KR20060013211A - A manufacturing method of high-strength cu workpiece using accumulative roll-bonding process - Google Patents

A manufacturing method of high-strength cu workpiece using accumulative roll-bonding process Download PDF

Info

Publication number
KR20060013211A
KR20060013211A KR1020040062083A KR20040062083A KR20060013211A KR 20060013211 A KR20060013211 A KR 20060013211A KR 1020040062083 A KR1020040062083 A KR 1020040062083A KR 20040062083 A KR20040062083 A KR 20040062083A KR 20060013211 A KR20060013211 A KR 20060013211A
Authority
KR
South Korea
Prior art keywords
copper
rolling
copper plate
repeated
bonding
Prior art date
Application number
KR1020040062083A
Other languages
Korean (ko)
Inventor
임차용
한승전
이성희
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to KR1020040062083A priority Critical patent/KR20060013211A/en
Publication of KR20060013211A publication Critical patent/KR20060013211A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/04Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a rolling mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof

Abstract

본 발명은 동일 크기를 갖는 두개의 구리판재를 표면처리한 후 겹쳐 고정하여 반복겹침접합압연(ARB)공정으로 압연하는 과정을 연속적으로 다수회 반복하도록 구성되는 반복겹침접합압연공정에 의한 고강도 구리판재 제조방법에 관한 것이다. 본 발명은, 구리판재(120)를 표면처리하는 제 1 단계(100)와, 상기 제 1 단계(100)를 거친 두 개의 구리판재(120)를 겹쳐 고정시키는 제 2 단계(200)와, 상기 제 2 단계(200)를 거친 두 개의 구리판재(120)를 압연하여 접합하는 제 3 단계(300)와, 상기 제 3 단계(300)를 거친 구리판재(120)를 절단하는 제 4 단계(400)를 포함하여 구성되며, 상기 제 1 단계(100), 제 2 단계(200), 제 3 단계(300) 및 제 4 단계(400)는 연속적으로 다수회 반복됨을 특징으로 한다. 그리고, 상기 제 1 단계(100)는 탈지(脫脂)과정과 와이어브러싱(Wire brushing)이며, 상기 제 3 단계(300)는 겹쳐진 두 개의 구리판재(120)를 50%의 압하율로 실온(25℃)과 중온(250℃) 사이의 온도에서 압연하여 접합하는 것을 특징으로 한다. 이와 같은 본 발명에 의하면, 고전기전도성 및 고강도를 동시에 갖춘 구리 소재를 연속적으로 제조할 수 있는 이점이 있다. The present invention is a high-strength copper sheet material by a repeated overlap-bonding rolling process configured to repeat a plurality of times the process of rolling in a repeated overlap-bonding rolling (ARB) process after surface treatment of two copper plate having the same size and fixed together It relates to a manufacturing method. The present invention, the first step (100) of surface treatment of the copper plate member 120, the second step 200 of fixing the two copper plate member 120 passed through the first step (100) and the The third step 300 of rolling and joining the two copper plate members 120 passed through the second step 200 and the fourth step 400 of cutting the copper plate member 120 passed through the third step 300. The first step 100, the second step 200, the third step 300 and the fourth step 400 are repeated a plurality of times in succession. In addition, the first step 100 is a degreasing process and a wire brushing process. The third step 300 is a 50% reduction ratio of two overlapping copper plate members 120 at room temperature (25). It is characterized in that the bonding by rolling at a temperature between (C) and medium temperature (250 ℃). According to the present invention as described above, there is an advantage that can continuously manufacture a copper material having high conductivity and high strength at the same time.

반복겹침접합압연(ARB), 구리판재, 연속, 반복Repeated Overlap Bonding (ARB), Copper Plate, Continuous, Repeated

Description

반복겹침접합압연공정에 의한 고강도 구리판재 제조방법{A manufacturing method of High-strength Cu workpiece using Accumulative Roll-Bonding process}A manufacturing method of high-strength Cu workpiece using Accumulative Roll-Bonding process}

도 1 은 본 발명에 따른 반복겹침접합압연공정의 개략적인 공정개념도.1 is a schematic process conceptual view of a repeat overlap welding process according to the present invention.

