KR20060112612A - 노광장치 및 그것을 이용한 디바이스의 제조방법 - Google Patents

노광장치 및 그것을 이용한 디바이스의 제조방법 Download PDF

Info

Publication number
KR20060112612A
KR20060112612A KR1020060036492A KR20060036492A KR20060112612A KR 20060112612 A KR20060112612 A KR 20060112612A KR 1020060036492 A KR1020060036492 A KR 1020060036492A KR 20060036492 A KR20060036492 A KR 20060036492A KR 20060112612 A KR20060112612 A KR 20060112612A
Authority
KR
South Korea
Prior art keywords
mask
optical system
mirror
light
projection optical
Prior art date
Application number
KR1020060036492A
Other languages
English (en)
Other versions
KR100756139B1 (ko
Inventor
아키히로 나카우치
Original Assignee
캐논 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 캐논 가부시끼가이샤 filed Critical 캐논 가부시끼가이샤
Publication of KR20060112612A publication Critical patent/KR20060112612A/ko
Application granted granted Critical
Publication of KR100756139B1 publication Critical patent/KR100756139B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/702Reflective illumination, i.e. reflective optical elements other than folding mirrors, e.g. extreme ultraviolet [EUV] illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70075Homogenization of illumination intensity in the mask plane by using an integrator, e.g. fly's eye lens, facet mirror or glass rod, by using a diffusing optical element or by beam deflection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • G03F7/706Aberration measurement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Lenses (AREA)

Abstract

본 발명의 노광장치는 노광광원으로부터의 광으로 반사형 마스크를 조명하는 조명광학계와, 물체면에 배치된 상기 반사형 마스크의 패턴의 상을 상면에 배치된 기판상에 투영하는 투영광학계를 포함하고 있다. 상기 조명광학계는, 상기 노광광원으로부터의 광으로 복수의 2차 광원을 형성하는 반사형 인티그레이터와, 상기 복수의 2차 광원으로부터의 광의 각각을 상기 반사형 마스크상에 중첩하는 콘덴서 유닛 및 상기 반사형 인티그레이터 대신에 광로중에 배치 가능한 미러를 포함하고 있다. 상기 광로중에 상기 미러를 배치할 때에, 상기 투영광학계의 물체면에 형성된 조명영역이, 상기 반사형 인티그레이터가 광로중에 배치되었을 때에 형성된 조명영역에 비하여 작아진다.

