KR20060115699A - Construction Method of Composite Slab Bridge Using Composite Truss Girder - Google Patents

Construction Method of Composite Slab Bridge Using Composite Truss Girder Download PDF

Info

Publication number
KR20060115699A
KR20060115699A KR1020060102180A KR20060102180A KR20060115699A KR 20060115699 A KR20060115699 A KR 20060115699A KR 1020060102180 A KR1020060102180 A KR 1020060102180A KR 20060102180 A KR20060102180 A KR 20060102180A KR 20060115699 A KR20060115699 A KR 20060115699A
Authority
KR
South Korea
Prior art keywords
composite
truss girder
bridge
construction
composite truss
Prior art date
Application number
KR1020060102180A
Other languages
Korean (ko)
Other versions
KR100794444B1 (en
Inventor
원대연
Original Assignee
원대연
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 원대연 filed Critical 원대연
Priority to KR1020060102180A priority Critical patent/KR100794444B1/en
Publication of KR20060115699A publication Critical patent/KR20060115699A/en
Application granted granted Critical
Publication of KR100794444B1 publication Critical patent/KR100794444B1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/12Grating or flooring for bridges; Fastening railway sleepers or tracks to bridges
    • E01D19/125Grating or flooring for bridges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2/00Bridges characterised by the cross-section of their bearing spanning structure
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D21/00Methods or apparatus specially adapted for erecting or assembling bridges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2101/00Material constitution of bridges
    • E01D2101/20Concrete, stone or stone-like material
    • E01D2101/24Concrete
    • E01D2101/26Concrete reinforced
    • E01D2101/268Composite concrete-metal

Abstract

A construction method of a composite slab bridge using a composite truss girder is provided to prevent various accidents of workers and damage to transit vehicles under a bridge by connecting lower chords of a composite truss girder and forming a closed working space with the lower part of a bridge and to reduce the cost and period of construction by connecting upper chords of an intermediate support using high-strength bolts and continuing composite truss girders structurally by concrete partition walls. A construction method of a composite slab bridge using a composite truss girder(41) comprises the steps of placing a composite truss girder on an abutment or a pier using a crane(42), constructing a floor slab and a concrete partition wall on the remaining part except an intermediate support and constructing a floor slab and a concrete partition wall on the intermediate support, and connecting both upper chords on the intermediate support by attaching gusset plates on the upper and lower parts of the upper chord and tightening with high-strength bolts. Hereon the composite truss girder is formed by manufacturing a concrete lower chord(43) in the two-bowl shape, arranging two-row web members on the concrete lower chord perpendicularly and attaching an upper chord on each web member.

