니폴드 및 상기 배출 포트를 덮는 배출 매니폴드, 상기 가스 주입 포트에 동작가능하게 결합된 적어도 하나의 가스 소스, 상기 배출포트에 동작가능하게 결합된 배출 시스템을 구비하고, 여기서 상기 적어도 가스 주입 매니폴드는 홀의 크기가 상기 가스 주입 포트로부터의 거리가 증가하면서 증가하도록 패턴에 배열된 복수의 홀을 구비하고, 상기 프로세스 챔버는 가스 주입 매니폴드로부터 배출 매니폴드까지 거의 일정한 장방형 단면 프로 파일을 가지는 시스템을 제공하는 단계; 상기 가스 주입 매니폴드와 배출 매니폴드 사이에서 프로세스 챔버내의 지지수단에서 복수의 기판을 지지하는 단계; 가스 주입 포트와 가스 주입 매니폴드를 통해 프로세스 챔버로 가스를 인입하는 단계; 상기 가스를 전체 복수의 기판으로 흘려보내는 단계; 및 배출 매니폴드와 배출 포트를 통해 프로세스 챔버로부터 가스를 제거하는 단계;를 포함하는 기판 처리 방법이다.
도 1은 게이트 구멍이 종래 기술의 MEMS 리액터 내에서 유체 흐름에 대한 소용돌이 또는 요동을 어떻게 생성하는지를 도시한 종래 기술의 MEMS 리액터의 개략 도이다.
도 2는 본 발명의 일실시예에 따른 듀얼 챔버 MEMS 리액터의 사시도이다.
도 3은 Ⅲ-Ⅲ을 따른 시점에서의 도 2의 듀얼 챔버 MEMS 리액터의 단면도이다.
도 4는 도면 Ⅳ-Ⅳ을 따른 시점에서의 도 2의 듀얼 챔버 MEMS 리액터의 단면도이다.
도 5는 도면 Ⅲ-Ⅲ을 따른 시점에서의 도 2의 듀얼 챔버 MEMS 리액터의 개략적인 측면도이다.
도 6은 도면 Ⅳ-Ⅳ을 따른 시점에서의 도 2의 듀얼 챔버 MEMS 리액터의 개략적인 측면도이다.
도 7은 본 발명의 일실시예에 따른 도 2의 듀얼 챔버 MEMS 리액터에 사용되는 가스 주입 매니폴드의 정면도이다.
도 8은 본 발명의 일실시예에 따른 적층된 오리엔테이션에서 프로세스 챔버에서 지지된 기판의 배치를 도시한 단면도을 가진 도 2의 듀얼 챔버 MEMS 리액터의 간략화된 개략도이다.
도 9는 본 발명의 일실시예에 따른 MEMS 처리 시스템용 배선 개략도이다.
도 10은 스테인레스 강 측벽을 가진 프로세스 챔버와 실리콘 카바이드 측벽을 가진 프로세스 챔버용의 기판 온도 대 프로세스 챔버 온도의 그래프이다.
도 11은 균일도 퍼센트율 대 프로세스 챔버 설계 커패시티의 그래프이다.
도 12는 다양한 챔버 커패시티를 위한 시간당 기판 대 CET 챔버의 수의 그래 프이다.
도 13은 다양한 수의 CET 챔버를 위한 시간당 기판 대 챔버 커패시티의 그래프이다.
도 2-4를 참조하면, 듀얼챔버 MEMS 리액터(100)가 본 발명의 일실시예에 따라 도시된다. 상기 듀얼챔버 MEMS 리액터(100)는 MEMS 처리/구축을 위해 25개의 실리콘 기판의 배치를 지지하고 처리하도록 설계되었다. 상기 듀얼챔버 MEMS 리액터(100)는 온도의 비균일성의 2 가지 원인과, 유체 흐름의 동력에서의 장애를 제거함으로써 과거 리액터의 결함을 극복하였다.
듀얼챔버 MEMS 리액터(100)는 프로세스 챔버(111)를 형성하는 제 1 하우징(110)과 기판 로딩 챔버(121)를 형성하는 제 2 하우징(120)을 구비한다. 상기 제 1 하우징(110)은 탑모양의 구조물을 형성하는 수직정렬의 배치로 상기 제 2 하우징(120)의 탑에 위치한다. 상기 제 1 하우징(110)은 상기 로딩 챔버(121)내에 배치된 이동가능한 플레이트(150)의 수직방향의 이동을 작동시키는 모터(도시되지 않음)를 수용하는 베이스(230) 탑에 놓인다.
복수의 가열 플레이트(112)는 필요할 때 프로세스 챔버(111)로 열을 공급하기 위해 제 1 하우징(110)의 외부 표면에 결합된다. 상기 제 1 하우징(110)의 4 개의 면에 각각 하나, 탑 표면(114)에 하나, 총 5개의 가열 플레이트(112)가 상기 제 1 하우징(110)에 결합된다. 그러나, 임의의 수의 가열 플레이트(112)가 상기 프로세스 챔버(111)를 가열하는 데에 사용될 수 있다. 정확한 수는 수행될 프로세 스의 필요한 열에 의해 정해진다. 상기 가열 플레이트(112)는 운모로된 전열기이다. 전기 에너지가 전기적으로 전원에 결합된 전력 공급선(113)을 통해 가열 플레이트(112)로 공급된다. 활성화, 비활성화, 변동을 포함하는 상기 가열 플레이트(112)의 작용은 적절하게 프로그래밍된 프로세서에 의해 제어된다. 상기 가열 플레이트(112)는 적어도 섭씨 50도의 온도까지 상기 프로세스 챔버(111)를 가열하기 위해 충분한 열에너지를 공급한다. 가열 플레이트가 본 발명에 예시한 실시예에서 프로세스 챔버를 가열하기 위해 사용되지만, 열선, 램프등과 같은, 다른 유형의 가열기와 가열 방법이 사용될 수 있다. 또한, 가열기의 배치는 프로세스 챔버 하우징의 외부 표면에 제한되지 않고, 프로세스 챔버 내부 또는 프로세스 챔버의 벽에 빌트인되는 것을 포함하여, 어디에도 배치될 수 있다.
마지막으로, 원하는 처리 조건에 따라, 챔버내의 열적 균일도를 보조하고 및/또는 그것들이 프로세스 챔버(111)에 들어가기 전에 실리콘 기판들을 가열하기 위해 로딩 챔버(121)를 가열하는 것이 바람직할 수도 있다.
제 2 하우징(120)은 자신의 측벽중 하나에 게이트 구멍(115)을 구비한다. 상기 게이트 구멍(115)은 상기 제 2 하우징(120)의 측벽을 통해 뻗어나가서 순환공기로부터 로딩 챔버(121)로의 통로를 형성하는 구멍이다. 상기 게이트 구멍(115)은 실리콘 기판들을 로딩 챔버(121)로 로딩하거나 또는 그로부터 언로딩하기 위해 사용된다. 도시되지는 않았지만, 게이트 밸브가 상기 듀얼 챔버 MEMS 리액터(100)의 동작동안 게이트 구멍(115)에 고정되어, 동작가능하게 결합된다. 상기 게이트 밸브는 상기 게이트 밸브 커넥터 플레이트(117)(도 2에만 도시됨)에서의 볼트 홀(116)을 통해 상기 듀얼 챔버 MEMS 리액터(100)로 고정된다. 상기 게이트 밸브는 원할 때 게이트 구멍(115)을 개폐하는 기능을 한다. 게이트 밸브가 폐쇄되었을 때, 상기 게이트 구멍(115)은 밀폐하여 밀봉된다. 상기 프로세스 챔버(111)와 로딩 챔버(121) 또한 게이트 밸브가 폐쇄되었을 때 순환공기로부터 밀폐하여 밀봉된다. 상기 게이트 밸브의 기능은 적절하게 프로그래밍된 프로세서에 의해 제어된다.
상기 제 1 하우징(110)은 또한 가스 주입 포트(130)와 배출 포트(131)를 구비한다. 상기 가스 주입 포트(130)와 배출 포트(131)는 제 1 하우징(110)의 대향하는 벽들 상에 배치되어, 프로세스 챔버(111)에서의 횡단 유체 흐름의 동력을 보조한다. 배출 포트(132)도 상기 제 2 하우징(120)에 설치된다. 이러한 피처는 도 5 및 도 7을 참조하여 하기에 보다 상세히 논의될 것이다.
열 스냅 스위치(133)가 제 1 하우징(110)의 탑 표면 상에 설치된다.
도 3 및 도 4 만을 참조하면, 제 1 하우징(110) 및 제 2 하우징(120)은 공통벽(116)을 가진다. 도시된 실시예에서, 공통벽(116)은 제 1 하우징(110)의 플로어 플레이트(117)와 제 2 하우징(120)의 지붕 플레이트(118), 2 개의 플레이트를 구비한다. 그러나, 본 발명은 상기에 제한되는 것이 아니며, 공통벽은 하나의 플레이트로 구성되거나, 또는 보다 다수의 플레이트 및/또는 공간배치를 구비한다. 제 1하우징(110)의 플로어 플레이트(117)와 제 2 하우징(120)의 지붕 플레이트(118)는 상기 제 1 하우징이 상기 제 2 하우징(120)의 탑에 적절하게 고정될 수 있도록 플랜지로 부착된다. 상기 제 1 하우징(110)은 플랜지의 대응하는 볼트 홀(119)을 통해 뻗어나가 나사산을 낸 너트와 맞물리고, 그에 의해 상기 하우징(110, 120)의 플랜지를 함께 고정하는 볼트를 통해 제 2 하우징에 고정된다.
구멍(125)은 공통벽(116)에 제공된다. 상기 구멍(125)은 로딩 챔버(121)에서 프로세스 챔버(111)로의 통로를 제공한다. 상기 구멍(125)은 하기에 설명된 바와 같이, 적층한 실리콘 기판들이 그를 통해 통과할 수 있도록 크기가 조정된다.
듀얼 챔버 MEMS 리액터(100)는 또한 지지랙(140)(도 5에 가장 잘 도시됨)을 구비한다. 상기 지지랙(140)은 기저 기판 지지 플레이트(141), 탑 기판 지지 플레이트(142), 및 복수의 정렬된 핀(144)(도 5에서 볼수있음)을 가지는 3 개의 맞물림 로드(143)를 구비한다.
도 6을 참조하면, 상기 3개의 맞물림 로드(143)의 각각의 핀(144)들은 다른 2 개의 맞물림 로드(43)상의 대응하는 핀(144)과 수직 정렬된다. 그렇게함으로써, 실리콘 기판이 지지랙(140)으로 삽입될 때, 상기 실리콘 기판이 3 개의 대응하는 핀(144)의 세트 사이로 삽입되고, 거의 수직인 방위로 지지될 것이다. 복수의 핀(144)이 각각의 맞물림 로드(143) 상에서 수직 정렬로 제공되기 때문에, 상기 지지 랙(140)은 도 8에 도시된 바와 같이 수직으로 적층된 방위로 복수의 실리콘 기판들을 지지할 수 있다. 상기 지지랙(140)은 25개의 실리콘 기판을 지지하도록 설계되었다. 그러나, 상기 지지랙은 임의의 수의 실리콘 기판을 수용하도록 설계될 수 있다. 지지랙이 수직으로 적층된 방위로 복수의 실리콘 기판들을 지지하는 것으로 도시되었지만, 본 발명은 그에 한정되지 않는다. 수평으로 적층된 방위로 실리콘 기판을 지지하는 지지랙도 사용될 수 있다. 상기 바람직한 적층된 방위는 시 스템 및 설계 기준의 구축에 좌우된다.