도 2a 는 본 발명에 따른 반복겹침접합압연공정 전(前)의 무산소동의 광학현미경 조직사진.Figure 2a is an optical microscopic histogram of the oxygen-free copper before repeated overlap welding rolling process according to the present invention.

도 2b 는 본 발명에 따른 반복겹침접합압연공정 전(前)의 인탈산동의 광학현미경 조직사진.Figure 2b is an optical microscope histology of phosphorus acid copper before the repeated overlap welding rolling process according to the present invention.

도 3a 는 본 발명의 바람직한 실시예인 무산소동으로 반복겹침접합압연공정을 8 싸이클(Cycle) 실시한 후의 투과전자현미경(TEM) 조직사진.Figure 3a is a transmission electron microscope (TEM) micrograph after carrying out 8 cycles of repeated overlap bonding rolling process with an oxygen-free copper of a preferred embodiment of the present invention.

도 3b 는 본 발명의 바람직한 실시예인 인탈산동으로 반복겹침접합압연공정을 8 싸이클(Cycle) 실시한 후의 투과전자현미경(TEM) 조직사진.Figure 3b is a transmission electron microscope (TEM) micrograph after performing eight cycles (Cycle) repeated overlap-bonding rolling process with phosphorus acid copper which is a preferred embodiment of the present invention.

도 4a 는 본 발명의 바람직한 실시예인 무산소동으로 반복겹침접합압연공정을 실시하는 싸이클(Cycle) 수의 증가에 따른 기계적 성질의 변화곡선을 나타낸 그래프.Figure 4a is a graph showing the change of mechanical properties with the increase in the number of cycles (Cycle) to perform a repeated lap joint rolling process in an oxygen-free copper is a preferred embodiment of the present invention.

도 4b 는 본 발명의 바람직한 실시예인 인탈산동으로 반복겹침접합압연공정을 실시하는 싸이클(Cycle) 수의 증가에 따른 기계적 성질의 변화곡선을 나타낸 그래프.Figure 4b is a graph showing the change of mechanical properties with the increase in the number of cycles (Cycle) to perform a repeated overlap welding process with copper phosphorus in the preferred embodiment of the present invention.

도 5 는 본 발명의 바람직한 실시예인 무산소동과 인탈산동으로 반복겹침접합압연공정을 실시하는 싸이클(Cycle) 수의 증가에 따른 전기전도도 변화곡선을 나타낸 그래프.Figure 5 is a graph showing the electrical conductivity change curve according to the increase in the number of cycles (Cycle) to perform the repeated overlap welding process with oxygen-free copper and phosphorus acid copper which is a preferred embodiment of the present invention.

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

100. ..... 제 1 단계 120. ..... 구리판재100. ..... First Step 120. ..... Copper Plate

200. ..... 제 2 단계 300. ..... 제 3 단계200. ..... The Second Step 300. ..... The Third Step

320. ..... 롤러 400. ..... 제 4 단계320. ..... Roller 400. ..... Fourth Step

420. ..... 절단기420. ..... cutter

본 발명은 강소성가공법에 관한 것으로, 더욱 상세하게는 동일 크기를 갖는 두개의 구리판재를 표면처리한 후 겹쳐 고정하여 반복겹침접합압연(ARB)공정으로 압연하는 과정을 연속적으로 다수회 반복함으로써, 구리의 전도성은 거의 떨어뜨리지 않고 강도를 증가시키는 반복겹침접합압연공정에 의한 고강도 구리판재 제조방법에 관한 것이다.The present invention relates to a rigid plastic working method, and more particularly, by repeating the surface treatment of two copper plate materials having the same size and then fixed by overlapping and rolling in a repeated overlap-bonding rolling (ARB) process, copper The conductivity of the present invention relates to a method for producing a high strength copper sheet material by a repeated overlap welding process to increase the strength with little drop.

반복겹침접합압연(Accumulative Roll-Bonding; ARB)법은 금속소재의 결정립도(結晶粒度)를 서브마이크론(Submicron)까지 초미세화시킴으로써 기계적 특성을 향상시키는 강소성가공법 중의 하나이다.Cumulative Roll-Bonding (ARB) method is one of the rigid plastic processing methods to improve the mechanical properties by minimizing the grain size of the metal material to submicron (Submicron).