Description

복합 트러스 거더를 이용한 합성슬래브교의 시공법{omitted}Construction Method of Composite Slab Bridge Using Composite Truss Girder
도 1은 종래기술에 따른 합성거더교량의 횡단면도1 is a cross-sectional view of a composite girder bridge according to the prior art
도 2는 종래기술에 따른 평면곡선을 갖는 합성거더교량의 주거더Figure 2 is a housing of the composite girder bridge having a planar curve according to the prior art
도 3은 본 발명에 따른 합성슬래브교 시공에 사용되는 복합트러스 거더의 단면형상을 나타내는 사시도Figure 3 is a perspective view showing the cross-sectional shape of the composite truss girder used in the construction of composite slab bridge according to the present invention
도 4는 본 발명에 따른 복합트러스 거더를 크레인을 이용하여 거치하는 전경을 나타낸 사시도Figure 4 is a perspective view showing the foreground for mounting the composite truss girder using a crane according to the present invention
도 5는 본 발명에 따른 복합트러스 거더의 횡방향연결을 위한 전단키의 구성을 나타낸 사시도5 is a perspective view showing the configuration of a shear key for the lateral connection of the composite truss girder according to the present invention
도 6은 본 발명에 따른 연속합성슬래브교 시공에 사용되는 복합트러스 거더의 상현재 구성을 나타낸 측면도Figure 6 is a side view showing the phase current configuration of the composite truss girder used in the construction of a continuous composite slab bridge according to the present invention
도 7은 본 발명에 따른 2경간 연속합성슬래브교의 시공순서도7 is a construction sequence diagram of a two-span continuous composite slab bridge according to the present invention
도 8은 본 발명에 따른 연속합성슬래브교의 상현재를 중간지점에서 고장력 볼트를 이용하여 연결하는 상세를 나타낸 사시도Figure 8 is a perspective view showing the details of connecting the phase current of the continuous composite slab bridge according to the present invention using a high-tensile bolt at the intermediate point
도 9는 본 발명에 따른 합성슬래브교의 바닥판 시공을 위해 스치로폼 또는 발포우레탄을 채움재로 사용한 상태를 나타낸 단면도Figure 9 is a cross-sectional view showing a state using a styrofoam or polyurethane foam for the bottom plate construction of the composite slab bridge according to the present invention
〈도면의 주요부분에 대한 부호의 설명〉<Explanation of symbols for main parts of drawing>
10 : 합성거더교의 주거더 11 : 콘크리트 바닥판10: housing of synthetic girder bridgeMore 11: concrete deck
12 : 동바리 30 : 복합트러스 거더12: Circle 30: Composite truss girder
31 : 콘크리트 하현재 32 : 복부재31: concrete lower current 32: abdominal member
33 : 상현재 53 : 전단키33: present present 53: shear key
92 : 스치로폼 또는 발포우레탄 94 : 거푸집패널92: styrofoam or urethane foam 94: formwork panel
95 : 고정용 철선95: fixing wire
본 발명은 복합트러스 거더를 이용하여 합성슬래교를 시공하는 방법에 관한 것으로, 보다 상세하게는 공장 또는 제작장에서 소정의 길이로 제작된 복합트러스 거더를 현장으로 운반, 크레인을 사용하여 교대 또는 교각에 거치한 다음, 바닥판 콘크리트를 시공하여 합성슬래교를 건설하는 교량시공법 개발에 관한 것이다.The present invention relates to a method for constructing a composite slab bridge using a composite truss girder, and more particularly, to transport the composite truss girder made to a predetermined length in a factory or a manufacturing site to the site, by using a crane to shift or pier It is related to the development of the bridge construction method to construct a composite slab bridge by mounting the concrete slab after mounting on.
도 1에 나타낸 것과 같이, 종래기술에 따른 대부분의 합성거더교량은 횡단면상으로 주거더(10)를 소정간격으로 떨어진 상태로 배치한 후에 콘크리트 바닥판(11)을 시공하는 구조로 되어있다. 따라서 바닥판 콘크리트를 시공하기 위해서는 주거더에 지지되는 별도의 동바리(12)를 설치하여야 한다. 하지만 가설지점이 기존도로를 횡단하는 곳에 위치한 경우에는 동바리 설치로 인해 교량하부의 교통흐름에 방해를 줄 뿐만 아니라, 작업자의 안전과 시공중 건설자재의 낙하 등을 방지하기 위한 방호시설(13)이 별도로 설치되어야 한다.As shown in FIG. 1, most composite girder bridges according to the prior art have a structure in which a concrete bottom plate 11 is constructed after arranging the housing girders 10 at a predetermined interval in a cross section. Therefore, in order to construct the floor slab concrete, a separate copper club 12 supported by the housing should be installed. However, if the construction site is located at the intersection with the existing road, the installation of the copper bar will not only hinder the traffic flow under the bridge, but also the protective facilities (13) to prevent the safety of workers and the falling of construction materials during construction. It must be installed separately.