도 6을 다시 참조하면, 상기 기저 기판 지지 플레이트(141)는 상기 로딩 챔버(121) 내에 배치된 이동가능한 플레이트 탑에 연결된다. 복수의 임베디드된 볼트, 핀, 스크류, 접착제, 또는 용접등과 같은 당 분야에서 공지된 임의의 수단이 상기 기저 기판 지지 플레이트(141)를 상기 이동가능한 플레이트(50)로 연결하는 데에 사용될 수 있다. 설계의 필요에 따라, 지지랙(140)이 상기 이동가능한 플레이트(150)에 영구적으로 고정되거나, 그로부터 착탈가능하도록 연결될 수 있다.
상기 이동가능한 플레이트(150)는 수직작동을 할 수 있는 피스톤(151)에 고정된다. 상기 피스톤(151) 레스트는 하우징(153)에 의해 형성된 엘리베이터 샤프트(152)에 동작가능하게 배치된다. 상기 피스톤(151)의 구동 움직임은 공압, 전기, 또는 기계적 제어와 같은 종래 공지된 수단에 의해 보조될 수 있다. 시동할지 여부, 동작 거리 등을 포함하는 상기 피스톤(151)의 기능은 움직임/거리 센서에 결합될 수 있는 적절하게 프로그래밍된 프로세서에 의해 제어된다. 피스톤(151)을 구동시키는 수단은 설계 요건서 및 환경설정에 의해 지시를 받는다.
이동가능한 플레이트(150)가 피스톤(151)에 고정되기 때문에, 수직으로 피스톤(151)을 구동/이동시키는 것은 이동가능한 플레이트(170) 또한 수직으로 구동/이동되도록 한다. 따라서, 상기 이동가능한 플레이트(150)는 로딩 위치와 처리 위치 사이에서 이동될 수 있다. 도 6에서, 상기 이동가능한 플레이트(150)는 로딩 위치에 있다.
도 6 및 8을 참조하면, 상기 이동가능한 플레이트(150)가 로딩위치에 있을 때, 적어도 지지랙(40)의 일부는 상기 프로세스 챔버(111)의 외부에 있게된다. 로딩위치에 있을때, 실리콘 기판(51)이 상기 지지랙(140)의 맞물림 로드(143) 사이에 삽입될 때까지 실리콘 기판(51)이 상기 게이트 구멍(115)을 통해 로봇암(154)에 의해 로딩 챔버(121)로 삽입될 수 있다. 실리콘 기판(51)이 상기와 같이 완전히 삽입되면, 로봇암(154)은 실리콘 기판(51)을 해제하고, 상기 실리콘 기판(51)이 맞물림 로드(143)의 핀(144)의 세트에 의해 수평방향으로 완전히 지지되도록 한다. 하나의 실리콘 기판의 로딩이 완료되면, 다음 세트의 빈 핀(144)이 로봇 암(154)으로부터 다른 실리콘 기판을 받아서 지지하는 위치에 올때까지 이동가능한 플레이트(150)가 피스톤(151)에 의해 들어올려진다. 이러한 공정은 25개의 실리콘 기판의 전체 스택(52)이 상기 지지 랙(140)에 의해 지지될 때까지 반복된다.
지지랙(140)이 완전히 로딩되면, 이동가능한 플레이트(150)는 상기 이동가능한 플레이트가 처리 위치에 놓일때까지 계속해서 들어올려진다. 처리 위치에 놓일때, 상기 전체 지지 랙(140)은 프로세스 챔버(111) 내에 놓이고, 상기 이동가능한 플레이트(150)가 구멍(125)을 폐쇄한다. O-링 실(155)이 상기 이동가능한 플레이트(150)의 탑 표면의 홈에 설치된다. 이동가능한 플레이트(150)가 처리 위치에 있을때, 상기 O-링 실은 상기 이동가능한 플레이트(150)와 공통벽(116) 사이에서 가압된다. 상기 O-링 실(155)에 의해 형성된 실은 밀폐 실일 수도 있고 아닐수도 있으며, 시스템의 설정과 처리 요건서에 따른다. 이동가능한 플레이트가 처리위치에 있으면, 실리콘 기판(50)의 스택이 전체가 프로세스 챔버(111) 내에 있고, 그결과 처리될 수 있게된다.
복수의 실리콘 기판이 상기 프로세스 챔버(111)내에서 적층된 방위로 지지되기 때문에, 상기 적층된 방위는 자연스럽게 제 1 기판과 마지막 기판을 가진다. 수직 스택의 경우, 제 1 및 마지막 기판은 각각 수직 스택의 탑 기판과 기저의 기판이 될 것이다. 복수의 실리콘 기판이 처리를 위해 프로세스 챔버(111)에서 지지될 때, 스택(50)에서 탑 기판과 기저 기판 모두가 노출된 표면을 가진다. 보다 특정하면, 기저 기판의 기저 표면이 노출 표면이 되고, 탑 기판의 탑표면이 노출 표면이 된다. 본문에 사용된 바와 같이, 기판의 노출 표면은 스택에서 다른 기판들과 면하지 않는 기판의 표면이다.
스택(50)에 모든 실리콘 기판 사이의 열적 균일도를 증진시키기 위해, 스택(50)이 프로세스 챔버(111)에 있을 때 상기 탑 및 기저 기판의 노출 표면에 대향하는 듀얼 챔버 MEMS 리액터(100)의 표면이 상기 탑 및 기저 실리콘 기판의 노출 표면의 방사율값에 상응하는 방사율값을 가지는 것을 보장하는 것이 바람직한 것으로 밝혀졌다.
도 5를 참조하면, 복수의 실리콘 기판이 지지랙(140)상으로 로딩되고, 상기 프로세스 챔버(121)에서 지지될 때, 스택에서의 상기 탑 실리콘 기판의 노출 표면은 탑 기판 지지 플레이트(142)의 기저 표면(145)에 대향한다. 반면, 상기 기저 실리콘 기판의 노출 표면은 상기 기저 기판 지지 플레이트(141)의 탑 표면에 대향한다. 따라서, 기판 지지 플레이트(142, 141)의 기저 및 탑 표면(145, 146) 모두가 상기 탑 및 기저 실리콘 기판의 노출 표면의 방사율값과 상응하는 방사율값을 가지는 물질로 구축된다. 본 실시예에서, 상기 기판이 실리콘이기 때문에, 기저 및 탑 표면(145, 146)은 실리콘 카바이드이다. 그러나, 탑 및 기저 표면(145, 146)은 상기 기판의 노출 표면의 방사율값에 상응하는 방사율값을 가지는 임의의 물질로 구축될 수 있다. 적절한 물질은 바람직하게는 오염방지가 되고, 프로세스 챔버내에서의 처리 조건을 견딜수 있다.
듀얼 챔버 MEMS 리액터(100)의 도시된 실시예에서, 대향하는 표면(즉, 상기 실리콘 기판의 노출 표면에 대향하는 표면들)은 지지랙(140)의 탑 및 기저 기판 지지 플레이트(141, 142) 상에 배치되지만, 이것이 항상 적용되는 경우는 아니다. 대안의 지지랙의 실시예를 활용해보면, 실리콘 기판의 노출 표면은 프로세스 챔버(111) 자체의 내부 표면에 대향할 수도 있다. 이러한 실시예에서, 프로세스 챔버의 내부 표면은 기판의 노출 표면의 방사율값에 상응하는 방사율값을 가지는 물질로 구축된다. 이것은 외부를 면하고 있는 제 1 및 마지막 기판을 제외한, 스택의 모든 기판들이 서로 마주보고 있기 때문에 중요한 요인이다. 따라서, 실리콘의 방사율과 상기 대향하는 표면 방사율을 보다 근접하게 매칭시킴으로써(실리콘 기판의 경우), 미세한 온도제어가 25 개 기판 모두에 대해 가능하게 된다.
도 10을 참조하면, 기판 온도 대 챔버 온도를 플로팅한 그래프가 도시된다. 상기 그래프는 챔버의 측벽을 구성하는 물질이 일반적인 프로세스 압력인 100Torr에서 실리콘 기판 온도에 가하는 영향을 나타낸다. 도 10의 그래프에 대한 데이터를 정정하여, 실리콘 기판이 동일한 온도의 2 개의 상이한 표면을 면하고 있는 실험이 수행되었다. 한번의 시험에서는 316 스테인레스 강이었고, 다른 시험에서는 실리콘 카바이드였다. 이들 물질들은 화학적 친화성에 따라 선택되지만, 동일한 특징을 나타내는 다른 물질들이 선택되지는 않는다. 실리콘 기판은 스테인레스 강 표면의 온도보다 실리콘 카바이드 표면의 온도에 보다 근사하게 됨에 유의하라.
도 5 및 6을 참조하면, 상기 제 1 하우징(110)은 쉘 및 라이너를 갖도록 구축된다. 상기 쉘은 벽(160-163) 및 지붕 플레이트(164)를 구비한다. 라이너는 가스 주입 매니폴드(170), 배출 매니폴드(171), 및 라이너 플레이트(172-175)를 구비한다. 상기 라이너 엘리먼트(170-175)는 모두 고밀도 카본으로 구축된다. 모든 라이너 엘리먼트(170-175)의 상기 내부 표면(즉, 프로세스 챔버(111)를 형성하는 표면)은 실리콘 카바이드이다. 카본 표면을 실리콘 카바이드로 변환하는 방법은 공지된 것이다. 고밀도 카본이 사용되지만, 다이아몬드, 흑연, 자연 카본 등 예를 들면 다른 카본 기반의 물질과 같이 고열전도성을 가진 임의의 물질이 사용될 수 있다. 쉘 엘리먼트(160-164)는 스테인레스 강으로 구축된다. 그러나, 다른 비투과성 물질들이 사용될 수 있다. 316 스테인레스강의 열전도성은 약 44W/m/K이고, 고밀도 카본의 열전도성은 두배에 가까운 70 W/m/K이다.
고열전도성 특성을 가진 물질로 구축되고, 실리콘 기판의 노출 표면의 방사율값에 상응하는 방사율값을 가지는 내부 표면을 가진 라이너를 제공하는 것은 프로세스 챔버(111)와 기판 스택 전체에 걸쳐 열적 균일성을 달성하는 것을 돕는다. 상기 비투과성 쉘은 고밀도 카본이 투과성이기 때문에 제공된다. 따라서, 라이너의 외부에 비투과성 쉘을 제공하는 것은 프로세스 챔버(111)로의 순환공기의 누설없이 상기 프로세스 챔버(111)내에서 감소된 압력 분위기가 생성되도록 한다.
