KR20060133777A - The method of production increase of light olefins from hydrocarbon feedstock - Google Patents

The method of production increase of light olefins from hydrocarbon feedstock Download PDF

Info

Publication number
KR20060133777A
KR20060133777A KR1020050053618A KR20050053618A KR20060133777A KR 20060133777 A KR20060133777 A KR 20060133777A KR 1020050053618 A KR1020050053618 A KR 1020050053618A KR 20050053618 A KR20050053618 A KR 20050053618A KR 20060133777 A KR20060133777 A KR 20060133777A
Authority
KR
South Korea
Prior art keywords
hydrocarbon
hydrogen
stream
pyrolysis
reaction
Prior art date
Application number
KR1020050053618A
Other languages
Korean (ko)
Other versions
KR100710542B1 (en
Inventor
최선
오승훈
성경학
이종형
강신철
김용승
임병수
최안섭
장병무
Original Assignee
에스케이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이 주식회사 filed Critical 에스케이 주식회사
Priority to KR1020050053618A priority Critical patent/KR100710542B1/en
Priority to JP2008518006A priority patent/JP5206967B2/en
Priority to PCT/KR2005/002706 priority patent/WO2006137615A1/en
Priority to CN2005800502242A priority patent/CN101208412B/en
Priority to EP05780593.9A priority patent/EP1893726B1/en
Priority to US11/225,575 priority patent/US7301063B2/en
Publication of KR20060133777A publication Critical patent/KR20060133777A/en
Application granted granted Critical
Publication of KR100710542B1 publication Critical patent/KR100710542B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G57/00Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one cracking process or refining process and at least one other conversion process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/185Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/20Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing iron group metals, noble metals or copper
    • B01J29/22Noble metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/64Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/06Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of thermal cracking in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/104Light gasoline having a boiling range of about 20 - 100 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1044Heavy gasoline or naphtha having a boiling range of about 100 - 180 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4081Recycling aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/28Propane and butane
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/30Aromatics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Abstract

A method for increasing production of a light olefin hydrocarbon compound from a hydrocarbon feedstock is provided to reduce the amount of hydrogen used in the process. A hydrocarbon feedstock(11) is fed into a pyrolysis furnace(131) to conduct a pyrolysis reaction. Reaction products which are generated from the pyrolysis reaction are separated into a stream containing hydrogen(12) and C4 or lower hydrocarbons, and a stream containing C5+ hydrocarbons through a compression and fractionation process. Hydrogen, and C2, C3 and C4 olefin and paraffin hydrocarbons are respectively recovered from the stream containing hydrogen and C4 or lower hydrocarbons. Pyrolysis gasoline and a C9+ hydrocarbon-containing fraction are separated from the stream containing C5+ hydrocarbons using hydrogenation and separation processes. A mixture of the separated pyrolysis gasoline, a hydrocarbon feedstock, and hydrogen is fed into at least one reaction area. The mixture in the presence of a catalyst in the reaction area is converted into an aromatic hydrocarbon compound which is rich in benzene, toluene, and xylene through dealkylation/transalkylation reactions, and is converted into a non-aromatic hydrocarbon compound which is rich in liquefied petroleum gas through a hydrocracking reaction. Reaction products of the mixture converting step is converted into an overhead stream(19), which contains hydrogen, methane, ethane, and liquefied petroleum gas, and a bottom stream(18), which contains aromatic hydrocarbon compounds, and a small amount of hydrogen and non-aromatic hydrocarbon compounds, by using a gas-liquid separation process. The overhead stream is circulated into the compression and fractionation process. The aromatic hydrocarbon compound is recovered from the bottom stream.

Description

탄화수소 원료 혼합물로부터 경질 올레핀계 탄화수소의 증산방법 {The method of production increase of light olefins from hydrocarbon feedstock}The method of production increase of light olefins from hydrocarbon feedstock}

도 1은 본 발명에 따라 탄화수소 원료 혼합물로부터 경질 올레핀계 탄화수소를 증산하는 일 구체예를 도시하는 공정도이다.1 is a process diagram showing one embodiment of tranking light olefinic hydrocarbons from a hydrocarbon feed mixture according to the present invention.

도 2는 본 발명에 따라 탄화수소 원료 혼합물로부터 경질 올레핀계 탄화수소를 증산하는 다른 구체예를 도시하는 공정도이다.FIG. 2 is a process diagram showing another embodiment of the light olefin hydrocarbon transpiration from a hydrocarbon feed mixture in accordance with the present invention.

도 3은 본 발명에 따라 탄화수소 원료 혼합물로부터 경질 올레핀계 탄화수소를 증산하는 또 다른 구체예를 도시하는 공정도이다.FIG. 3 is a process diagram illustrating another embodiment of the light olefin hydrocarbon transpiration from a hydrocarbon feed mixture in accordance with the present invention.

※ 도면의 주요 부분에 대한 부호의 설명 ※※ Explanation of code about main part of drawing ※

1 : 열교환기 2 : 가열기1: heat exchanger 2: heater

3 : 반응기 4 : 기-액 분리기3: reactor 4: gas-liquid separator

5 : 냉각기 6 : 압축기5: chiller 6: compressor

7 : 분류부 11 : 탄화수소 원료 혼합물7: classification unit 11: hydrocarbon raw material mixture

12 : 수소 18 : 바닥 흐름12: hydrogen 18: bottom flow

19 : 상단 흐름 28 : 벤젠19: top flow 28: benzene

29 : 톨루엔 30 : 자일렌29: toluene 30: xylene

111 : 탄화수소 원료 혼합물111: Hydrocarbon Raw Material Mixture

118 : 에틸렌 119 : 프로필렌118: ethylene 119: propylene

120 : 에탄 121 : 프로판120: ethane 121: propane

122 : 부탄 124 : 열분해 가솔린122: butane 124: pyrolysis gasoline

127 : 유동층 접촉분해 가솔린127: fluidized bed catalytic cracking gasoline

131 : 열분해로 132 : 압축 및 분류부131: pyrolysis furnace 132: compression and fractionation

133 : 냉각부 134 : 수소 첨가 및 분리부133: cooling unit 134: hydrogenation and separation unit

135 : 분류부 136 : 분류부135: classification unit 136: classification unit

본 발명은 탄화수소 원료 혼합물로부터 경질 올레핀계 탄화수소의 증산방법에 관한 것이다. 보다 구체적으로는 탄화수소 혼합물로부터 방향족 탄화수소 혼합물과 액화석유가스(LPG)를 제조하기 위한 공정과, 상기 공정의 공급 원료로 사용가능한 탄화수소 원료의 생산 공정을 통합(Integration)함으로써 C2-C4의 경질 올레핀계 탄화수소의 생산량을 증산하는 방법에 관한 것이다.The present invention relates to a process for the transpiration of light olefinic hydrocarbons from hydrocarbon feed mixtures. More specifically, C2-C4 light olefin system by integrating a process for producing an aromatic hydrocarbon mixture and liquefied petroleum gas (LPG) from a hydrocarbon mixture, and a production process of a hydrocarbon raw material that can be used as a feedstock for the process. It relates to a method for increasing the yield of hydrocarbons.

일반적으로 탄화수소 혼합물로부터 방향족 탄화수소 혼합물 및/또는 LPG를 제조하기 위한 공정의 공급 원료로는 나프타(Naphtha) 이외에도 열분해 공정의 반 응생성물인 열분해 가솔린(pyrolysis gasoline)과 접촉개질 공정의 반응생성물인 접촉개질유(reformate) 및 유동층 접촉분해 공정의 반응생성물인 유동층 접촉분해 가솔린 등이 사용된다.In general, in addition to naphtha, pyrolysis gasoline, a reaction product of a pyrolysis process, and a reaction product of a catalytic reforming process may be used as a feedstock for producing an aromatic hydrocarbon mixture and / or LPG from a hydrocarbon mixture. Fluidized bed catalytic cracked gasoline, which is a reaction product of reformate and fluidized bed catalytic cracking processes, is used.

여기서, 상기 열분해 공정은 나프타와 같은 유분을 원료로 하여 주 생성물로서 에틸렌, 프로필렌과 같은 석유화학 기초 유분을 생산하는 공정으로, 이 공정에서 부산물로 열분해 가솔린 등의 방향족 화합물이 풍부한 유분이 생성된다.Here, the pyrolysis process is a process of producing a petrochemical base oil such as ethylene and propylene as a main product using an oil such as naphtha as a raw material. In this process, an oil rich in aromatic compounds such as pyrolysis gasoline is produced as a by-product.

상기 접촉개질 공정의 경우, 상기 열분해 공정 보다 더 중질의(Heavy) 나프타를 원료로 하여 가솔린 또는 벤젠, 톨루엔, 자일렌 및 C9+ 방향족 탄화수소 등을 생산하게 되며, 동 공정에서 방향족 성분이 풍부한 유분이 생성되게 된다.In the catalytic reforming process, heavier naphtha is used as a raw material to produce gasoline or benzene, toluene, xylene, and C9 + aromatic hydrocarbons, and the oil-rich oil component is produced in the process. Will be.

또한, 유동층 접촉분해 공정에서는 접촉개질 공정의 원료 보다 더 중질의 유분을 원료로 하여 에틸렌, 프로필렌 및 방향족 성분이 풍부한 가솔린 유분이 생성된다. In addition, the fluidized bed catalytic cracking process produces a gasoline fraction rich in ethylene, propylene, and aromatic components using heavier oil as a raw material than the raw material of the catalytic reforming process.

상술한 열분해 가솔린, 접촉개질유 및/또는 유동층 접촉분해 가솔린 등을 원료유로 사용하여 방향족 탄화수소 혼합물 및/또는 LPG를 제조하는 독립 공정을 수행하는 경우, 방향족 생산과 함께 LPG 생산을 병행하여 대한민국과 같이 LPG의 대부분을 수입에 의존하는 지역의 경우 부산물로서 생산되는 LPG로 수입분의 상당부분을 대체할 수 있게 된다. 하지만, 공정에서 발생하는 수소 함량이 높은 퍼지 가스(Purge Gas)가 공정내 연료로 사용됨에 따라 수소의 사용량이 높은 단점이 있는 바, 촉매반응으로 생성되는 LPG가 풍부한 비방향족 탄소화합물의 활용도를 높이고 수소 사용량을 줄일 수 있는 방안이 시급히 요구되고 있는 실정이다.When performing the independent process for producing the aromatic hydrocarbon mixture and / or LPG using the above-described pyrolysis gasoline, catalytic reforming oil and / or fluidized bed catalytic gasoline, etc. as raw material oil, LPG production together with aromatic production is performed in parallel with Korea. In regions where most of the LPG depends on imports, LPG produced as a by-product can replace a significant portion of the import. However, there is a disadvantage in that the amount of hydrogen used is high as a purge gas having a high hydrogen content generated in the process is used as the fuel in the process, thereby increasing the utilization of the LPG-rich non-aromatic carbon compound produced by the catalytic reaction. There is an urgent need for measures to reduce the amount of hydrogen used.

이에 본 발명자들은 탄화수소 혼합물로부터 방향족 탄화수소 혼합물과 LPG를 제조하기 위한 공정과, 상기 공정의 공급 원료로 사용가능한 탄화수소 원료의 생산 공정을 통합함으로써 각각의 공정 또는 통합되는 전체 공정의 생산성과 효율성을 개선할 수 있음에 착안하여 본 발명을 완성하였다. Accordingly, the present inventors can improve the productivity and efficiency of each process or the overall process integrated by integrating the process for producing aromatic hydrocarbon mixture and LPG from the hydrocarbon mixture and the production process of the hydrocarbon raw material which can be used as feedstock of the process. With this in mind, it was possible to complete the present invention.

따라서, 본 발명은 목적은 탄화수소 혼합물로부터 방향족 탄화수소 혼합물과 LPG를 제조하기 위한 공정, 상기 공정의 공급 원료로 사용가능한 탄화수소 원료의 생산 공정 또는 이들을 통합한 전체 공정의 생산성 및 효율성을 증대시켜 경질 올레핀계 탄화수소를 증산하는 방법을 제공하는데 있다.Accordingly, an object of the present invention is to increase the productivity and efficiency of a process for producing aromatic hydrocarbon mixture and LPG from a hydrocarbon mixture, a process for producing a hydrocarbon raw material which can be used as a feedstock for the process, or an overall process incorporating them, thereby providing a light olefin system. It is to provide a method for the transpiration of hydrocarbons.