또한, 도 2에 나타낸 것과 같이 합성거더교의 주거더를 하나의 복부를 갖는 형상으로 제작하게 되면 대상교량이 평면상으로 작은 곡선반경을 갖는 경우에는 자중으로 인한 비틀림 모멘트에 대한 저항력이 매우 작아 가설 중에 주거더가 횡방향으로 전도되는 문제가 발생한다.In addition, as shown in FIG. 2, when the housing girder of the composite girder bridge is manufactured to have a single abdomen, when the target bridge has a small curved radius in plane, the resistance to torsional moment due to its own weight is very small. The problem arises that the housing is turned over laterally.
본 발명은 교차로나 도로횡단 위치에서 교량을 가설할 때에 있어서 종래기술에 따른 합성거더교량의 바닥판 시공시에 발생되는 동바리 설치에 수반되는 여러가지 시공성 문제, 하부통과차량 및 작업자에 대한 안전성 확보문제, 그리고 평면상 곡선을 갖는 경우에 크레인으로 주거더를 인양시에 발생하는 횡방향 전도 문제 등을 해결하고자 하는 것을 주요 기술적 과제로 한다.The present invention, when constructing the bridge at the intersection or road crossing position, various construction problems associated with the installation of the copper bar generated during the construction of the bottom plate of the composite girder bridge according to the prior art, the problem of ensuring the safety of the lower passing vehicle and the operator, And the main technical problem is to solve the problems of lateral conduction, etc. that occur when lifting the housing der by crane in the case of having a planar curve.
상기 기술적 과제를 달성하기 위한 본 발명에 따른 합성슬래교를 시공법에서는 주거더로 사용되는 복합트러스 거더의 하현재 단면을 역 파이(
Figure 112006508238646-PAT00012
)자 형상이 되도록 제작한 다음에 이들 주거더를 서로 밀착시켜 배치하도록 하여 콘크리트 바닥판을 시공하는데 필요한 동바리와 거푸집 설치를 용이하도록 하였고, 안전한 작업공간을 확보하는 것을 통해 바닥판 시공 중의 인명사고 발생요인과 각종 건설자재의 낙하로 인한 통과차량의 피해를 근본적으로 차단될 수 있도록 하였다.
In the construction method of the composite slab bridge according to the present invention for achieving the above technical problem, the lower current cross section of the composite truss girder used as a housing girder
Figure 112006508238646-PAT00012
After making it shaped as a ruler, these housings were placed in close contact with each other to facilitate the installation of copper bars and formwork required for the construction of concrete decks. It was designed to fundamentally block the damage of passing vehicles due to the fall of factors and various construction materials.
또한 주거더 단면을 비틀림에 효율적으로 저항할 수 있도록 종방향으로 2열의 복부를 갖는 단면형상이 되도록 한 다음, 인양 또는 거치시에 4점지지가 가능하도록 함으로써 평면상으로 작은 곡선반경을 갖는 교량에도 복합트러스 거더를 사용 할 수 있도록 하였다.In addition, the cross section having two rows of abdomen in the longitudinal direction can be used to effectively resist the torsional section of the housing and then support four points during lifting or mounting. The composite truss girder can be used.
이하 본 발명을 구체적으로 설명하기 위해 실시예를 들어 설명하고, 발명에 대한 이해를 돕기 위해 첨부 도면을 참조하여 상세하게 설명한다.DETAILED DESCRIPTION Hereinafter, the present invention will be described in detail with reference to examples, and the present invention will be described in detail with reference to the accompanying drawings.
도 3은 본 발명에 따른 합성슬래브교 시공을 위한 복합트러스 거더의 구성을 나타낸 사시도이다. 본 발명에 따른 합성슬래브교용의 복합트러스 거더(30)는 종래의 복합트러스 거더와는 달리, 복합트러스 거더의 콘크리트 하현재(31)를 "ㅛ"자형상으로 제작하고, 상기 콘크리트 하현재에 교축방향으로 2열의 복부재(32)를 연직으로 배치한 다음, 각각의 복부재에 상현재(33)를 부착시킨 것을 특징으로 한다.Figure 3 is a perspective view showing the configuration of a composite truss girder for the construction of a composite slab bridge according to the present invention. Unlike the conventional composite truss girder, the composite truss girder 30 for the composite slab bridge according to the present invention manufactures the concrete lower chord 31 of the composite truss girder in a "ㅛ" shape and throttles the concrete lower chord. After the two rows of abdominal members 32 are arranged vertically, the upper chord 33 is attached to each abdominal member.