도 5를 참조하면, 프로세스 챔버(111) 내에서 유체 흐름의 동력에 영향을 주 는 듀얼 챔버 MEMS 리액터(100)의 특징이 이제 논의될 것이다. 상술한 바와 같이, 제 1 하우징(110)은 가스 주입 포트(130) 및 배출 포트(131)를 구비한다. 상기 가스 주입 포트(130)와 배출 포트(131)는 상기 제 1 하우징(110)의 대향하는 벽(160, 161)에 배치된다. 대향하는 벽에 포트(130, 131)를 배치하는 것은 기판 처리를 위해 프로세스 챔버(111)를 통과해 가스가 횡단하여 흐르는 것을 돕는다. 가스 공급 라인(180)은 가스 주입 포트(130)에 동작가능하게 유동적으로 연결된다. 상기 가스 공급 라인(180)은 적어도 하나의 가스 소스에 유동적으로 결합된다(도 9에 도시된바와 같이). 바람직하게는, 기판의 에칭을 돕기위해, 가스 공급 라인(180)은 적어도 알콜 증기의 소스 및 HF 증기의 소스에 결합된다.
상기 가스 주입 포트(130)와 배출 포트(131)는 각각 제 1 하우징(110)의 벽(160, 161)의 거의 중심에 배치된다. 보다 균일한 횡단 흐름을 달성하기 위해, 전용 가스 주입 매니폴드(170)와 전용 배출 매니폴드(171)가 만들어져, 도시된 바와 같이 프로세스 챔버(111)에 배치된다. 상기 가스 주입 매니폴드(170)는 가스 주입 포트(130)를 덮기위해 배치되는 반면, 상기 배출 매니폴드(171)는 배출 포트(131)를 덮기 위해 배치된다. 벽(160, 161)으로부터 매니폴드(170, 171)를 이격시키는 것은 각각 매니폴드 캐비티(177, 178)를 생성한다. 매니폴드 캐비티(177, 178)내에서의 과도한 속도압을 제거하기 위해, 가스 주입포트(130)와 배출 포트(131) 모두가 자신들에 동작가능하게 결합된 가스 확산기 플레이트(185, 186)를 구비한다. 상기 가스 확산기 플레이트(185)는 가스주입 포트(130)에 동작가능하게 결합되며, 가스 주입 포트(130)와 가스주입 매니폴드(170)사이에서 매니폴드 캐비 티(177)내에 배치된다. 유사하게, 가스 확산기 플레이트(186)는 배출 포트(131)에 동작가능하게 결합되며, 배출 포트(131)와 배출 매니폴드(171) 사이에서 매니폴드 캐비티(178)내에 배치된다.
상술한 바와 같이, 기판처리동안, 이동가능한 플레이트(150)는 처리 위치로 들어올려진다. 처리위치에 있을때, 이동가능한 플레이트(150)는 프로세스 챔버(110)의 플로어를 형성한다. 이것이 발생할때, 상기 프로세스 챔버(111)는 가스 주입 매니폴드(170)에서 배출 매니폴드(171) 까지 연장하는 거의 일정한 장방형 단면 프로파일을 가진다. 기판 프로세스 챔버가 거의 일정한 단면 프로파일을 가진다면, 처리동안 모든 기판사이에서 매우 유선형의 균일한 단면 흐름이 생성된다. 상기 프로세스 가스는 그것이 배출 매니폴드(171)에 의해 상기 프로세스 챔버(111)에서 배출될 때까지 일정한 단면 프로파일을 통해 흐른다. 상기 이동가능한 플레이트(150)는 대류-루프 또는 단락회로 흐름이 상기 프로세스 챔버(111)내에서 발생하도록 가볍게 밀봉된다. 프로세스 챔버(111)가 거의 일정한 장방형 단면 형상을 가지는 것으로 예시되었지만, 단면 프로파일은 그것이 거의 일정한 이상 어떠한 형상도 될 수 있다. 거의 일정한 단면 프로파일을 가지는 프로세스 챔버를 생성하는 기능은 로드/언로드 "게이트 구멍"에 연관된 임의의 캐비티 또는 불규칙성이 제거되도록 상기 프로세스 챔버를 설계함으로써 달성된다.
도 7을 참조하면, 특정하게 설계된 주입 매니폴드(170)의 상세가 도시된다. 주입 매니폴드(170)는 선형 패턴으로 배열된 복수의 분포홀(190)을 구비한다. 상기 분포홀(190)의 직경은 주입 매니폴드(170)의 중심으로부터의 반지름 거리로 증 가한다. 용이한 설명을 위해, 상기 주입 매니폴드(170)는 구역 1, 구역 2, 구역 3의 3 구역으로 분리된 것으로 도시된다. 단독으로 구역 1에 배치된 분포홀(190)은 0.15 인치의 직경을 가진다. 단독으로 구역 2에 배치된 분포홀(190)은 0.18 인치의 직경을 가진다. 단독으로 구역 3에 배치된 분포홀(190)은 0.26 인치의 직경을 가진다. 포트(130, 131)으로부터의 거리 만큼 구멍(190)의 크기가 증가하면 총 매니폴드 압력(속도 및 정지)으로의 밸런스가 증가한다.
주입 매니폴드(170)는 또한 프로세스 챔버(111) 내의 위치에 매니폴드(170)를 고정하기 위해 자신의 주변부 주위에 복수의 볼트 홀(95)을 구비한다. 상기 배출 매니폴드(171)는 도 7에 도시한 주입 매니폴드(170)와 동일한 것이다. 중복을 피하기 위해 논의는 생략한다.
도 9를 참조하면, MEMS 처리 시스템(200)의 배선 개략도가 듀얼 챔버 MEMS 리액터(100)의 동작을 위해 도시된다. 상기 MEMS 처리 시스템(200)은 액체 캐비넷(210) 및 가스 캐비넷(220)을 포함한다. 시스템(200)에 다양한 공급 라인, 펌프, 및 밸브를 제공하고, 적절하게 배치함으로써, HF 증기(211) 소스, 질소 가스(212) 소스, 및 알콜 증기(213)의 소스가 가스 공급 라인(180)에 동작가능하게 결합된다. 질소가스는 필요할때 프로세스 챔버(111)와 로딩 챔버(121)를 퓨징하는 데에 사용되거나, 또는 캐리어 가스로 사용될 수 있다. 본 시스템(200)의 모든 컴포넌트들은 전기적으로 결합되고, 사용자 입력 처리 레시피를 실행하도록 프로그래밍된 적절하게 프로그래밍된 프로세서에 의해 제어된다.
배출 라인(181, 182)은 제 1 하우징(110)의 배출 포트(131)와 제 2 하우 징(120)의 배출 포트(132)에 각각 유동적으로 그리고 동작가능하게 결합된다(명확히하기 위해서는 도 5를 참조). 배출 라인(181, 182)과 그의 연관된 컴포넌트는 배출 시스템(183)을 형성한다. 드라이 펌프(185)는 상기 배출 시스템(183)에 동작가능하게 결합된다. 구동시, 드라이 펌프(185)는 프로세스 챔버(111)와 로딩 챔버(121) 내에서 감소된 압력 분위기를 생성한다.
듀얼 챔버 MEMS 리액터(100)의 새로운 설계는 수용가능한 한게내에서 그리고 보다 구형의 리액터를 가지고 더 우수하게 균일도를 가지고(기판에서 기판으로, 기판 상에, 배치에서 배치로) 동시에 25개 기판까지 처리할 수 있다. 기판 온도는 연관된 개선된 에칭 제어를 가지고 섭씨 1도 내에서 제어될 수 있다.
물론 원한다면 25 개 이상의 기판이 동시에 처리될 수 있다, 그러나, 자동 핸들러(Brooks 7면의 경우)로 최고의 쓰루풋을 달성하고, 동시에 완성된 기판 카세트를 처리하기 위해서는, 25 개 분량의 기판이 장점을 가지는 것으로 판명되었다, 보다 더 큰 배치는 리턴을 감소시킨다.
쓰루풋 분석이 기판 배치의 최적 크기와 균일도에 대한 효과를 판정하기 위해 실시된다. 이러한 분석의 결과가 도 11-13에 설명되어 있다. 이것은 Brooks 7면 이송 챔버, 2 개의 LoadLocks 및 5 개까지의 CET 챔버로 구성된 설정으로 시뮬레이션한다. 본 설정에 Inligner는 사용되지 않았다. 기판은 하나씩 LoadLocks에서 CET 챔버로 이송되어, 상기 CET 챔버가 가득찼을때 공정을 시작하고, 그런다음 LoadLocks로 다시 이송된다. CET 챔버는 1, 3, 5, 25 & 50 기판/레시피를 처리하기 위해 설계되었다.
일반적인 30분의 HF 에칭 레시피는 챔버 커패시티당 하기의 스텝으로 분할된다. 레시피의 끝에서, CET 챔버는 기판 이송을 진행하기 전에 베이스 압력으로 펌프다운을 하고, 펌프다운 시간이 "CET 챔버에서의 총시간"에 추가된다.
스텝 스텝명/챔버 커패시티 1 3 5 25 50
1 N2/BuOH 안정화 3 3 3 5 7
2 HF에칭 15 15 15 15 15
3 펌프다운 2 2 2 3 5
4 N2/BuOH 안정화 2 2 2 3 5
5 HF 에칭 15 15 15 15 15
6 펌프 다운 1 1 1 2 4
7 퓨징 10s 10s 10s 10s 10s
8 펌프 다운 1 1 1 2 4
9 퓨징 10s 10s 10s 10s 10s
10 펌프다운 1 1 1 2 4
11 퓨징 10s 10s 10s 10s 10s
이송이전에 베이스를 펌프 1 1 1 2 3
CET챔버에서의 총시간 41.5 41.5 41.5 58.5 62.5
LoadLockA/B에 대해, 카세트를 로드/언로드 하기 위한 시간, 분위기에 대한 벤트, 및 베이스 압력으로의 펌프다운이 하기 동작으로 나열된다.
·벤트업(진공으로부터 분위기까지) 4분
· 카세트를 로드/언로드 1분
· 펌프다운(분위기에서 진공으로) 3분
일반적인 기판 이송 시간(LoadLockA/B<--> CET 챔버)는 20-25초이다. 도 11-13의 차트는 최소 10시간의 기간으로 연산된다. 챔버 커패시티가 1, 3, 5, 또는 50일 때, 상기 LoadLocks이 입력/출력 포트 모두로서 설정된다. 챔버 커패시티가 25일때, LoadLockA는 입력포트로 설정되고, LoadLockB는 출력 포트로 설정된다.
CET 챔버의 수 1 2 3 4 5
챔버 커패시티: 1 1.4 2.8 4.2 5.7 7.1
챔버 커패시티: 3* 4.1 8.3 12.5 16.7 20.8
챔버 커패시티: 5 6.6 13.2 19.9 26.6 33.3
챔버 커패시티: 25 21.7 44.1 66.5 88.9 ……
챔버 커패시티: 50 26.7 53.4 76.1
* 카세트 모두는 25 대신 24 기판으로 로딩된다.
본 발명이 상세히 기술되고 예시를 들었지만, 본 발명의 취지와 범위를 벗어나지 않고서 당업자에게는 다양한 변형 및 변경이 쉽게 이해될 것이다. 특히, 본 발명은 에칭 공정에서 사용되는 것에 한정되지 않으며, 열 및 유체흐름의 균일도가 필요한 기판의 모든 공정에서 사용될 수 있다.