Description

노광장치 및 그것을 이용한 디바이스의 제조방법{EXPOSURE APPARATUS AND DEVICE MANUFACTURING METHOD USING THE SAME}
도 1은 실시예 1에 의한 노광장치의 개략도;
도 2는 종래의 노광장치의 설명도;
도 3은 공지된 반사형 인티그레이터의 개략도;
도 4는 디바이스의 제조 흐름도;
도 5도 도 4의 웨이퍼 프로세스를 나타내는 도면;
도 6A는 복수의 미러를 포함하는 인티그레이터의 사시도;
도 6B 복수의 미러를 포함하는 인티그레이터의 사시도;
도 7은 공지된 투과파면 측정장치의 개략도;
도 8A는 PDI와 LSI의 설명도;
도 8B는 LSI의 설명도;
도 9는 웨이퍼측 유닛의 설명도;
도 10은 실시예 2에 의한 노광장치의 개략도;
도 11은 마스크측 유닛의 개략도;
도 12는 마스크측 유닛에 있어서의, 광선 분리의 설명도.
<도면의 주요부분에 대한 부호의 설명>
1: 광원부 2: 콘덴서 유닛의 평면미러
3: 조명광학계 4: 인티그레이터
4': 평면미러, 또는, 볼록 미러 5: 마스크 스테이지
6: 반사형 마스크 7: 투영광학계
8: 기판(웨이퍼) 9: 웨이퍼 스테이지
10: 광원부로부터의 평행 광속 11: 평행변환 유닛의 볼록미러
12: 평행변환 유닛의 오목미러 13: 콘덴서 유닛의 볼록미러
14: 콘덴서 유닛의 오목미러 15: 개구 조리개
16: 파면수차 측정용 제 1마스크 17: 마스크측 유닛
18: 웨이퍼측 유닛 20: 진공 체임버
22: 파면수차측정용조명광학계 21: EUV 광속
23: 파면수차 측정용 진공 체임버 24: 폴딩 미러
25: 제 1마스크 26: 제 1회절격자
27: 제 2회절격자 28: 제 2마스크
29: 제진대 30: 검출기(CCD)
31: 테스트 광학계 41: 회절 격자
42: 차수 선택창 43: 검출기(CCD)
44: 반사 미러 45: 투과형 마스크
50: 마스크 척 90: 웨이퍼 척
본 발명은, 일반적으로, 노광장치 및 그것을 이용한 디바이스의 제조방법에 관한 것이다. 특히, 노광광으로서 파장 5nm 내지 20nm의 극단자외선 영역의 광(EUV광)을 이용하는 노광장치 및 그것을 이용하여 반도체 디바이스나 액정표시 디바이스 등의 디바이스를 제조하는 방법에 관한 것이다.
디바이스 패턴의 미세화의 요구에 수반하여, 노광장치에 있어서 노광광으로서 이용되는 광의 파장은 점차 짧아지고 있다.
최근에, 노광광으로서 파장 5nm 내지 20nm의 EUV광을 이용하는 노광장치(이하, EUV 노광장치로 칭함)에 관한 여러가지 제안이 이루어지고 있다(예를 들면, 일본국 특개 2003-309057호 공보 참조).
EUV 노광장치에서는, 노광광원으로부터의 광에 의해 마스크(레티클)를 조명하기 위한 조명광학계로서 EUV광에 대해서 실용적인 굴절률을 가지는 재료가 없기 때문에, 투과형의 광학계(굴절광학계)를 사용하지 못하고, 반사 다층막을 코팅한 미러를 이용한 반사광학계가 이용된다.
마스크의 패턴을 웨이퍼나 유리 플레이트 등의 기판에 투영하기 위한 투영광학계로서도, 동일한 이유로부터, 복수매의 미러를 이용한 반사형 광학계가 이용된다.
각각의 미러는 수십층의 Mo/Si의 페어로부터 각각 형성되는 반사 다층막을 가져서, EUV광을 비교적 높은 반사율로 반사한다.
도 2에 일본국 특개 2003-309057호 공보의 EUV 노광장치를 나타낸다. 도 2에서, EUV광을 방출하는 광원부(1)는, Xe가스나 Sn증기 등을 방전에 의해 플라스마화함으로써, EUV광을 발생시키는 예를 들면, 방전 여기 플라스마형 광원 또는, Xe나 Sn에 고출력 펄스 레이저를 집광조사함으로써, 플라스마를 발생시키는 레이저 여기형 플라스마 광원 등을 포함한다.
조명광학계(3)는, 복수의 미러에 의해 구성된다. 볼록 미러(11), 오목 미러(11)는, 광원부(1)로부터의 EUV 광속을 수광해서, 실질적으로 평행인 광속으로 변환하기 위한 평행변환 유닛을 구성한다. 반사형 인티그레이터(4)는, 복수의 원통 반사면을 가진다. 상기 인티그레이터(4)의 반사면 주위에는, 상기 인티그레이터의 정면에 대해서 개구면이 실질적으로 수직으로 배치된 개구 조리개(15)가 배치되어 있다. 이 개구조리개(15)는, 유효광원의 분포형상을 규정하고, 피조명면인 마스크(레티클)(6)상의 각 점을 조명하는 광의 각도분포를 규정한다.
볼록 미러(13), 오목 미러(14) 및 평면 미러(폴딩 미러)(2)는 인티그레이터 (4)로부터의 광속을 원호형상으로 집광하기 위한 콘덴서 유닛을 구성하고 있다. 상기 평면 미러(2)는 콘덴서 유닛의 상측 광속을, 상방향으로 반사하여 소정의 각도로 반사형 마스크(6)에 입사 시킨다.
반사형 마스크(6)는, 마스크 스테이지(5)상에 설치된 마스크 척(50)에 의해 유지되어 있다. 투영광학계(7)는, 복수매의 다층막 미러에 의해 구성되는 공축광학계이다. 상기 투영광학계(7)는 물체측이 비텔레센트릭이고 상측이 텔레센트릭이 되도록 설계되어 있다.
감광재가 도포된 웨이퍼(8)는, 웨이퍼 스테이지(9)상에 설치된 웨이퍼 척 (90)에 의해 유지되어 있다. 진공 체임버(20)는 노광장치 본체의 내부를 진공상태로 유지한다.
도 3은 복수의 볼록원통면을 가진 반사형 볼록원통면 인티그레이터(4)에 거의 평행한 광이 입사한 상태에서의 모식적 사시도이다. 대략 평행한 EUV 광속(10)은 도시한 방향으로부터 입사한다.
도 3에 도시한 바와 같이, 복수의 원통면을 가진 인티그레이터(4)에 대략 평행한 EUV 광속(10)이 입사하는 경우, 이 인티그레이터의 앞면 부근에 선형의 2차 광원이 복수 형성되고, 이 복수의 2차 광원으로부터 방사되는 각각의 EUV 광속의 각도 분포가 원추면 형상이 된다. 이 2차 광원위치와 일치되는 초점을 가지는 미러에 의해 상기 EUV 광속을 반사하여 반사 마스크를 조명한다. 그 결과로서, 복수의 2차 광원으로부터의 광속이 반사형 마스크상에서 서로 중첩되어, 원호형상의 조명이 가능해진다.
EUV 노광장치에서의 투영광학계의 광학성능을 측정하는 방법에 관해서도 여러가지 제안이 이루어지고 있다(예를 들면, 일본국 특개 2000-97622호 공보, 일본국 특개 2003-302205호 공보, 미국 특허출원 공개 제 2002/0001088호 명세서, 미국 특허 제 5835217호 명세서 참조).
이하, 종래의 EUV 노광장치의 투영광학계의 파면수차를 측정하기 위한 간섭계에 대해 설명한다.