도 4는 소정의 폭으로 제작된 복합트러스 거더(41)를 크레인(42)을 이용하여 교대위에 서로 인접하여 나란히 거치하는 상태를 나타낸 사시도이다. 도 4(a)에 나타낸 것과 같이 본 발명에 따른 합성슬래브교량용의 복합트러스 거더는 인양 및 거치시에 4점지지가 형성되고, 무게중심이 하현재(43)쪽에 위치해 있어 가설시의 횡방향 전도에 대한 안전성을 크게 향상시킬 수 있다.4 is a perspective view illustrating a state in which the composite truss girder 41 manufactured to a predetermined width is mounted side by side adjacent to each other on an alternating position using a crane 42. As shown in Fig. 4 (a), the composite truss girder for the composite slab bridge according to the present invention has a four-point support is formed at the time of lifting and mounting, the center of gravity is located on the lower chord 43 side, the transverse direction at the time of construction The safety against conduction can be greatly improved.
또한, 복합트러스 거더의 거치가 완료되면 복합트러스 거더의 하현재(43)가 지상과 동일한 조건의 작업공간을 제공하게 되어 바닥판 시공시의 작업자의 안전성이 크게 개선될 수 있으며, 각종 건설자재의 낙하로 인해 교량하부를 통과하는 차량에 피해를 주는 일이 발생하지 않게 된다.In addition, when the mounting of the composite truss girder is completed, the lower chord 43 of the composite truss girder provides a working space in the same condition as the ground, so that the safety of the worker in the construction of the floor plate can be greatly improved, and various construction materials The fall does not cause damage to vehicles passing under the bridge.
도 5는 복합트러스 거더 하현재를 교축직각방향으로 서로 연결시키기 위한 구조상세를 나타낸 것으로 교축방향으로 약 10m간격으로 하현재 측면에 육각형 형상의 공극부(51)를 설치한 다음, 해당 공간에 고강도의 무수축 모르타르(52)를 주 입하여 소정형상의 전단키(53)가 형성되도록 한다.5 is a structural detail for connecting the composite truss girder lower chords to each other in the axial direction of the axial direction. Hexagonal air gaps 51 are provided on the side of the lower chord at intervals of about 10 m in the axial direction, and then a high strength in the space The non-shrink mortar 52 is injected to form a shear key 53 of a predetermined shape.
도 6(a)내지 도 6(b)는 본 발명에 따른 연속합성슬래브교를 시공하는데 사용되는 복합트러스 거더의 구조를 나타낸 측면도이다. 연속합성슬래브교는 단순 합성슬래브교와는 달리 중간지점부에 부근에서 복합트러스 거더의 상현재가 인장력을 받는다. 따라서 압축력을 받는 영역에서처럼 상현재를 강재와 콘크리트의 합성구조로 하는 것 보다 강재로만 구성되도록 하는 것이 구조 거동측면에서 바람직하다. 도 6(a)는 연속합성슬래브교의 외측경간에 사용할 목적으로 제작된 복합트러스 거더의 구성을, 도6(b)는 연속합성슬래브교의 내측경간에 사용할 목적으로 제작된 복합트러스 거더의 구성을 각각 나타낸 것이다. 도 6(a)내지 도 6(b)에서 나타낸 바와 같이 압축력을 받는 곳에 위치한 상현재(61)에는 강과 콘크리트 합성구조를 그리고 인장력을 받는 곳에 위치한 상현재(62)에는 강재만으로 제작되도록 하였다.Figure 6 (a) to Figure 6 (b) is a side view showing the structure of a composite truss girder used to construct a continuous composite slab bridge according to the present invention. Unlike the simple composite slab bridges, the continuous composite slab bridges are subjected to tension in the phase chords of the composite truss girders in the vicinity of the intermediate point. Therefore, it is preferable in terms of structural behavior that the phase current is composed only of steel rather than the composite structure of steel and concrete as in the compressive force region. 6 (a) is a configuration of a composite truss girder fabricated for use in the outer span of the continuous composite slab bridge, Figure 6 (b) is a configuration of a composite truss girder fabricated for use in the inner span of the continuous composite slab bridge It is shown. As shown in Figure 6 (a) to Figure 6 (b) is to be made of steel and concrete composite structure and the phase current (61) located in the place of the compressive force and the steel only in the phase current (62) located in the tension.
도 7은 본 발명에 따른 복합트러스를 거더를 이용한 2경간 연속 합성슬래브교의 시공순서를 나타낸 것이다. 도 7(a)에 나타낸 것과 같이 먼저 크레인을 이용하여 복합트러스 거더(71)를 교대 또는 교각위에 거치시킨다. 그런 다음 도 7(b)에 나타낸 것과 같이 중간지점부 근처를 제외한 나머지 부분의 바닥판과 격벽(72)을 시공한다. 다음으로 도 7(c)에 나타낸 바와 같이 중간지점부 구간의 바닥판과 격벽(73)을 시공하여 연속구조계가 형성되도록 한다.Figure 7 shows the construction sequence of the two-span continuous composite slab bridge using the composite truss according to the present invention. As shown in FIG. 7 (a), a composite truss girder 71 is first mounted on an alternating or pier using a crane. Then, as shown in Fig. 7 (b) to construct the bottom plate and the partition wall 72 of the remaining portion except near the middle point portion. Next, as shown in FIG. 7 (c), the bottom plate and the partition wall 73 in the intermediate point portion section are constructed to form a continuous structure system.