본 발명의 다른 목적은 비방향족 탄화수소 화합물들을 촉매의 존재 하에서 수소첨가 반응시킬 경우 반응에 사용되고 남는 잔여 수소의 회수방법을 제공하는데 있다.It is another object of the present invention to provide a method for recovering residual hydrogen that is used in a reaction when hydrogenated non-aromatic hydrocarbon compounds in the presence of a catalyst.

본 발명의 또 다른 목적은 원료유 중의 비방향족 탄화수소 화합물들을 촉매의 존재 하에서 수소첨가 반응시킬 경우 생성되는 LPG 성분이 풍부한 혼합물을 별도의 LPG 분리탑을 설치하지 않고 원료유 생산공정의 LPG 분리탑에서 생산하는 방법을 제공하는데 있다.Another object of the present invention is to prepare a mixture rich in LPG components produced by hydrogenating non-aromatic hydrocarbon compounds in crude oil in the presence of a catalyst in the LPG separation tower of the crude oil production process without installing a separate LPG separation column. To provide a way to produce.

본 발명의 또 다른 목적은 원료유 중의 비방향족 탄화수소 화합물들을 촉매의 존재 하에서 수소첨가 반응시킬 경우 생성되는 에탄 및 LPG 성분을 공정 연료로 활용할 뿐만 아니라 열분해 공정 원료로 사용하는 방법을 제공하는데 있다.It is still another object of the present invention to provide a method of using ethane and LPG components produced when hydrogenating non-aromatic hydrocarbon compounds in crude oil in the presence of a catalyst as a process fuel as well as a pyrolysis process raw material.

상기 목적 및 기타 목적을 달성하기 위하여, In order to achieve the above and other purposes,

본 발명의 바람직한 구체예에 따르면, According to a preferred embodiment of the invention,

(a) 탄화수소 원료 혼합물을 열분해로 내로 유입시켜 열분해 반응시키는 단계;(a) introducing a hydrocarbon raw material mixture into a pyrolysis furnace for pyrolysis reaction;

(b) 상기 열분해 반응으로부터 얻어진 반응생성물을 압축 및 분류과정을 통해서 수소 및 C4 이하의 탄화수소를 포함하는 흐름과, C5+ 탄화수소를 포함하는 흐름으로 분리하는 단계;(b) separating the reaction product obtained from the pyrolysis reaction into a stream containing hydrogen and C4 or less hydrocarbons and a stream containing C5 + hydrocarbons through compression and fractionation;

(c) 상기 수소 및 C4 이하의 탄화수소를 포함하는 흐름으로부터 수소와, C2, C3 및 C4의 올레핀계 및 파라핀계 탄화수소를 각각 회수하는 단계;(c) recovering hydrogen and C2, C3 and C4 olefinic and paraffinic hydrocarbons from the stream comprising hydrogen and C4 or less hydrocarbons, respectively;

(d) 상기 C5+ 탄화수소를 포함하는 흐름으로부터 수소첨가 반응 및 분리과정을 통해서 열분해 가솔린과, C6+ 탄화수소를 포함하는 유분으로 분리하는 단계; (d) separating the pyrolysis gasoline from the stream containing the C5 + hydrocarbon into a fraction comprising pyrolysis gasoline and a C6 + hydrocarbon through a hydrogenation reaction and a separation process;

(e) 상기 분리된 열분해 가솔린과, 탄화수소 원료 혼합물 및 수소를 적어도 하나의 반응 영역 내로 유입시키는 단계; (e) introducing the separated pyrolysis gasoline, hydrocarbon feed mixture and hydrogen into at least one reaction zone;

(f) 상기 반응 영역 내에서 상기 탄화수소 원료 혼합물을 촉매의 존재 하에서 (ⅰ) 탈알킬화/트랜스알킬화 반응을 통해서 벤젠, 톨루엔 및 자일렌(BTX)이 풍부한 방향족 탄화수소 화합물로 전환시키고, 그리고 (ⅱ) 수소첨가 분해 반응을 통해서 LPG가 풍부한 비방향족 탄화수소 화합물로 전환시키는 단계; (f) converting the hydrocarbon starting mixture in the reaction zone into an aromatic hydrocarbon compound rich in benzene, toluene and xylene (BTX) via (iv) dealkylation / transalkylation reaction in the presence of a catalyst, and (ii) Converting to a LPG-rich nonaromatic hydrocarbon compound via hydrocracking reaction;

(g) 상기 (f) 단계의 반응생성물을 기-액 분리과정을 통해서 수소, 메탄, 에 탄 및 LPG를 포함하는 상단 흐름과, 방향족 탄화수소 화합물과 소량의 수소 및 비방향족 탄화수소 화합물을 포함하는 바닥 흐름으로 분리하는 단계;(g) the reaction product of step (f) is subjected to gas-liquid separation through a top stream comprising hydrogen, methane, ethane and LPG, and a bottom comprising aromatic hydrocarbon compounds and a small amount of hydrogen and non-aromatic hydrocarbon compounds. Separating into a flow;

(h) 상기 상단 흐름을 상기 (b) 단계의 압축 및 분류과정으로 순환시키는 단계; 및(h) circulating the top stream through the compression and classification process of step (b); And

(i) 상기 바닥 흐름으로부터 방향족 탄화수소 화합물을 회수하는 단계;(i) recovering the aromatic hydrocarbon compound from the bottoms stream;

를 포함하는 것을 특징으로 하는 탄화수소 원료 혼합물로부터 경질 올레핀 탄화수소 화합물을 증산하는 방법이 제공된다.Provided is a method for tranking a light olefin hydrocarbon compound from a hydrocarbon raw material mixture comprising a.

여기서, 상기 방법은 또한, 상기 (c) 단계에서 각각 회수된 C2∼C4 파라핀계 탄화수소의 적어도 일부를 상기 (a) 단계의 열분해로 내로 순환시키는 단계를 더욱 포함할 수 있다.Here, the method may further include circulating at least a portion of the C2 to C4 paraffinic hydrocarbons respectively recovered in step (c) into the pyrolysis furnace of step (a).

한편, 상기 (h) 단계에서, 상기 상단 흐름 중 일부가 분리되어 상기 (f) 단계의 반응 영역 내로 순환되거나, 또는 상기 상단 흐름의 전량이 상기 (b) 단계의 압축 및 분류과정으로 순환될 수 있다.On the other hand, in step (h), some of the top stream may be separated and circulated into the reaction zone of step (f), or the entire amount of the top stream may be circulated through the compression and sorting process of step (b). have.

또한, 상기 방법은 상기 (i) 단계에서 회수된 방향족 탄화수소 화합물을 벤젠, 톨루엔, 자일렌 및 C9+ 방향족 화합물로 각각 분리하는 단계를 더욱 포함할 수 있다.In addition, the method may further comprise the step of separating the aromatic hydrocarbon compound recovered in step (i) into benzene, toluene, xylene and C9 + aromatic compounds, respectively.

상기 (f) 단계의 촉매는 모더나이트, 베타형 제올라이트 및 ZSM-5형 제올라이트로 구성된 군으로부터 적어도 하나가 선택되는, 실리카/알루미나의 몰 비가 200 이하인 제올라이트 10∼95중량% 및 무기질 바인더 5∼90중량%를 혼합하여 담체로 사용하고, 상기 혼합담체에 백금/주석 또는 백금/납을 담지시켜 제조된 것이 바 람직하다.The catalyst of step (f) is at least one selected from the group consisting of mordenite, beta zeolite and ZSM-5 zeolite, 10 to 95% by weight zeolite having a mole ratio of silica or alumina and inorganic binder 5 to 90 It is preferable that the mixture is used as a carrier by mixing the weight%, and prepared by supporting platinum / tin or platinum / lead on the mixed carrier.

한편, 상기 탄화수소 원료 혼합물은 접촉개질유, 열분해 가솔린, 유동층 접촉분해 가솔린, C9+ 방향족 함유 혼합물, 나프타 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있다.Meanwhile, the hydrocarbon raw material mixture may be selected from the group consisting of catalytic reforming oil, pyrolysis gasoline, fluidized bed catalytic gasoline, C9 + aromatic containing mixture, naphtha and mixtures thereof.

본 발명의 다른 바람직한 구체예에 따르면, According to another preferred embodiment of the invention,

(a) 탄화수소 원료 혼합물을 열분해로 내로 유입시켜 열분해 반응시키는 단계;(a) introducing a hydrocarbon raw material mixture into a pyrolysis furnace for pyrolysis reaction;

(b) 상기 열분해 반응으로부터 얻어진 반응생성물을 압축 및 분류과정을 통해서 수소 및 C4 이하의 탄화수소를 포함하는 흐름과, C5+ 탄화수소를 포함하는 흐름으로 분리하는 단계;(b) separating the reaction product obtained from the pyrolysis reaction into a stream containing hydrogen and C4 or less hydrocarbons and a stream containing C5 + hydrocarbons through compression and fractionation;

(c) 상기 수소 및 C4 이하의 탄화수소를 포함하는 흐름으로부터 수소와, C2, C3 및 C4의 올레핀계 및 파라핀계 탄화수소를 각각 회수하는 단계;(c) recovering hydrogen and C2, C3 and C4 olefinic and paraffinic hydrocarbons from the stream comprising hydrogen and C4 or less hydrocarbons, respectively;

(d) 상기 C5+ 탄화수소를 포함하는 흐름으로부터 수소첨가 반응 및 분리과정을 통해서 열분해 가솔린과, C6+ 탄화수소를 포함하는 유분으로 분리하는 단계; (d) separating the pyrolysis gasoline from the stream containing the C5 + hydrocarbon into a fraction comprising pyrolysis gasoline and a C6 + hydrocarbon through a hydrogenation reaction and a separation process;

(e) 상기 분리된 열분해 가솔린과, 탄화수소 원료 혼합물 및 수소를 적어도 하나의 반응 영역 내로 유입시키는 단계; (e) introducing the separated pyrolysis gasoline, hydrocarbon feed mixture and hydrogen into at least one reaction zone;

(f) 상기 반응 영역 내에서 상기 탄화수소 원료 혼합물을 촉매의 존재 하에서 (ⅰ) 탈알킬화/트랜스알킬화 반응을 통해서 벤젠, 톨루엔 및 자일렌(BTX)이 풍부한 방향족 탄화수소 화합물로 전환시키고, 그리고 (ⅱ) 수소첨가 분해 반응을 통해서 LPG가 풍부한 비방향족 탄화수소 화합물로 전환시키는 단계; (f) converting the hydrocarbon starting mixture in the reaction zone into an aromatic hydrocarbon compound rich in benzene, toluene and xylene (BTX) via (iv) dealkylation / transalkylation reaction in the presence of a catalyst, and (ii) Converting to a LPG-rich nonaromatic hydrocarbon compound via hydrocracking reaction;

(g) 상기 (f) 단계의 반응생성물을 기-액 분리과정을 통해서 수소, 메탄, 에탄 및 LPG를 포함하는 상단 흐름과, 방향족 탄화수소 화합물과 소량의 수소 및 비방향족 탄화수소 화합물을 포함하는 바닥 흐름으로 분리하는 단계;(g) a top stream comprising hydrogen, methane, ethane, and LPG through the gas-liquid separation of the reaction product of step (f); and a bottom stream comprising aromatic hydrocarbon compounds and a small amount of hydrogen and non-aromatic hydrocarbon compounds. Separating into;

(h) 상기 상단 흐름을 상기 (b) 단계의 압축 및 분류과정으로 순환시키는 단계;(h) circulating the top stream through the compression and classification process of step (b);

(i) 상기 바닥 흐름으로부터 (ⅰ) 방향족 탄화수소 화합물과, (ⅱ) 소량의 수소 및 비방향족 탄화수소 화합물을 포함하는 흐름으로 분리하는 단계; 및(i) separating from said bottoms stream into a stream comprising (i) an aromatic hydrocarbon compound and (ii) a small amount of hydrogen and non-aromatic hydrocarbon compounds; And

(j) 상기 (i) 단계에서 분리된 소량의 수소 및 비방향족 탄화수소 화합물을 포함하는 흐름을 상기 (a) 단계의 열분해로 내로 순환시키는 단계;(j) circulating a stream comprising a small amount of hydrogen and non-aromatic hydrocarbon compounds separated in step (i) into the pyrolysis of step (a);

를 포함하는 것을 특징으로 하는 탄화수소 원료 혼합물로부터 경질 올레핀 탄화수소 화합물을 증산하는 방법이 제공된다.Provided is a method for tranking a light olefin hydrocarbon compound from a hydrocarbon raw material mixture comprising a.