EUV노광장치의 투영광학계의 파면수차를 측정하는 간섭계로서는, SOR (Synchroton Orbit Radiation)과 언듈레이터(UNDULATOR)를 광원으로서 이용한, 셰어링 간섭계, 점회절 간섭계(PDI), 선회절 간섭계(LDI) 등이 있다. 도 7은 피검광학계의 파면수차를 측정하는 간섭계의 개념도이다.
SOR과 언듈레이터에 의해 생성된 EUV광(21)은, 조명광학계(22)에 의해, 진공 체임버(23)으로 도입된다. 폴딩 미러(24)에 의해 반사된 후, 피검광학계(31)를 통과하여, CCD(Charge Couple Device) 등의 검출기(30)에 의해 검출된다. 핀홀이나 창이 배치된 제 1마스크(25), 제 1회절격자(26), 제 2회절격자(27), 및 핀홀이나 창이 배치된 제 2마스크(28)는, 각각 필요한 경우에 도시한 바와 같이 광로중에 배치된다. 진공 체임버(23)는, 제진대(29)에 의해 유지되어 있다. 도 7의 간섭계에서는, 2매의 미러를 사용하는 투영광학계를 피검광학계(31)로서 배치하고 있다.
도 7의 간섭계에서는, 복수의 간섭 방식에 따라서 피검광학계(31)를 평가하는 것이 가능하다. 도 8A 및 도 8B에 대표적인 2 종류의 간섭방식의 개념도를 나타낸다.
도 8A는 PDI(Point Diffraction Interferometer)를 나타내고, 도 8B는 LSI (Lateral Shearing Interferometer)를 나타낸다. 이들 도면에서, 도 7과 동일한 부재에 대해서는 동일한 부호를 사용한다.
우선, 도 8A를 참조하면서, PDI에 대해 설명한다. 광원으로부터의 광(21)은 테스트 광학계(31)의 물체면에 배치된 제 1마스크(25)에 집광한다. 제 1마스크 (25)에는, 회절한계 이하(즉, 피검광학계(31)의 개구수를 NA, 광(21)의 파장을 λ로 했을 경우에 λ/2 NA이하)의 크기의 직경을 가지는 핀홀이 형성되어 있다. 광(21)은 제 1마스크(25)의 핀홀을 통과한 후에, 실질적으로 이상 구면파로 정형된다. 제 1마스크(25)로부터의 광은 회절격자(26)에 의해 회절되어 피검광학계(31)에 입사하고, 피검광학계(31)의 상면에 배치된 제 2마스크(28)상에 집광한다. 제 2마스크(28)에는, 회절한계 이하의 핀홀과 회절한계보다 충분히 큰 창부가 형성되어 있다. 제 2마스크(28)에 집광하는 광은, 제 1회절격자(26)에 의해 회절되고 있으므로 제 2마스크(28)상에는 회절 차수에 따라서 복수의 광이 각각 집광한다. 0차 광이 핀홀을, 1차 광 또는 -1차 광이 창부를 통과하도록, 제 2마스크(28)와 제 1회절격자(26)는 위치맞춤 되어있다.
그 외의 차수의 광속은, 제 2마스크(28)의 차광부에서 모두 차단된다.
제 2마스크(28)의 핀홀을 회절한 광은 실질적으로 이상 구면파로 간주할 수 있어, 피검광학계(31)의 파면수차정보가 제외되어 있다. 한편, 제 2마스크(28)의 창부를 통과한 광은 피검광학계(31)의 파면수차 정보를 가지고 있다.
이들 2개의 광속에 의해 생성된 간섭무늬가 검출기로서의 CCD(30)에 의해 관찰된다. 간섭무늬로부터 테스트 광학계의 파면수차를 측정하는 방법으로서는, 틸트 줄무늬가 중첩된 간섭무늬 1매를 이용하는 소위 전자무아레법이나 소위 푸리에변환법으로 실용화 할 수 있다. 또 하나의 실용가능한 선택은, 제 1회절격자(26)를 광축과 수직으로 주사하면서 CCD(30)에 의해 복수의 간섭무늬를 취득하는 이른바 프린지 주사법을 이용하는 것이다.
도 8A의 구성에서, 제 1마스크(25)와 제 2마스크(28)로서 핀홀 대신에 슬릿을 마련한 마스크를 이용함으로써 LDI(Line diffraction Interferometer)가 구성 된다. 상기 LDI의 경우에, 제 1마스크(25)와 제 2마스크(28)를 통과하는 광량이 커지므로, 저휘도의 광원에서도 계측이 용이하게 된다.
도 8B를 참조하면서, LSI에 대해 설명한다. 광원으로부터의 광(21)을 제 1마스크에 조사한다. 제 1마스크에는 회절한계 이하의 핀홀이 형성되어 있다.
제 1마스크의 핀홀로 회절한 광은 피검광학계(31) 통과 후, 제 2회절격자 (27)에 입사한다. 제 2회절격자(27)은 피검광학계(31)로부터 나온 광을 회절해서, 제 2마스크(28)상에 복수의 집광점을 형성시킨다. 제 2마스크(28)에는, 회절한계보다 충분히 큰 차수 선택창이 2개 형성되어 제 2회절격자(27)에 의해 회절한 광 중에, ±1차광 만을 투과시키도록 되어 있다. 제 2마스크를 통과한 광속은 서로 간섭하고, CCD(30)에 의해 간섭무늬가 관찰된다. 전술의 전자 무아레법이나 프린지 스캔법을 이용함으로써, 간섭무늬로부터 위상정보를 얻을 수 있다. 이와 같이, 얻어진 위상정보는, 투영광학계(피검광학계(31))의 파면수차의 한 방향에서의 차분치(예를 들면 x방향의 차분치)를 나타낸다. 제 2회절격자(27)및 제 2마스크(28)를 광축주위에 90도 회전시킨 후에, 회전된 상태에서 간섭무늬를 CCD(30)에 의해 마찬가지로 취득하고, 위상정보를 얻는다. 이와 같이, 얻어진 정보는 피검광학계(31)의 파면수차의 y방향의 차분치를 나타낸다. x와 y의 2 방향의 차분 위상정보치로부터, 피검광학계(31)의 파면수차 정보를 얻는 것이 가능하다.
이상의 설명에서는, 제 1마스크로서 핀홀을 이용하였지만, 각각의 회전된 상태에서 제 2회절격자(27)와 평행한 방향의 슬릿(25', 25”)를 제 1마스크에 배치하여도 된다.
또, 도 8B의 간섭계에서, 제 2회절격자(27)로서 크로스 그레이팅 등의 2차원 회절격자(27a)를 이용해 제 2마스크로서 회절한계보다 충분히 큰 차수 선택창이 4개 배치된 마스크(28a)를 이용하는 것도 가능하다. 이 구성에 의해, 피검광학계(31)의 x와 y의 2 방향의 파면수차 정보를 동시에 취득할 수 있다.
EUV 노광장치에 이용되는 투영광학계는, 그것을 구성하는 미러의 위치정밀도나 열에 의한 변형에 몹시 민감하다. 따라서, 예를 들면, 노광의 사이에 투영광학계의 파면수차를 측정하고, 미러위치를 조정하는 피드백 제어를 통하여 노광장치 에서의 투영광학계의 성능보증이 필요하다.
또, 미러에 코팅된 Mo/Si다층막상에 불순물이 부착되거나, 화학변화를 발생시킬 수도 있어서, 이른바 오염에 의한 위상의 변화 등도 발생한다. 노광장치에서 노광 파장으로 투영광학계의 광학성능을 측정할 필요가 있다.