도 8은 중간지점부 위치에서 강재로 된 상현재를 고장력 볼트를 이용하여 연결하는 상세를 나타낸 사시도이다. 연결부분의 상현재(81)에 덧판(82)을 아래위로 부착한 다음에 고장력 볼트(83)를 소정의 힘으로 조임으로써 양측 상현재를 구조적 으로 연속시킨다.8 is a perspective view showing the details of connecting the phase current made of steel at the intermediate point portion using a high-tensile bolt. The plate 82 is attached to the upper chord 81 of the connecting portion up and down, and then the high tension bolts 83 are tightened with a predetermined force to structurally continuous both phase chords.
도 9는 본 발명에 따른 합성슬래브 교량을 건설하는데 있어서 별도의 동바리나 거푸집을 설치하지 않은 상태로 바닥판 콘크리트를 시공할 수 있는 방법을 나타낸 사시도이다. 도 9에 나타낸 것과 같이 복합트러스 거더(91)를 거치한 다음에 내부공간을 경량의 스치로폼 또는 발포우레탄(92)으로 채우고, 그 위에 바닥판용 철근을 배치한 다음에 콘크리트 바닥판(93)을 시공한다. 이때 양 외측에 위치한 복합트러스 거더의 측면에는 콘크리트로 제작된 프리캐스트 거푸집 패널(94)을 부착시키는데, 상기 거푸집용 패널은 철선(95)을 이용하여 복합트러스 거더의 상현재 및 복부재에 견고히 고정시킨다.Figure 9 is a perspective view showing a method for constructing the bottom plate concrete without installing a separate club or formwork in the construction of a composite slab bridge according to the present invention. After mounting the composite truss girder 91 as shown in FIG. 9, the inner space is filled with lightweight styrofoam or foam urethane 92, and the bottom plate reinforcing bar is disposed thereon, and then the concrete bottom plate 93 is constructed. do. At this time, the side of the composite truss girder located on both sides is attached to the precast formwork panel 94 made of concrete, the panel for the formwork is firmly fixed to the upper chord and the abdominal member of the composite truss girder using the iron wire (95). Let's do it.
상기에서 상세히 설명한 바와 같이, 본 발명에 따른 복합트러스 거더를 이용한 합성슬래브교의 효과는 다음과 같다.As described in detail above, the effect of the composite slab bridge using the composite truss girder according to the present invention is as follows.
첫째, 복합트러스 거더의 하현재를 서로 연결시켜 교량하부와 완전히 밀폐된 작업공간을 형성시킴으로서 바닥판 시공시 발생할 수 있는 작업자의 안전사고와 각종 건설재의 낙하로 인하 하부통과 차량의 피해를 근본적으로 방지할 수 있다.First, by connecting the lower chords of the composite truss girder with each other to form a completely enclosed work space, it is possible to fundamentally prevent the damage of the lower passage through the safety accident of the worker and the fall of various construction materials that can occur during the construction of the deck. can do.
둘째, 바닥판 시공을 위한 동바리와 거푸집 설치가 기존의 합성거더교에 비해 크게 간편화 될 수 있어 교량건설에 요구되는 시공기간의 단축 및 비용절감을 꾀할 수 있다.Second, the installation of copper bars and formwork for decking can be greatly simplified compared to the existing composite girder bridge, which can shorten the construction period required for bridge construction and reduce costs.
셋째, 복합트러스 거더의 인양 및 거치시에 항상 평면상으로 4점에서 지지될 수 있는 단면형상을 갖고 있어 큰 비틀림 저항성이 요구되는 평면상 작은 곡선반경 을 갖는 교량에 사용할 수 있다.Third, it has a cross-sectional shape that can be supported at four points in the plane at all times during lifting and mounting of the composite truss girder, so that it can be used for bridges with a planar small curve radius requiring large torsional resistance.
넷째, 중간지점부의 상현강재를 고장력 볼트를 이용한 마찰이음을 통해 서로 연결한 다음 콘크리트 격벽을 통해 복합트러스 거더를 서로 구조적으로 연속시킬 수 있어 연속화에 소요되는 비용절감과 공사기간 단축이 가능하다.Fourth, it is possible to connect the standing steels of the middle point to each other through friction joints using high-strength bolts, and then to continuously connect the composite truss girders to each other through concrete bulkheads, thereby reducing the cost of continuity and shortening the construction period.

