KR20070083259A - Titanium-silver photocatalytic alloy - Google Patents

Titanium-silver photocatalytic alloy Download PDF

Info

Publication number
KR20070083259A
KR20070083259A KR1020060010271A KR20060010271A KR20070083259A KR 20070083259 A KR20070083259 A KR 20070083259A KR 1020060010271 A KR1020060010271 A KR 1020060010271A KR 20060010271 A KR20060010271 A KR 20060010271A KR 20070083259 A KR20070083259 A KR 20070083259A
Authority
KR
South Korea
Prior art keywords
tiag
minutes
photocatalytic
alloy
titanium
Prior art date
Application number
KR1020060010271A
Other languages
Korean (ko)
Inventor
오근택
최정윤
이덕창
백민규
Original Assignee
주식회사 바이오머테리얼즈코리아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 바이오머테리얼즈코리아 filed Critical 주식회사 바이오머테리얼즈코리아
Priority to KR1020060010271A priority Critical patent/KR20070083259A/en
Publication of KR20070083259A publication Critical patent/KR20070083259A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B23/00Uppers; Boot legs; Stiffeners; Other single parts of footwear
    • A43B23/24Ornamental buckles; Other ornaments for shoes without fastening function
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43CFASTENINGS OR ATTACHMENTS OF FOOTWEAR; LACES IN GENERAL
    • A43C19/00Attachments for footwear, not provided for in other groups of this subclass
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43CFASTENINGS OR ATTACHMENTS OF FOOTWEAR; LACES IN GENERAL
    • A43C9/00Laces; Laces in general for garments made of textiles, leather, or plastics
    • A43C9/02Laces; Laces in general for garments made of textiles, leather, or plastics provided with tags, buttons, or decorative tufts

Landscapes

  • Catalysts (AREA)

Abstract

A technology which can improve a photocatalytic effect of a titanium oxide coating film in a manner that is different from conventional techniques is provided. A titanium-silver photocatalytic alloy contains more than 0 to 5 at.% of silver(Ag), and the balance of Ti and inevitable impurities, and comprises a titanium oxide coating film that is formed on its surface and functions as a photocatalyst by photo excitation. The titanium oxide coating film has the crystal structure of anatase.

Description

티타늄-은 광촉매 합금 {TITANIUM-SILVER PHOTOCATALYTIC ALLOY}Titanium-Silver Photocatalyst Alloy {TITANIUM-SILVER PHOTOCATALYTIC ALLOY}

도 1은 본 발명의 일실시예에 따른 광촉매 실험을 위한 개략도이다. 1 is a schematic diagram for a photocatalyst experiment according to an embodiment of the present invention.

도 2는 본 발명의 일실시예에 따른 각 시편에 대한 주사전자현미경(SEM) 이미지로, 도 2a는 400℃에서 1시간동안 열산화된 Ti의 표면형상이고, 도 2b는 250V로 3분간 양극산화한 Ti의 표면형상이고, 도 2c는 400℃에서 1시간동안 열산화된 TiAg 합금의 표면형상이고, 도 2b는 250V로 3분간 양극산화한 TiAg 합금의 표면형상이다.2 is a scanning electron microscope (SEM) image of each specimen according to an embodiment of the present invention, Figure 2a is a surface shape of the thermally oxidized Ti for 1 hour at 400 ℃, Figure 2b is 250V anode for 3 minutes It is the surface shape of oxidized Ti, FIG. 2C is the surface shape of the TiAg alloy thermally oxidized at 400 degreeC for 1 hour, and FIG. 2B is the surface shape of the TiAg alloy anodized for 3 minutes at 250V.

도 3a 및 3b는 각각 Ti 및 TiAg 합금에 대한 X-선 회절 패턴으로, TO 및 AO는 각각 400℃에서 1시간동안 열산화했음과 250V로 3분간 양극산화했음을 의미하고, T는 Ti(substrate)을, A는 Anatase를 가르킨다. 3A and 3B are X-ray diffraction patterns for Ti and TiAg alloys, respectively, indicating that TO and AO were thermally oxidized at 400 ° C. for 1 hour and anodized at 250 V for 3 minutes, respectively, where T is Ti (substrate). , A points to Anatase.

도 4a 및 4b는 Ti, Ti(TO), Ti(AO)와 TiAg, TiAg(TO), TiAg(AO) 시편에 4.8×106 CFU/ml의 각 시편에서 S. mutans를 떨어뜨리고 60분간 자외선 A를 조사하여 생존한 균수를 보여준다(산화방법은 전술한 바와 마찬가지이고, Controls were covered with black cloth. Means with the same letters are not significantly different. (α= 0.05))4A and 4B show 4.8 × 10 6 in Ti, Ti (TO), Ti (AO) and TiAg, TiAg (TO), TiAg (AO) specimens. S. mutans were dropped from each specimen of CFU / ml and irradiated with UV-A for 60 minutes to show viable bacterial count (oxidation method was as described above, and Controls were covered with black cloth. Means with the same letters are not significantly different. (α = 0.05))

도 5a 및 5b는 도 4a 및 4b와 마찬가지로 각 시편에 4.8×107 CFU/ml의 L. acidophilus를 떨어뜨리고 60분간 자외선 A를 조사하여 생존한 균수를 보여준다(산화방법은 전술한 바와 마찬가지이고, Controls were covered with black cloth.)Figures 5a and 5b shows the number of cells survived by dropping 4.8 × 10 7 CFU / ml of L. acidophilus on each specimen and irradiating ultraviolet A for 60 minutes as in FIGS. 4a and 4b (the oxidation method is as described above, Controls were covered with black cloth.)

도 6a 및 6b는 Ti, Ti(TO), Ti(AO)와 TiAg, TiAg(TO), TiAg(AO) 시편에 4.8×106 CFU/ml의 각 시편에서 S. mutans를 떨어뜨리고 자외선 A 조사 20분, 40분, 60분, 80분, 100분 후 균액을 채취하여 생존한 균수를 보여준다(산화방법은 전술한 바와 마찬가지임).6A and 6B show that S. mutans were dropped and UV A irradiation on Ti, Ti (TO), Ti (AO) and TiAg, TiAg (TO) and TiAg (AO) specimens from each specimen at 4.8 × 10 6 CFU / ml. After 20 minutes, 40 minutes, 60 minutes, 80 minutes, and 100 minutes, the bacterial solution is collected and the number of viable bacteria is shown (the oxidation method is the same as described above).

도 7a 및 7b는 도 6a 및 6b와 마찬가지로 각 시편에 4.8×107 CFU/ml의 L. acidophilus를 떨어뜨리고 자외선 A 조사 20분, 40분, 60분, 80분, 100분 후 균액을 채취하여 생존한 균수를 보여준다(산화방법은 전술한 바와 마찬가지임).Figures 7a and 7b as shown in Figures 6a and 6b drop 4.8 × 10 7 CFU / ml of L. acidophilus to each specimen, and after 20 minutes, 40 minutes, 60 minutes, 80 minutes, 100 minutes of irradiation with ultraviolet A The number of viable bacteria is shown (oxidation method is the same as described above).

도 8은 광촉매의 원리를 개략적으로 보여준다.8 schematically shows the principle of the photocatalyst.

본 발명은 티타늄-은 광촉매 합금에 관한 것이다. The present invention relates to a titanium-silver photocatalyst alloy.

광촉매는 빛을 흡수함으로써 반응을 촉진하는 기술로 Self-Cleaning, 항균, 탈취, 독소분해, 암치료 등 최근 여러 분야에서 활용되고 있는 기술이다. Photocatalyst is a technology that promotes the reaction by absorbing light, and is recently used in various fields such as self-cleaning, antibacterial, deodorization, toxin decomposition, and cancer treatment.