본 발명의 또 다른 바람직한 구체예에 따르면, According to another preferred embodiment of the invention,

(a) 탄화수소 원료 혼합물을 열분해로 내로 유입시켜 열분해 반응시키는 단계;(a) introducing a hydrocarbon raw material mixture into a pyrolysis furnace for pyrolysis reaction;

(b) 상기 열분해 반응으로부터 얻어진 반응생성물을 압축 및 분류과정을 통해서 수소 및 C4 이하의 탄화수소를 포함하는 흐름과, C5+ 탄화수소를 포함하는 흐름으로 분리하는 단계;(b) separating the reaction product obtained from the pyrolysis reaction into a stream containing hydrogen and C4 or less hydrocarbons and a stream containing C5 + hydrocarbons through compression and fractionation;

(c) 상기 수소 및 C4 이하의 탄화수소를 포함하는 흐름으로부터 수소와, C2, C3 및 C4의 올레핀계 및 파라핀계 탄화수소를 각각 회수하는 단계;(c) recovering hydrogen and C2, C3 and C4 olefinic and paraffinic hydrocarbons from the stream comprising hydrogen and C4 or less hydrocarbons, respectively;

(d) 상기 C5+ 탄화수소를 포함하는 흐름에 유동층 접촉분해 가솔린을 유입시 키고 이를 수소첨가 반응 및 분리과정을 통해서 열분해 가솔린과, C6+ 탄화수소를 포함하는 유분으로 분리하는 단계; (d) introducing a fluidized bed catalytic cracking gasoline into the stream containing C5 + hydrocarbons and separating the same into pyrolysis gasoline and an oil comprising C6 + hydrocarbons through a hydrogenation reaction and a separation process;

(e) 상기 분리된 열분해 가솔린과, 탄화수소 원료 혼합물 및 수소를 적어도 하나의 반응 영역 내로 유입시키는 단계; (e) introducing the separated pyrolysis gasoline, hydrocarbon feed mixture and hydrogen into at least one reaction zone;

(f) 상기 반응 영역 내에서 상기 탄화수소 원료 혼합물을 촉매의 존재 하에서 (ⅰ) 탈알킬화/트랜스알킬화 반응을 통해서 벤젠, 톨루엔 및 자일렌(BTX)이 풍부한 방향족 탄화수소 화합물로 전환시키고, 그리고 (ⅱ) 수소첨가 분해 반응을 통해서 LPG가 풍부한 비방향족 탄화수소 화합물로 전환시키는 단계; (f) converting the hydrocarbon starting mixture in the reaction zone into an aromatic hydrocarbon compound rich in benzene, toluene and xylene (BTX) via (iv) dealkylation / transalkylation reaction in the presence of a catalyst, and (ii) Converting to a LPG-rich nonaromatic hydrocarbon compound via hydrocracking reaction;

(g) 상기 (f) 단계의 반응생성물을 기-액 분리과정을 통해서 수소, 메탄, 에탄 및 LPG를 포함하는 상단 흐름과, 방향족 탄화수소 화합물과 소량의 수소 및 비방향족 탄화수소 화합물을 포함하는 바닥 흐름으로 분리하는 단계;(g) a top stream comprising hydrogen, methane, ethane, and LPG through the gas-liquid separation of the reaction product of step (f); and a bottom stream comprising aromatic hydrocarbon compounds and a small amount of hydrogen and non-aromatic hydrocarbon compounds. Separating into;

(h) 상기 상단 흐름을 상기 (b) 단계의 압축 및 분류과정으로 순환시키는 단계;(h) circulating the top stream through the compression and classification process of step (b);

(i) 상기 바닥 흐름으로부터 (ⅰ) 방향족 탄화수소 화합물과, (ⅱ) 소량의 수소 및 비방향족 탄화수소 화합물을 포함하는 흐름으로 분리하는 단계; 및(i) separating from said bottoms stream into a stream comprising (i) an aromatic hydrocarbon compound and (ii) a small amount of hydrogen and non-aromatic hydrocarbon compounds; And

(j) 상기 (i) 단계에서 분리된 소량의 수소 및 비방향족 탄화수소 화합물을 포함하는 흐름을 상기 (a) 단계의 열분해로 내로 순환시키는 단계;(j) circulating a stream comprising a small amount of hydrogen and non-aromatic hydrocarbon compounds separated in step (i) into the pyrolysis of step (a);

를 포함하는 것을 특징으로 하는 탄화수소 원료 혼합물로부터 경질 올레핀 탄화수소 화합물을 증산하는 방법이 제공된다.Provided is a method for tranking a light olefin hydrocarbon compound from a hydrocarbon raw material mixture comprising a.

이하, 도면을 참고로 하여 본 발명을 좀 더 구체적으로 살펴보면 다음과 같 다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

도 1 내지 도 3은 각각 본 발명에 따라 탄화수소 원료 혼합물로부터 경질 올레핀계 탄화수소를 증산하는 바람직한 구체예들을 도시하는 공정도이다.1 to 3 are each a process diagram showing preferred embodiments for the nitration of light olefinic hydrocarbons from a hydrocarbon stock mixture in accordance with the present invention.

도 1 내지 도 3을 참조하면, 열분해 공정의 원료로 사용되는 나프타(Naphtha)와 같은 탄화수소 원료 혼합물 유분(111)은 열분해로(131)로 유입되어 스팀(Steam)이 존재하는 상태에서 열분해 반응에 의해 가벼운 가스 성분(112)으로 전환되고 이 성분(112)은 압축 및 분류부(132)로 도입된다. 1 to 3, a hydrocarbon raw material mixture fraction 111 such as Naphtha, which is used as a raw material of the pyrolysis process, is introduced into the pyrolysis furnace 131 and subjected to a pyrolysis reaction in the presence of steam. Is converted to a light gas component 112, which is introduced into the compression and fractionation section 132.

본 발명에서 사용되는 탄화수소 원료 혼합물은 바람직하게는, 30∼250℃의 비점을 갖는 탄화수소로서, 접촉개질유, 열분해 가솔린, 유동층 접촉분해 가솔린, C9+ 방향족 함유 혼합물, 나프타 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있다.The hydrocarbon raw material mixture used in the present invention is preferably a hydrocarbon having a boiling point of 30 to 250 ° C., from a group consisting of catalytic reforming oil, pyrolysis gasoline, fluidized bed catalytic gasoline, C9 + aromatic containing mixture, naphtha and mixtures thereof. Can be selected.

상기 압축 및 분류부(132)에서 분리되는 수소와 가벼운 탄화수소(113)는 냉각부(133)로 도입되고 이 곳에서 수소(116)와 탄화수소(117)을 분리하게 된다. 한편, 이로부터 분리된 탄화수소는(117) 후단의 분류부(135)로 유입되어 열분해 공정의 주요 반응생성물인 에틸렌(118)과 프로필렌(119)을, 에탄(120), 프로판(121), 부탄(122) 및 C5(115) 유분으로부터 분리하여 생산하게 된다. 이때 분류부(135)에서 생산되는 에탄(120), 프로판(121), 부탄(122)은 전량 또는 일부 열분해 반응의 원료(126)로서 열분해로(131)로로 순환시켜 열분해로의 주요 생산물인 에틸렌(118)과 프로필렌(119)의 수율을 증대시킬 수 있다. Hydrogen and light hydrocarbons 113 separated from the compression and fractionation unit 132 are introduced into the cooling unit 133 to separate the hydrogen 116 and hydrocarbons 117 there. On the other hand, the hydrocarbon separated therefrom is introduced into the fractionation unit 135 at the rear end of 117, and ethylene (118) and propylene (119), which are the main reaction products of the pyrolysis process, are ethane (120), propane (121) and butane. Produced separately from the (122) and C5 (115) fraction. At this time, the ethane 120, propane 121, and butane 122 produced by the fractionation unit 135 are circulated to the pyrolysis furnace 131 as raw material 126 of all or part of the pyrolysis reaction, and ethylene which is a main product of the pyrolysis furnace. The yield of 118 and propylene 119 can be increased.

한편, 상기 압축 및 분류부(132)에서 분리되는 무거운 탄화수소(C5+)(114)는 분류부(135)에서 유입되는 탄화수소(C5+)(115)와 같이 수소첨가 반응 및 분리공정부(134)로 도입되어 유분에 포함된 황화합물이 전환 및 제거된 탄화수소 상태(123)로 되며, 이는 다시 후단의 분류부(136)로 유입되어 열분해 가솔린(124)과 C9+ 탄화수소를 포함하는 유분(125)으로 분리된다.Meanwhile, the heavy hydrocarbon (C5 +) 114 separated from the compression and fractionation unit 132 is a hydrogenation reaction and separation process unit 134, like the hydrocarbon (C5 +) 115 flowing from the fractionation unit 135. The sulfur compound contained in the oil is introduced into the hydrocarbon state 123 which is converted and removed, which is further introduced into the fractionation unit 136 at the rear end and separated into pyrolysis gasoline 124 and an oil 125 including C9 + hydrocarbons. .

한편, 이로부터 분리된 열분해 가솔린(124)은 탄화수소 혼합물로부터 방향족 탄화수소 혼합물과 액화석유가스(LPG)를 제조하기 위한 공정의 반응 원료 성분으로서 사용된다. On the other hand, the pyrolysis gasoline 124 separated therefrom is used as a reaction raw material component of the process for producing an aromatic hydrocarbon mixture and liquefied petroleum gas (LPG) from the hydrocarbon mixture.

즉, 상기 열분해 가솔린(124)은 탄화수소 원료 혼합물(11)과 함께 수소(22) 및 고순도의 수소(12, 116)와 합쳐져 원료유로서 반응기(3)에 도입된다.That is, the pyrolysis gasoline 124 is combined with the hydrogen 22 and the high purity hydrogen 12 and 116 together with the hydrocarbon raw material mixture 11 and introduced into the reactor 3 as raw oil.

이때, 반응온도까지 수소/원료혼합물의 온도를 상승시키기 위하여 별도의 가열기(2)가 설치되는데, 상기 수소/원료혼합물은 가열기(2)로 유입되기 전에 반응기(3)로부터 배출되어 열교환기(1)로 순환되는 반응생성물(15)과의 열교환을 통하여 어느 정도 승온된 상태(13)에서 가열기(2) 내로 유입된다.At this time, a separate heater (2) is installed to increase the temperature of the hydrogen / raw material mixture to the reaction temperature, the hydrogen / raw material mixture is discharged from the reactor (3) before entering the heater (2) heat exchanger (1) Through the heat exchange with the reaction product (15) circulated in) is introduced into the heater (2) in a state in which the temperature is raised to some extent (13).

상기 반응기(3) 내로 도입된 수소/원료혼합물(14)은 촉매의 존재 하에서 탈알킬화반응, 트랜스알킬화 반응 및 수소첨가 반응된다. The hydrogen / raw mixture 14 introduced into the reactor 3 is subjected to dealkylation, transalkylation and hydrogenation in the presence of a catalyst.