일반적으로 압연(壓延)이나 압출(壓出) 등 기존의 소성가공법들은 가공량을 증가시키면 대상재료의 형상(단면적) 변화가 불가피하여 소재 내에 변형에너지를 축적시키는데 한계가 있을 수 밖에 없다. 그러므로, 기존의 소성가공법들은 금속재료의 결정립미세화(結晶粒微細化) 및 고강도화(高强度化)에 큰 효과를 발휘하지 못하고 있는 실정이다.In general, conventional plastic processing methods such as rolling or extrusion have an inevitable change in the shape (section area) of the target material when the processing amount is increased, and thus there is a limit in accumulating strain energy in the material. Therefore, the existing plastic working methods do not have a great effect on grain refinement and high strength of metal materials.

반면에 반복겹침접합압연(ARB)법은 50%의 압하율(壓下率)로 압연을 할 경우 소재에 대해 1/2만큼의 두께 감소가 길이 방향으로 2배의 증가를 초래한다는 압연이론에 착안을 두어 개발된 방법으로, 반복적으로 접합압연(接合壓延)을 함으로써 이론적으로는 무제한으로 소성가공(塑性加工)을 실시할 수 있게 되고 판재의 결정립미세화 및 고강도화에 상당히 유효한 방법이라 할 수 있다.On the other hand, in case of rolling with 50% reduction ratio, ARB method is applied to the rolling theory that the thickness reduction by 1/2 for the material causes double increase in the length direction. This method was developed with the focus on the concept. By repeatedly joining and rolling, it is theoretically possible to carry out unlimited plastic processing, and it is a very effective method for grain refinement and high strength of sheet material.

이러한 특징으로 인해 반복겹침접합압연(ARB)법은 구조재료의 대표격인 철강 및 알루미늅(Al) 소재 등에 적용되어 왔으나, 실용화 관점에서 볼 때 고강도화를 달성하는 것만으로는 고용체강화법, 석출강화법 등과 같은 기존의 강화법들에 비해 그다지 큰 이점이 존재한다고 할 수 없다.Due to these characteristics, the ARB method has been applied to steel and aluminium (Al) materials, which are representative of structural materials.However, from the practical point of view, it is only necessary to achieve high strength in existing applications such as solid solution strengthening and precipitation strengthening. There is no great advantage over the law of strengthening the law.

따라서, 기존의 반복겹침접합압연(ARB)법의 특성을 최대한 발휘하여 실용화를 앞당기기 위해서는 결정립미세화 및 고강도화를 달성함과 동시에 연속 생산이 가능한 압연공정이 필요하게 되는 것이다.Therefore, in order to maximize the practical use of the conventional ARB method, it is necessary to achieve a grain refinement and a high strength, and a rolling process capable of continuous production.

상기와 같은 문제점을 해결하기 위한 본 발명의 목적은, 동일 크기를 갖는 두개의 구리판재를 표면처리한 후 겹쳐 고정하여 반복겹침접합압연(ARB)공정으로 압연함으로써 구리의 전도성은 거의 떨어뜨리지 않고 강도를 증가시키는 반복겹침 접합압연공정에 의한 고강도 구리판재 제조방법을 제공하는 것이다.An object of the present invention for solving the above problems, the surface of two copper plate material having the same size and then fixed by overlapping and rolling by repeated overlap-bonding rolling (ARB) process, the conductivity of copper hardly drop the strength It is to provide a high-strength copper sheet material manufacturing method by repeated overlap bonding rolling process to increase the.

본 발명의 다른 목적은, 반복겹침접합압연공정을 적용하여 연속 생산이 가능하도록 하는 반복겹침접합압연공정에 의한 고강도 구리판재 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing a high-strength copper sheet material by a repeated overlap bonding rolling process to enable continuous production by applying a repeat overlap welding process.