Claims (4)

  1. 다수의 복합트러스 거더의 하현재를 교축직각방향으로 서로 인접되도록 거치하여 교량가설중에 교량하부와 완전히 밀폐된 작업공간을 형성시키는 것을 특징으로 하는 합성슬래브교의 시공방법.A method of constructing a composite slab bridge, characterized in that the lower chords of a plurality of composite truss girders are mounted adjacent to each other in the direction perpendicular to the bridge axis to form a work space completely enclosed with the lower portion of the bridge during bridge construction.
  2. 제 1항에 있어서,The method of claim 1,
    바닥판 콘크리트 시공을 위한 동바리 및 거푸집을 대신에 경량의 스치로품 또는 발포우레탄으로 내부공간을 채우고, 그 위에 철근을 조립한 다음 바닥판 콘크리트를 시공하는 것을 특징으로 하는 합성슬래브교의 시공방법.A method of constructing a composite slab bridge, characterized in that the filling of the interior space with lightweight styro or foam urethane instead of copper bars and formwork for the construction of the bottom plate concrete, assembling reinforcing bars on it and then constructing the bottom plate concrete.
  3. 제1항에 있어서,The method of claim 1,
    복합트러스 거더를 횡방향으로 서로 연결하기 위하여 복합트러스 거더의 하현재 측면에 교축방향으로 약 10m간격으로 육각형 형상으로 공간을 설치한 다음, 상기 공간을 고강도의 무수축 모르타르를 주입하여 소정형상의 전단키를 형성시키는 것을 특징으로 연결방법.In order to connect the composite truss girders to each other in the lateral direction, a space is formed in a hexagonal shape at a distance of about 10 m in the throttle direction on the lower chord side of the composite truss girder, and then a high-strength non-contraction mortar is injected into the space to shear the predetermined shape. How to form a connection.
  4. 제1항에 있어서,The method of claim 1,
    복부트러스 거더를 교각위에 거치한 다음에 중간지점부를 제외한 곳의 콘크리트 바닥판과 격벽을 먼저 시공한 다음에 중간지점부에서 복합트러스 거더의 상현 재를 고장력 볼트를 이용한 마찰이음을 통해 서로 연결한 다음에 콘크리트 격벽을 통해 복합트러스 거더를 서로 구조적으로 연속시키는 것을 특징으로 하는 연결방법.After mounting the abdominal truss girder on the piers, construct concrete slabs and bulkheads except for the middle point first, and then connect the standing members of the composite truss girder at the intermediate point through friction joints using high-strength bolts. Connection method characterized in that the composite truss girder structurally continuous with each other through the concrete partition wall.
KR1020060102180A 2006-10-20 2006-10-20 Construction Method of Composite Slab Bridge Using Composite Truss Girder KR100794444B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060102180A KR100794444B1 (en) 2006-10-20 2006-10-20 Construction Method of Composite Slab Bridge Using Composite Truss Girder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060102180A KR100794444B1 (en) 2006-10-20 2006-10-20 Construction Method of Composite Slab Bridge Using Composite Truss Girder