즉, 상기 반응기(3)에서는 비방향족 탄화수소 화합물들의 수소첨가 분해반응과, 방향족 탄화수소 화합물들의 탈알킬화 반응, 트랜스알킬화 반응 등이 동시에 일어나 벤젠, 톨루엔, 자일렌 등의 석유화학공업의 주요 기초 유분들이 수득되며, 부산물로서 LPG를 비롯한 비방향족 화합물이 수득된다.That is, in the reactor 3, hydrocracking reactions of non-aromatic hydrocarbon compounds, dealkylation reactions and transalkylation reactions of aromatic hydrocarbon compounds occur simultaneously, so that the main basic oils of petrochemical industry such as benzene, toluene, xylene, etc. And non-aromatic compounds, including LPG, are obtained as by-products.

여기서, 상기 반응기(3)에 충전되어 탈알킬화반응, 트랜스알킬화 반응 및 수 소첨가 반응이 일어나도록 하는 촉매는 당업자에게 알려진 것이라면 특별히 한정되는 것은 아니나, 바람직하게는 미국 특허 제6,635,792호에 개시된 바와 같은 촉매를 사용할 수 있다.Here, the catalyst charged in the reactor 3 to cause dealkylation reaction, transalkylation reaction and hydrogenation reaction is not particularly limited as long as it is known to those skilled in the art, but preferably as disclosed in US Pat. No. 6,635,792. Catalysts can be used.

즉, 모더나이트, 베타형 제올라이트 및 ZSM-5형 제올라이트로 구성된 군으로부터 적어도 하나가 선택되는, 실리카/알루미나의 몰 비가 200 이하인 제올라이트 10∼95중량% 및 무기질 바인더 5∼90중량%를 혼합하여 담체로 사용하고, 상기 혼합담체에 백금/주석 또는 백금/납을 담지시켜 제조된 촉매를 사용할 수 있다.That is, a carrier is prepared by mixing 10 to 95% by weight of zeolite having a molar ratio of 200 or less and 5 to 90% by weight of an inorganic binder, wherein at least one selected from the group consisting of mordenite, beta zeolite and ZSM-5 zeolite It can be used as, the catalyst prepared by supporting the platinum / tin or platinum / lead on the mixed carrier.

한편, 상기 반응이 종료된 후의 생성물(15)은 비교적 고온인 기상(gaseous) 생성물로 존재하게 되고, 기액분리기(4)로 도입되기 전에 순환되어 열교환기(1)로 유입되며, 여기에서 수소/원료혼합물로 열을 방출한 다음 냉각기(5)를 거치게 된다.On the other hand, after the reaction is completed, the product 15 is present as a relatively hot gaseous product, circulated before being introduced into the gas-liquid separator 4, and introduced into the heat exchanger 1, where hydrogen / The heat is released to the raw material mixture and then passed through the cooler (5).

상기 냉각기(5)를 거친 생성물 흐름(17)은 약 30∼50℃의 상태에서 기액분리기(4)로 유입되어 기상 성분 및 액상 성분으로 분리된다. 상기 기상 성분은 상단 흐름(overhead stream; 19)으로 기액분리기(4)로부터 배출되며, 액상 성분은 바닥 흐름(18)으로 배출된다. 이때, 기상성분(19)은 몰 기준으로 약 60∼75%의 수소와 25∼40%의 탄화수소 성분으로 구성되며, 특히 상기 탄화수소 성분은 탄소수가 비교적 적은 메탄, 에탄, LPG 등이다.The product stream 17 passing through the cooler 5 is introduced into the gas-liquid separator 4 at a temperature of about 30 to 50 ° C. and separated into gaseous and liquid components. The gaseous component is withdrawn from gas-liquid separator 4 in an overhead stream 19 and the liquid component is withdrawn to bottom stream 18. At this time, the gas phase component 19 is composed of about 60 to 75% hydrogen and 25 to 40% hydrocarbon component on a molar basis. In particular, the hydrocarbon component is methane, ethane, LPG, or the like having a relatively low carbon number.

상기 상단 흐름(19)은 상기 열분해 공정의 압축 및 분류부(132)로 유입되어 순환된다(20). 여기서, 상기 상단 흐름(19) 중 일부(21)가 분리되어 압축기(6)에서 압축된 후에 수소순도를 조절하기 위하여 유입되는 고순도 수소(12)(116)와 합 쳐져 원료 혼합물(11)과 함께 반응영역으로 도입되거나, 또는 상기 상단 흐름의 전량(20)이 압축 및 분류부(132)로 도입된다. 특히, 상기 상단 흐름의 전량(20)이 열분해 공정의 압축 및 분류부(132)로 유입되어 순환되는 경우에는 압축기(6)를 설치하지 않아도 무방하다.The top stream 19 enters and circulates 20 the compression and fractionation unit 132 of the pyrolysis process. Here, a portion 21 of the top stream 19 is separated and compressed in the compressor 6 and then combined with the incoming high purity hydrogen 12, 116 to adjust the hydrogen purity together with the raw material mixture 11. Into the reaction zone, or the total amount of the top stream 20 is introduced into the compression and sorting unit 132. In particular, when the total amount of the top stream 20 is introduced into the compression and fractionation unit 132 of the pyrolysis process and circulated, the compressor 6 may not be installed.

한편, 상기 바닥 흐름(18)으로 배출되는 전량 액상 성분(18)은 방향족 성분이 대부분을 차지하고 있는 반면, 잔여 수소 및 가벼운 비방향족 성분들을 소량 함유하고 있다. 따라서, 상기 액상성분(18)은 다시 분리 정제공정을 거치게 되는데, 분류부 (7) 내에서 비점에 따라 잔여수소와 비방향족 성분흐름 및 99% 이상의 순도를 갖는 벤젠(28), 톨루엔(29), 자일렌(30), C9 이상의 방향족 화합물 등으로 분리될 수 있다.On the other hand, the total amount of liquid component 18 discharged to the bottom stream 18 is mostly aromatic, whereas it contains a small amount of residual hydrogen and light non-aromatic components. Thus, the liquid component 18 is subjected to a separate purification process again, benzene (28), toluene (29) having a residual hydrogen and non-aromatic component flow and purity of 99% or more depending on the boiling point in the fractionation section (7). , Xylene 30, C9 or more aromatic compounds may be separated.

한편, 상기 분류부(7)로부터 분리된 잔여수소와 비방향족 성분흐름(23)은 또한, 도 2 및 도 3에 나타낸 바와 같이, 열분해로(131)로 재순환되는 C2-C4의 파라핀 탄화수소 흐름(126)과 합쳐져 열분해로의 원료로서 사용될 수 있다. On the other hand, the residual hydrogen and non-aromatic component flow 23 separated from the fractionation section 7 is also a C2-C4 paraffinic hydrocarbon stream (recirculated to the pyrolysis furnace 131, as shown in Figs. 2 and 3). 126) and can be used as raw material for pyrolysis.

특히, 유동층 접촉분해 가솔린(127)을 원료로 하는 경우, 도 3에 나타낸 바와 같이, 유동층 접촉분해 가솔린(127)이 열분해 공정의 수소첨가반응 및 분류부(134)에 추가로 유입되어 유동층 접촉분해 가솔린(127) 중의 황화합물과 질소화합물이 반응을 통해 전환/제거된 후 공정내로 순환된다.In particular, when the fluidized bed catalytic cracking gasoline 127 is used as the raw material, as shown in FIG. 3, the fluidized bed catalytic cracking gasoline 127 is further introduced into the hydrogenation reaction and fractionation unit 134 of the pyrolysis process, thereby allowing fluidized bed catalytic cracking. Sulfur compounds and nitrogen compounds in gasoline 127 are converted / removed through the reaction and then circulated into the process.

전술한 바와 같이, 본 발명에 따르면, 통상 수소첨가 분해반응에는 여분의 수소가 필요하게 되고 사용되고 남는 수소는 공정내 연료로 사용되었으나, 본 발명에 따라 탄화수소 열분해 공정의 압축 및 분류부로 순환되어 수소 소모량 만큼만 수소를 사용하고, 잉여 수소를 회수하도록 개선할 수 있다.As described above, according to the present invention, hydrocracking reactions usually require extra hydrogen, and the remaining hydrogen is used as in-process fuel, but according to the present invention, the hydrogen is consumed by being circulated to the compression and fractionation unit of the hydrocarbon pyrolysis process. Only as much hydrogen can be used and it can be improved to recover excess hydrogen.

또한, 에탄과 LPG 성분이 풍부한 비방향족 성분의 경우, 기존에는 공정 연료로 사용하거나 별도의 분리 시설을 통해 LPG 제품을 수득하였으나, 본 발명에 따라 탄화수소 열분해 공정의 압축 및 분류부로 순환시킬 경우, 열분해 시설에 LPG 분리시설이 갖추어져 있어, 별도의 LPG 분리 시설을 갖추지 않고 LPG를 분리하도록 개선할 수 있다. 또한, 상기 에탄과 LPG 성분이 많은 비방향족 성분을 열분해로 내로 순환시켜 열분해로의 원료로 사용할 경우 열분해로의 주요 생산물인 에틸렌과 같은 경질 올레핀 탄화수소, 특히 에틸렌을 증산할 수 있는 이점이 있다.In addition, in the case of non-aromatic components rich in ethane and LPG components, conventionally, LPG products were obtained as a process fuel or through a separate separation facility. However, when circulated to the compression and fractionation unit of a hydrocarbon pyrolysis process according to the present invention, pyrolysis The facility is equipped with LPG separation facilities, which can be improved to separate LPGs without having a separate LPG separation facility. In addition, when the non-aromatic components containing many of the ethane and LPG components are circulated into the pyrolysis furnace and used as a raw material for the pyrolysis furnace, there is an advantage in that light olefin hydrocarbons such as ethylene, in particular ethylene, which are the main products of the pyrolysis furnace, can be increased.

아울러, 기상생성물은 통상의 증류탑을 포함한 분리시설을 통해서 에탄, 프로판, 부탄으로 분리하여 수득하거나, 또는 에탄/프로판/부탄 혼합물 상태로 분리하거나 또는 수소가 포함된 상태로 분리하여 열분해 공정과 같은 경질 올레핀 탄화수소 생산 공정과의 통합과정을 통해서 수소를 회수할 수도 있다. 뿐만 아니라, 에탄/프로판/부탄 혼합물 형태 또는 각각의 성분으로 분리하여, 전량 또는 일부를 열분해로의 원료로 사용하게 되면 열분해 공정에서 경질 올레핀 탄화수소를 증산할 수 있는 장점이 있다.In addition, the gaseous product is obtained by separating into ethane, propane and butane through a separation facility including a conventional distillation column, or separating into an ethane / propane / butane mixture or separating into a hydrogen-containing state such as a pyrolysis process. Hydrogen recovery can also be achieved through integration with the olefin hydrocarbon production process. In addition, by separating the ethane / propane / butane mixture or each component, using all or part of the raw material for the pyrolysis furnace has the advantage that the light olefin hydrocarbon can be increased in the pyrolysis process.

본 발명은 하기의 실시예에 의하여 보다 명확히 이해될 수 있으며, 하기의 실시예는 본 발명의 예시 목적에 불과하며 발명의 영역을 제한하고자 하는 것은 아니다.The present invention can be more clearly understood by the following examples, which are only intended to illustrate the present invention and are not intended to limit the scope of the invention.

실시예 1Example 1

실리카/알루미나의 몰 비가 20인 모더나이트와 바인더로 감마 알루미나를 사 용하여 혼합담체를 성형하는 과정에서 H2PtCl6 수용액과 SnCl2 수용액을 혼합하고, 백금 및 주석을 제외한 담체 중 모더나이트 함량이 75중량%가 되도록 하였다. 백금 및 주석은 상기 모더나이트와 바인더의 총량 100중량부에 대하여 각각 0.05중량부 및 0.5중량부로 담지시켜 직경 1.5㎜ 및 길이 10㎜가 되도록 성형하였고, 200℃에서 12시간 동안 건조시킨 후에 500℃에서 4시간 동안 소성함으로써 촉매를 제조하였다. 상기 방법에 따라 제조된 촉매를 사용하여 탄화수소 혼합물에 대하여 실험하였다. 실험 조건 및 그 결과를 하기 표 1에 나타내었다.Mordenite having a molar ratio of silica / alumina and 20 was mixed with aqueous solution of H 2 PtCl 6 and SnCl 2 in the process of forming a mixed carrier using gamma alumina as a binder. It was made to be the weight%. Platinum and tin were formed to have a diameter of 1.5 mm and a length of 10 mm by carrying 0.05 part by weight and 0.5 part by weight with respect to 100 parts by weight of the total amount of mordenite and binder, respectively, and dried at 200 ° C. for 12 hours, and then at 4 ° C. at 500 ° C. The catalyst was prepared by firing for hours. The hydrocarbon mixture was tested using a catalyst prepared according to the above method. Experimental conditions and the results are shown in Table 1 below.