지금까지의 연구 결과, 가장 우수한 광촉매 효과를 발현하는 물질로 Anatase 형 산화티탄(TiO2)이 알려지게 되었으며 이에 대한 적용분야와 효과 향상에 대한 연구가 계속 진행중에 있다. 보통 이러한 산화티탄의 활용은 표면적을 증가시켜 광촉매 효과의 향상을 가져오게 하기 위해 분말(Powder) 형태로 제작되며 실제 적용에 있어서 Sol 이나 2차 가공품의 형태로 제작되어진다. 이러한 기술은 광촉매 특성이 없는 모재에 광촉매 특성을 부여하기 위한 적용으로서 모재와의 반응으로 산화티탄의 광촉매 성능이 저하되지 않도록 하는 2차적인 기술 또한 필요하게 된다.As a result of the previous research, Anatase type titanium oxide (TiO 2 ) was known as the material which exhibits the best photocatalytic effect, and researches on the application field and improvement of the effect are ongoing. In general, the use of titanium oxide is made in the form of powder to increase the surface area and improve the photocatalytic effect, and in the form of sol or secondary processed product in actual application. This technique is also an application for imparting photocatalytic properties to a base material having no photocatalytic properties, and a secondary technology is also required to prevent photocatalytic performance of titanium oxide from being degraded by reaction with the base material.

본 기술은 광촉매 효과를 가지고 있는 티타늄 합금을 모재로 하여 직접 모재 표면에 산화티탄을 형성시켜 광촉매 효과를 발현하고자 하는데 있다.The present technology aims to express a photocatalytic effect by forming titanium oxide directly on the surface of a base material using a titanium alloy having a photocatalytic effect as a base material.

티타늄 합금의 광촉매 효과를 발현시키는 기술로는 모재의 표면층에 산화피막을 형성함으로써 가능해지며 이에 대한 효과의 향상은 Anatase형 피막의 형성, 피막의 두께, micro/nano pore의 형성을 통한 피막의 표면적을 증가시킴으로서 얻어질 수 있다.The technique of expressing the photocatalytic effect of the titanium alloy is made possible by forming an oxide film on the surface layer of the base material. By increasing it.

그러나, 이러한 산화피막에 대한 광촉매 효과의 향상에는 한계가 있으며 다른 측면으로 광촉매 향상을 가져올 수 있는 방안이 필요하다.However, there is a limit to the improvement of the photocatalytic effect on such an oxide film, and there is a need for a method capable of bringing the photocatalyst to another aspect.

본 발명의 목적은 종래 기술과는 다른 형식으로 티타늄 산화피막의 광촉매 효과를 향상시킬 수 있는 기술을 제공하는 것을 목적으로 한다. An object of the present invention is to provide a technique that can improve the photocatalytic effect of the titanium oxide film in a form different from the prior art.

이에 본 발명은, 0 < Ag ≤ 5 at%와, 나머지인 Ti 및 불가피한 불순물로 이루어지고, 그 표면에 형성된 티타늄산화피막이 광여기에 의해 광촉매로 작용하는 티타늄-은 광촉매 합금을 제공한다.Accordingly, the present invention provides a titanium-silver photocatalyst alloy composed of 0 <Ag ≤ 5 at%, the remaining Ti and inevitable impurities, and the titanium oxide film formed on the surface acts as a photocatalyst by photoexcitation.

여기서, 상기 티타늄산화피막은 아나타제 결정구조를 갖는 것이 바람직하다. Here, the titanium oxide film preferably has an anatase crystal structure.

Ti-Ag 합금에 Ag가 5 at%를 초과하도록 첨가되면 Ti2Ag 금속간화합물이 석출하게 되어 내식성에 악영향을 미치고, 아울러 Ag는 많이 첨가해도 그 첨가량의 증가에 따른 큰 물성향상을 기대할 수 없고, 비싼 합금원소이므로 첨가량을 증가시키는 것이 경제성을 떨어뜨린다. 따라서, 그 상한값은 5 at%로 제한된다. 또한, 본 발명에 따른 Ti-Ag 합금의 조직이 α-β 이중상인 경우, Ag 원소의 고용강화와 상전이(α→β)에 따른 강도증가를 기대할 수 있다. 아울러, 본 발명에 따른 Ti-Ag 합금에서 Ag의 함량이 1.5 ~ 4.0 at%인 경우, β상이 더욱 안정되게 존재하므로 상술한 Ag 원소의 고용강화와 상전이에 따른 강도증가효과를 얻으면서 내식성을 향상시킬 수 있음과 동시에, 석출물의 영향도 적고 내식성 저하도 막을 수 있다. When Ag is added to the Ti-Ag alloy in excess of 5 at%, Ti 2 Ag intermetallic compounds are precipitated, which adversely affects the corrosion resistance. Moreover, even when a large amount of Ag is added, a large improvement in physical properties due to the increase in the amount of Ag cannot be expected. In addition, it is an expensive alloy element, so increasing the amount of addition decreases the economic efficiency. Therefore, the upper limit is limited to 5 at%. In addition, when the structure of the Ti-Ag alloy according to the present invention is the α-β double phase, it can be expected to increase the strength due to solid solution strengthening and phase transition (α → β) of Ag element. In addition, when the Ag content is 1.5 to 4.0 at% in the Ti-Ag alloy according to the present invention, since the β phase is more stably present, the corrosion resistance is improved while obtaining the strength increase effect due to the solid solution strengthening and phase transition of the Ag element described above. At the same time, the effect of precipitates is small and corrosion resistance can be prevented.

아울러, 본 발명에 따른 Ti-Ag 합금의 제조는 진공상태에서 수행하여 Ti-Ag의 순도를 99.8 wt% 이상으로 유지하는 것이 바람직하다. 불순물의 혼입은 합금의 강도를 증가시키지만 내식성을 크게 감소시키기 때문이다. 불순물 중 산소의 혼입을 적극 억제하여 0.15 wt% 이하로 제한한다.In addition, the Ti-Ag alloy according to the present invention is preferably carried out in a vacuum state to maintain the purity of Ti-Ag at 99.8 wt% or more. This is because the incorporation of impurities increases the strength of the alloy but greatly reduces the corrosion resistance. The incorporation of oxygen in the impurities is actively suppressed and limited to 0.15 wt% or less.

지금까지 알려진 광촉매 반응기구는 다음과 같다(도 8 참조).The photocatalytic reactors known to date are as follows (see Figure 8).

① TiO2 + hν → e- + h+ ① TiO 2 + hν → e - + h +

② e- + O2 →·O2 - ② e - + O 2 → · O 2 -

③ ·O2 - + H+ → H2 ③ · O 2 - + H + → H 2 O ·

④ h+ + H2O →·OH + H+ ④ h + + H 2 O → · OH + H +

⑤ H+ → Htrap + ⑤ H + → H trap +

위의 반응기구에서 보듯이 광촉매 효과는 빛을 흡수함으로써 표면층에서 생성되는 전자와 정공의 역할로 이루어진다. 이렇게 형성된 정공의 2차 반응으로 생성된 하이드록시라디칼(·OH)이 광촉매 산화분해반응의 주요한 활성종으로 알려져 있다. 따라서, 광촉매 효과가 보다 잘 일어나기 위해서는 이때 생성된 전자와 정공이 재결합하지 않고 각기 다른 2차 반응에 참여할 수 있도록 하는 것이다. 빛의 흡수로 생성된 전자와 정공은 순간적으로 다시 재결합하기 때문에 전자와 정공을 2차 반응으로 유도하기 위해서는 이러한 재결합이 일어나지 않도록 해주는 것이 필요하다. As shown in the above reactor, the photocatalytic effect consists of electrons and holes generated in the surface layer by absorbing light. The hydroxy radicals (.OH) produced by the secondary reaction of the holes thus formed are known as the main active species of the photocatalytic oxidative decomposition reaction. Therefore, in order for the photocatalytic effect to occur better, the electrons and holes generated at this time may participate in different secondary reactions without recombination. Since the electrons and holes generated by the absorption of light recombine again instantaneously, it is necessary to prevent such recombination in order to induce electrons and holes into the secondary reaction.