이러한 측정과 관련하여, 본 발명자는 다음과 같은 사실을 알게 되었다. 노광장치에, 그 투영광학계의 광학특성을 측정하는 측정유닛(예를 들면, 간섭계)를 탑재하려고 했을 경우에, 통상 사용하는 반사형 마스크 대신에, 핀홀형상이나 슬릿형상의 반사부를 가지는 마스크를 제 1마스크로서 배치하는 것을 생각할수 있다. 그러나, 그러한 구성에서는, 투영광학계의 광학특성을 계측하기 위해 필요한 충분한 광량을 형성할 수 없다.
이것은, EUV 노광장치의 조명광학계에서, 일반적으로, 인티그레이터를 이용하여 2차 광원을 형성하고, 그 2차 광원으로부터의 광속을 피조사 면에 중첩 하여 반사형 마스크에 균일하게 쾰러 조명하기 때문에, 피조사면의 조도가 감소되는 것이 원인이다.
따라서, 노광장치의 투영광학계의 물체면에, 복수 종류의 마스크(예를 들면, 투과형 마스크, 반사형 마스크 및 패턴 영역이 서로 다른 복수의 반사형 마스크)중의 어느 것을 배치하는 것에 관계없이, 모든 종류의 마스크에 적절한 조명을 실행할 수 있는 노광장치가 요구된다.
본 발명은 복수의 마스크 종류에 관계없이 모든 종류의 마스크에 대해 적절한 방식으로 조명을 행할 수 있는 노광장치를 목적으로 한다. 1측면에 의하면, 본 발명은, 노광광원으로부터의 광으로 반사형 마스크를 조명하는 조명광학계와, 물체면에 배치된 상기 반사형 마스크의 패턴의 상을 상면에 배치된 기판상에 투영하는 투영광학계를 포함하는 노광장치로서, 상기 조명광학계는, 상기 노광광원으로부터의 광으로 복수의 2차 광원을 형성하는 반사형 인티그레이터와, 상기 복수의 2차 광원으로부터의 광의 각각을 상기 반사형 마스크상에 중첩하는 콘덴서 유닛 및 상기 반사형 인티그레이터 대신에 광로중에 배치가능한 미러를 포함하고, 상기 광로중에 상기 반사형 인티그레이터 대신에 상기 미러를 배치할 때에, 상기 투영광학계의 물체면에 형성된 조명영역이, 상기 반사형 인티그레이터가 광로중에 배치되었을 때에 형성된 조명영역에 비하여 작아지는 것을 특징으로 하는 노광장치를 제공한다.
다른 1측면에 의하면, 본 발명은, 노광광원으로부터의 광에 의해 반사형 마 스크를 조명하는 조명광학계와; 물체면에 배치된 상기 반사형 마스크의 패턴의 상을 상면에 배치된 기판상에 투영하는 투영광학계를 포함하는 노광장치로서, 상기 반사형 마스크 대신에 상기 투영광학계의 물체면에 배치되는 투과형 마스크에 상기 조명광학계로부터의 광을 도입하는 미러를 부가하여 포함하는 것을 특징으로 하는 노광장치.
본 발명의 기타 특징 및 이점은 첨부된 도면과 함께 주어진 이하 명세서로부터 자명해질 것이며, 그 전체 도면에 걸쳐서 동일하거나 유사한 참조부호는 동일하거나 유사한 부분을 나타낸다. 본 발명의 명세서에 포함되어, 그 한 부분을 구성하는 첨부의 도면은, 상세한 설명과 함께 본 발명의 실시예를 예시하고, 본 발명의 원리를 설명하는 기능을 한다.
<실시예의 상세한 설명>
이하에, 본 발명의 실시의 형태를 첨부의 도면에 따라서 상세하게 설명한다.
<실시예 1>
도 1에 본 실시예의 노광장치의 설명도를 나타낸다. 도 1에서, 도 2의 노광장치와 동일 부재에는 동일한 부호로 나타낸다.
노광광원부(1)는, 파장 13.4nm을 가진 EUV광을 노광광으로서 방출하고, 상기 방출된 광은 조명광학계(3)에 입사한다. 조명광학계(3)에서, 광원으로부터의 EUV광은 평행변환 유닛 (11, 12)에 의해 대략 평행광이 변환되어, 평면미러(4')에 입사한다. 평면미러(4')에 의해 광이 반사된 후, 콘덴서 유닛(13, 14, 2)에 의해 반사되어, 투영광학계(7)의 물체면에 집광된다. 평면 미러(2)의 각도는, 조명광학계로 부터의 광을 반사형 마스크에 소정의 각도로 입사하도록 조정된다. 본 실시예에서는, 입사각도는 약 6°로 설정되어 있고 투영광학계(7)의 물체측의 대응하는 주광선과 마스크면에 대한 법선이 이루는 각도와 동일하다.
조명계(3)으로부터의 광은, 파면수차 계측용의 전용 테스트 마스크에 배치된 제 1마스크(16)에 입사 한다. 그 전용 테스트 마스크는, 노광용의 반사형 마스크 대신에, 마스크 스테이지(5)상의 마스크 척(50)에 의해 유지되어 있다. 또는, 노광용의 반사형 마스크 대신에, 광로중에 상기 제 1마스크가 배치되도록 제 1마스크(16)를 마스크 스테이지(5)상의 마스크 척(50)의 부근에 배치한다.
제 1마스크(16)의 패턴으로서는, 도 8A 및 도 8B의 제 1마스크(25)에 형성된 것과 마찬가지의 핀홀형상 또는 슬릿형상의 반사부가 형성되어 있다. 그 외의 부분은 차광되어 있다. 그 반사부에 의해 반사된 광은, 도 8A 및 도 8B의 종래예와 마찬가지로, 핀홀 형상의 반사부의 경우에는 이상 구면파, 슬릿형상의 반사부의 경우에는 한 방향으로 정형된 파면으로 된다.
본 실시예에서, 조명계(3)는, 파면수차 측정시에, 도시하지 않은 미러 변환 수단에 의해 인티그레이터(4)를 평면미러(4')로 대체하고, 제 1마스크(16)를 투영광학계(7)의 물체면에 배치한다. 상기 대체에 의해, 광원부(1)로부터의 광에 의해 원호향상으로 쾰러조명 되고 있던 투영광학계(7)의 물체 면(예를 들면, 투영광학계에 배치된 제 1마스크(16))은, 광원부(1)의 발광점과 공역관계가 되어 스폿형상으로 임계조명 되어지게 된다. 그 결과로서, 제 1마스크(16)의 핀홀형상 또는 슬릿형상의 반사부에는, 보다 강한 강도의 광이 입사하게 되어, 제 1마스크(16)에 의해 차광되는 노광광원으로부터의 EUV광이 저감되고 이에 의해 효율이 좋은 조명이 가능해진다.
제 1마스크(16)를 반사한 광은, 투영광학계(7)을 통과하여, 상측에서 결상 한다.
상측에는, 피노광 기판으로서의 웨이퍼를 보관 유지하기 위한 웨이퍼 스테이지(9)상에 배치된 웨이퍼측 유닛(18)이 배치되어 있다. 웨이퍼측 유닛(18)의 상세를 도 9에 나타낸다. 웨이퍼측 유닛(18)은, 회절격자(41)(도 8B의 회절격자(27)에 상당), 차수 선택창을 2개 가지는 제 2마스크(42)(마스크(28)에 상당), 검출기로서 기능을 하는 CCD(43)(도 8B의 CCD(30)에 상당)로 구성된다.
회절격자(41)에 의해 회절된 광은, 제 2마스크(42)로 특정 차수만 CCD(43)에 도달한다. CCD(43)에서는 특정 차수의 간섭 무늬가 관찰되므로 종래 예의 같은 방법으로 셰어링 간섭의 원리를 이용하여, 투영광학계(7)의 파면수차를 측정하는 것이 가능하다. 덧붙여 회절격자(41)로서 도 8B에 도시된 크로스 격자 등의 2 차원 회절격자를 배치하는 것도 가능하다. 회절격자(41)를 제 1마스크와 투영광학계(8)의 사이에 배치함으로써, 도 8A에 도시된 것과 마찬가지의 구성을 얻을 수도 있다.