Claims (67)

  1. 기판 처리 시스템에 있어서,
    프로세스 챔버를 형성하는 제 1 하우징;
    적층된 오리엔테이션에서 복수의 기판이 지지될 때, 상기 적층된 오리엔테이션은 노출된 표면을 가진 제 1 기판과 노출된 표면을 가진 마지막 기판을 구비하고, 상기 제 1 및 마지막 기판의 노출된 표면은 방사율값을 가지는, 복수의 기판을 프로세스 챔버에서의 적층된 오리엔테이션에서 지지하는 수단; 및
    복수의 기판이 프로세스 챔버내의 적층된 오리엔테이션에서 지지될 때, 제 1 및 마지막 기판의 노출된 표면의 방사율값에 대응하는 방사율값을 가지는 대향하는 표면으로서, 상기 제 1 및 마지막 기판의 노출된 표면에 대향하여 배치된 표면을 포함하는 것을 특징으로 하는 기판 처리용 시스템.
  2. 제 1 항에 있어서,
    상기 기판은 실리콘이고, 상기 대향하는 표면은 실리콘 카바이드인 것을 특징으로 하는 기판 처리용 시스템.
  3. 제 1 항에 있어서,
    상기 대향하는 표면은 상기 프로세스 챔버를 형성하는 제 1 하우징의 내부 표면인 것을 특징으로 하는 기판 처리용 시스템.
  4. 제 1 항에 있어서,
    상기 지지수단은 제 1 기판 지지 플레이트와 제 2 기판 지지 플레이트를 구비하고, 상기 제 1 및 제 2 기판 지지 플레이트 사이에 적층된 오리엔테이션에서 복수의 기판이 지지되고, 상기 대향하는 표면은 상기 제 1 및 제 2 기판 지지 플레이트의 표면인 것을 특징으로 하는 기판 처리용 시스템.
  5. 제 1 항에 있어서,
    상기 제 1 하우징은, 프로세스 챔버를 형성하고 상기 제 1 및 마지막 기판의 노출된 표면의 방사율값에 상응하는 방사율값을 가지는 내부 표면을 포함하는 것을 특징으로 하는 기판 처리용 시스템.
  6. 제 1 항에 있어서,
    상기 제 1 하우징은 쉘과 상기 쉘의 내부에 배치된 라이너를 구비하고, 상기 라이너는 고열전도성을 가진 물질로 구축되고, 상기 라이너는 프로세스 챔버를 형성하는 내부 표면을 가지고, 상기 내부 표면은 상기 제 1 및 마지막 기판의 노출된 표면의 방사율값에 상응하는 방사율값을 가지는 것을 특징으로 하는 기판 처리용 시스템.
  7. 제 6 항에 있어서,
    상기 라이너는 카본 기반의 물질로 구축되고, 상기 쉘은 비투과성 물질로 구축되는 것을 특징으로 하는 기판 처리용 시스템.
  8. 제 7 항에 있어서,
    상기 카본 기반 물질은 고밀도 카본, 자연 카본, 다이아몬드, 및 흑연으로 구성된 그룹 중에서 선택되는 것을 특징으로 하는 기판 처리용 시스템.
  9. 제 7 항에 있어서,
    라이너의 내부 표면은 실리콘 카바이드인 것을 특징으로 하는 기판 처리용 시스템.
  10. 제 6 항에 있어서,
    상기 라이너는 쉘에서 가스 주입 포트를 덮는 가스 주입 매니폴드와, 쉘에서 배출 포트를 덮는 배출 매니폴드를 포함하는 것을 특징으로 하는 기판 처리용 시스템.
  11. 제 10 항에 있어서,
    상기 가스 주입 포트와 가스 주입 매니폴드 사이에 배치되고, 상기 가스 주입포트에 동작가능하게 결합되는 제 1 가스 확산기 플레이트를 더 포함하는 것을 특징으로 하는 기판 처리용 시스템.
  12. 제 1 항에 있어서,
    이동가능한 플레이트를 더 구비하고, 상기 지지수단이 상기 이동가능한 플레이트에 연결되고, 상기 이동가능한 플레이트는 상기 지지수단이 적어도 국부적으로 상기 프로세스 챔버의 외부에 배치되는 로딩 위치와, 상기 지지수단이 완전히 상기 프로세스 챔버 내에 배치되는 처리위치 사이에서 이동가능하고, 상기 이동가능한 플레이트가 처리 위치에 있을때, 상기 이동가능한 플레이트는 제 1 하우징의 플로어, 벽, 또는 천정 중에 적어도 일부를 형성하는 것을 특징으로 하는 기판 처리용 시스템.
  13. 제 12 항에 있어서,
    로딩 챔버를 형성하는 제 2 하우징, 제 1 하우징과 공통의 벽을 가지는 제 2 챔버, 상기 로딩 챔버에서 프로세스 챔버로의 통로를 형성하는 상기 공통 벽에서의 구멍, 및 상기 로딩 챔버 내에 배치된 이동가능한 플레이트를 더 포함하고, 상기 이동가능한 플레이트가 상기 로딩 위치에서 처리 위치로 이동될 때, 상기 이동가능한 플레이트는 상기 구멍을 폐쇄하고, 상기 제 2 하우징은 순환하는 공기에서 로딩 챔버로의 통로를 형성하는 게이트 구멍을 가지는 것을 특징으로 하는 기판 처리용 시스템.
  14. 제 13 항에 있어서,
    상기 이동가능한 플레이트와 공통벽 사이에 실을 더 구비하는 것을 특징으로 하는 기판 처리용 시스템.
  15. 제 13 항에 있어서,
    상기 게이트 구멍에 동작가능하게 결합된 게이트 밸브를 더 포함하고, 상기 게이트 밸브가 닫혀있을 때, 상기 프로세스 챔버와 로딩 챔버는 순환하는 공기로부터 밀폐하여 밀봉되는 것을 특징으로 하는 기판 처리용 시스템.
  16. 제 1 항에 있어서,
    상기 제 1 하우징은 가스 주입 포트와 배출 포트를 포함하는 것을 특징으로 하는 기판 처리용 시스템.
  17. 제 16 항에 있어서,
    가스주입 포트를 덮기위해 프로세스 챔버에 배치된 가스 주입 매니폴드와 배출 포트를 덮기위해 프로세스 챔버에 배치된 배출 매니폴드를 더 포함하고, 상기 가스 주입 매니폴드와 가스 아웃렛 매니폴드는 고열전도성 물질로 구축되어 상기 제 1 및 마지막 기판의 노출된 표면의 방사율값에 상응하는 방사율값을 갖는 내부 표면을 가지는 것을 특징으로 하는 기판 처리용 시스템.
  18. 제 16 항에 있어서,
    상기 가스 주입 포트에 동작가능헤 결합된 적어도 하나의 가스 소스를 더 포함하는 것을 특징으로 하는 기판 처리용 시스템.
  19. 제 17항에 있어서,
    상기 적어도 하나의 가스 소스는 알콜 소스 또는 불화수소산 증기의 소스를 포함하는 것을 특징으로 하는 기판 처리용 시스템.
  20. 제 16 항에 있어서,
    배출 포트에 유동적으로 결합된 배출 시스템을 더 포함하는 것을 특징으로 하는 기판 처리용 시스템.
  21. 제 1 항에 있어서,
    프로세스 챔버에서 감소된 압력 분위기를 생성하는 수단을 더 포함하는 것을 특징으로 하는 기판 처리용 시스템.
  22. 제 1 항에 있어서,
    상기 프로세스 챔버를 가열하는 수단을 더 포함하는 것을 특징으로 하는 기판 처리용 시스템.
  23. 제 1 항에 있어서,
    상기 대향하는 표면의 방사율값은 상기 제 1 및 마지막 기판의 노출된 표면의 방사율값의 약 0.2의 범위내에 있는 것을 특징으로 하는 기판 처리용 시스템.
  24. 제 1 항에 있어서,
    상기 지지수단은 적어도 25개의 기판을 지지할 수 있는 것을 특징으로 하는 기판 처리용 시스템.
  25. 제 1 항에 있어서,
    상기 지지수단은 탑기판 지지 플레이트와 기저 기판 지지플레이트를 구비하고, 복수의 기판이 상기 탑 및 기저 기판 플레이트 사이에서 수직으로 적층된 오리엔테이션에 지지되고, 대향하는 표면은 상기 탑 및 기저 기판 지지 플레이트의 표면이고;
    상기 지지수단은 적어도 25개의 기판을 지지할 수 있고;
    상기 기판은 실리콘이고, 대향하는 표면은 실리콘 카바이드이며;
    카본 기반 물질로 구축된 라이너와 실리콘 카비이드로된 내부 표면을 가진 상기 제 1 하우징은 비투과성 물질로 구축되고 상기 라이너를 둘러싸고 있는 쉘을 더 구비하고;
    로딩챔버를 형성하는 제 2 하우징은, 제 1 하우징과의 공통벽, 로딩챔버에서 프로세스 챔버로의 통로를 형성하는 상기 공통벽에서의 구멍, 상기 로딩챔버 내에서 이동가능한 플레이트를 구비하고, 상기 기저 기판 지지 플레이트가 상기 이동가 능한 플레이트에 연결되고, 상기 이동가능한 플레이트는 지지수단 중 적어도 일 부분이 로딩챔버에 배치되는 로딩 위치와 상기 지지수단 전체가 프로세스 챔버내에 배치되는 처리 위치 사이에서 이동가능하며, 상기 이동가능한 플레이트가 로딩위치에서 처리위치로 이동될 때, 상기 지지수단은 상기 구멍을 통과하여 상기 이동가능한 플레이트가 상기 구멍을 폐쇄할 때까지 프로세스를 진행하고;
    상기 제 2 하우징은 순환공기에서 로딩챔버로의 통로를 형성하는 게이트 구멍을 구비하고;
    상기 게이트 구멍에 동작가능하게 결합된 게이트 밸브로서, 상기 게이트 밸브가 닫혀지면, 상기 프로세스 챔버와 로딩챔버가 상기 순환공기를 밀폐하여 밀봉하고;
    상기 이동가능한 플레이트가 처리 위치에 있을때, 이동가능한 플레이트의 탑표면상의 O-링 실이 이동가능한 플레이트와 공통벽 사이에서 압력을 받고 ;