본 발명자들은 Ti-Ag 합금을 제조하여 일련의 Anatase형 산화 피막(TiO2)을 형성한 후 광촉매 효과를 연구한 끝에, 합금 원소로 첨가된 Ag가 빛의 흡수로 생성된 전자를 보다 빨리 이동시켜 정공과의 재결합을 방지함으로써 전자와 정공의 2차 반응의 확률을 향상시키는 결과를 가져온다는 점을 밝혀내어 본 발명을 완성하였다. The inventors prepared a Ti-Ag alloy to form a series of Anatase type oxide films (TiO 2 ), and after studying the photocatalytic effect, Ag added as an alloying element quickly moved electrons generated by absorption of light. The present invention has been completed by finding that preventing recombination with holes results in an improved probability of secondary reaction between electrons and holes.

이하에서 본 발명을 실시예 및 첨부도면을 기초로 더욱 상세하게 설명한다. 그러나, 본 발명의 범위가 아래의 설명에 의해 제한되는 것은 아니며, 본 발명의 범위는 오로지 이어지는 특허청구범위에 의해서면 제한될 것이다. Hereinafter, the present invention will be described in more detail with reference to Examples and the accompanying drawings. However, the scope of the present invention is not limited by the following description, and the scope of the present invention will be limited only by the following claims.

실시예 및 비교예의 설명Description of Examples and Comparative Examples

시편의 준비Preparation of the Psalms

순수 Ti (Grade III, ASTM F67, Supra Alloys, Inc. California, USA)와 TiAg 계 합금(Ti-2.0at%Ag, Biomaterialskorea, Seoul, Korea)을 사용하였다. 시편은 두께 1 mm의 판재를 5×5 mm2 크기로 절단하여 사용하였다.Pure Ti (Grade III, ASTM F67, Supra Alloys, Inc. California, USA) and TiAg based alloys (Ti-2.0at% Ag, Biomaterialskorea, Seoul, Korea) were used. The specimen was used by cutting a plate having a thickness of 1 mm to 5 × 5 mm 2 size.

TiAg 합금 용해를 위한 원소재는 sponge Ti와 입상의 Ag를 사용하였고 Ag 함량은 2.0 at%로 하였다. 계량 후 아크 용해로를 이용하여 30 g씩 용해하였고 3회씩 반복하였다. 용해에 의해 얻어진 주물은 조성 균질화를 위하여 950℃의 온도가 유지된 진공로에서 72 시간 동안 열처리하여 주조 편석을 제거하였다. 이것을 950℃에서 열간 압연(rolling)하여 약 1 mm의 균일한 두께로 만들고 이 때 생성된 산화 물(scale)을 산세(acid washing, 불산:질산:증류수의 비, 1:3:7)하여 제거하였다. 다시 950℃의 진공로에서 1 시간 동안 용체화 처리(solution annealing)하여 열간 압연 시 발생한 석출물 등을 제거하고 상온의 수중에서 냉각(quenching)하였다. 이것을 5×5 mm2 크기로 절단하고 600번 사포(emery paper)로 연마한 후 아세톤 및 에틸 알코올로 초음파 세척하였다.Sponge Ti and Ag were used as the raw material for dissolving TiAg alloy. Ag content was 2.0 at%. After metering, 30 g was dissolved using an arc melting furnace and repeated three times. Castings obtained by dissolution were heat treated for 72 hours in a vacuum furnace maintained at a temperature of 950 ° C. to remove composition segregation for composition homogenization. It is hot rolled at 950 ° C. to a uniform thickness of about 1 mm and the resulting oxide scale is removed by acid washing (ratio of hydrofluoric acid: nitric acid: distilled water, 1: 3: 7). It was. The solution was further annealed in a vacuum furnace at 950 ° C. for 1 hour to remove precipitates generated during hot rolling and then cooled in water at room temperature. This was cut into 5 × 5 mm 2 size, polished with emery paper No. 600 and ultrasonically washed with acetone and ethyl alcohol.

제작된 Ti와 TiAg 시편을 각각 열산화(thermal oxidation: TO)과 양극산화(anodic oxidation: AO)로 표면 처리 하였다. TO의 경우는 muffle furnace에서 400℃에서 1 시간 동안 대기 열처리한 후 노냉하였다. AO의 경우는 0.04 M β-glycerophsphate disodium salt pentahydrate 및 0.4 M calcium acetate 혼합 용액 내에서, 산화전극인 시편과 환원 전극인 Pt 판 사이에 250 V의 전위를 3분간 가하였다. The Ti and TiAg specimens were surface treated with thermal oxidation (TO) and anodization (AO), respectively. In the case of TO, the furnace was heat-treated at 400 ° C. for 1 hour in a muffle furnace and then cooled. In the case of AO, a 250 V potential was applied for 3 minutes between the anode and the Pt plates in a 0.04 M β-glycerophsphate disodium salt pentahydrate and 0.4 M calcium acetate mixture solution.

주사전자현미경 및 X-선 Scanning electron microscope and X-ray 회절diffraction 분석 analysis

시편 표면의 산화층 형성 양상을 관찰하기 위하여 주사 전자 현미경(S-2700, S-4200, Hitachi, Japan)을 이용하여 15000 배율로 관찰하였다. In order to observe the oxide layer formation on the surface of the specimen, it was observed at 15000 magnification using a scanning electron microscope (S-2700, S-4200, Hitachi, Japan).

TO과 AO에 의하여 처리된 합금 시편의 표면 형상(surface topography)을 주사전자현미경(SEM)으로 관찰한 결과를 도 2에 제시하였다. The surface topography of the alloy specimens treated with TO and AO is shown in FIG. 2 by scanning electron microscopy (SEM).

TO는 약 100, AO는 1-2 μm의 두께의 피막을 지니고 있었으며, TO에 의하여 처리된 Ti 및 TiAg 시편 표면은 AO 처리 시편 표면에 비하여 평활하고 산화층이 얇 아 원 모재에 존재하였던 연마흔이 남아있었다(도 2a 및 2c). The TO had a thickness of about 100 and the AO had a thickness of 1-2 μm. The surface of Ti and TiAg specimens treated with TO had a smoother and thinner oxide layer than the AO treated specimens. It remained (FIGS. 2A and 2C).

AO에 의하여 처리된 Ti 및 TiAg 시편 표면을 도 2b 및 2d에 각각 나타내었다. AO에 의하여 처리된 시편은 Ti 및 TiAg 모두 표면에 내부 지름 2, 외부지름 5 μm 가량의 "crater"를 형성하였고 TO 시편에 비하여 표면거칠기가 높게 나타났다. 이것을 45°기울여 촬영한 결과인 도 2b는 이것을 잘 나타내고 있다. Ti and TiAg specimen surfaces treated with AO are shown in FIGS. 2B and 2D, respectively. In the specimens treated with AO, both Ti and TiAg formed “craters” with an inner diameter of 2 μm and an outer diameter of 5 μm on the surface, and showed higher surface roughness than the TO specimen. Fig. 2B shows the result of photographing this by tilting 45 degrees.