도 9의 웨이퍼측 유닛(18)에 대해, 차수 선택창을 2개 가지는 제 2마스크 (42)대신에, 도 8A의 마스크(28)와 같은 핀홀과 창부로부터 구성되는 마스크를 이용함으로써, PDI의 구성을 얻을 수 있다. 또, 핀홀 대신에 슬릿을 사용하는 것도 가능하다. 이 대체에 의해 LDI를 형성한다.
간섭무늬로부터 위상정보를 취득하는 방법으로서는, 1매의 간섭무늬를 이용 하여 소위 전자 무아레법을 사용하는 것이 가능하다. 또, 웨이퍼측 유닛(18)을 광축에 수직방향으로 주사하면서, CCD(43)에 의해 간섭무늬의 패턴을 복수매 취득하는 것으로 이른바 프린지 스캔법에 의해 위상을 내는 일도 가능하다.
투영광학계(7)의 노광 영역상에 있어서의 복수의 물체점(또는 상점)에 있어서의 파면수차를 측정하는 경우에는, 인티그레이터(4)를 평면미러(4‘)로 대체한후, 평면미러(4‘)를 도면의 지면과 평면미러(4') 자체에 평행한 축을 중심으로 회전시키고, 폴딩미러(2)를 도면의 지면에 수직인 축을 중심으로 회전시킴으로써, 원호형상 영역내 모든 측정점에 집광스폿이 연속적으로 이동된다. 이 경우, 원호 현상 영역 내의 측정 포인트로 제 1마스크와 웨이퍼측 유닛을 이동시킨다.
상기 집광스포트의 이동에 의해, 집광스포트가 다소 흐려질 수 있다. 그러나, 이러한 흐려짐은, 상기 투영광학계(7)의 물체면에 배치된 핀홀형상 또는 슬릿형상으로부터 이상 구면파 등이 실질적으로 발생되는 것이 바로 그 본질이기 때문에, 심각한 문제를 발생시키지는 않는다.
본 실시예의 노광장치는, 복수의 원통면, 예를 들면, 반사소자(원통면)를 가지는 하나의 미러로부터 구성되는 인티그레이터(4)를 이용하고 있다. 또 다른 예로서는, 상기 인티그레이터는, 도 6A에 도시된 바와 같이, 복수의 원호형상의 반사 소자(132)를 가지는 제 1 미러(130), 및 도 6B에 도시된 바와 같이 복수의 직사각형(정방형) 형상의 반사소자(138)를 가지는 제 2 미러(136)로 이루어져도 된다(상세하게는, 예를 들면, 미국 특허 6452661호 공보 참조). 그 경우에는, 제 1 미러 (130) 및 제 2 미러(136)를 복수의 2차 광원을 형성하지 않는 평면미러, 오목 미 러, 및 볼록 미러중의 어느 것인가에 의해 대체함으로써, 제 1마스크(16)의 핀홀형상이나 슬릿형상의 반사부를 효율적으로 조명하는 것이 가능하다. 환언하면, 도 6A 및 도 6B는 복수의 미러를 포함한 인티그레이터의 예를 도시한다.
또, 본 실시예에서는, 인티그레이터(4)를 평면미러(4')로 대체하고 있지만, 평면미러(4') 대신에 오목 미러 또는 볼록 미러로 대체되어도 된다. 이 수정된 경우에는, 투영광학계(7)의 물체면에 있어서, 조명영역이 다소 흐려진다. 그러나, 최종적으로 핀홀형상 등의 반사부로부터 이상 구면파 등이 실질적으로 발생하는 것이 바로 그 본질이기 때문에, 이러한 흐려짐은, 심각한 문제를 발생시키지 않는다.
게다가 본 실시예에서는, 투영광학계의 파면수차를 계측하는 간섭계는, 투영광학계의 광학특성을 계측하기 위한 계측유닛으로서 이용된다. 그러나, 계측유닛으로서 투영광학계의 초점을 검출하기 위한 초점검출 유닛을 이용할 수도 있다. 그 경우에는, 제 1마스크 및 제 2마스크는, 예를 들면, 패턴으로서 서로 대응하는 라인 앤드 스페이스 등의 패턴으로 형성되고, 회절격자는 광로중에 회절격자를 배치하지 않고, 포토다이오드는 CCD 대신에 광량검출기가 검출기로서 이용된다(보다 상세하게는, 예를 들면, 일본국 특개평 08-298238호 공보참조).
본 실시예에 의하면, 상기와 같이, 투영광학계의 광학특성을 계측하기 위한 계측유닛의 광원으로서 노광용 광원을 이용하고, 또한, 그 계측유닛의 제 1마스크의 패턴을 조명하는데, 노광장치의 조명광학계의 광학부재를 이용한다. 이에 의해서, 노광장치 전체가 컴팩트하게 된다.
또, 그 계측유닛을 이용하는 계측시에, 조명광학계의 2차 광원을 형성하기 위한 인티그레이터를, 계측유닛의 제 1마스크의 타겟마크(핀홀·슬릿·라인 앤드 스페이스 등)를 고효율로 조명하도록, 2차 광원을 형성하지 않는 미러로 대체한다. 이에 의해서, 투영광학계의 광학특성을 계측하는 것이 용이해진다.
<실시예 2>
도 10에 본 발명의 실시예 2의 노광장치를 도시한다. 도 10에서, 도 1의 노광장치와 동일 부재에는 동일한 부호를 부여한다.
광원부(1)로부터 사출한 광은, 조명광학계(3)에 입사한다. 조명광학계(3)에서는, 평행변환 유닛(11, 12)에 의해, 광원부(1)로부터의 EUV광은 대략 평행광속으로 변환되어 평면미러(4')에 입사된다. 평면미러(4')를 반사한 광은, 콘덴서 유닛(13, 14, 2)에 의해, 투영광학계(7)의 물체면에 집광된다. 평면미러(2)의 각도는, 조명광학계(3)으로부터의 광을 반사형 마스크에 소정의 각도로 입사하도록 조정된다. 본 실시예에서는, 입사각도는 투영광학계(7)의 물체측의 대응하는 주광선과 마스크면의 법선과의 이루는 각도와 동일해지는 약 6°로 설정되어 있다.
조명계(3)로부터의 광은, 마스크측 유닛(17)에 입사 한다. 마스크측 유닛(17)은, 파면수차 계측용의 전용 테스트 마스크로 구성된다. 상기 마스크측 유닛(17)은, 마스크 스테이지(5)상에 형성된 마스크 척 (50)에 장착 가능하다. 또는, 도 10에 도시된 바와 같이, 마스크 스테이지(5)상의 마스크 척 (50)의 부근에 배치되어도 된다.
도 11에 마스크측 유닛(17)의 상세도를 도시한다.
도 11에서는, 마스크측 유닛(17)의 광속의 각도는 설명을 위해 확대된 스케 일로 예시되어 있는 것에 유의한다.
실시예 1에서는, 제 1마스크로서 반사형 마스크를 이용했지만, 본 실시예 2에서는, 반사형 마스크보다 용이하게 제조 가능한 투과형 마스크를 이용한다. 또한, 본 실시예 2에서는, 마스크측 유닛(17)은 투과형의 제 1마스크(45) 더하여, 미러(44)를 포함한다. 광원부(1)로부터 방출되어, 조명광학계(3)을 통과한 후, 마스크 스테이지(5)를 향하여 상향 진행된 광은, 웨이퍼 스테이지(9) 측을 향하여 진행하도록 미러(44)에 의해 반사된다. 따라서, 상기 미러(45)를 설치함으로써 상기 제 1마스크(45)를 사용하는 것이 가능해진다.
미러(44)와 투과 마스크(45) 사이의 간격과 광의 비넷팅(vignetting)에 대해서는 도 12를 이용해 설명한다. 물체측의 NA를 0.0625이고, 주광선 각도를 6°이며, 미러(44)(도 12에서 반사면)로부터 투과형마스크(45)는 z0의 거리만큼 떨어져 있다고 가정한다.