    상기 제 1 하우징은 가스주입 포트와 배출 포트를 구비하고;
    상기 제 2 하우징은 배출 포트를 구비하고;
    상기 라이너는 가스 주입 매니폴드와 배출 매니폴드를 구비하고;
    적어도 하나의 가스 소스는 상기 가스 주입 포트에 동작가능하게 결합되고;
    가스 배출 시스템은 상기 제 1 하우징의 배출 포트와 제 2 하우징의 배출 포트에 유동적으로 결합되고;
    상기 배출 시스템에 결합된 프로세스 챔버에서 감소된 압력 분위기를 생성하는 수단; 및
    상기 프로세스 챔버를 가열하는 수단을 포함하는 것을 특징으로 하는 기판 처리용 시스템.
  26. 기판 처리 방법에 있어서,
    프로세스 챔버를 형성하는 제 1 하우징을 가지는 시스템을 제공하는 단계;
    적층된 오리엔테이션에서 복수의 기판을 지지하는 단계로서, 상기 적층된 오리엔테이션은 노출된 표면을 가지는 제 1 기판과 노출된 표면을 가지는 마지만 기판을 구비하고, 상기 제 1 및 마지막 기판의 노출된 표면은 방사율값을 가지는 단계;
    상기 제 1 및 마지막 기판의 노출 표면이 상기 제 1 및 마지막 기판의 노출된 표면의 방사율값에 상응하는 방사율값을 가진 표면에 대향하도록 상기 프로세스 챔버에 복수의 기판을 배치하는 단계; 및
    상기 프로세스 챔버내에 적어도 하나의 처리 조건에 따라 복수의 기판을 놓는 단계를 포함하는 것을 특징으로 하는 기판 처리 방법.
  27. 기판 처리 시스템에 있어서,
    프로세스 챔버를 형성하는 제 1 하우징;
    상기 프로세스 챔버로의 통로를 형성하는 제 1 하우징에서의 구멍;
    복수의 기판을 지지하기 위한 수단을 갖는 이동가능한 플레이트;
    지지수단이 상기 프로세스 챔버의 외부에 적어도 국부적으로 배치되는 로딩 위치와 상기 지지수단 전체가 상기 프로세스 챔버 내에 배치되는 처리위치 사이에서 상기 이동가능한 플레이트를 움직이고, 상기 처리위치에 있을때 상기 이동가능한 플레이트가 구멍을 폐쇄하는 수단;
    제 1 하우징에 있는 가스 주입 포트; 및
    제 1 하우징에 있는 배출 포트;를 포함하는 것을 특징으로 하는 기판 처리 시스템.
  28. 제 27 항에 있어서,
    상기 가스 주입 포트에 유동적으로 결합된 적어도 하나의 가스 소스를 더 포함하는 것을 특징으로 하는 기판 처리 시스템.
  29. 제 28 항에 있어서,
    상기 적어도 하나의 가스 소스는 알콜증기의 소스와 불화수소산 증기의 소스를 포함하는 것을 특징으로 하는 기판 처리 시스템.
  30. 제 27 항에 있어서,
    상기 배출 포트에 동작가능하게 결합된 배출 시스템을 더 포함하는 것을 특징으로 하는 기판 처리 시스템.
  31. 제 27 항에 있어서,
    상기 이동가능한 플레이트와 제 1 하우징 사이에 배치된 실을 더 포함하는 것을 특징으로 하는 기판 처리 시스템.
  32. 제 31 항에 있어서,
    상기 실이 O-링을 포함하는 것을 특징으로 하는 기판 처리 시스템.
  33. 제 27 항에 있어서,
    상기 가스주입 포트와 배출 포트는 상기 제 1 하우징의 대향하는 벽들 상에 배치되는 것을 특징으로 하는 기판 처리 시스템.
  34. 제 33 항에 있어서,
    상기 가스 주입 포트를 덮기위해 배치된 가스 주입 매니폴드와, 상기 배출 포트를 덮기위해 배치된 배출 매니폴드를 더 포함하는 것을 특징으로 하는 기판 처리 시스템.
  35. 제 34 항에 있어서,
    상기 가스 주입 매니폴드와 배출 매니폴드는 크기가 증가하는 방사형 패턴으로 조직된 분포 홀을 포함하는 것을 특징으로 하는 기판 처리 시스템.
  36. 제 34 항에 있어서,
    상기 가스 주입 포트와 가스 주입 매니폴드 사이에 배치된 제 1 가스 확산기 플레이트와, 상기 배출 포트와 배출 매니폴드 사이에 배치된 제 2 가스 확산기 플레이트를 더 포함하는 것을 특징으로 하는 기판 처리 시스템.
  37. 제 33 항에 있어서,
    상기 이동가능한 플레이트가 처리위치에 있을때, 상기 프로세스 챔버는 가스 주입 매니 폴드에서 배출 매니폴드까지의 거의 일정한 장방형 단면의 프로파일을 가지는 것을 특징으로 하는 기판 처리 시스템.
  38. 제 27 항에 있어서,
    상기 프로세스 챔버에 감소된 압력 분위기를 생성하는 수단을 더 포함하는 것을 특징으로 하는 기판 처리 시스템.
  39. 제 38 항에 있어서,
    상기 감소된 압력 분위기를 생성하는 수단은 상기 배출 포트에 결합된 배출 시스템 상에 배치되는 것을 특징으로 하는 기판 처리 시스템.
  40. 제 27 항에 있어서,
    상기 지지수단은 프로세스 챔버에서의 적층된 오리엔테이션에서 복수의 기판들을 지지하고, 상기 적층된 오리엔테이션은 노출된 표면을 가지는 제 1 기판 및 노출된 표면을 가진 마지막 기판을 구비하고, 상기 제 1 및 마지막 기판의 노출된 표면은 방사율값을 가지고; 상기 시스템은 상기 제 1 및 마지막 기판의 노출된 표면에 대향하는 표면을 더 포함하고, 복수의 기판이 상기 프로세스 챔버내의 적층된 오리엔테이션에서 지지될 때, 상기 대향하는 표면은 상기 제 1 및 마지막 기판의 노출된 표면의 방사율값에 상응하는 방사율값을 가지는 것을 특징으로 하는 기판 처리 시스템.
  41. 제 40 항에 있어서,
    상기 대향하는 표면의 방사율값은 상기 제 1 및 마지막 기판의 노출된 표면의 방사율값의 약 0.2의 범위 내에 있는 것을 특징으로 하는 기판 처리 시스템.
  42. 제 41 항에 있어서,
    상기 기판은 실리콘이고, 상기 대향하는 표면은 실리콘 카바이드인 것을 특징으로 하는 기판 처리 시스템.
  43. 제 40 항에 있어서,
    상기 대향하는 표면은 프로세스 챔버를 형성하는 제 1 하우징의 내부표면인 것을 특징으로 하는 기판 처리 시스템.
  44. 제 40 항에 있어서,
    상기 지지수단은 제 1 기판 지지 플레이트와 제 2 기판 지지 플레이트를 구비하고, 복수의 기판이 상기 제 1 및 제 2 기판 지지 플레이트 사이에서 적층된 오리엔테이션에서 지지되고, 상기 대향하는 표면은 상기 제 1 및 제 2 기판 지지 플레이트의 표면인 것을 특징으로 하는 기판 처리 시스템.
  45. 제 27 항에 있어서,
    상기 제 1 하우징은, 고열전도성 물질로 구축되고 상기 프로세스 챔버를 형성하는 내부 표면을 가진 라이너를 구비하고, 상기 내부 표면은 상기 제 1 및 마지막 기판의 노출된 표면의 방사율값에 상응하는 방사율값을 가지는 것을 특징으로 하는 기판 처리 시스템.
  46. 제 45 항에 있어서,
    상기 라이너는 카본기반 물질로 구축되는 것을 특징으로 하는 기판 처리 시스템.
  47. 제 46항에 있어서,
    상기 카본 기반 물질은 고밀도 카본, 자연 카본, 다이아몬드, 및 흑연으로 구성된 그룹중에서 선택되는 것을 특징으로 하는 기판 처리용 시스템.
  48. 제 46 항에 있어서,
    상기 라이너의 내부 표면은 실리콘 카바이드인 것을 특징으로 하는 기판 처리 시스템.
  49. 제 43 항에 있어서,
    상기 제 1 하우징은 비투과성 물질로 구축된 쉘을 구비하고, 상기 라이너가 쉘의 내부에 있는 것을 특징으로 하는 기판 처리 시스템.
  50. 제 47항에 있어서,
    상기 라이너는 주입 매니폴드와 배출 매니폴드를 포함하는 것을 특징으로 하는 기판 처리 시스템.
  51. 제 27 항에 있어서,
    로딩 챔버를 형성하는 제 2 하우징, 상기 제 1 하우징과의 공통벽을 갖는 제 2 챔버, 상기 공통벽을 통해 뻗어나가고 상기 로딩 챔버에서 프로세스 챔버로의 통로를 형성하는 구멍, 순환공기로부터 로딩 챔버로의 통로를 형성하는 게이트 구멍을 갖는 제 2 하우징을 더 포함하는 것을 특징으로 하는 기판 처리 시스템.
  52. 제 51 항에 있어서,
    상기 게이트 구멍에 동작가능하게 결합된 게이트 밸브를 더 포함하고, 상기 게이트 밸브가 폐쇄되었을 때, 상기 프로세스 챔버와 로딩 챔버가 순환공기로부터 밀폐하여 밀봉되는 것을 특징으로 하는 기판 처리 시스템.
  53. 제 27 항에 있어서,
    상기 프로세스 챔버를 가열하는 수단을 더 포함하는 것을 특징으로 하는 기판 처리 시스템.
  54. 제 27 항에 있어서,
    상기 지지 수단은 적어도 25 개의 기판을 지지할 수 있는것을 특징으로 하는 기판 처리 시스템.