시편 표면 산화물의 종류를 정성분석하기 위하여 X-선 회절 분석기(D-Max Rint 2400, Rigaku, Japan)를 이용하였다. Target으로는 Cu Kα1을 이용하였고 scan range와 rate는 각각 20-80°, 1°/min이었다. An X-ray diffractometer (D-Max Rint 2400, Rigaku, Japan) was used to qualitatively analyze the type of specimen surface oxide. Cu Kα 1 was used as a target, and the scan range and rate were 20-80 ° and 1 ° / min, respectively.

도 3은 Ti와 TiAg의 산화 처리 방법에 따른 시편 표면의 X선 회절 분석 결과를 산화 처리하지 않은 대조군 시편의 결과와 함께 나타내었다. Ti의 표면 분석 결과는 도 3a에, TiAg의 결과는 도 3b에 나타내었다. TO로 열처리한 경우 Ti, TiAg 모두 대조군에 비하여 뚜렷한 차이를 나타내지 않았다. 그러나 AO에 의하여 처리된 경우 Ti, TiAg 모두 후처리 없이도 표면에 아나타제를 비교적 안정적으로 형성하였음을 알 수 있다.3 shows the results of X-ray diffraction analysis on the surface of the specimen according to the oxidation treatment method of Ti and TiAg together with the results of the control specimen without oxidation treatment. The surface analysis results of Ti are shown in FIG. 3A, and the results of TiAg are shown in FIG. 3B. In the case of heat treatment with TO, neither Ti nor TiAg showed a significant difference compared to the control. However, when treated with AO, it can be seen that both of Ti and TiAg formed anatase on the surface relatively stably without post-treatment.

광촉매 코팅에 따른 항균효과의 분석Analysis of Antimicrobial Effects According to Photocatalyst Coating

S. mutans(KCTC 3298)는 20 mL의 BHI(brain heart infusion) 배지에, L. acidophilus(KCCM 32820)는 20 mL의 Lactobicilli MRS 배지에 넣어 37℃에서 12 시 간 배양하고 4000 rpm에서 흔들어 주었다. 세균의 농도는 phosphate-buffered saline(PBS) 용액에 희석하여 S. mutans는 4.8×106 colony forming unit(CFU)로, L. acidophilus는 4.4×107 CFU로 만들었다. S. mutans (KCTC 3298) was in 20 mL of BHI (brain heart infusion) medium and L. acidophilus (KCCM 32820) was incubated in 20 mL of Lactobicilli MRS medium for 12 hours at 37 ° C and shaken at 4000 rpm. Bacterial concentrations were diluted in phosphate-buffered saline (PBS) solution to make S. mutans 4.8 × 10 6 colony forming units (CFU) and L. acidophilus to 4.4 × 10 7 CFU.

광촉매 코팅 방법에 따른 항균 효과 실험에서 시편별 유의성을 검증하기 위하여 Analysis of variance test를 하였고, 광촉매 반응 시간 경과에 따른 항균 효과 실험에서 각 단계에서 시편별로 유의한 차가 있는지는 One way analysis of variance test를 하였다.An analysis of variance test was performed to verify the significance of each specimen in the antimicrobial effect experiments by the photocatalyst coating method. .

- 광촉매 코팅 방법에 따른 항균효과의 측정-Measurement of antimicrobial effect by photocatalyst coating method

Ti, Ti(TO), Ti(AO), TiAg, TiAg(TO), TiAg(AO) 시편에 자외선 A를 조사하여 실험군으로 하고, 실험 동안 세균의 안정성을 검증하기 위하여 각각의 시편을 검은 천으로 가려 대조군으로 삼았다.Ultraviolet A was irradiated to Ti, Ti (TO), Ti (AO), TiAg, TiAg (TO), and TiAg (AO) specimens as experimental groups, and each specimen was coated with a black cloth to verify the stability of the bacteria during the experiment. It was used as a control group.

실험군과 대조군 시편 위에 4.8×106S. mutans와 4.4×107L. acidophilus가 들어있는 PBS 용액 100 μL를 피펫으로 각각 떨어뜨린 후 자외선 A(Philips, 2×15W, black light 356 nm peak emission)를 1.0 mW/cm2의 강도(UVmeter, Matts, USA)로 60 분간 조사하였다. 광조사 시 온도 상승으로 인한 건조를 방지하기 위해 얼음 물을 채운 petri dish 위에 시편을 놓았고, 시편과 UVA 램프 간의 거리는 7 cm이었다(도 1). 광조사 후 각 반응용액을 pH 7.2의 PBS 900 uL 에 넣고 10배 단위로 10-5까지 희석하여 10 분간 흔든 후(Vortex 200 rpm) 각 100 μL의 샘플을 삼각 플레이터(plater)로 S. mutans는 BHI 한천배지에, L. acidophilus는 Lactobicilli MRS 한천배지에 도말하였다. 각 반응용액마다 한 쌍의 플레이트를 도말하였다. 플레이트를 36 시간동안 37℃에서 배양하여 세균수를 세어 CFU를 계산하였다. 실험은 4번 반복하였으며 다음과 같은 용어를 사용하여 살균효과를 나타내었다.Pipette 100 μL of PBS solution containing 4.8 × 10 6 S. mutans and 4.4 × 10 7 L. acidophilus onto the test and control specimens, respectively, and pipet them into UV A (Philips, 2 × 15W, black light 356 nm peak). emission) was irradiated for 60 minutes at an intensity of 1.0 mW / cm 2 (UVmeter, Matts, USA). The specimen was placed on a petri dish filled with ice water to prevent drying due to temperature rise during light irradiation, and the distance between the specimen and the UVA lamp was 7 cm (FIG. 1). After irradiation, each reaction solution was placed in 900 uL of PBS at pH 7.2, diluted to 10 -5 in 10-fold increments, shaken for 10 minutes (Vortex 200 rpm), and 100 μL of each sample was added to S. mutans using a triangular plater. Were coated on BHI agar medium and L. acidophilus on Lactobicilli MRS agar medium. A pair of plates was plated for each reaction solution. Plates were incubated at 37 ° C. for 36 hours to count bacteria and calculate CFU. The experiment was repeated four times and the sterilization effect was obtained using the following terms.

생존율(%) = 광조사 후 세균 수 / 광조사 전 세균 수 ×100Survival rate (%) = Number of bacteria after light irradiation / Number of bacteria before light irradiation × 100

Ti, Ti(TO), Ti(AO), TiAg, TiAg(TO), TiAg(AO) 시편에 4.8×106S. mutans를 떨어뜨리고 60분간 자외선 A를 조사하여 생존한 균수를 도 4에 나타내었다. 대조군인 광조사 하지 않은 시편들은 Ti가 85%, Ti(TO)가 73.5%, Ti(AO)가 73.5%의 생존율을 보여 유의한 차이가 없었으나(p>0.05) 실험군은 Ti가 19.4%, Ti(TO)가 6.7%, Ti(AO)가 0%의 생존율을 보여 Ti>Ti(TO)>Ti(AO)순으로 유의차를 나타내었다(p<0.05)(도 4a). TiAg 합금에서는 대조군은 TiAg가 99.6%, TiAgTO가 93.3%, TiAg(AO)가 69.6% 생존율을 나타내어 유의한 차이가 없었고(p>0.05), 실험군은 TiAg가 14.2%, TiAgTO가 3.1%, TiAg(AO)가 0% 생존율을 보여 TiAg>TiAgTO>TiAg(AO) 순으로 유의한 차이를 보였다(p<0.05)(도 4b).4.8 × 10 6 S. mutans were dropped on Ti, Ti (TO), Ti (AO), TiAg, TiAg (TO), and TiAg (AO) specimens, and the number of viable cells survived by irradiating UVA for 60 minutes. Indicated. As a control, the untreated specimens showed a survival rate of 85% Ti, 73.5% Ti (TO), and 73.5% Ti (AO), but there was no significant difference (p> 0.05). Ti (TO) showed 6.7% and Ti (AO) showed 0% survival rate, showing a significant difference in order of Ti> Ti (TO)> Ti (AO) (p <0.05) (FIG. 4A). In the TiAg alloy, the control group showed 99.6% TiAg, 93.3% TiAgTO, and 69.6% TiAg (AO), showing no significant difference (p> 0.05) .The experimental group showed 14.2% TiAg, 3.1% TiAgTO, 3.1% TiAg ( AO) showed 0% survival rate, showing a significant difference in order of TiAg>TiAgTO> TiAg (AO) (p <0.05) (FIG. 4B).