상기한 바와 같은 목적을 달성하기 위한 본 발명에 의한 반복겹침접합압연공정에 의한 고강도 구리판재 제조방법은, 구리판재를 표면처리하는 제 1 단계와, 상기 제 1 단계를 거친 두 개의 구리판재를 겹쳐 고정시키는 제 2 단계와, 상기 제 2 단계를 거친 두 개의 구리판재를 압연하여 접합하는 제 3 단계와, 상기 제 3 단계를 거친 구리판재를 절단하는 제 4 단계를 포함하여 구성되며, 상기 제 1 단계, 제 2 단계, 제 3 단계 및 제 4 단계는 연속적으로 다수회 반복됨을 특징으로 한다.In order to achieve the above object, a method of manufacturing a high-strength copper sheet material by a repeated overlap bonding rolling process according to the present invention includes a first step of surface-treating a copper plate material and overlapping two copper plate materials passed through the first step. A second step of fixing, a third step of rolling and joining the two copper plate members passed through the second step, and a fourth step of cutting the copper plate member passed through the third step, wherein the first step is performed. The step, the second step, the third step and the fourth step are characterized in that they are repeated a plurality of times in succession.

상기 제 1 단계는 탈지(脫脂)과정과 와이어브러싱(Wire brushing)임을 특징으로 한다.The first step is characterized in that the degreasing process and the wire brushing (Wire brushing).

상기 제 3 단계는 겹쳐진 두 개의 구리판재를 50%의 압하율로 압연하여 접합하는 것을 특징으로 한다.The third step is characterized in that the two overlapping copper sheet material by rolling at 50% reduction rate of bonding.

그리고, 상기 제 3 단계의 압연은 실온(25℃)과 중온(250℃) 사이의 온도에서 실시하는 것을 특징으로 한다.And, the rolling of the third step is characterized in that carried out at a temperature between room temperature (25 ℃) and medium temperature (250 ℃).

이와 같은 본 발명에 의하면, 고전기전도성 및 고강도를 동시에 갖춘 구리 소재를 연속적으로 제조할 수 있는 이점이 있다.According to the present invention as described above, there is an advantage that can continuously manufacture a copper material having high conductivity and high strength at the same time.

이하에서는 상기한 바와 같은 구성을 가지는 본 발명에 의한 반복겹침접합압 연공정에 의한 고강도 구리판재 제조방법의 바람직한 실시예를 첨부된 도면을 참고하여 상세히 설명한다.Hereinafter, with reference to the accompanying drawings, a preferred embodiment of a high-strength copper sheet material manufacturing method by a repeated overlap welding process according to the present invention having the configuration as described above will be described in detail.

도 1 에는 본 발명에 따른 반복겹침접합압연공정의 개략적인 공정개념도가 도시되어 있다. 이에 도시된 바에 따르면, 상기 반복겹침접합압연공정은 크게 4 단계로 구성된다. 즉, 구리판재(120)를 표면처리하는 제 1 단계(100)와, 상기 제 1 단계(100)를 거친 두 개의 구리판재(120)를 겹쳐 고정시키는 제 2 단계(200)와, 상기 제 2 단계(200)를 거친 두 개의 구리판재(120)를 압연하여 접합하는 제 3 단계(300)와, 상기 제 3 단계(300)를 거친 구리판재(120)를 절단하는 제 4 단계(400)를 포함하여 구성된다.1 shows a schematic process conceptual diagram of a repeat overlap welding process according to the present invention. As shown in the drawing, the repeated overlap welding process is largely composed of four steps. That is, the first step 100 of surface treatment of the copper plate member 120, the second step 200 of overlapping and fixing the two copper plate member 120 passed through the first step 100, and the second A third step 300 of rolling the two copper plate members 120 passed through the step 200, and a fourth step 400 of cutting the copper plate members 120 subjected to the third step 300. It is configured to include.