Figure 112005032948038-PAT00001
Figure 112005032948038-PAT00001

실시예 2 내지 5 및 비교예 1Examples 2 to 5 and Comparative Example 1

이하, 본 발명의 방법에 따라 탄화수소 혼합물로부터 방향족 탄화수소 혼합물과 LPG를 제조하기 위한 공정과, 열분해 공정과의 통합시 이러한 통합 공정으로부터 수득되는 에탄과 LPG 성분이 풍부한 유분이 열분해 공정의 원료로 사용되어질 때 열분해로에 의해 열분해되어 전환되는 성능에 대한 확인이 필요한 바, 하기의 실시예에서는 열분해로에 미치는 영향에 대해 보다 명확히 이해될 수 있도록 열분해로 실험조건 및 그 결과를 하기 표 2에 나타내었다.Hereinafter, a process for producing an aromatic hydrocarbon mixture and LPG from a hydrocarbon mixture according to the method of the present invention, and an oil rich in ethane and LPG components obtained from such an integrated process in integration with the pyrolysis process may be used as raw materials for the pyrolysis process. When it is necessary to confirm the performance when the pyrolysis is converted by the pyrolysis furnace, in the following examples, the experimental conditions and results are shown in Table 2 so that the effect on the pyrolysis furnace can be more clearly understood.

실시예 2Example 2

상기 실시예 1을 통해 수득되는 에탄을 스팀과 탄화수소의 무게비 0.3, 열분해 온도 852℃, 압력 0.8kg/cm2g , 체류시간 0.172초 운전 조건에서 열분해로의 원료로 사용하는 조건으로 실험하였으며, 실험 조건 및 그 결과를 하기 표 2에 나타내었다. The ethane obtained through Example 1 was tested under the conditions of using the raw material of pyrolysis furnace under operating conditions of weight ratio of steam and hydrocarbon of 0.3, pyrolysis temperature of 852 ° C., pressure of 0.8kg / cm 2 g and residence time of 0.172 seconds. The conditions and the results are shown in Table 2 below.

실시예 3Example 3

상기 실시예 1을 통해 수득되는 프로판을 스팀과 탄화수소의 무게비 0.35, 열분해온도 855℃ , 압력 0.8kg/cm2g , 체류시간 0.18초 운전 조건에서 열분해로의 원료로 사용하는 조건으로 실험하였으며, 실험 조건 및 그 결과를 하기 표 2에 나타내었다. Propane obtained through Example 1 was tested under the conditions of using a raw material of pyrolysis in the operating conditions of weight ratio of steam and hydrocarbon 0.35, pyrolysis temperature 855 ℃, pressure 0.8kg / cm 2 g, residence time 0.18 seconds operating conditions, The conditions and the results are shown in Table 2 below.

실시예 4Example 4

상기 실시예 1을 통해 수득되는 부탄을 스팀과 탄화수소의 무게비 0.5, 열분해온도 860℃, 압력 0.8kg/cm2g , 체류시간 0.154초 운전 조건에서 열분해로의 원료로 사용하는 조건으로 실험 하였으며, 실험 조건 및 그 결과를 하기 표 2에 나타내었다. Butane obtained in Example 1 was tested under the conditions of using the raw material of the pyrolysis furnace under the operating conditions of the weight ratio of steam and hydrocarbon 0.5, pyrolysis temperature 860 ℃, pressure 0.8kg / cm 2 g, residence time 0.154 seconds, The conditions and the results are shown in Table 2 below.

실시예 5Example 5

상기 실시예 1을 통해 수득되는 C2, C3와 C4 혼합물을 스팀과 탄화수소의 무게비 0.35, 열분해온도 860℃, 압력 0.8kg/cm2g , 체류시간 0.173초 운전 조건에서 열분해로의 원료로 사용하는 조건으로 실험 하였으며, 실험 조건 및 그 결과를 하기 표 2에 나타내었다. Conditions for using the C2, C3 and C4 mixture obtained in Example 1 as the raw material of the pyrolysis in the weight ratio of steam and hydrocarbon 0.35, pyrolysis temperature 860 ℃, pressure 0.8kg / cm 2 g, residence time 0.173 seconds operating conditions The experiment was performed, and the experimental conditions and the results are shown in Table 2 below.

비교예 1Comparative Example 1

비점 35~130℃ 조건의 경질 나프타(Light Naphtha)를 스팀과 탄화수소의 무게비 0.5, 열분해온도 855℃, 압력 0.8kg/cm2g , 체류시간 0.152초 운전 조건에서 열분해로의 원료로 사용하는 조건으로 실험하였으며, 실험 조건 및 그 결과를 하기 표 2에 나타내었다.Light Naphtha with boiling point of 35 ~ 130 ℃ is used as raw material for pyrolysis under operating condition of 0.552 weight ratio of steam and hydrocarbon, pyrolysis temperature of 855 ℃, pressure of 0.8kg / cm 2 g and residence time of 0.152 seconds. Experiment was carried out, and the experimental conditions and the results are shown in Table 2 below.

Figure 112005032948038-PAT00002
Figure 112005032948038-PAT00002

상기 표 2에 나타낸 바와 같이, 본 발명의 방법에 따라 탄화수소 혼합물로부터 방향족 탄화수소 혼합물과 LPG를 제조하기 위한 공정과, 상기 공정의 공급 원료로 사용가능한 탄화수소 원료의 생산 공정을 통합한 통합 공정을 적용한 경우, 열분해로의 경질 올레핀 탄화수소, 특히 에틸렌의 생산성을 월등히 향상시킬 수 있다.As shown in Table 2, in the case of applying an integrated process in which a process for producing an aromatic hydrocarbon mixture and LPG from a hydrocarbon mixture according to the method of the present invention and a process for producing a hydrocarbon raw material usable as a feedstock of the process are applied. The productivity of light olefin hydrocarbons, particularly ethylene, in pyrolysis can be greatly improved.

전술한 바와 같이, 본 발명에 따르면, 탄화수소 혼합물로부터 방향족 탄화수소 혼합물과 LPG를 제조하기 위한 공정과, 상기 공정의 공급 원료로 사용가능한 탄화수소 원료의 생산 공정을 통합함으로써 공정에 요구되는 수소 사용량을 줄이고, 선택적인 공정과정에 따라 압축기를 설치하지 않을 수 있으며, 또한 열분해 공정의 분리시설에 여유가 있는 경우 별도의 LPG 분리 시설을 설치하지 않고 LPG를 분리하여 경제성을 제고할 수 있는 이점이 있다.As described above, according to the present invention, by integrating a process for producing an aromatic hydrocarbon mixture and LPG from a hydrocarbon mixture, and a production process of hydrocarbon raw materials that can be used as a feedstock of the process, the amount of hydrogen required for the process is reduced, The compressor may not be installed according to an optional process, and if there is room in the separation facility of the pyrolysis process, there is an advantage of improving economic efficiency by separating LPG without installing a separate LPG separation facility.

또한, 탄화수소 혼합물로부터 방향족 탄화수소 혼합물과 LPG를 제조하기 위한 공정에서 분리되는 LPG 성분과 에탄 성분을 열분해 공정의 원료로 사용함으로써 열분해로의 경질 올레핀 탄화수소, 특히 에틸렌의 생산성을 향상시킬 수 있다.In addition, by using the LPG component and the ethane component separated in the process for producing the aromatic hydrocarbon mixture and the LPG from the hydrocarbon mixture as raw materials for the pyrolysis process, the productivity of the light olefin hydrocarbons, particularly ethylene, by pyrolysis can be improved.

아울러, LPG가 과잉되어 수출 또는 공정내의 연료로 사용하는 경우, 독립공정 보다는 원료 공급 공정과의 통합을 통해 촉매반응으로 생성되는 LPG가 풍부한 비방향족 탄소화합물의 활용도를 높이고 수소 사용량을 줄임으로써 통합되는 두 개 공정의 생산성과 효율성을 개선할 수 있다.In addition, when LPG is excessively used as a fuel for export or in-process, it can be integrated by increasing the utilization of LPG-rich non-aromatic carbon compounds produced by catalytic reaction and reducing hydrogen consumption through integration with raw material supply process rather than independent process. The productivity and efficiency of both processes can be improved.

본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속하는 것으로 본 발명의 구체적인 보호범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.All simple modifications and variations of the present invention fall within the scope of the present invention, and the specific scope of the present invention will be apparent from the appended claims.

Claims (16)