각 시편에 4.4×107L. acidophilus를 떨어뜨리고 60분간 자외선 A를 조 사하여 생존한 균수를 도 5에 나타내었다. 대조군은 Ti가 68%, Ti(TO)가 80.7%, Ti(AO)가 85.9%의 생존율을 보여 유의한 차이가 없었고(p>0.05), 실험군은 대조군에 비해서 낮은 생존율을 보였으나 Ti가 30.2%, Ti(TO)가 35.2%, Ti(AO)가 27.0%의 생존율을 보여 시편별로 유의한 차이는 없었다(p>0.05)(도 5a). TiAg 합금에서는 대조군에서 TiAg가 88.4%, TiAgTO가 83.0%, TiAg(AO)가 99.8% 생존율을 나타내어 유의한 차이가 없었고(p>0.05), 실험군은 대조군에 비해 낮은 생존율을 나타냈으나 TiAg가 30.7%, TiAg(TO)가 38.8%, TiAg(AO)가 29.8% 생존율을 보여 시편간의 유의성을 보이지 않았다(p>0.05)(도 5b). L. acidophilus (4.4 × 10 7) was added to each specimen, and the number of viable cells survived by irradiation with ultraviolet A for 60 minutes is shown in FIG. 5. The control group showed 68% Ti, 80.7% Ti (TO), and 85.9% Ti (AO), showing no significant difference (p> 0.05). %, Ti (TO) was 35.2%, and Ti (AO) was 27.0%. There was no significant difference between the samples (p> 0.05) (Fig. 5a). In the TiAg alloy, the control group showed 88.4% of TiAg, 83.0% of TiAgTO, and 99.8% of TiAg (AO), showing no significant difference (p> 0.05). %, TiAg (TO) showed 38.8%, TiAg (AO) showed 29.8% survival rate, showing no significant difference between specimens (p> 0.05) (FIG. 5B).

- 광촉매 반응 시간 경과에 따른 항균효과의 측정-Measurement of antimicrobial effect over time of photocatalytic reaction

Ti, Ti(TO), Ti(AO), TiAg, TiAg(TO), TiAg(AO) 각각의 시편별로 자외선 A 조사 후 20분(1단계), 40분(2단계), 60분(3단계), 80분(4단계), 100분(5단계)까지 20분 간격으로 100 μL의 반응용액을 채취하여 앞의 실험방법과 동일하게 균액을 도말하여 광촉매 반응 시간에 따른 세균의 사멸 정도를 측정하였다. 항균효과는 시간에 대한 생존 곡선 그래프로 나타내었고 다음과 같은 용어로 살균효과를 나타내었다. Ti, Ti (TO), Ti (AO), TiAg, TiAg (TO), TiAg (AO) 20 minutes (1 step), 40 minutes (2 steps), 60 minutes (3 steps) after UV A irradiation ), Take 100 μL of reaction solution every 20 minutes until 80 minutes (4 steps), 100 minutes (5 steps) and smear the bacterial solution in the same way as the previous method to measure the degree of bacterial death according to the photocatalytic reaction time. It was. The antimicrobial effect was expressed as a graph of survival curve over time and the bactericidal effect was expressed in the following terms.

살균 속도 상수 = (이전 단계 생존율 - 현 단계 생존율) / 20(분)Sterilization Rate Constant = (Previous Stage Survival-Current Stage Survival Rate) / 20 (minutes)

Ti, Ti(TO), Ti(AO), TiAg, TiAgTO, TiAg(AO) 시편에 4.8×106S. mutans를 떨어뜨리고 자외선 A 조사 20분, 40분, 60분, 80분, 100분 후 균액을 채취하여 생존한 균수를 도 6에 나타내었다. Ti의 경우 모든 시편에서 광조사 시간이 경과함에 따라 생존율이 감소하였는데 Ti와 Ti(TO)가 100분이 되어서 100% 멸균된 것에 비해 Ti(AO)가 급격한 경사로 생존율이 감소하여 광조사 60분에 모든 균이 사멸하였다(도 6a). 세균 생존 곡선은 1차 함수의 형태를 따르고 있었으며 Ti와 Ti(TO)는 1단계까지는 낮은 살균 속도 상수를 보였으나 2단계에서부터 각각 1.8과 1.6의 살균 속도 상수를 나타내며 급속하게 감소하기 시작하였다. 이에 비해 Ti(AO)는 1단계부터 2.3이라는 높은 살균 속도 상수를 보이며 급격하게 생존율이 감소하였다. TiAg의 경우 역시 모든 시편에서 광조사 시간에 따라 생존율이 감소하였으며 Ti 와는 달리 모든 시편에서 1단계부터 급격하게 생존율이 감소하였으며 특히 TiAg(AO)가 1단계 살균 속도 상수가 4.8로 가장 높아 거의 대부분의 균이 20분에 사멸되었으며 TiAg(TO)는 80분에, TiAg는 100분에 100% 사멸하였다(도 6b). 20 minutes, 40 minutes, 60 minutes, 80 minutes, 100 minutes of UV A irradiation with 4.8 × 10 6 S. mutans on a Ti, Ti (TO), Ti (AO), TiAg, TiAgTO, TiAg (AO) specimen After that, the bacterial counts were collected and shown in FIG. 6. In the case of Ti, the survival rate decreased as the irradiation time elapsed in all specimens, but the survival rate of the steep slope decreased with the steep slope of Ti (AO) compared to 100% sterilization when Ti and Ti (TO) became 100 minutes. The bacteria were killed (FIG. 6A). Bacterial survival curves were in the form of linear function and Ti and Ti (TO) showed low sterilization rate constants up to stage 1, but began to decrease rapidly from stage 2 with sterilization rate constants of 1.8 and 1.6, respectively. In comparison, Ti (AO) showed a high sterilization rate constant of 2.3 from the first stage, and the survival rate rapidly decreased. In the case of TiAg, the survival rate decreased according to the irradiation time in all specimens. Unlike Ti, survival rate decreased rapidly from the first stage in all specimens. Especially, TiAg (AO) has the highest one-step sterilization rate constant of 4.8, which is almost the most. The bacteria were killed at 20 minutes and 100% of TiAg (TO) was killed at 80 minutes and TiAg at 100 minutes (Fig. 6b).

Ti는 각 단계마다 Ti>Ti(TO)>Ti(AO)의 순으로 유의성 있게 작은 수치를 나타내었고 TiAg 합금 역시 단계별로 TiAg>TiAg(TO)>TiAg(AO)의 순으로 작게 나타났다(표 1). Ti was significantly smaller in the order of Ti> Ti (TO)> Ti (AO) for each step, and TiAg alloys were also smaller in order of TiAg> TiAg (TO)> TiAg (AO) (Table 1). ).