주광선을 y = ax의 직선(a = tan(90°-6°)), NA의 최단의 광선을 각각, y = bx, y = cx로 가정한다. 도 12에서 도시하지 않은 조명광학계로부터 온 광은, 레티클측 유닛(17)의 미러(44)에 의해 반사되어, 투과형 마스크(45)의 투과패턴이 형성된 패턴면에 집광한다. 이 때, 집광점과 조명광학계로부터의 광이 충분히 분리되어 있을 필요가 있다. 즉, y = cx의 직선과 집광점이 공간적으로 서로 떨어져 있어야 된다. 이하의 표 1은, 투과형 마스크(45)가 반사면으로부터 z0의 거리의 위치에 있을 때의 분리거리 Δ의 관계를 나타낸다.
z0(mm) Δ(mm)
5 0.40
10 0.79
20 1.59
따라서, 투영광학계의 상측 NA가 0.25(물체측 NA가 0.0625)인 경우에도, 광속은 충분히 분리 가능하다는 것을 이해할 수 있다.
물론, 본 제 1실시예와 관련하여 상술한 구성을 본 실시예에 모두 적용할 수 있다. 본 실시예의 노광장치에 의하면, 투영광학계의 광학성능을 계측하는 계측유닛의 제 1마스크로서 반사형의 마스크보다 용이하게 제조할 수 있는 투과형의 마스크를 사용하고 있기 때문에, 투영광학계의 광학성능이 보다 용이하게 계측할 수 있다.
<실시예 3>
실시예 2에서, 콘덴서 유닛으로부터, 투영광학계(7)의 물체면까지의 거리는, 도 11에 도시된 마스크측 유닛(17)내의 미러(44)에 의해 광이 반사되는 구성에 대응하는 양만큼 길어진다. 이 때문에, 조명광학계(3)로부터의 광속은, 투과형의 제 1마스크(45)의 직전에 집광되어, 제 1마스크(45)상에 초점을 맺지 못한다. 따라서, 제 1마스크(45)상의 집광스폿이 흐려지고, 비교적 넓어지게 된다. 투영광학계(7)의 물체면에 배치된 핀홀 또는 슬릿으로부터 이상 구면파 등이 발생되는 것이 바로 그 본질이기 때문에, 이러한 흐려짐이 심각한 문제를 발생시키지는 않는다.
그럼에도 불구하고, 흐려짐의 관점에서 본 실시예 3는, 도 10에 도시된 평면미러(4')대신에 부의 파워를 가진 볼록 미러를 이용함으로써, 투영광학계의 광학성능의 계측에 이용하는 광의 광량을 더욱 증가시키기 위해 의도된 것이다. 볼록 미러의 이용에 의해, 집광위치까지의 거리가 길어져, 마스크 유닛(17)의 미러(44)를 이용하는 경우에도, 제 1마스크(45)와 노광광원을 공역으로 유지할 수 있다. 그 결과로서, 제 1마스크(45)상에 광을 집광시키는 것이 가능해진다. 그 이외의 구성은, 실시예 2의 노광장치와 동일하므로, 상세한 설명은 생략한다.
본 실시예에서는, 평면미러(4')대신에 부의 파워를 가진 볼록 미러를 이용했지만, 마스크 유닛(17)의 미러(44)를 이용하는 경우에도, 콘덴서 유닛의 미러 (13, 4)를 초점거리가 조정가능한 줌 광학계의 형태로 구성함으로써, 제 1마스크(45)와 노광광원을 공역으로 유지할 수 있다. 또, 그 경우에는, 콘덴서 유닛의 미러(13, 14)를, 초점거리가 다른 미러로 대체 하여도 된다.
물론, 실시예 1과 관련하여 상술한 구성을 본 실시예 3에서도 모두 적용할 수 있다. 본 실시예 3에 의하면, 간섭계에 의해 구성된 계측유닛에 이용되는 투과형 마스크에 의한 경우에도, 예를 들면, 조명광학계의 피조사면을 투영광학계의 물체면에 놓여진 제 1마스크에 대략 일치시키는 것이 가능하고, 이에 의해, 계측유닛의 마스크의 패턴을 보다 효율적으로 조명하는 것이 가능해진다.
또, 이상의 실시예에 의하면, 노광장치의 투영광학계의 물체면에, 복수 종류의 마스크(예를 들면, 투과형 마스크 및 반사형 마스크, 또는 패턴 영역이 서로 다른 복수의 반사형 마스크)를 배치하는 경우에도, 모든 종류의 마스크에 적절한 조명을 실행할 수 있는 노광장치를 제공한다.
<실시예 4>
다음에, 상술의 노광장치를 이용함으로써 디바이스를 제조하는 방법의 실시예를 설명한다.
도 4는 반도체 디바이스(예를 들면,IC나 LSI등의 반도체 칩)의 제조흐름도를 나타낸다. 스텝 1(회로설계)에서는 반도체 장치의 회로설계를 행한다. 스텝 2(마스크 제작)에서는 설계한 회로패턴을 형성한 마스크(레티클)를 제작한다. 한편, 스텝 3(웨이퍼 제조)에서는 실리콘 등의 재료를 이용하여 웨이퍼를 준비한다. 스텝 4(웨이퍼 프로세스)는 전공정으로 부르고 선행 공정에서 준비된 상기 마스크와 웨이퍼를 모두를 이용하여 리도그래피 기술에 의해 웨이퍼상에 실제의 회로를 형성한다. 다음의 스텝 5(조립)는 후속공정으로 부르고 스텝 4에서 얻어진 웨이퍼를 이용하여 칩화하는 공정이며, 어셈블리 공정(다이싱, 본딩), 패키징 공정(칩밀봉) 등의 공정을 포함한다. 스텝 6(검사)에서는 스텝 5에서 얻어진 반도체 장치의 동작 확인 테스트, 내구성 테스트 등의 검사를 행한다. 이러한 공정을 거쳐 반도체 장치가 완성한 후, 출하된다(스텝 7).
도 5는 상기 웨이퍼 프로세스의 상세한 흐름도를 나타낸다. 스텝 11(산화)에서는 웨이퍼의 표면을 산화시킨다. 스텝 12(CVD)에서는 웨이퍼의 표면에 절연막을 형성한다. 스텝 13(전극 형성)에서는 웨이퍼상에 전극을 증착에 의해 형성한다. 스텝 14(이온 주입)에서는 웨이퍼에 이온을 주입한다. 스텝 15(레지스트 처리)에서는 웨이퍼에 레지스트(감광재)를 도포한다. 스텝 16(노광)에서는 상기 투영노광장치에 의해 마스크의 회로패턴의 상에 따라서 웨이퍼를 노광한다. 스텝 17(현상)에서는 노광한 웨이퍼를 현상 한다. 스텝 18(에칭)에서는 현상한 레지스트 이외의 부분을 지워낸다. 스텝 19(레지스트 박리)에서는 에칭이 끝나 불필요해진 레지스트를 없앤다. 이들 스텝을 반복해 행하는 것으로 웨이퍼상에 소망의 회로패턴이 형성된다.
본 실시예의 제조방법을 이용함으로써, 종래는 실현하기 어려웠던 고집적도의 디바이스를 제조하는 것이 가능하게 된다.
본 발명은, 본 발명의 정신과 범위를 일탈함이 없이, 자명하고, 광범위하게 많은 상이한 실시예를 이룰 수 있으며, 상기의 특정한 실시예로 한정되지 않는 것으로 이해되어야 한다. 필요시, 동일분야의 숙련된 자에게 공지된 대체수단으로 대체되어도 된다.
노광장치의 투영광학계의 물체면에, 복수 종류의 마스크(예를 들면, 투과형 마스크 및 반사형 마스크, 또는 패턴 영역이 서로 다른 복수의 반사형 마스크)를 배치하는 경우에도, 각각의 마스크에 적절한 조명을 실행할 수 있는 노광장치를 제공할 수가 있다.