  55. 제 27 항에 있어서,
    상기 가스 주입 포트에 유동적으로 결합된 적어도 하나의 가스 소스; 로딩 챔버를 형성하는 제 2 하우징으로서, 제 2 챔버가 제 1 하우징과의 공통벽을 가지고, 구멍은 상기 공통벽을 통해 뻗어나가 상기 로딩 챔버에서 프로세스챔버로의 통로를 형성하며, 순환공기에서 로딩 챔버로의 통로를 형성하는 게이트 구멍을 가지는 제 2 하우징; 상기 게이트 구멍에 동작가능하게 결합되는 게이트 밸브로서, 상기 게이트 밸브가 폐쇄되었을 때, 상기 프로세스 챔버와 로딩 챔버가 상기 순환 공기로부터 밀폐하여 밀봉되는 게이트 밸브; 이동가능한 플레이트와 공통벽 사이에 배치되는 실; 상기 제 2 하우징의 배출 포트; 상기 제 1 하우징과 제 2 하우징의 배출 포트에 동작가능하게 결합되는 배출 시스템;가스 주입 포트를 덮기위해 배치 되는 가스 주입 매니폴드; 가스 주입 포트와 가스 주입 매니폴드 사이에 배치된 제 1 가스 확산기 플레이트; 프로세스 챔버의 배출 포트를 덮기위해 배치된 배출 매니폴드; 배출 포트와 배출 매니폴드 사이에 배치된 제 2 가스 확산기 플레이트; 상기 배출 시스템에 동작가능하게 결합되고, 상기 프로세스 챔버에서 감소된 압력 분위기를 생성하는 수단; 복수의 기판이 상기 프로세스 챔버내의 적층된 오리엔테이션에서 지지될 때, 상기 제 1 및 마지막 기판의 노출된 표면의 방사율값에 상응하는 방사율값을 가지는 대향하는 표면으로서 상기 제 1 및 마지막 기판의 노출된 표면에 대향하는 표면, ; 카본기반 물질로 구축된 라이너와, 비투과성 물질로 구축되고 상기 라이너를 둘러싸고 있는 쉘을 구비한 제 1 하우징; 및 상기 프로세스 챔버를 가열하기 위한 수단을 더 포함하고,
    프로세스 챔버의 상기 가스 주입 포트와 배출 포트는 상기 제 1 하우징의 대향하는 벽 상에 배치되고;
    상기 지지수단은 프로세스 챔버에서의 적층된 오리엔테이션에서 복수의 기판을 지지하고, 상기 적층된 오리엔테이션은 노출된 표면을 가진 제 1 기판 및 노출된 표면을 가진 마지막 기판을 구비하고, 상기 제 1 및 마지막 기판의 노출된 표면은 방사율값을 가지는 지지수단이고;
    상기 라이너는 가스 주입 매니폴드 및 배출 매니폴드에 구비되는 것을 특징으로 하는 기판처리용 시스템.
  56. 기판 처리 방법에 있어서,
    프로세스 챔버를 형성하는 제 1 하우징, 상기 프로세스 챔버로의 통로를 형성하는 제 1 하우징에서의 구멍, 복수의 기판을 지지하는 수단을 가진 이동가능한 플레이트, 상기 지지수단이 프로세스 챔버의 외부에 적어도 국부적으로 배치되는 로딩 위치와 상기 지지수단 전체가 상기 프로세스 챔버내에 배치되는 처리 위치 사이에서 상기 이동가능한 플레이트를 이동시키는 수단; 상기 제 1 하우징에서의 가스 주입 포트, 및 상기 제 1 하우징에서의 배출 포트를 구비한 시스템을 제공하는 단계;
    상기 이동가능한 플레이트가 상기 로딩 위치에 있는 동안 상기 지지 수단에서 복수의 기판을 지지하는 단계;
    상기 처리 위치로 상기 이동가능한 플레이트를 이동시켜, 상기 이동가능한 플레이트로 상기 구멍을 폐쇄하는 단계; 및
    상기 가스 주입 포트를 통해 프로세스 챔버로 가스를 흐르게하여, 복수의 기판으로 흘려보내고, 배출 포트를 통해 프로세스 챔버로부터 배출하는 단계;를 포함하는 것을 특징으로 하는 기판 처리 방법.
  57. 기판 처리 시스템에 있어서,
    프로세스 챔버를 형성하는 제 1 하우징;
    적층된 오리엔테이션에서의 프로세스 챔버에서 복수의 기판을 지지하는 수단;
    제 1 하우징의 대향하는 벽들에 배치된 상기 제 1 하우징에서의 가스 주입 포트 및 상기 제 1 하우징에서의 배출 포트;
    상기 가스 주입 포트를 덮는 가스 주입 매니폴드 및 상기 배출 포트를 덮는 배출 매니폴드;
    상기 가스 주입 포트에 동작가능하게 결합된 적어도 하나의 가스 소스;
    상기 배출 포트에 동작가능하게 결합된 배출 시스템;을 포함하고,
    상기 적어도 가스 주입 매니폴드는 상기 홀의 크기가 상기 가스 주입 포트로부터의 거리가 증가하면서 증가하도록 패턴에서 배치된 복수의 홀을 구비하고, 상기 프로세스 챔버는 상기 가스 주입 매니폴드로부터 배출 매니폴드로의 거의 일정한 장방형 단면 프로파일을 가지는 것을 특징으로 하는 기판 처리 시스템.
  58. 제 57 항에 있어서,
    프로세스 챔버내에서 감소된 가압 분위기를 생성하는 수단을 더 포함하는 것을 특징으로 하는 기판 처리 시스템.
  59. 제 57 항에 있어서,
    상기 가스 소스 중 적어도 하나는 알콜 소스와 불화수소산 소스를 더 포함하는 것을 특징으로 하는 기판 처리 시스템.
  60. 제 57 항에 있어서,
    가스 주입 포트와 가스 주입 매니폴드 사이에 배치된 제 1 가스 확산기 플레 이트, 및 배출 포트와 배출 매니폴드 사이에 배치된 제 2 가스 확산기 플레이트를 더 포함하는 것을 특징으로 하는 기판 처리 시스템.
  61. 제 57 항에 있어서,
    상기 가스주입 포트는 가스 주입 매니폴드의 중심과 거의 정렬되는 것을 특징으로 하는 기판 처리 시스템.
  62. 제 57 항에 있어서,
    상기 프로세스 챔버를 가열하는 수단을 더 포함하는 것을 특징으로 하는 기판 처리 시스템.
  63. 제 57 항에 있어서,
    상기 지지수단은 적어도 25개의 기판을 지지할 수 있는 것을 특징으로 하는 기판 처리 시스템.
  64. 기판 처리 방법에 있어서,
    프로세스 챔버를 형성하는 제 1 하우징, 적층된 오리엔테이션에서의 프로세스 챔버에서 복수의 기판을 지지하는 수단, 제 1 하우징의 대향하는 벽들 상에 배치된 제 1 하우징에서의 가스 주입 포트 및 제 1 하우징에서의 배출 포트, 상기 가스 주입 포트를 덮는 가스 주입 매니폴드 및 상기 배출 포트를 덮는 배출 매니폴 드, 상기 가스 주입 포트에 동작가능하게 결합된 적어도 하나의 가스 소스, 상기 배출포트에 동작가능하게 결합된 배출 시스템을 구비하고, 상기 적어도 가스 주입 매니폴드는 홀의 크기가 상기 가스 주입 포트로부터의 거리가 증가하면서 증가하도록 패턴에 배열된 복수의 홀을 구비하고, 상기 프로세스 챔버는 가스 주입 매니폴드로부터 배출 매니폴드 까지 거의 일정한 장방형 단면 프로 파일을 가지는 시스템을 제공하는 단계;
    상기 가스 주입 매니폴드와 배출 매니폴드 사이에서 프로세스 챔버내의 지지수단에서 복수의 기판을 지지하는 단계;
    가스 주입 포트와 가스 주입 매니폴드를 통해 프로세스 챔버로 가스를 인입하는 단계;
    상기 가스를 전체 복수의 기판으로 흘려보내는 단계; 및
    배출 매니폴드와 배출 포트를 통해 프로세스 챔버로부터 가스를 제거하는 단계;를 포함하는 것을 특징으로 하는 기판 처리 방법.
  65. 제 64 항에 있어서,
    상기 가스의 인입 이전에 프로세스 챔버내에서 감소된 압력 분위기를 생성하는 단계를 더 포함하는 것을 특징으로 하는 기판 처리 방법.
  66. 제 65 항에 있어서,
    상기 가스의 인입 이전에 프로세스 챔버를 가열하는 단계를 더 포함하는 것 을 특징으로 하는 기판 처리 방법.
  67. 제 66 항에 있어서,
    상기 가스는 알콜 증기와 불포화수소산 증기를 포함하는 것을 특징으로 하는 기판 처리 방법.
KR1020077013579A 2004-11-18 2005-11-18 초소형 전자기계 시스템의 생산에 사용되는 기판의 등온배치 처리를 달성하기위한 시스템 및 방법 KR101154272B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/991,554 2004-11-18
US10/991,554 US7771563B2 (en) 2004-11-18 2004-11-18 Systems and methods for achieving isothermal batch processing of substrates used for the production of micro-electro-mechanical-systems
PCT/US2005/042232 WO2006055937A2 (en) 2004-11-18 2005-11-18 Systems and methods for achieving isothermal batch processing of substrates used for the production of micro-electro-mechanical systems