표 1. Duncan's grouping of CFU of S. mutans as a function of irradiation time after photocatalytic reaction using TiO₂ film formed by different oxidation methods in each specimen Table 1.Duncan's grouping of CFU of S. mutans as a function of irradiation time after photocatalytic reaction using TiO₂ film formed by different oxidation methods in each specimen

20 minutes20 minutes 40 minutes40 minutes 60 minutes60 minutes 80 minutes80 minutes 100 minutes100 minutes MeanMean GroupGroup MeanMean GroupGroup MeanMean GroupGroup MeanMean GroupGroup MeanMean GroupGroup TiTi 4.63×

Figure 112006008048583-PAT00001
4.63 ×
Figure 112006008048583-PAT00001
a*a * 2.86×
Figure 112006008048583-PAT00002
2.86 ×
Figure 112006008048583-PAT00002
ab+ab + 2.19×
Figure 112006008048583-PAT00003
2.19 ×
Figure 112006008048583-PAT00003
c#c # 1.3×
Figure 112006008048583-PAT00004
1.3 ×
Figure 112006008048583-PAT00004
b^b ^ 00 a†a † Ti (TO)Ti (TO) 4.22×
Figure 112006008048583-PAT00005
4.22 ×
Figure 112006008048583-PAT00005
a*a * 2.64×
Figure 112006008048583-PAT00006
2.64 ×
Figure 112006008048583-PAT00006
ab+ab + 1.9×
Figure 112006008048583-PAT00007
1.9 ×
Figure 112006008048583-PAT00007
b#b # 1.88×
Figure 112006008048583-PAT00008
1.88 ×
Figure 112006008048583-PAT00008
a^a ^ 00 a†a †
Ti (AO)Ti (AO) 2.59×
Figure 112006008048583-PAT00009
2.59 ×
Figure 112006008048583-PAT00009
b*b * 1.91×
Figure 112006008048583-PAT00010
1.91 ×
Figure 112006008048583-PAT00010
c+c + 00 d#d # 00 c^c ^ 00 a†a †
TiAgTiAg 3.4×
Figure 112006008048583-PAT00011
3.4 ×
Figure 112006008048583-PAT00011
ab*ab * 2.43×
Figure 112006008048583-PAT00012
2.43 ×
Figure 112006008048583-PAT00012
a+a + 1.27×
Figure 112006008048583-PAT00013
1.27 ×
Figure 112006008048583-PAT00013
a#a # 6.2×
Figure 112006008048583-PAT00014
6.2 ×
Figure 112006008048583-PAT00014
b^b ^ 00 a†a †
TiAg (TO)TiAg (TO) 2.69×
Figure 112006008048583-PAT00015
2.69 ×
Figure 112006008048583-PAT00015
b*b * 2.33×
Figure 112006008048583-PAT00016
2.33 ×
Figure 112006008048583-PAT00016
bc+bc +
Figure 112006008048583-PAT00017
8 ×
Figure 112006008048583-PAT00017
c#c # 00 c^c ^ 00 a†a †
TiAg (AO)TiAg (AO) 1.4×
Figure 112006008048583-PAT00018
1.4 ×
Figure 112006008048583-PAT00018
c*c * 00 d+d + 00 d#d # 00 c^c ^ 00 a†a †

The initial cell concentration was 4.8×106CFU/mL. Means with the same letters are not significantly different. (α= 0.05)The initial cell concentration was 4.8 × 10 6 CFU / mL. Means with the same letters are not significantly different. (α = 0.05)

각 시편에 4.4×107L. acidophilus를 떨어뜨리고 광 조사 20분, 40분, 60분, 80분, 100분 후 균액을 채취하여 생존한 균수를 도 7에 나타내었다. Ti와 TiAg 모든 시편에서 광조사 시간이 경과함에 따라 생존율이 S. mutans에 비해 서서히 감소하였다. 시편간의 살균 속도는 유의성 있는 차이를 나타내지 않았으며(표 2), Ti와 TiAg는 100분에 거의 대부분 살균되었고, Ti(TO), Ti(AO), TiAg(TO), TiAg(AO)는 100분에 100% 사멸하였다.The number of cells survived after dropping 4.4 × 10 7 L. acidophilus in each specimen and 20, 40, 60, 80, and 100 minutes of light irradiation was shown in FIG. 7. Survival rate decreased slowly compared to S. mutans with the irradiation time in both Ti and TiAg specimens. The sterilization rates between the specimens did not show any significant difference (Table 2), and most of Ti and TiAg were sterilized at 100 minutes, while Ti (TO), Ti (AO), TiAg (TO), and TiAg (AO) were 100 100% killed in minutes.

표 2. Duncan's grouping of CFU of L. acidophilus as a function of irradiation time after photocatalytic reaction using TiO₂ film formed by different oxidation methods in each specimen Table 2. Duncan's grouping of CFU of L. acidophilus as a function of irradiation time after photocatalytic reaction using TiO₂ film formed by different oxidation methods in each specimen

20 minutes20 minutes 40 minutes40 minutes 60 minutes60 minutes 80 minutes80 minutes 100 minutes100 minutes MeanMean GroupGroup MeanMean GroupGroup MeanMean GroupGroup MeanMean GroupGroup MeanMean GroupGroup TiTi 3.6×

Figure 112006008048583-PAT00019
3.6 ×
Figure 112006008048583-PAT00019
a*a * 2.36×
Figure 112006008048583-PAT00020
2.36 ×
Figure 112006008048583-PAT00020
b+b + 1.24×
Figure 112006008048583-PAT00021
1.24 ×
Figure 112006008048583-PAT00021
cd#CD#
Figure 112006008048583-PAT00022
1 ×
Figure 112006008048583-PAT00022
d^d ^
Figure 112006008048583-PAT00023
2 ×
Figure 112006008048583-PAT00023
b†b † Ti (TO)Ti (TO) 2.8×
Figure 112006008048583-PAT00024
2.8 ×
Figure 112006008048583-PAT00024
ab*ab * 2.43×
Figure 112006008048583-PAT00025
2.43 ×
Figure 112006008048583-PAT00025
b+b + 2.31×
Figure 112006008048583-PAT00026
2.31 ×
Figure 112006008048583-PAT00026
a#a # 5.1×
Figure 112006008048583-PAT00027
5.1 ×
Figure 112006008048583-PAT00027
cd^cd ^
Figure 112006008048583-PAT00028
1 ×
Figure 112006008048583-PAT00028
b†b †
Ti (AO)Ti (AO) 2.36×
Figure 112006008048583-PAT00029
2.36 ×
Figure 112006008048583-PAT00029
b*b * 2.1×
Figure 112006008048583-PAT00030
2.1 ×
Figure 112006008048583-PAT00030
b+b + 1.47×
Figure 112006008048583-PAT00031
1.47 ×
Figure 112006008048583-PAT00031
bc#bc # 1.14×
Figure 112006008048583-PAT00032
1.14 ×
Figure 112006008048583-PAT00032
b^b ^ 00 b†b †
TiAgTiAg 3.12×
Figure 112006008048583-PAT00033
3.12 ×
Figure 112006008048583-PAT00033
ab*ab * 2.96×
Figure 112006008048583-PAT00034
2.96 ×
Figure 112006008048583-PAT00034
a+a + 1.14×
Figure 112006008048583-PAT00035
1.14 ×
Figure 112006008048583-PAT00035
d#d # 9.1×
Figure 112006008048583-PAT00036
9.1 ×
Figure 112006008048583-PAT00036
bc^bc ^ 5.4×
Figure 112006008048583-PAT00037
5.4 ×
Figure 112006008048583-PAT00037
a†a †
TiAg (TO)TiAg (TO) 2.32×
Figure 112006008048583-PAT00038
2.32 ×
Figure 112006008048583-PAT00038
b*b * 2.19×
Figure 112006008048583-PAT00039
2.19 ×
Figure 112006008048583-PAT00039
b+b + 2.05×
Figure 112006008048583-PAT00040
2.05 ×
Figure 112006008048583-PAT00040
a#a # 1.75×
Figure 112006008048583-PAT00041
1.75 ×
Figure 112006008048583-PAT00041
a^a ^ 00 b†b †
TiAg (AO)TiAg (AO) 3.47×
Figure 112006008048583-PAT00042
3.47 ×
Figure 112006008048583-PAT00042
a*a * 3.36×
Figure 112006008048583-PAT00043
3.36 ×
Figure 112006008048583-PAT00043
a+a + 1.56×
Figure 112006008048583-PAT00044
1.56 ×
Figure 112006008048583-PAT00044
b#b # 1.03×
Figure 112006008048583-PAT00045
1.03 ×
Figure 112006008048583-PAT00045
b^b ^ 00 b† b †