(a) 탄화수소 원료 혼합물을 열분해로 내로 유입시켜 열분해 반응시키는 단계;(a) introducing a hydrocarbon raw material mixture into a pyrolysis furnace for pyrolysis reaction; (b) 상기 열분해 반응으로부터 얻어진 반응생성물을 압축 및 분류과정을 통해서 수소 및 C4 이하의 탄화수소를 포함하는 흐름과, C5+ 탄화수소를 포함하는 흐름으로 분리하는 단계;(b) separating the reaction product obtained from the pyrolysis reaction into a stream containing hydrogen and C4 or less hydrocarbons and a stream containing C5 + hydrocarbons through compression and fractionation; (c) 상기 수소 및 C4 이하의 탄화수소를 포함하는 흐름으로부터 수소와, C2, C3 및 C4의 올레핀계 및 파라핀계 탄화수소를 각각 회수하는 단계;(c) recovering hydrogen and C2, C3 and C4 olefinic and paraffinic hydrocarbons from the stream comprising hydrogen and C4 or less hydrocarbons, respectively; (d) 상기 C5+ 탄화수소를 포함하는 흐름으로부터 수소첨가 반응 및 분리과정을 통해서 열분해 가솔린과, C6+ 탄화수소를 포함하는 유분으로 분리하는 단계; (d) separating the pyrolysis gasoline from the stream containing the C5 + hydrocarbon into a fraction comprising pyrolysis gasoline and a C6 + hydrocarbon through a hydrogenation reaction and a separation process; (e) 상기 분리된 열분해 가솔린과, 탄화수소 원료 혼합물 및 수소를 적어도 하나의 반응 영역 내로 유입시키는 단계; (e) introducing the separated pyrolysis gasoline, hydrocarbon feed mixture and hydrogen into at least one reaction zone; (f) 상기 반응 영역 내에서 상기 탄화수소 원료 혼합물을 촉매의 존재 하에서 (ⅰ) 탈알킬화/트랜스알킬화 반응을 통해서 벤젠, 톨루엔 및 자일렌(BTX)이 풍부한 방향족 탄화수소 화합물로 전환시키고, 그리고 (ⅱ) 수소첨가 분해 반응을 통해서 LPG가 풍부한 비방향족 탄화수소 화합물로 전환시키는 단계; (f) converting the hydrocarbon starting mixture in the reaction zone into an aromatic hydrocarbon compound rich in benzene, toluene and xylene (BTX) via (iv) dealkylation / transalkylation reaction in the presence of a catalyst, and (ii) Converting to a LPG-rich nonaromatic hydrocarbon compound via hydrocracking reaction; (g) 상기 (f) 단계의 반응생성물을 기-액 분리과정을 통해서 수소, 메탄, 에탄 및 LPG를 포함하는 상단 흐름과, 방향족 탄화수소 화합물과 소량의 수소 및 비방향족 탄화수소 화합물을 포함하는 바닥 흐름으로 분리하는 단계;(g) a top stream comprising hydrogen, methane, ethane, and LPG through the gas-liquid separation of the reaction product of step (f); and a bottom stream comprising aromatic hydrocarbon compounds and a small amount of hydrogen and non-aromatic hydrocarbon compounds. Separating into; (h) 상기 상단 흐름을 상기 (b) 단계의 압축 및 분류과정으로 순환시키는 단계; 및(h) circulating the top stream through the compression and classification process of step (b); And (i) 상기 바닥 흐름으로부터 방향족 탄화수소 화합물을 회수하는 단계;(i) recovering the aromatic hydrocarbon compound from the bottoms stream; 를 포함하는 것을 특징으로 하는 탄화수소 원료 혼합물로부터 경질 올레핀 탄화수소 화합물을 증산하는 방법.A method for evaporating a light olefin hydrocarbon compound from a hydrocarbon raw material mixture comprising a. 제1항에 있어서, 상기 방법은 상기 (c) 단계에서 각각 회수된 C2∼C4 파라핀계 탄화수소의 적어도 일부를 상기 (a) 단계의 열분해로 내로 순환시키는 단계를 더욱 포함하는 것을 특징으로 하는 탄화수소 원료 혼합물로부터 경질 올레핀 탄화수소 화합물을 증산하는 방법.The hydrocarbon raw material according to claim 1, wherein the method further comprises circulating at least a portion of the C2 to C4 paraffinic hydrocarbons respectively recovered in the step (c) into the pyrolysis of the step (a). A process for the transpiration of light olefin hydrocarbon compounds from a mixture. 제1항에 있어서, 상기 (h) 단계에서, 상기 상단 흐름 중 일부가 분리되어 상기 (f) 단계의 반응 영역 내로 순환되거나, 또는 상기 상단 흐름의 전량이 상기 (b) 단계의 압축 및 분류과정으로 순환되는 것을 특징으로 하는 탄화수소 원료 혼합물로부터 경질 올레핀 탄화수소 화합물을 증산하는 방법.The process of claim 1, wherein in step (h) a portion of the top stream is separated and circulated into the reaction zone of step (f), or the total amount of the top stream is compressed and classified in step (b). A method of tranking a light olefin hydrocarbon compound from a hydrocarbon raw material mixture, characterized in that it is circulated to. 제1항에 있어서, 상기 방법은 상기 (i) 단계에서 회수된 방향족 탄화수소 화합물을 벤젠, 톨루엔, 자일렌 및 C9+ 방향족 화합물로 각각 분리하는 단계를 더욱 포함하는 것을 특징으로 하는 탄화수소 원료 혼합물로부터 경질 올레핀 탄화수소 화합물을 증산하는 방법.The method of claim 1, wherein the method further comprises the step of separating the aromatic hydrocarbon compound recovered in step (i) into benzene, toluene, xylene and C9 + aromatic compounds, respectively, light olefin from a hydrocarbon raw material mixture Method of transpiration of hydrocarbon compound. 제1항에 있어서, 상기 (f) 단계의 촉매는 모더나이트, 베타형 제올라이트 및 ZSM-5형 제올라이트로 구성된 군으로부터 적어도 하나가 선택되는, 실리카/알루미나의 몰 비가 200 이하인 제올라이트 10∼95중량% 및 무기질 바인더 5∼90중량%를 혼합하여 담체로 사용하고, 상기 혼합담체에 백금/주석 또는 백금/납을 담지시켜 제조된 것임을 특징으로 하는 탄화수소 원료 혼합물로부터 경질 올레핀 탄화수소 화합물을 증산하는 방법.The zeolite of claim 1, wherein the catalyst of step (f) is at least one selected from the group consisting of mordenite, beta zeolite, and ZSM-5 zeolite, wherein the molar ratio of silica / alumina is 200 to 95% by weight. And mixing 5 to 90% by weight of an inorganic binder as a carrier, and supporting platinum / tin or platinum / lead on the mixed carrier to increase light olefin hydrocarbon compound from a hydrocarbon raw material mixture. 제1항에 있어서, 상기 탄화수소 원료 혼합물이 접촉개질유, 열분해 가솔린, 유동층 접촉분해 가솔린, C9+ 방향족 함유 혼합물, 나프타 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는 탄화수소 원료 혼합물로부터 경질 올레핀 탄화수소 화합물을 증산하는 방법.The light olefin hydrocarbon of claim 1, wherein the hydrocarbon feed mixture is selected from the group consisting of catalytic reforming oil, pyrolysis gasoline, fluidized bed catalytic gasoline, C9 + aromatic containing mixture, naphtha and mixtures thereof. Method of transpiration compound. (a) 탄화수소 원료 혼합물을 열분해로 내로 유입시켜 열분해 반응시키는 단계;(a) introducing a hydrocarbon raw material mixture into a pyrolysis furnace for pyrolysis reaction; (b) 상기 열분해 반응으로부터 얻어진 반응생성물을 압축 및 분류과정을 통해서 수소 및 C4 이하의 탄화수소를 포함하는 흐름과, C5+ 탄화수소를 포함하는 흐름으로 분리하는 단계;(b) separating the reaction product obtained from the pyrolysis reaction into a stream containing hydrogen and C4 or less hydrocarbons and a stream containing C5 + hydrocarbons through compression and fractionation; (c) 상기 수소 및 C4 이하의 탄화수소를 포함하는 흐름으로부터 수소와, C2, C3 및 C4의 올레핀계 및 파라핀계 탄화수소를 각각 회수하는 단계;(c) recovering hydrogen and C2, C3 and C4 olefinic and paraffinic hydrocarbons from the stream comprising hydrogen and C4 or less hydrocarbons, respectively; (d) 상기 C5+ 탄화수소를 포함하는 흐름으로부터 수소첨가 반응 및 분리과정을 통해서 열분해 가솔린과, C6+ 탄화수소를 포함하는 유분으로 분리하는 단계; (d) separating the pyrolysis gasoline from the stream containing the C5 + hydrocarbon into a fraction comprising pyrolysis gasoline and a C6 + hydrocarbon through a hydrogenation reaction and a separation process; (e) 상기 분리된 열분해 가솔린과, 탄화수소 원료 혼합물 및 수소를 적어도 하나의 반응 영역 내로 유입시키는 단계; (e) introducing the separated pyrolysis gasoline, hydrocarbon feed mixture and hydrogen into at least one reaction zone; (f) 상기 반응 영역 내에서 상기 탄화수소 원료 혼합물을 촉매의 존재 하에서 (ⅰ) 탈알킬화/트랜스알킬화 반응을 통해서 벤젠, 톨루엔 및 자일렌(BTX)이 풍부한 방향족 탄화수소 화합물로 전환시키고, 그리고 (ⅱ) 수소첨가 분해 반응을 통해서 LPG가 풍부한 비방향족 탄화수소 화합물로 전환시키는 단계; (f) converting the hydrocarbon starting mixture in the reaction zone into an aromatic hydrocarbon compound rich in benzene, toluene and xylene (BTX) via (iv) dealkylation / transalkylation reaction in the presence of a catalyst, and (ii) Converting to a LPG-rich nonaromatic hydrocarbon compound via hydrocracking reaction; (g) 상기 (f) 단계의 반응생성물을 기-액 분리과정을 통해서 수소, 메탄, 에탄 및 LPG를 포함하는 상단 흐름과, 방향족 탄화수소 화합물과 소량의 수소 및 비방향족 탄화수소 화합물을 포함하는 바닥 흐름으로 분리하는 단계;(g) a top stream comprising hydrogen, methane, ethane, and LPG through the gas-liquid separation of the reaction product of step (f); and a bottom stream comprising aromatic hydrocarbon compounds and a small amount of hydrogen and non-aromatic hydrocarbon compounds. Separating into; (h) 상기 상단 흐름을 상기 (b) 단계의 압축 및 분류과정으로 순환시키는 단계;(h) circulating the top stream through the compression and classification process of step (b); (i) 상기 바닥 흐름으로부터 (ⅰ) 방향족 탄화수소 화합물과, (ⅱ) 소량의 수소 및 비방향족 탄화수소 화합물을 포함하는 흐름으로 분리하는 단계; 및(i) separating from said bottoms stream into a stream comprising (i) an aromatic hydrocarbon compound and (ii) a small amount of hydrogen and non-aromatic hydrocarbon compounds; And (j) 상기 (i) 단계에서 분리된 소량의 수소 및 비방향족 탄화수소 화합물을 포함하는 흐름을 상기 (a) 단계의 열분해로 내로 순환시키는 단계;(j) circulating a stream comprising a small amount of hydrogen and non-aromatic hydrocarbon compounds separated in step (i) into the pyrolysis of step (a); 를 포함하는 것을 특징으로 하는 탄화수소 원료 혼합물로부터 경질 올레핀 탄화수소 화합물을 증산하는 방법.A method for evaporating a light olefin hydrocarbon compound from a hydrocarbon raw material mixture comprising a. 제7항에 있어서, 상기 방법은 상기 (c) 단계에서 각각 회수된 C2∼C4 파라핀계 탄화수소의 적어도 일부를 상기 (a) 단계의 열분해로 내로 순환시키는 단계를 더욱 포함하는 것을 특징으로 하는 탄화수소 원료 혼합물로부터 경질 올레핀 탄화수소 화합물을 증산하는 방법.8. The hydrocarbon raw material according to claim 7, wherein the method further comprises circulating at least a portion of the C2 to C4 paraffinic hydrocarbons respectively recovered in step (c) into the pyrolysis of step (a). A process for the transpiration of light olefin hydrocarbon compounds from a mixture. 제7항에 있어서, 상기 (h) 단계에서, 상기 상단 흐름 중 일부가 분리되어 상기 (f) 단계의 반응 영역 내로 순환되거나, 또는 상기 상단 흐름의 전량이 상기 (b) 단계의 압축 및 분류과정으로 순환되는 것을 특징으로 하는 탄화수소 원료 혼합물로부터 경질 올레핀 탄화수소 화합물을 증산하는 방법.The process of claim 7, wherein in step (h), a portion of the top stream is separated and circulated into the reaction zone of step (f), or the entire amount of the top stream is compressed and classified in step (b). A method of tranking a light olefin hydrocarbon compound from a hydrocarbon raw material mixture, characterized in that it is circulated to. 제7항에 있어서, 상기 (f) 단계의 촉매는 모더나이트, 베타형 제올라이트 및 ZSM-5형 제올라이트로 구성된 군으로부터 적어도 하나가 선택되는, 실리카/알루미나의 몰 비가 200 이하인 제올라이트 10∼95중량% 및 무기질 바인더 5∼90중량%를 혼합하여 담체로 사용하고, 상기 혼합담체에 백금/주석 또는 백금/납을 담지시켜 제조된 것임을 특징으로 하는 탄화수소 원료 혼합물로부터 경질 올레핀 탄화수소 화합물을 증산하는 방법.The zeolite according to claim 7, wherein the catalyst of step (f) is at least one selected from the group consisting of mordenite, beta zeolite, and ZSM-5 zeolite, and has a molar ratio of silica / alumina of 200 to 95 wt%. And mixing 5 to 90% by weight of an inorganic binder as a carrier, and supporting platinum / tin or platinum / lead on the mixed carrier. 제7항에 있어서, 상기 탄화수소 원료 혼합물이 접촉개질유, 열분해 가솔린, 유동층 접촉분해 가솔린, C9+ 방향족 함유 혼합물, 나프타 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는 탄화수소 원료 혼합물로부터 경질 올레핀 탄화수소 화합물을 증산하는 방법.8. The light olefin hydrocarbon of claim 7 wherein the hydrocarbon feed mixture is selected from the group consisting of catalytic reforming oil, pyrolysis gasoline, fluidized bed catalytic gasoline, C9 + aromatic containing mixture, naphtha and mixtures thereof. Method of transpiration compound. (a) 탄화수소 원료 혼합물을 열분해로 내로 유입시켜 열분해 반응시키는 단계;(a) introducing a hydrocarbon raw material mixture into a pyrolysis furnace for pyrolysis reaction; (b) 상기 열분해 반응으로부터 얻어진 반응생성물을 압축 및 분류과정을 통해서 수소 및 C4 이하의 탄화수소를 포함하는 흐름과, C5+ 탄화수소를 포함하는 흐름으로 분리하는 단계;(b) separating the reaction product obtained from the pyrolysis reaction into a stream containing hydrogen and C4 or less hydrocarbons and a stream containing C5 + hydrocarbons through compression and fractionation; (c) 상기 수소 및 C4 이하의 탄화수소를 포함하는 흐름으로부터 수소와, C2, C3 및 C4의 올레핀계 및 파라핀계 탄화수소를 각각 회수하는 단계;(c) recovering hydrogen and C2, C3 and C4 olefinic and paraffinic hydrocarbons from the stream comprising hydrogen and C4 or less hydrocarbons, respectively; (d) 상기 C5+ 탄화수소를 포함하는 흐름에 유동층 접촉분해 가솔린을 유입시키고 이를 수소첨가 반응 및 분리과정을 통해서 열분해 가솔린과, C6+ 탄화수소를 포함하는 유분으로 분리하는 단계; (d) introducing a fluidized bed catalytic cracking gasoline into the stream containing C5 + hydrocarbons and separating the same into pyrolysis gasoline and an oil comprising C6 + hydrocarbons through a hydrogenation reaction and a separation process; (e) 상기 분리된 열분해 가솔린과, 탄화수소 원료 혼합물 및 수소를 적어도 하나의 반응 영역 내로 유입시키는 단계; (e) introducing the separated pyrolysis gasoline, hydrocarbon feed mixture and hydrogen into at least one reaction zone; (f) 상기 반응 영역 내에서 상기 탄화수소 원료 혼합물을 촉매의 존재 하에서 (ⅰ) 탈알킬화/트랜스알킬화 반응을 통해서 벤젠, 톨루엔 및 자일렌(BTX)이 풍부한 방향족 탄화수소 화합물로 전환시키고, 그리고 (ⅱ) 수소첨가 분해 반응을 통해서 LPG가 풍부한 비방향족 탄화수소 화합물로 전환시키는 단계; (f) converting the hydrocarbon starting mixture in the reaction zone into an aromatic hydrocarbon compound rich in benzene, toluene and xylene (BTX) via (iv) dealkylation / transalkylation reaction in the presence of a catalyst, and (ii) Converting to a LPG-rich nonaromatic hydrocarbon compound via hydrocracking reaction; (g) 상기 (f) 단계의 반응생성물을 기-액 분리과정을 통해서 수소, 메탄, 에탄 및 LPG를 포함하는 상단 흐름과, 방향족 탄화수소 화합물과 소량의 수소 및 비 방향족 탄화수소 화합물을 포함하는 바닥 흐름으로 분리하는 단계;(g) a top stream comprising hydrogen, methane, ethane and LPG, and a bottom stream comprising an aromatic hydrocarbon compound and a small amount of hydrogen and non-aromatic hydrocarbon compounds through gas-liquid separation of the reaction product of step (f). Separating into; (h) 상기 상단 흐름을 상기 (b) 단계의 압축 및 분류과정으로 순환시키는 단계;(h) circulating the top stream through the compression and classification process of step (b); (i) 상기 바닥 흐름으로부터 (ⅰ) 방향족 탄화수소 화합물과, (ⅱ) 소량의 수소 및 비방향족 탄화수소 화합물을 포함하는 흐름으로 분리하는 단계; 및(i) separating from said bottoms stream into a stream comprising (i) an aromatic hydrocarbon compound and (ii) a small amount of hydrogen and non-aromatic hydrocarbon compounds; And (j) 상기 (i) 단계에서 분리된 소량의 수소 및 비방향족 탄화수소 화합물을 포함하는 흐름을 상기 (a) 단계의 열분해로 내로 순환시키는 단계;(j) circulating a stream comprising a small amount of hydrogen and non-aromatic hydrocarbon compounds separated in step (i) into the pyrolysis of step (a); 를 포함하는 것을 특징으로 하는 탄화수소 원료 혼합물로부터 경질 올레핀 탄화수소 화합물을 증산하는 방법.A method for evaporating a light olefin hydrocarbon compound from a hydrocarbon raw material mixture comprising a. 제12항에 있어서, 상기 방법은 상기 (c) 단계에서 각각 회수된 C2∼C4 파라핀계 탄화수소의 적어도 일부를 상기 (a) 단계의 열분해로 내로 순환시키는 단계를 더욱 포함하는 것을 특징으로 하는 탄화수소 원료 혼합물로부터 경질 올레핀 탄화수소 화합물을 증산하는 방법.13. The hydrocarbon raw material according to claim 12, wherein the method further comprises circulating at least a portion of the C2 to C4 paraffinic hydrocarbons recovered in the step (c) into the pyrolysis of the step (a). A process for the transpiration of light olefin hydrocarbon compounds from a mixture. 제12항에 있어서, 상기 (h) 단계에서, 상기 상단 흐름 중 일부가 분리되어 상기 (f) 단계의 반응 영역 내로 순환되거나, 또는 상기 상단 흐름의 전량이 상기 (b) 단계의 압축 및 분류과정으로 순환되는 것을 특징으로 하는 탄화수소 원료 혼합물로부터 경질 올레핀 탄화수소 화합물을 증산하는 방법.The process of claim 12, wherein in step (h), a portion of the top stream is separated and circulated into the reaction zone of step (f), or the entire amount of the top stream is compressed and classified in step (b). A method of tranking a light olefin hydrocarbon compound from a hydrocarbon raw material mixture, characterized in that it is circulated to. 제12항에 있어서, 상기 (f) 단계의 촉매는 모더나이트, 베타형 제올라이트 및 ZSM-5형 제올라이트로 구성된 군으로부터 적어도 하나가 선택되는, 실리카/알루미나의 몰 비가 200 이하인 제올라이트 10∼95중량% 및 무기질 바인더 5∼90중량%를 혼합하여 담체로 사용하고, 상기 혼합담체에 백금/주석 또는 백금/납을 담지시켜 제조된 것임을 특징으로 하는 탄화수소 원료 혼합물로부터 경질 올레핀 탄화수소 화합물을 증산하는 방법.The zeolite of claim 12, wherein the catalyst of step (f) is at least one selected from the group consisting of mordenite, beta zeolite, and ZSM-5 zeolite, wherein the molar ratio of silica / alumina is 200 to 95% by weight. And mixing 5 to 90% by weight of an inorganic binder as a carrier, and supporting platinum / tin or platinum / lead on the mixed carrier. 제12항에 있어서, 상기 탄화수소 원료 혼합물이 접촉개질유, 열분해 가솔린, 유동층 접촉분해 가솔린, C9+ 방향족 함유 혼합물, 나프타 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는 탄화수소 원료 혼합물로부터 경질 올레핀 탄화수소 화합물을 증산하는 방법.13. The light olefin hydrocarbon according to claim 12, wherein the hydrocarbon feed mixture is selected from the group consisting of catalytic reforming oil, pyrolysis gasoline, fluidized bed catalytic cracking gasoline, C9 + aromatic containing mixture, naphtha and mixtures thereof. Method of transpiration compound.
KR1020050053618A 2005-06-21 2005-06-21 The method of production increase of light olefins from hydrocarbon feedstock KR100710542B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020050053618A KR100710542B1 (en) 2005-06-21 2005-06-21 The method of production increase of light olefins from hydrocarbon feedstock
JP2008518006A JP5206967B2 (en) 2005-06-21 2005-08-17 Method for increasing production of light olefinic hydrocarbon compounds from hydrocarbon feedstock
PCT/KR2005/002706 WO2006137615A1 (en) 2005-06-21 2005-08-17 Process for increasing production of light olefin hydrocarbon from hydrocarbon feedstock
CN2005800502242A CN101208412B (en) 2005-06-21 2005-08-17 Process for increasing yield of light olefin hydrocarbon from hydrocarbon feedstock
EP05780593.9A EP1893726B1 (en) 2005-06-21 2005-08-17 Process for increasing production of light olefin hydrocarbon from hydrocarbon feedstock
US11/225,575 US7301063B2 (en) 2005-06-21 2005-09-12 Process for increasing production of light olefin hydrocarbon from hydrocarbon feedstock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050053618A KR100710542B1 (en) 2005-06-21 2005-06-21 The method of production increase of light olefins from hydrocarbon feedstock