상기 제 1 단계(100)에서는 미리 준비된 동일 크기(두께 1㎜, 폭 30㎜, 길이 300㎜)를 갖는 2매(枚)의 구리판재(120)를 표면처리하게 된다. 이러한 표면처리는 상기 구리판재(120)의 양면을 아세톤(Acetone)이나 알코올(Alcohol) 등으로 탈지처리한 후, 상기 2매의 구리판재(120)가 서로 접촉하는 한쪽 면 즉 상기 제 3 단계(300)에서의 압연에 의해 결합되는 면을 와이어브러싱(Wire brushung) 처리하는 것이다.In the first step 100, two copper plate members 120 having the same size (thickness 1 mm, width 30 mm, length 300 mm) prepared in advance are surface treated. The surface treatment may be performed by degreasing both surfaces of the copper sheet 120 with acetone, alcohol, or the like, and then, one surface of the two copper sheets 120 contacting each other, that is, the third step ( The surface joined by rolling in 300 is a wire brushing process.

상기 제 1 단계(100)를 거친 다음에는 두 구리판재(120)를 겹쳐 고정하는 제 2 단계(200)가 진행된다. 제 2 단계(200)는 상기 제 1 단계(100)를 거친 두 개의 구리판재(120)를 겹친 후, 상기 제 3 단계(300)에서의 압연에서 어긋나지 않도록 스폿(Spot)용접이나 철사 등으로 두 구리판재(120)를 고정시키는 과정이다.After the first step 100, a second step 200 of overlapping and fixing the two copper plate members 120 is performed. The second step 200 overlaps the two copper plate members 120 which have passed through the first step 100, and then places them with spot welding or wires so as not to be displaced in the rolling in the third step 300. It is a process of fixing the copper plate 120.

이렇게 고정시킨 상기 두 구리판재(120)는 2단압연기(도시되지 않음)에서 압 연하여 접합하게 되는 제 3 단계(300)를 거치게 된다. 상기 제 3 단계(300)는 상기 2단압연기의 롤러(320)에 상기 제 2 단계(200)에서 겹쳐 고정된 두 구리판재(120)를 삽입함으로써 냉간압연(冷間壓延)하여 접합(Roll-Bonding)시키게 된다.The two copper plate 120 fixed in this way is subjected to a third step 300 to be joined by rolling in a two-stage rolling mill (not shown). The third step 300 is cold-rolled and joined by inserting the two copper plate members 120 overlapped and fixed in the second step 200 to the roller 320 of the two-stage rolling machine. Bonding).

상기와 같은 냉간압연은 50%의 압하율(壓下率)로 압연하게 된다. 이는 50%의 압하율(壓下率)로 압연할 경우, 소재에 대해 1/2만큼의 두께 감소가 길이 방향으로 2배의 증가를 초래한다는 이론에 착안을 둔 것이다.The cold rolling as described above is rolled at a rolling reduction of 50%. This is based on the theory that when rolling at a rolling reduction of 50%, a thickness reduction of half of the material would result in a twofold increase in the longitudinal direction.

상기 제 3 단계(300)에서 접합되어 하나가 된 구리판재(120)는 제 4 단계(400)를 거치게 된다. 상기 제 4 단계(400)는 하나가 된 상기 구리판재(120)를 절단기(420)를 사용하여 길이방향으로 2등분되게 절단하는 과정이다.The copper plate 120 joined to the one in the third step 300 passes through the fourth step 400. The fourth step 400 is a process of cutting the copper plate 120, which has become one, into two parts in the longitudinal direction by using the cutter 420.

그리고, 상기와 같이 제 1 단계(100)에서 제 4 단계(400)까지 거치는 과정을 1싸이클(Cycle)이라 하며, 상기 제 4 단계(400)에서 이등분으로 절단된 상기 구리판재(120)는 다시 상기 제 1 단계(100)에서 표면처리하는 과정부터 제 2 단계(200)의 겹침 및 고정하는 과정과 제 3 단계(300)의 냉간접합압연과정 및 제 4 단계(400)의 절단하는 과정을 연속적으로 반복 실시하게 된다.In addition, as described above, the process from the first step 100 to the fourth step 400 is referred to as one cycle, and the copper plate material 120 cut into two parts in the fourth step 400 is again. The process of surface treatment in the first step 100, the process of overlapping and fixing the second step 200, the cold bonding rolling process of the third step 300, and the process of cutting the fourth step 400 are continuously performed. Will be repeated.