The initial cell concentration was 4.4×107CFU/mL. Means with the same letters are not significantly different. (α= 0.05)The initial cell concentration was 4.4 × 10 7 CFU / mL. Means with the same letters are not significantly different. (α = 0.05)

태양 빛을 구성하는 빛의 주된 부분은 가시광이므로, 광 램프 없이도 광촉매 반응의 효율을 올리기 위해서는 전자-정공의 재결합 방지 효과를 이용하는 것이 바람직하다고 생각된다. 본 발명에서는 Ag의 전자-정공의 재결합 방지 효과를 검증하고자 하였는데 시간 경과에 따른 S. mutans에의 광촉매 효과 실험에서 S. mutans에 대해 Ti의 경우는 1단계에서는 낮은 비율로 감소하다가 2단계에서 급격하게 감소되는 양상을 보였으나 TiAg 합금의 경우 1단계에서부터 급속하게 균수가 감소하여 세포벽을 파괴하는 과정을 짧게 하는 데 Ag가 기여했으리라 생각된다. Since the main part of the light constituting the sun light is visible light, it is considered that it is desirable to use the effect of preventing the recombination of electron-holes in order to increase the efficiency of the photocatalytic reaction without a light lamp. In the present invention, the e-Ag - In the case of Ti for S. mutans in the photocatalytic effect test by S. mutans with the passage of time were to validate the prevention of hole recombination effect is reduced at a lower rate in the step 1 while sharply in the step 2, In the case of TiAg alloys, Ag was thought to have contributed to shortening the process of cell wall destruction due to the rapid decrease in the number of cells from the first stage.

본 발명에서 Ti에 비해 TiAg의 항균 효과가 높은 것은 Ag의 전자-정공의 재결합 방지 효과에 의한 것으로 생각되며 TiO₂에 Ag를 코팅하는 방법이 아닌 TiAg 합금 자체에 표면처리를 하여 TiO₂을 만들었기 때문에 더 영구적인 Ag의 효과를 기대할 수 있으리라 생각된다.The antimicrobial effect of TiAg in comparison with Ti in the present invention is thought to be due to the effect of preventing the recombination of electron-holes of Ag. The effect of permanent Ag is expected to be expected.

세포 독성 실험Cytotoxicity experiment

세포 독성을 측정하기 위해 시편을 agar와 접촉 면적이 5×5 mm2가 되도록 가공하여 모든 면을 SiC 연마지로 #4000번까지 연마하고 멸균 증류수로 세척한 후 ethylene oxide gas로 멸균하였다. 양성 대조군은 Gutta percha(metabiomed, Korea)를 사용하였고 음성 대조군은 Glass를 사용하였다. 10% fetal bovine serum(FBS, Gibco, U.S.A)이 첨가된 RPMI(Gibco, U.S.A) 배지에서 쥐의 섬유아세포인 L-929세포(fibroblast connective tissue of 100-day old male mouse)를 배양하여 부유액을 만들고 petri dish에 세포 부유액 10 mL를 첨가한 다음 24 시간 동안 배양하였다. RPMI 배지를 제거하고 45-50℃의 Eagle's agar medium과 RPMI배지를 1:1로 혼합하여 10mL를 각각의 petri dish에 첨가하여 30분간 실온에서 방치하였다. 배지가 고체화된 후 중앙에 neutral red vital stain 용액 6 mL를 천천히 첨가하여 염색약이 전면에 퍼지게 한 다음, 1 시간 동안 방치하였다. 염색약을 제거한 즉시 시편을 한천에 밀착되도록 얹은 후 37℃, 5% CO2, 100% 습도를 유지하는 CO2 배양기(VS-9108MS, Vision Scientific Co., Korea) 내에서 24 시간 동안 세포를 배양하였다. Petri dish를 백지 위에 놓고 탈색 범위의 크기를 관찰하여 탈색지수(Zone index)를 구하고, inverted phase contrast microscope(CK2, Olympus, Japan)로 세포가 사멸된 비율을 계산하여 세포사멸지수(Lysis index)를 구하였다. 시편 4개의 Zone index 및 Lysis index를 평균하여 반응지수(Response index, ISO 7405:1997(E))를 구하였다. In order to measure the cytotoxicity, the specimens were processed to agar and the contact area was 5 × 5 mm 2 , and all surfaces were polished up to # 4000 times with SiC abrasive paper, washed with sterile distilled water, and sterilized with ethylene oxide gas. The positive control group was Gutta percha (metabiomed, Korea) and the negative control group was Glass. Suspension was made by culturing rat fibroblast L-929 cells (fibroblast connective tissue of 100-day old male mouse) in RPMI (Gibco, USA) medium containing 10% fetal bovine serum (FBS, Gibco, USA). 10 mL of the cell suspension was added to the petri dish, followed by incubation for 24 hours. RPMI medium was removed, Eagle's agar medium and RPMI medium at 45-50 ° C. were mixed 1: 1, and 10 mL was added to each petri dish and left at room temperature for 30 minutes. After the medium was solidified, 6 mL of neutral red vital stain solution was slowly added to the center to allow the dye to spread to the front, and then left for 1 hour. Immediately after removal of the dye, the specimen was placed on the agar, and the cells were incubated for 24 hours in a CO 2 incubator (VS-9108MS, Vision Scientific Co., Korea) maintaining 37 ° C., 5% CO 2 , and 100% humidity. . Place Petri dish on white paper and observe the size of the discoloration range to get the zone index, and calculate the rate of cell death with an inverted phase contrast microscope (CK2, Olympus, Japan) to calculate the Lysis index. Obtained. Response index (Response index, ISO 7405: 1997 (E)) was obtained by averaging the Zone index and Lysis index of four specimens.

TiO₂가 섬유아세포 독성에 미치는 영향을 측정하기 위하여 섬유아세포인 L-929에 대한 세포 독성을 agar overlay 실험을 통하여 평가한 결과 모든 시편에서 탈색지수, 세포사멸지수, 반응지수 모두 0으로 본 연구에서 사용된 Ti와 TiAg 합금의 TiO₂ 산화막은 섬유아세포에 대하여 독성이 없는 것으로 나타났다(표 3). To evaluate the effect of TiO₂ on fibroblast toxicity, the cytotoxicity of fibroblast L-929 was evaluated by agar overlay test. The TiO₂ oxide films of Ti and TiAg alloys were not toxic to fibroblasts (Table 3).