Publications (2)

Publication Number Publication Date
KR20060133777A true KR20060133777A (en) 2006-12-27
KR100710542B1 KR100710542B1 (en) 2007-04-24

Family

ID=37570610

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050053618A KR100710542B1 (en) 2005-06-21 2005-06-21 The method of production increase of light olefins from hydrocarbon feedstock

Country Status (6)

Country Link
US (1) US7301063B2 (en)
EP (1) EP1893726B1 (en)
JP (1) JP5206967B2 (en)
KR (1) KR100710542B1 (en)
CN (1) CN101208412B (en)
WO (1) WO2006137615A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010044562A3 (en) * 2008-10-17 2010-07-29 에스케이에너지 주식회사 Method for producing high value aromatics and olefin from light cycle oil produced by a fluidized catalytic cracking process
KR20150077433A (en) * 2012-10-25 2015-07-07 제이엑스 닛코닛세키에너지주식회사 Olefin and single-ring aromatic hydrocarbon production method, and ethylene production device
KR20160025511A (en) * 2013-07-02 2016-03-08 사우디 베이식 인더스트리즈 코포레이션 Method for cracking a hydrocarbon feedstock in a steam cracker unit
KR20160029806A (en) * 2013-07-02 2016-03-15 사우디 베이식 인더스트리즈 코포레이션 Process and installation for the conversion of crude oil to petrochemicals having an improved carbon efficiency