Publications (2)

Publication Number Publication Date
KR20070086275A true KR20070086275A (ko) 2007-08-27
KR101154272B1 KR101154272B1 (ko) 2012-06-13

Family

ID=36384952

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020077013579A KR101154272B1 (ko) 2004-11-18 2005-11-18 초소형 전자기계 시스템의 생산에 사용되는 기판의 등온배치 처리를 달성하기위한 시스템 및 방법

Country Status (7)

Country Link
US (1) US7771563B2 (ko)
EP (1) EP1859077B1 (ko)
JP (1) JP4912316B2 (ko)
KR (1) KR101154272B1 (ko)
AT (1) ATE499702T1 (ko)
DE (1) DE602005026581D1 (ko)
WO (1) WO2006055937A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102238028B1 (ko) * 2020-10-22 2021-04-08 주식회사 한화 기판 처리용 밀폐형 열처리 장치

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8639489B2 (en) 2003-11-10 2014-01-28 Brooks Automation, Inc. Methods and systems for controlling a semiconductor fabrication process
US8639365B2 (en) * 2003-11-10 2014-01-28 Brooks Automation, Inc. Methods and systems for controlling a semiconductor fabrication process
US20070282480A1 (en) * 2003-11-10 2007-12-06 Pannese Patrick D Methods and systems for controlling a semiconductor fabrication process
JP4698354B2 (ja) * 2005-09-15 2011-06-08 株式会社リコー Cvd装置
KR101874901B1 (ko) * 2011-12-07 2018-07-06 삼성전자주식회사 기판 건조 장치 및 방법
US20150155188A1 (en) * 2013-11-29 2015-06-04 Semes Co., Ltd. Substrate treating apparatus and method
US10347516B2 (en) 2014-11-11 2019-07-09 Applied Materials, Inc. Substrate transfer chamber
US10945313B2 (en) * 2015-05-27 2021-03-09 Applied Materials, Inc. Methods and apparatus for a microwave batch curing process
KR102358561B1 (ko) 2017-06-08 2022-02-04 삼성전자주식회사 기판 처리 장치 및 집적회로 소자 제조 장치