한편, 도 2a 및 2b 에는 본 발명에 따른 반복겹침접합압연공정 전(前)의 무산소동과 인탈산동의 광학현미경 조직사진이 도시되어 있고, 도 3a 및 3b 에는 본 발명의 바람직한 실시예인 무산소동과 인탈산동으로 반복겹침접합압연공정을 8 싸이클(Cycle) 실시한 후의 투과전자현미경(TEM) 조직사진이 도시되어 있다.On the other hand, Figure 2a and 2b is an optical microscopic picture of the anaerobic copper and phosphorus acid copper before the repeated overlap-bonding rolling process according to the present invention, Figures 3a and 3b is an oxygen-free copper which is a preferred embodiment of the present invention A transmission electron microscope (TEM) micrograph is shown after eight cycles of repeated overlap bonding rolling process with phosphoric acid copper.

그리고, 도 4a 및 4b 에는 본 발명의 바람직한 실시예인 무산소동과 인탈산동으로 반복겹침접합압연공정을 실시하는 싸이클(Cycle) 수의 증가에 따른 기계적 성질의 변화곡선을 나타낸 그래프가 도시되어 있으며, 도 5 에는 본 발명의 바람직한 실시예인 무산소동과 인탈산동으로 반복겹침접합압연공정을 실시하는 싸이클(Cycle) 수의 증가에 따른 전기전도도 변화곡선을 나타낸 그래프가 도시되어 있다.4A and 4B are graphs showing a change curve of mechanical properties according to an increase in the number of cycles for carrying out a repeated bond welding process using oxygen-free copper and phosphorus acid copper, which are preferred embodiments of the present invention. 5 is a graph showing a change in electric conductivity with increasing cycle number of cycles of repeated annealing welding with anoxic copper and phosphorus acid copper, which is a preferred embodiment of the present invention.

먼저, 도 2a 및 2b 에 도시된 바에 따라 아래의 화학조성을 가지는 두 종류의 구리(무산소동과 인탈산동)의 반복겹침접합압연공정 전(前) 광학현미경 조직사진을 살펴보면, 무산소동 및 인탈산동 모두 재결정 조직을 나타내며 평균결정입경(Mean grain diameter)은 무산산동이 63㎛, 인탈산동이 45㎛으로 나타나게 된다.First, as shown in FIGS. 2A and 2B, the optical microscope micrographs before the repeated overlap-bonding rolling process of two kinds of copper (oxygen-free copper and phosphorus acid) having the following chemical compositions, Representing the recrystallized structure, the mean grain diameter is shown to be 63 μm of anhydrous copper and 45 μm of phosphorus acid.

< 무산소동 ><Anaerobic Copper>

CuCu OO PbPb BiBi FeFe PP SS 99.9999.99 2ppm2 ppm 1ppm1 ppm <1ppm<1 ppm 1ppm1 ppm 2ppm2 ppm 7ppm7 ppm

< 인탈산동 ><Intalsandong>

CuCu SnSn PbPb BiBi FeFe PP MnMn 99.999.9 0.0020.002 0.0170.017 <1ppm<1 ppm 1ppm1 ppm 0.020.02 0.0010.001

도 3a 및 3b 는 반복겹침접합압연을 8 싸이클(Cycle) 실시한 후 무산소동과 인탈산동 내에 형성되어 있는 초미세한 결정립을 나타내는 투과전자현미경(TEM) 조직사진으로써, 도 3a 는 암시야상(Dark field image)으로 무산소동 조직내부에 직경이 약 500nm 정도의 초미세 결정립(Grain)이 형성되어 있음을, 그리고 도 3b 는 명시야상(Bright field image)으로 인탈산동 조직내부에 약 100nm 정도의 초미세 결정립(Grain)이 형성되어 있음을 알 수 있다. 3A and 3B are transmission electron microscope (TEM) micrographs showing ultrafine grains formed in anoxic copper and phosphorus acid copper after 8 cycles of repeated overlap welding. FIG. 3A is a dark field image. ), An ultrafine grain having a diameter of about 500 nm is formed in the anaerobic copper tissue, and FIG. 3B is a bright field image. It can be seen that grains are formed.