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR058345A1 (en) 2005-12-16 2008-01-30 Petrobeam Inc SELF-SUPPORTED COLD HYDROCARBONS
US8608942B2 (en) * 2007-03-15 2013-12-17 Kellogg Brown & Root Llc Systems and methods for residue upgrading
US7883618B2 (en) * 2008-02-28 2011-02-08 Kellogg Brown & Root Llc Recycle of olefinic naphthas by removing aromatics
CN101734986A (en) * 2008-11-21 2010-06-16 中国石油化工股份有限公司 Method for hydrogenation pyrolysis of prolific benzene and xylene by using pyrolysis gasoline
WO2010061986A1 (en) * 2008-11-26 2010-06-03 Sk Energy Co., Ltd. Process for the preparation of clean fuel and aromatics from hydrocarbon mixtures catalytic cracked on fluid bed
US8137631B2 (en) * 2008-12-11 2012-03-20 Uop Llc Unit, system and process for catalytic cracking
US8246914B2 (en) * 2008-12-22 2012-08-21 Uop Llc Fluid catalytic cracking system
US8889076B2 (en) 2008-12-29 2014-11-18 Uop Llc Fluid catalytic cracking system and process
EP2630106B1 (en) * 2010-10-22 2017-09-27 SK Innovation Co., Ltd. Method for producing valuable aromatics and light paraffins from hydrocarbonaceous oils derived from oil, coal or wood
WO2012071137A1 (en) * 2010-11-01 2012-05-31 Shell Oil Company Process for hydrocracking butane or naphtha in the presence of a combination of two zeolites
JP5774122B2 (en) * 2010-12-10 2015-09-02 エクソンモービル ケミカル パテンツ インコーポレイテッド Method and apparatus for obtaining aromatic compounds from various raw materials
US9181146B2 (en) 2010-12-10 2015-11-10 Exxonmobil Chemical Patents Inc. Process for the production of xylenes and light olefins
US9683776B2 (en) 2012-02-16 2017-06-20 Kellogg Brown & Root Llc Systems and methods for separating hydrocarbons using one or more dividing wall columns
US20130261365A1 (en) * 2012-04-02 2013-10-03 Saudi Arabian Oil Company Process for the Production of Xylenes and Light Olefins from Heavy Aromatics
US8921633B2 (en) 2012-05-07 2014-12-30 Exxonmobil Chemical Patents Inc. Process for the production of xylenes and light olefins
US8937205B2 (en) 2012-05-07 2015-01-20 Exxonmobil Chemical Patents Inc. Process for the production of xylenes
US9181147B2 (en) 2012-05-07 2015-11-10 Exxonmobil Chemical Patents Inc. Process for the production of xylenes and light olefins
CN104395436B (en) * 2012-06-05 2016-10-05 沙特基础工业公司 The method being produced BTX by C5-C12 hydrocarbon mixture
JP6130852B2 (en) * 2012-10-25 2017-05-17 Jxtgエネルギー株式会社 Process for producing olefin and monocyclic aromatic hydrocarbon, and ethylene production apparatus
US10099210B2 (en) 2013-04-29 2018-10-16 Saudi Basic Industries Corporation Catalytic methods for converting naphtha into olefins
KR102339484B1 (en) * 2013-07-02 2021-12-16 사우디 베이식 인더스트리즈 코포레이션 Process for the production of light olefins and aromatics from a hydrocarbon feedstock
SG11201508993XA (en) * 2013-07-02 2016-01-28 Saudi Basic Ind Corp Process for the production of light olefins and aromatics from a hydrocarbon feedstock
CN105408456A (en) * 2013-07-02 2016-03-16 沙特基础工业公司 Method for converting a high-boiling hydrocarbon feedstock into lighter boiling hydrocarbon products
EA030559B1 (en) 2013-07-02 2018-08-31 Сауди Бейсик Индастриз Корпорейшн Method of producing aromatics and light olefins from a hydrocarbon feedstock
EA034461B1 (en) * 2014-02-25 2020-02-11 Сауди Бейсик Индастриз Корпорейшн Integrated hydrocracking process
EP3110777B1 (en) * 2014-02-25 2018-09-12 Saudi Basic Industries Corporation Process and installation for the conversion of crude oil to petrochemicals having an improved ethylene and btx yield
EP3110926B1 (en) * 2014-02-25 2018-12-12 Saudi Basic Industries Corporation Integrated hydrocracking process
KR102370172B1 (en) 2014-02-25 2022-03-04 사빅 글로벌 테크놀러지스 비.브이. An integrated hydrocracking process
CN106103663B (en) * 2014-02-25 2018-09-11 沙特基础工业公司 Method for oil plant heavy hydrocarbon to be modified to petroleum chemicals
SG11201606023WA (en) * 2014-02-25 2016-08-30 Saudi Basic Ind Corp A method of controlling the supply and allocation of hydrogen gas in a hydrogen system of a refinery integrated with olefins and aromatics plants
EA031993B1 (en) * 2014-02-25 2019-03-29 Сауди Бейсик Индастриз Корпорейшн Process for producing btx from a mixed hydrocarbon source using pyrolysis
SG11201609049VA (en) 2014-06-13 2016-12-29 Sabic Global Technologies Bv Process for producing benzene from a c5-c12 hydrocarbon mixture
US10053403B2 (en) 2015-02-04 2018-08-21 Exxonmobil Chemical Patents Inc. Catalyst compositions and their use in transalkylation of heavy aromatics to xylenes
US10118165B2 (en) 2015-02-04 2018-11-06 Exxonmobil Chemical Patents Inc. Catalyst compositions and use in heavy aromatics conversion processes
WO2017205083A1 (en) 2016-05-23 2017-11-30 Sabic Global Technologies B.V. A method of co-processing fluidized catalytic cracking naphtha and pyrolysis gasoline
WO2019036426A1 (en) * 2017-08-15 2019-02-21 Sabic Global Technologies, B.V. Light olefin production via an integrated steam cracking and hydrocracking process
WO2020242912A1 (en) 2019-05-24 2020-12-03 Eastman Chemical Company Blend small amounts of pyoil into a liquid stream processed into a gas cracker
US11091709B2 (en) 2019-10-30 2021-08-17 Saudi Arabian Oil Company System and process for steam cracking and PFO treatment integrating selective hydrogenation, ring opening and naphtha reforming
US11220637B2 (en) 2019-10-30 2022-01-11 Saudi Arabian Oil Company System and process for steam cracking and PFO treatment integrating selective hydrogenation and FCC
US11091708B2 (en) 2019-10-30 2021-08-17 Saudi Arabian Oil Company System and process for steam cracking and PFO treatment integrating selective hydrogenation and ring opening
US11390818B2 (en) * 2019-10-30 2022-07-19 Saudi Arabian Oil Company System and process for steam cracking and PFO treatment integrating hydrodealkylation
US11220640B2 (en) 2019-10-30 2022-01-11 Saudi Arabian Oil Company System and process for steam cracking and PFO treatment integrating selective hydrogenation, FCC and naphtha reforming
US11001773B1 (en) 2019-10-30 2021-05-11 Saudi Arabian Oil Company System and process for steam cracking and PFO treatment integrating selective hydrogenation and selective hydrocracking
US11377609B2 (en) 2019-10-30 2022-07-05 Saudi Arabian Oil Company System and process for steam cracking and PFO treatment integrating hydrodealkylation and naphtha reforming
US11945998B2 (en) 2019-10-31 2024-04-02 Eastman Chemical Company Processes and systems for making recycle content hydrocarbons
US11319262B2 (en) 2019-10-31 2022-05-03 Eastman Chemical Company Processes and systems for making recycle content hydrocarbons
EP4103665A4 (en) * 2020-02-10 2024-03-13 Eastman Chem Co Chemical recycling of plastic-derived streams to a cracker separation zone with enhanced energy efficiency
WO2021163111A1 (en) * 2020-02-10 2021-08-19 Eastman Chemical Company Chemical recycling of plastic-derived streams to a cracker separation zone with enhanced separation efficiency
KR20230003518A (en) * 2020-04-13 2023-01-06 이스트만 케미칼 컴파니 Recycled Amorphous Polyolefin
CA3174795A1 (en) * 2020-04-13 2021-10-21 Bruce Roger Debruin Recycle content polypropylene
WO2021211534A1 (en) * 2020-04-13 2021-10-21 Eastman Chemical Company Recycle content hydrogen
US20230135304A1 (en) * 2020-04-13 2023-05-04 Eastman Chemical Company Recycle content polyethylene

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL279655A (en) 1961-06-19
US3625879A (en) * 1970-01-07 1971-12-07 Gulf Research Development Co Benzene from pyrolysis gasoline
US3625238A (en) * 1970-01-26 1971-12-07 Johnson Service Co Two-dimensional fluidic logic device
US3702293A (en) * 1971-12-30 1972-11-07 Universal Oil Prod Co Hydrocarbon conversion process with a bimetallic catalyst
US3928174A (en) * 1975-01-02 1975-12-23 Mobil Oil Corp Combination process for producing LPG and aromatic rich material from naphtha
US4167533A (en) * 1978-04-07 1979-09-11 Uop Inc. Co-production of ethylene and benzene
DE3616610A1 (en) 1986-05-16 1987-11-19 Linde Ag Process for the preparation of olefins
JPH0765052B2 (en) * 1986-09-22 1995-07-12 東燃化学株式会社 Method for producing olefins from hydrocarbons
US5167795A (en) * 1988-01-28 1992-12-01 Stone & Webster Engineering Corp. Process for the production of olefins and aromatics
DE69012295T2 (en) * 1989-11-16 1995-01-05 Mobil Oil Corp Process for increasing the quality of light olefin streams.
US5292976A (en) * 1993-04-27 1994-03-08 Mobil Oil Corporation Process for the selective conversion of naphtha to aromatics and olefins
US5447922A (en) * 1994-08-24 1995-09-05 Bristol-Myers Squibb Company α-phosphonosulfinic squalene synthetase inhibitors
US5773676A (en) * 1996-08-06 1998-06-30 Phillips Petroleum Company Process for producing olefins and aromatics from non-aromatics
US5906728A (en) * 1996-08-23 1999-05-25 Exxon Chemical Patents Inc. Process for increased olefin yields from heavy feedstocks
US6045690A (en) * 1996-11-15 2000-04-04 Nippon Oil Co., Ltd. Process for fluid catalytic cracking of heavy fraction oils
US5932777A (en) * 1997-07-23 1999-08-03 Phillips Petroleum Company Hydrocarbon conversion
US5880320A (en) * 1997-08-05 1999-03-09 Netzer; David Combination process for manufacturing ethylene ethylbenzene and styrene
US6455750B1 (en) * 1998-05-05 2002-09-24 Exxonmobil Chemical Patents Inc. Process for selectively producing light olefins
KR100557558B1 (en) * 2000-11-30 2006-03-03 에스케이 주식회사 Process for Producing Aromatic Hydrocarbons and Liquefied Petroleum Gas from Hydrocarbon Mixture
US6677496B2 (en) * 2001-08-29 2004-01-13 David Netzer Process for the coproduction of benzene from refinery sources and ethylene by steam cracking

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8912377B2 (en) 2008-10-07 2014-12-16 Sk Innovation Co., Ltd. Method for producing high value aromatics and olefin from light cycle oil produced by a fluidized catalytic cracking process
WO2010044562A3 (en) * 2008-10-17 2010-07-29 에스케이에너지 주식회사 Method for producing high value aromatics and olefin from light cycle oil produced by a fluidized catalytic cracking process
KR101503069B1 (en) * 2008-10-17 2015-03-17 에스케이이노베이션 주식회사 Production of valuable aromatics and olefins from FCC light cycle oil
KR20150077433A (en) * 2012-10-25 2015-07-07 제이엑스 닛코닛세키에너지주식회사 Olefin and single-ring aromatic hydrocarbon production method, and ethylene production device
KR20160025511A (en) * 2013-07-02 2016-03-08 사우디 베이식 인더스트리즈 코포레이션 Method for cracking a hydrocarbon feedstock in a steam cracker unit
KR20160029806A (en) * 2013-07-02 2016-03-15 사우디 베이식 인더스트리즈 코포레이션 Process and installation for the conversion of crude oil to petrochemicals having an improved carbon efficiency

Also Published As

Publication number Publication date
EP1893726A4 (en) 2008-12-03
JP2008544061A (en) 2008-12-04
CN101208412B (en) 2012-02-29
WO2006137615A1 (en) 2006-12-28
US20060287561A1 (en) 2006-12-21
CN101208412A (en) 2008-06-25
JP5206967B2 (en) 2013-06-12
KR100710542B1 (en) 2007-04-24
US7301063B2 (en) 2007-11-27
EP1893726B1 (en) 2018-04-04
EP1893726A1 (en) 2008-03-05

Similar Documents

Publication Publication Date Title
KR100710542B1 (en) The method of production increase of light olefins from hydrocarbon feedstock
US10294172B2 (en) Systems and processes for recovery of light alkyl mono-aromatic compounds from heavy alkyl aromatic and alkyl-bridged non-condensed alkyl aromatic compounds
KR100645659B1 (en) The method of production increase of benzene from hydrocarbon feedstock
KR101930328B1 (en) Process for the production of para-xylene
CN102037102B (en) Novel system for optimising the production of high octane gasoline and the coproduction of aromatic bases
US9382173B2 (en) Method of producing single-ring aromatic hydrocarbons
CN105473691B (en) From the method for hydrocarbon raw material production light olefin and aromatic hydrocarbons
US8933283B2 (en) Process for the preparation of clean fuel and aromatics from hydrocarbon mixtures catalytic cracked on fluid bed
EA030559B1 (en) Method of producing aromatics and light olefins from a hydrocarbon feedstock
WO2015147700A1 (en) Method for producing a concentrate of aromatic hydrocarbons from light aliphatic hydrocarbons, and installation for implementing same
CN111808633A (en) Production method of BTX and LPG
EA022493B1 (en) Process for the conversion of propane and butane to aromatic hydrocarbons
US9382174B2 (en) Method for producing monocyclic aromatic hydrocarbons
CN110382450B (en) Treatment of a C8-C10 aromatic feed stream to produce and recover trimethylated benzenes
CN109906214B (en) Method and system for producing benzene
JP6914261B2 (en) Process for producing C2 and C3 hydrocarbons
US11066609B2 (en) Integrated methods and systems of hydrodearylation and hydrodealkylation of heavy aromatics to produce benzene, toluene, and xylenes
CN110088245B (en) Oligomerization of ethylene to liquid transportation fuels with synthetically-treated ZSM-5catalyst

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130312

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140312

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180403

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190325

Year of fee payment: 13