Claims (18)

  1. 노광광원으로부터의 광으로 반사형 마스크를 조명하는 조명광학계와;
    물체면에 배치된 상기 반사형 마스크의 패턴의 상을 상면에 배치된 기판상에 투영하는 투영광학계를 포함하는 노광장치로서,
    상기 조명광학계는, 상기 노광광원으로부터의 광으로 복수의 2차 광원을 형성하는 반사형 인티그레이터와, 상기 복수의 2차 광원으로부터의 광의 각각을 상기 반사형 마스크상에 중첩하는 콘덴서 유닛 및 상기 반사형 인티그레이터 대신에 광로중에 배치가능한 미러를 포함하고, 상기 광로중에 상기 반사형 인티그레이터 대신에 상기 미러를 배치할 때에, 상기 투영광학계의 물체면에 형성된 조명영역이, 상기 반사형 인티그레이터가 광로중에 배치되었을 때에 형성된 조명영역에 비하여 작아지는 것을 특징으로 하는 노광장치.
  2. 제 1항에 있어서,
    상기 노광광원으로부터의 광을 이용하여 상기 투영광학계의 광학특성을 계측하는 계측유닛을 부가하여 포함하고,
    상기 계측유닛은, 상기 투영광학계의 물체면에 배치되는 제 1마스크를 포함하고,
    상기 미러를 광로중에 배치할 때 상기 제 1마스크를 조명하는 것을 특징으로 하는 노광장치.
  3. 제 2항에 있어서,
    상기 계측유닛은, 상기 투영광학계로부터의 광을 제한하는 제 2마스크라고 상기 제 1마스크와 상기 투영광학계와 제 2마스크를 그 차례로 통과한 상기 노광광원으로부터의 광을 검출하는 검출기를 부가하여 포함하는 것을 특징으로 하는 노광장치.
  4. 제 3항에 있어서,
    상기 계측유닛은, 상기 투영광학계와 상기 제 2마스크의 사이에 배치된 회절격자를 부가하여 포함하고,
    상기 제 1마스크는 핀홀형상의 반사부를 포함하며, 상기 제 2마스크는 2개의 개구부를 포함하고,
    상기 검출기는, 상기 제 1마스크의 핀홀형상의 상기 반사부를 반사하여 대략 이상 구면파가 되는 노광광원으로부터의 광이, 상기 투영광학계를 통과한 후, 상기 회절격자에 의해 회절되고, 소정의 차수의 회절광속이 상기 2개의 개구를 통과하여 서로 간섭하는 공정에 의해 형성되는 간섭패턴을, 검출하는 것을 특징으로 하는 노광장치.
  5. 제 1항에 있어서,
    상기 미러는, 평면 미러를 포함하는 것을 특징으로 하는 노광장치.
  6. 제 1항에 있어서,
    상기 미러는, 볼록 미러를 포함하는 것을 특징으로 하는 노광장치.
  7. 제 1항에 있어서,
    상기 투영광학계의 물체면에서 형성된 조명영역의 위치는, 상기 미러의 기울기를 변경함으로써 변경되는 것을 특징으로 하는 노광장치.
    제 1항에 있어서,
    상기 조명광학계는, 상기 미러를 기울이는 구동기구를 부가하여 포함하고,
    상기 구동기구에 의해 상기 미러의 기울기를 변경함으로써 상기 투영광학계의 물체면에서 형성된 조명영역의 위치를 변경하는 것을 특징으로 하는 노광장치.
  8. 제 1항에 있어서,
    상기 콘덴서유닛은, 평면 미러를 부가하여 포함하고,
    상기 평면 미러의 기울기를 변경함으로써 상기 투영광학계에서 형성된 물체면의 조명영역의 위치를 변경하는 것을 특징으로 하는 노광장치.
  9. 제 2항에 있어서,
    상기 계측유닛은, 간섭계를 포함하는 것을 특징으로 하는 노광장치.
  10. 제 2항에 있어서,
    상기 계측유닛은, 초점검출 유닛을 포함하는 것을 특징으로 하는 노광장치.
  11. 제 1항에 있어서,
    상기 반사형 인티그레이터는, 복수의 제 1 반사소자를 가지는 제 1 미러와 복수의 제 2 반사소자를 가지는 제 2 미러를 포함하는 것을 특징으로 하는 노광장치.
  12. 제 1항에 있어서,
    상기 반사형 인티그레이터 대신에 배치되는 상기 미러는, 복수의 미러를 포함하는 것을 특징으로 하는 노광장치.
  13. 노광광원으로부터의 광에 의해 반사형 마스크를 조명하는 조명광학계와;
    물체면에 배치된 상기 반사형 마스크의 패턴의 상을 상면에 배치된 기판상에 투영하는 투영광학계
    를 포함하는 노광장치로서,
    상기 반사형 마스크 대신에 상기 투영광학계의 물체면에 배치되는 투과형 마스크에 상기 투영광학계로부터의 광을 도입하는 미러를 부가하여 포함하는 것을 특징으로 하는 노광장치.
  14. 제 13항에 있어서,
    상기 노광광원으로부터의 광을 이용하여 상기 투영광학계의 광학특성을 계측 하는 계측유닛를 부가하여 포함하고,
    상기 계측유닛은, 제 1마스크로서의 상기 투과형 마스크와,
    상기 투영광학계로부터의 광을 제한하는 제 2마스크와,
    상기 제 1마스크, 상기 투영광학계 및 제 2마스크를 이 순서로 통과한 상기광원으로부터의 광을 검출하는 검출기
    를 포함하는 것을 특징으로 하는 노광장치.
  15. 제 13항에 있어서,
    상기 조명광학계는, 상기 노광광원으로부터의 광에 의해 복수의 2차 광원을 형성하는 반사형 인티그레이터와, 상기 복수의 2차 광원으로부터의 광속을 서로 상기 반사형 마스크상에 중첩하는 콘덴서 유닛과, 상기 반사형 인티그레이터 대신에 광로중에 배치 가능한 미러를 포함하고, 상기 반사형 인티그레이터 대신에 상기 미러를 광로중에 배치할 때에, 상기 투영광학계의 물체면에 형성되는 조명영역이 상기 반사형 인티그레이터가 광로중에 배치될 때의 해당 조명영역보다 작아지는 것을 특징으로 하는 노광장치.
  16. 제 13항에 있어서,
    상기 미러는 볼록 미러를 포함하고, 해당 볼록 미러를 광로중에 배치하여 상 기 투영광학계의 물체면에 상기 노광광원으로부터의 광을 집광시키는 것을 특징으로 하는 노광장치.
  17. 제 1항 내지 제 12항 중의 어느 한 항에 기재된 노광장치를 이용하여 기판을 노광하는 단계와;
    노광된 상기 기판을 현상하는 단계
    를 포함하는 것을 특징으로 하는 디바이스의 제조방법.
  18. 제 13항 내지 제 16항 중의 어느 한 항에 기재된 노광장치를 이용하여 기판을 노광하는 단계와;
    노광된 상기 기판을 현상하는 단계
    를 포함하는 것을 특징으로 하는 디바이스의 제조방법.
KR1020060036492A 2005-04-25 2006-04-24 노광장치 및 그것을 이용한 디바이스의 제조방법 KR100756139B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2005-00126391 2005-04-25
JP2005126391A JP2006303370A (ja) 2005-04-25 2005-04-25 露光装置及びそれを用いたデバイス製造方法