표 3. Cytotoxicity of Ti and TiAg Table 3. Cytotoxicity of Ti and TiAg

SampleSample Zone IndexZone Index Lysis IndexLysis Index Response IndexResponse Index CytotoxicityCytotoxicity TiTi 00 00 0/0, 0/00/0, 0/0 nonenone 00 00 0/0, 0/00/0, 0/0 nonenone Ti(TO)Ti (TO) 00 00 0/0, 0/00/0, 0/0 nonenone 00 00 0/0, 0/00/0, 0/0 nonenone Ti(AO)Ti (AO) 00 00 0/0, 0/00/0, 0/0 nonenone 00 00 0/0, 0/00/0, 0/0 nonenone TiAgTiAg 00 00 0/0, 0/00/0, 0/0 nonenone 00 00 0/0, 0/00/0, 0/0 nonenone TiAg(TO)TiAg (TO) 00 00 0/0, 0/00/0, 0/0 nonenone 00 00 0/0, 0/00/0, 0/0 nonenone TiAg(AO)TiAg (AO) 00 00 0/0, 0/00/0, 0/0 nonenone 00 00 0/0, 0/00/0, 0/0 nonenone Positive (Gutta Percha)Positive (Gutta Percha) 33 33 3/33/3 toxictoxic 33 33 3/33/3 toxictoxic Negative (glass)Negative (glass) 00 00 0/0, 0/00/0, 0/0 nonenone 00 00 0/0, 0/00/0, 0/0 nonenone

TO and AO means thermally oxidized at 400℃ for 1 hour and anodic oxidation-treated at 250 V for 3 min. respectively.  TO and AO means thermally oxidized at 400 ° C for 1 hour and anodic oxidation-treated at 250 V for 3 min. respectively.

본 발명에 따르면, 티타늄산화피막에서 광여기에 의해 생성되는 전자와 정공 의 재결합을 최소화함으로써 전자와 정공이 광촉매 효과를 일으키는 2차반응의 확률을 더욱 향상시키는 결과를 가져온다. According to the present invention, by minimizing the recombination of electrons and holes generated by the photoexcitation in the titanium oxide film, the result is further improved the probability of the secondary reaction that the electrons and holes cause a photocatalytic effect.

이에 따라, 본 발명을 Self-cleaning, 항균, 탈취, 독소분해, 암치료 등의 여러 분야에 유효적절하게 이용할 수 있게 된다. Accordingly, the present invention can be effectively used in various fields such as self-cleaning, antibacterial, deodorization, toxin decomposition, cancer treatment, and the like.

Claims (2)

0 < Ag ≤ 5 at%와, 나머지인 Ti 및 불가피한 불순물로 이루어지고, 그 표면에 형성된 티타늄산화피막이 광여기에 의해 광촉매로 작용하는 것을 특징으로 하는 티타늄-은 광촉매 합금. A titanium-silver photocatalyst alloy comprising 0 <Ag ≤ 5 at%, remaining Ti and inevitable impurities, and a titanium oxide film formed on its surface acts as a photocatalyst by photoexcitation. 제1항에 있어서,The method of claim 1, 상기 티타늄산화피막은 아나타제 결정구조를 갖는 것을 특징으로 하는 티타늄-은 광촉매 합금.The titanium oxide film is titanium-silver photocatalyst alloy, characterized in that it has an anatase crystal structure.
KR1020060010271A 2006-02-02 2006-02-02 Titanium-silver photocatalytic alloy KR20070083259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060010271A KR20070083259A (en) 2006-02-02 2006-02-02 Titanium-silver photocatalytic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060010271A KR20070083259A (en) 2006-02-02 2006-02-02 Titanium-silver photocatalytic alloy

Publications (1)

Publication Number Publication Date
KR20070083259A true KR20070083259A (en) 2007-08-24

Family

ID=38612626

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060010271A KR20070083259A (en) 2006-02-02 2006-02-02 Titanium-silver photocatalytic alloy

Country Status (1)

Country Link
KR (1) KR20070083259A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104624212A (en) * 2015-02-11 2015-05-20 合肥工业大学 Method for enhancing photocatalytic performance of nano-silver/titanium dioxide composite film
KR20160121852A (en) 2015-04-13 2016-10-21 울산대학교 산학협력단 Multifunctional Cu-TiO2-PU having both photocatalyst and adsorbent activity and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104624212A (en) * 2015-02-11 2015-05-20 合肥工业大学 Method for enhancing photocatalytic performance of nano-silver/titanium dioxide composite film
CN104624212B (en) * 2015-02-11 2017-06-13 合肥工业大学 A kind of method for strengthening Nano Silver/titania coextruded film photocatalysis performance
KR20160121852A (en) 2015-04-13 2016-10-21 울산대학교 산학협력단 Multifunctional Cu-TiO2-PU having both photocatalyst and adsorbent activity and manufacturing method thereof

Similar Documents

Publication Publication Date Title
CN1107732C (en) Alloy having antibacterial effect and sterilizing effect
Kalbacova et al. TiO2 nanotubes: photocatalyst for cancer cell killing
Sawase et al. A novel characteristic of porous titanium oxide implants
Cotolan et al. Sol-gel synthesis, characterization and properties of TiO2 and Ag-TiO2 coatings on titanium substrate
Koopaie et al. Advanced surface treatment techniques counteract biofilm-associated infections on dental implants
Ionita et al. Modifying the TiAlZr biomaterial surface with coating, for a better anticorrosive and antibacterial performance
Jain et al. Photofunctionalization of anodized titanium surfaces using UVA or UVC light and its effects against Streptococcus sanguinis
Javid et al. Photocatalytic antibacterial study of N-doped TiO2 thin films synthesized by ICP assisted plasma sputtering method
Yeniyol et al. Antibacterial Activity of As‐Annealed TiO2 Nanotubes Doped with Ag Nanoparticles against Periodontal Pathogens
Li et al. β-FeOOH/Fe-TiO 2 heterojunctions on Ti for bacteria inactivation under light irradiation and biosealing
El-Aswar et al. Characterization of biosynthesized silver nanoparticles by Haplophyllum tuberculatum plant extract under microwave irradiation and detecting their antibacterial activity against some wastewater microbes
Wang et al. In situ growth of self-organized Cu-containing nano-tubes and nano-pores on Ti90− xCu10Alx (x= 0, 45) alloys by one-pot anodization and evaluation of their antimicrobial activity and cytotoxicity
Du et al. A multifunctional hybrid inorganic-organic coating fabricated on magnesium alloy surface with antiplatelet adhesion and antibacterial activities
Pawłowski et al. Antibacterial properties of laser-encapsulated titanium oxide nanotubes decorated with nanosilver and covered with chitosan/Eudragit polymers
Khokhlova et al. Oxide thin films as bioactive coatings
Sirotkin et al. Applications of plasma synthesized ZnO, TiO2, and Zn/TiOx nanoparticles for making antimicrobial wound‐healing viscose patches
KR20070083259A (en) Titanium-silver photocatalytic alloy
Verissimo et al. R educing S taphylococcus aureus growth on T i alloy nanostructured surfaces through the addition of S n
CN114410039A (en) Antibacterial film with PVDF-HFP as substrate blended with nano filler, and preparation method and application thereof
Cai et al. Photothermal effect and antibacterial properties of Zn2+, Cu2+ and Ag+ doped hydroxyapatite@ polydopamine on porous tantalum surface
Zhao et al. Visible light-induced antibacterial and osteogenic cell proliferation properties of hydrogenated TiO2 nanotubes/Ti foil composite
Liu et al. An NIR light-driven AgBiS 2@ ZIF-8 hybrid photocatalyst for rapid bacteria-killing
CN114832161A (en) Heterostructure acoustic sensitizer with self-generated piezoelectric field and preparation method and application thereof
Kolanthai et al. Effect of swift heavy silicon ion irradiation on TiO2 thin film prepared by micro arc oxidized technique
Oleshko et al. Plasma electrolytic oxidation of TiZr alloy in ZnONPs-contained solution: structural and biological assessment

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B601 Maintenance of original decision after re-examination before a trial
E801 Decision on dismissal of amendment
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20070823

Effective date: 20080429