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4491810A (en) * 1983-01-28 1985-01-01 Andrew Corporation Multi-port, multi-frequency microwave combiner with overmoded square waveguide section
US4491610A (en) 1983-10-21 1985-01-01 Ashland Oil, Inc. Gas curing chamber for flat substrates
US4520750A (en) 1983-10-21 1985-06-04 Ashland Oil, Inc. Gas curing chamber for flat substrates
JPS6411320A (en) * 1987-07-06 1989-01-13 Toshiba Corp Photo-cvd device
US4854266A (en) * 1987-11-02 1989-08-08 Btu Engineering Corporation Cross-flow diffusion furnace
JP2644912B2 (ja) 1990-08-29 1997-08-25 株式会社日立製作所 真空処理装置及びその運転方法
JPH04215429A (ja) 1990-12-13 1992-08-06 Mitsubishi Electric Corp 半導体製造装置
US5228206A (en) 1992-01-15 1993-07-20 Submicron Systems, Inc. Cluster tool dry cleaning system
US5332280A (en) * 1992-10-09 1994-07-26 Dupont J Demountable deflector for shipping containers and the like
JP2833946B2 (ja) 1992-12-08 1998-12-09 日本電気株式会社 エッチング方法および装置
JP3125199B2 (ja) * 1993-03-18 2001-01-15 東京エレクトロン株式会社 縦型熱処理装置
US5399923A (en) * 1993-07-26 1995-03-21 Texas Instruments Incorporated Field programmable gate array device with antifuse overcurrent protection
US5725554A (en) * 1993-10-08 1998-03-10 Richard-Allan Medical Industries, Inc. Surgical staple and stapler
US5439553A (en) 1994-03-30 1995-08-08 Penn State Research Foundation Controlled etching of oxides via gas phase reactions
JPH08186081A (ja) * 1994-12-29 1996-07-16 F T L:Kk 半導体装置の製造方法及び半導体装置の製造装置
US6002109A (en) * 1995-07-10 1999-12-14 Mattson Technology, Inc. System and method for thermal processing of a semiconductor substrate
FR2747112B1 (fr) 1996-04-03 1998-05-07 Commissariat Energie Atomique Dispositif de transport d'objets plats et procede de transfert de ces objets entre ledit dispositif et une machine de traitement
JP3721478B2 (ja) 1996-04-12 2005-11-30 フオスター電機株式会社 スピーカ用振動板
US5846073A (en) * 1997-03-07 1998-12-08 Semitool, Inc. Semiconductor furnace processing vessel base
US6673673B1 (en) * 1997-04-22 2004-01-06 Samsung Electronics Co., Ltd. Method for manufacturing a semiconductor device having hemispherical grains
KR100252213B1 (ko) 1997-04-22 2000-05-01 윤종용 반도체소자제조장치및그제조방법
JPH10321584A (ja) 1997-05-22 1998-12-04 Mitsubishi Electric Corp 乾燥装置および乾燥方法
KR19990010200A (ko) 1997-07-15 1999-02-05 윤종용 감압식 건조 장치를 이용하는 반도체장치 건조방법
US5937541A (en) 1997-09-15 1999-08-17 Siemens Aktiengesellschaft Semiconductor wafer temperature measurement and control thereof using gas temperature measurement
US6185839B1 (en) 1998-05-28 2001-02-13 Applied Materials, Inc. Semiconductor process chamber having improved gas distributor
US6016611A (en) 1998-07-13 2000-01-25 Applied Komatsu Technology, Inc. Gas flow control in a substrate processing system
JP3664897B2 (ja) 1998-11-18 2005-06-29 東京エレクトロン株式会社 縦型熱処理装置
JP3030852B1 (ja) * 1998-12-25 2000-04-10 株式会社東京機械製作所 複数の見開き面を有する1セクション多ペ―ジ印刷物を作成可能な輪転機
US6178660B1 (en) 1999-08-03 2001-01-30 International Business Machines Corporation Pass-through semiconductor wafer processing tool and process for gas treating a moving semiconductor wafer
US6161304A (en) 1999-10-05 2000-12-19 M&R Printing Equipment, Inc. Dryer assembly
NL1013989C2 (nl) 1999-12-29 2001-07-02 Asm Int Werkwijze en inrichting voor het behandelen van een wafer.
US6286231B1 (en) 2000-01-12 2001-09-11 Semitool, Inc. Method and apparatus for high-pressure wafer processing and drying
US6175023B1 (en) * 2000-01-31 2001-01-16 Jian Liu Synthesis of water soluble 9-dihydro-paclitaxel derivatives from 9-dihydro-13-acetylbaccatin III
KR100360401B1 (ko) * 2000-03-17 2002-11-13 삼성전자 주식회사 슬릿형 공정가스 인입부와 다공구조의 폐가스 배출부를포함하는 공정튜브 및 반도체 소자 제조장치
JP4067307B2 (ja) * 2000-04-27 2008-03-26 株式会社荏原製作所 回転保持装置
JP3833439B2 (ja) 2000-05-02 2006-10-11 株式会社ノリタケカンパニーリミテド 大型基板用多段加熱炉、及び両面加熱式遠赤外線パネルヒーター、並びに該加熱炉内の給排気方法
US6391804B1 (en) 2000-06-09 2002-05-21 Primaxx, Inc. Method and apparatus for uniform direct radiant heating in a rapid thermal processing reactor
US6798054B1 (en) * 2000-07-28 2004-09-28 Siliconware Precision Industries Co., Ltd. Method of packaging multi chip module
US6381804B1 (en) * 2000-09-29 2002-05-07 Oreck Holdings, Llc Apparatus for conducting air into bags of vacuum cleaners
US6428847B1 (en) 2000-10-16 2002-08-06 Primaxx, Inc. Vortex based CVD reactor
JP2002261081A (ja) * 2001-03-01 2002-09-13 Asm Japan Kk 半導体ウエハのエッチング装置及び方法
JP2003017543A (ja) * 2001-06-28 2003-01-17 Hitachi Kokusai Electric Inc 基板処理装置、基板処理方法、半導体装置の製造方法および搬送装置
US6725564B2 (en) 2001-08-27 2004-04-27 Applied Materials, Inc. Processing platform with integrated particle removal system
US6902395B2 (en) 2002-03-15 2005-06-07 Asm International, N.V. Multilevel pedestal for furnace
JP2004091829A (ja) * 2002-08-30 2004-03-25 Tokyo Electron Ltd エッチング方法及びエッチング装置
US6849131B2 (en) 2002-10-05 2005-02-01 Taiwan Semiconductor Manufacturing Co., Ltd Truncated dummy plate for process furnace
US6792693B2 (en) 2002-10-08 2004-09-21 Taiwan Semiconductor Manufacturing Co., Ltd Wafer dryer system for PRS wet bench
WO2005038877A2 (en) * 2003-10-14 2005-04-28 Rudolph Technologies, Inc. MOLECULAR AIRBORNE CONTAMINANTS (MACs) REMOVAL AND WAFER SURFACE SUSTAINING SYSTEM AND METHOD

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102238028B1 (ko) * 2020-10-22 2021-04-08 주식회사 한화 기판 처리용 밀폐형 열처리 장치

Also Published As

Publication number Publication date
WO2006055937A2 (en) 2006-05-26
ATE499702T1 (de) 2011-03-15
JP4912316B2 (ja) 2012-04-11
EP1859077B1 (en) 2011-02-23
US7771563B2 (en) 2010-08-10
EP1859077A2 (en) 2007-11-28
WO2006055937A3 (en) 2007-06-07
DE602005026581D1 (de) 2011-04-07
KR101154272B1 (ko) 2012-06-13
EP1859077A4 (en) 2010-03-31
US20060102287A1 (en) 2006-05-18
WO2006055937A8 (en) 2007-08-23
JP2008521258A (ja) 2008-06-19

Similar Documents

Publication Publication Date Title
KR101154272B1 (ko) 초소형 전자기계 시스템의 생산에 사용되는 기판의 등온배치 처리를 달성하기위한 시스템 및 방법
JP5135915B2 (ja) 載置台構造及び熱処理装置
US7665951B2 (en) Multiple slot load lock chamber and method of operation
KR100802667B1 (ko) 상부 전극, 플라즈마 처리 장치 및 처리 방법, 및 제어 프로그램을 기록한 기록매체
US8183502B2 (en) Mounting table structure and heat treatment apparatus
US20120170999A1 (en) Load lock device and processing system
US20100326637A1 (en) Load-lock apparatus and substrate cooling method
US20110269314A1 (en) Process chambers having shared resources and methods of use thereof
US10405376B2 (en) Apparatus and method for treating substrate
JP3380652B2 (ja) 処理装置
US20170352565A1 (en) Workpiece carrier with gas pressure in inner cavities
US10115611B2 (en) Substrate cooling method, substrate transfer method, and load-lock mechanism
TW201535563A (zh) 基板處理裝置、噴淋板及基板處理方法
CN111033695A (zh) 内壁和基板处理装置
KR100442580B1 (ko) 반도체 제조용 챔버의 배기시스템
KR102241600B1 (ko) 로드락 챔버 및 이를 구비하는 기판 처리 시스템
JP5569169B2 (ja) 基板貼り合せ装置の制御方法、基板貼り合せ装置、積層半導体装置製造方法及び積層半導体装置
US20230335381A1 (en) Substrate processing apparatus
TW202249152A (zh) 基板處理裝置
CN117397013A (zh) 基板处理装置
KR20230063324A (ko) 기판을 냉각하기 위한 방법, 시스템, 및 장치
KR20230103859A (ko) 리프트 핀 유닛 및 이를 구비하는 기판 지지 유닛 그리고 기판 처리 장치
KR20220007518A (ko) 탑재대, 기판을 처리하는 장치, 및 기판을 온도 조절하는 방법
JP2021072424A (ja) 基板収容ユニット及び基板搬送装置における真空搬送ユニットのメンテナンス方法
WO2005069359A1 (ja) 基板処理装置および半導体装置の製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150528

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160527

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170531

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180504

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190508

Year of fee payment: 8