Publications (2)

Publication Number Publication Date
KR20060112612A true KR20060112612A (ko) 2006-11-01
KR100756139B1 KR100756139B1 (ko) 2007-09-05

Family

ID=36754269

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060036492A KR100756139B1 (ko) 2005-04-25 2006-04-24 노광장치 및 그것을 이용한 디바이스의 제조방법

Country Status (4)

Country Link
US (1) US7602473B2 (ko)
EP (1) EP1717639A3 (ko)
JP (1) JP2006303370A (ko)
KR (1) KR100756139B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101484937B1 (ko) * 2008-07-02 2015-01-21 삼성전자주식회사 위상반전 마스크의 위상 측정 방법 및 이를 수행하기 위한장치

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8189172B2 (en) * 2007-06-14 2012-05-29 Asml Netherlands B.V. Lithographic apparatus and method
US8692974B2 (en) * 2007-06-14 2014-04-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using pupil filling by telecentricity control
JP2009253214A (ja) * 2008-04-10 2009-10-29 Canon Inc 露光装置及びデバイス製造方法
DE102012218221A1 (de) 2012-10-05 2014-04-10 Carl Zeiss Smt Gmbh Monitorsystem zum Bestimmen von Orientierungen von Spiegelelementen und EUV-Lithographiesystem
US10401723B2 (en) 2013-06-03 2019-09-03 Asml Netherlands B.V. Patterning device
CN103324036A (zh) * 2013-07-04 2013-09-25 中国科学院光电技术研究所 一种投影物镜倍率及畸变的检测装置及方法
DE102016212477A1 (de) * 2016-07-08 2018-01-11 Carl Zeiss Smt Gmbh Messverfahren und Messsystem zur interferometrischen Vermessung der Abbildungsqualität eines optischen Abbildungssystems
JP6924235B2 (ja) * 2019-09-19 2021-08-25 キヤノン株式会社 露光方法、露光装置、物品製造方法、および半導体デバイスの製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5719704A (en) * 1991-09-11 1998-02-17 Nikon Corporation Projection exposure apparatus
JP3313932B2 (ja) 1995-04-27 2002-08-12 キヤノン株式会社 投影露光装置
US5835217A (en) 1997-02-28 1998-11-10 The Regents Of The University Of California Phase-shifting point diffraction interferometer
JP4238390B2 (ja) 1998-02-27 2009-03-18 株式会社ニコン 照明装置、該照明装置を備えた露光装置および該露光装置を用いて半導体デバイスを製造する方法
US6833904B1 (en) * 1998-02-27 2004-12-21 Nikon Corporation Exposure apparatus and method of fabricating a micro-device using the exposure apparatus
JP2000097622A (ja) 1998-09-22 2000-04-07 Nikon Corp 干渉計
JP2001227909A (ja) * 2000-02-17 2001-08-24 Nikon Corp 点回折干渉計、反射鏡の製造方法及び投影露光装置
TW550377B (en) 2000-02-23 2003-09-01 Zeiss Stiftung Apparatus for wave-front detection
DE60217771T3 (de) * 2001-07-27 2012-02-09 Canon K.K. Belichtungssystem, Projektionsbelichtungsapparat und Verfahren zur Herstellung eines Artikels
US6859263B2 (en) * 2001-08-30 2005-02-22 Euv Llc Apparatus for generating partially coherent radiation
JP2003302205A (ja) 2002-02-07 2003-10-24 Nikon Corp シアリング干渉測定方法及びシアリング干渉計、投影光学系の製造方法、投影光学系、及び投影露光装置
JP3720788B2 (ja) * 2002-04-15 2005-11-30 キヤノン株式会社 投影露光装置及びデバイス製造方法
EP1387220A3 (en) * 2002-07-29 2007-01-03 Canon Kabushiki Kaisha Adjustment method and apparatus of optical system, and exposure apparatus
JP4266673B2 (ja) 2003-03-05 2009-05-20 キヤノン株式会社 収差測定装置
JP4378140B2 (ja) * 2003-09-17 2009-12-02 キヤノン株式会社 照明光学系及び露光装置
JP4464166B2 (ja) 2004-02-27 2010-05-19 キヤノン株式会社 測定装置を搭載した露光装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101484937B1 (ko) * 2008-07-02 2015-01-21 삼성전자주식회사 위상반전 마스크의 위상 측정 방법 및 이를 수행하기 위한장치

Also Published As

Publication number Publication date
JP2006303370A (ja) 2006-11-02
KR100756139B1 (ko) 2007-09-05
EP1717639A3 (en) 2009-07-08
EP1717639A2 (en) 2006-11-02
US20060238737A1 (en) 2006-10-26
US7602473B2 (en) 2009-10-13

Similar Documents

Publication Publication Date Title
KR100756139B1 (ko) 노광장치 및 그것을 이용한 디바이스의 제조방법
KR100911223B1 (ko) 측정장치, 노광장치 및 방법, 그리고 디바이스의 제조방법
JP3610175B2 (ja) 投影露光装置及びそれを用いた半導体デバイスの製造方法
US20060221316A1 (en) Optical element, exposure apparatus, and device manufacturing method
US20050190378A1 (en) Exposure apparatus mounted with measuring apparatus
KR20080065940A (ko) 위치검출장치 및 노광장치
JPWO2002052620A1 (ja) 波面収差測定装置、波面収差測定方法、露光装置及びマイクロデバイスの製造方法
WO2003088329A1 (en) Reticle and optical characteristic measuring method
JP5219534B2 (ja) 露光装置及びデバイスの製造方法
US7081962B2 (en) Aberration measuring apparatus for an optical system utilizing soft x-rays
US7295326B2 (en) Apparatus and method for measuring the optical performance of an optical element
US7295327B2 (en) Measuring apparatus and exposure apparatus having the same
KR100819240B1 (ko) 노광장치의 조명광학계의 유효광원분포 측정장치 및 그것을 가지는 노광장치
US7352475B2 (en) Measuring method and apparatus using shearing interferometry, exposure method and apparatus using the same, and device manufacturing method
US7142284B2 (en) Position detector, position detecting method, and exposure apparatus having the same
JP3774590B2 (ja) 投影露光装置及びそれを用いたデバイスの製造方法
US6977728B2 (en) Projection exposure apparatus and aberration measurement method
JP2004289119A (ja) 迷放射を決定する方法、リソグラフィ投影装置
JP4280521B2 (ja) 収差測定装置及び投影露光装置
JP2004266273A (ja) 露光装置及び露光方法
JP2008198799A (ja) 波面収差測定装置、露光装置及び波面収差測定方法
JP2006080444A (ja) 測定装置、テストレチクル、露光装置及びデバイス製造方法
CN113557477B (zh) 光刻设备、量测设备、光学系统和方法
JP6564138B2 (ja) アライメントシステムの光学システム
US7098467B2 (en) Measuring method and apparatus, exposure method and apparatus, and device manufacturing method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120719

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130726

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140728

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150727

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160725

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170725

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180725

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190826

Year of fee payment: 13