Publications (2)

Publication Number Publication Date
KR20060115699A true KR20060115699A (en) 2006-11-09
KR100794444B1 KR100794444B1 (en) 2008-01-16

Family

ID=37652993

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060102180A KR100794444B1 (en) 2006-10-20 2006-10-20 Construction Method of Composite Slab Bridge Using Composite Truss Girder

Country Status (1)

Country Link
KR (1) KR100794444B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101391637B1 (en) * 2012-03-21 2014-05-07 원대연 Constrution methoed for Prestressed Composite Truss girder using steel truss member
KR102257540B1 (en) 2019-09-17 2021-05-31 한밭대학교 산학협력단 Truss composite precast deck plate and construction method using it

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07150521A (en) * 1993-11-26 1995-06-13 Achilles Corp Foaming core for light-weight reinforced concrete roadbed
KR100323825B1 (en) * 1998-10-19 2002-06-20 남상국 Bridge deck system using precast concrete deck with internal tension
KR100508773B1 (en) * 2002-10-30 2005-08-17 유근무 A Floor of Temporary Bridge for using Seet Pile and It's Constructing Method
JP3844743B2 (en) 2003-03-24 2006-11-15 オリエンタル建設株式会社 Box girder bridge structure and its construction method
KR20030062289A (en) * 2003-07-03 2003-07-23 윤종남 U-type psc beam
KR100903985B1 (en) * 2004-03-24 2009-06-25 주식회사 삼표 Shear key for precast concrete hollow slab
KR100767145B1 (en) * 2006-03-13 2007-10-12 박영희 Construction method of prestressed concrete temporary bridge that can be assembled and dismantled using lateral steel wire
KR200432484Y1 (en) 2006-09-21 2006-12-04 현대건설주식회사 Connection Structure of Inclined Members in Composite Girder with Steel Truss Web and Composite Girder having such Connection Structure

Also Published As

Publication number Publication date
KR100794444B1 (en) 2008-01-16

Similar Documents

Publication Publication Date Title
KR100483083B1 (en) Composite Deck having Frame and Concrete
US5339475A (en) Load supporting structure
JP3908642B2 (en) Composite panel structure and panel bridge structure and construction method of continuous composite girder bridge
US6668412B1 (en) Continuous prestressed concrete bridge deck subpanel system
JP2003268719A (en) Steel-concrete composite beam and its installation method
JP2007016594A (en) Synthetic panel structure, panel bridge structure, and construction method for continuous synthetic beam bridge
KR101107826B1 (en) Slab-type box girder made by precast concrete and method constructing the bridge therewith
KR101260863B1 (en) Rhamen bridge having prestressed concrete girder of arch-shaped and construction method thereof
JP2006009449A (en) Truss panel girder and precast truss panel
JP2003253621A (en) Continuous beam structure for continuing existing simple beam bridge
KR100615471B1 (en) Steel plate girder bridge and it&#39;s construction method is using a steel composite horizontal beam
CN106545115B (en) The construction method of assembled steel concrete composite slab
KR100794444B1 (en) Construction Method of Composite Slab Bridge Using Composite Truss Girder
JP6567920B2 (en) Road bridge telescopic device and road bridge telescopic device construction method
KR20130090709A (en) Construction method for corrugated steel plate web-psc composite beam
US5966764A (en) Roll beam girder system for bridges
CN110392758B (en) Inverted T-shaped section mixed prestressed concrete beam and panel construction method using same
CZ34112U1 (en) Variable assembly of precast concrete elements for bridge structures
KR20110109367A (en) Ease precast girder and bridge using the same
JP4585614B1 (en) Method for constructing synthetic steel slab bridge, ribbed steel slab, and synthetic steel slab bridge
KR100622449B1 (en) Hybrid pier and continuity execution method using the hybrid pier
JP3885583B2 (en) Composite truss bridge and its construction method
KR100656428B1 (en) A precast railing
JP2963879B2 (en) Bridge girder
JP4901178B2 (en) Steel / concrete composite rigid frame bridge construction method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20130107

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131024

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141024

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20151125

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20161114

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20171103

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20181101

Year of fee payment: 12