이러한 결과는 반복겹침접합압연(ARB)법이 구리(Cu)의 결정립 초미세화에 효 과적임을 잘 나타내 주는 것이다.These results show that the ARB method is effective for ultrafine grains of copper (Cu).

도 4a 및 4b 는 상당변형량(ARB 싸이클 수)의 증가에 따른 무산소동과 인탈산동의 기계적 특성변화를 나타낸 것으로, 무산소동의 경우(도 4a), 인장강도(UTS)는 4 싸이클까지 싸이클 수가 증가함에 따라 계속 증가하여 초기의 2.1배인 390MPa에 달하지만 5 싸이클 이상에서는 싸이클 수가 증가해도 크게 변하지 않게 되며, 연신율(Elongation)은 1 싸이클에서 크게 감소하나 싸이클 수가 증가함에 따라 다소 증가하는 경향을 보인다.4A and 4B show changes in the mechanical properties of anoxic copper and phosphorus acid copper with an increase in the amount of significant strain (ARB cycles). In the case of anoxic copper (FIG. 4A), the tensile strength (UTS) increases as the number of cycles up to 4 cycles. Therefore, it continues to increase, reaching 390 MPa, which is 2.1 times of the initial time, but it does not change much even if the number of cycles increases more than five cycles, and elongation decreases significantly in one cycle, but increases slightly as the number of cycles increases.

한편, 인탈산동(도 4b)의 경우에는 싸이클 수가 증가함에 따라 인장강도는 계속 증가하여 7 싸이클 후에는 약 3배로 증가하게 되어 550MPa에 달하게 되고, 연신율의 변화는 무산소동과 유사한 거동을 나타내게 된다. 이와 같이 반복겹침접합압연(ARB)에 따른 강화효과의 대소(大小)는 존재하나 무산소동과 인탈산동 모두 반복겹침접합압연(ARB)에 의해 크게 강화됨을 알 수 있으며, Meanwhile, in the case of phosphorus copper (FIG. 4B), as the number of cycles increases, the tensile strength continues to increase to about 3 times after 7 cycles, reaching 550 MPa, and the change in elongation is similar to that of anoxic copper. As mentioned above, although there is a large or small amount of reinforcing effect due to ARB, both anoxic copper and phosphorus acid copper are greatly strengthened by ARB.

그리고, 도 5 는 반복겹침접합압연(ARB)에 따른 무산소동과 인탈산동의 전기전도도의 변화를 나타낸 것으로, 무산소동과 인탈산동 모두 반복겹침접합압연(ARB) 싸이클 수가 증가해도 그 감소량은 미미함을 알 수 있다.5 shows the change in the electrical conductivity of anoxic copper and phosphorus acid copper according to ARB, and the reduction amount is insignificant even if the number of ARB cycles is increased in both anoxic copper and phosphorus acid copper. It can be seen.

이러한 본 발명의 범위는 상기에서 예시한 실시예에 한정하지 않고, 상기와 같은 기술범위 안에서 당업계의 통상의 기술자에게 있어서는 본 발명을 기초로 하는 다른 많은 변형이 가능할 것이다.The scope of the present invention is not limited to the above-exemplified embodiments, and many other modifications based on the present invention may be made by those skilled in the art within the above technical scope.

위에서 상세히 설명한 바와 같이 본 발명의 반복겹침접합압연공정에 의한 고 강도 구리판재 제조방법에서는, 동일 크기를 갖는 두개의 구리판재를 표면처리한 후 겹쳐 고정하여 반복겹침접합압연(ARB)공정으로 압연하는 과정을 연속적으로 다수회 반복하도록 구성하였다.As described in detail above, in the method of manufacturing a high-strength copper sheet material by the repeated overlap bonding rolling process of the present invention, two copper sheet materials having the same size are surface-treated, and then fixed by overlapping to roll in the repeated overlap bonding rolling (ARB) process. The process was configured to repeat multiple times in succession.

따라서, 반복겹침접합압연(ARB)공정을 이용하여 고전기전도성 및 고강도를 동시에 갖춘 구리(Cu) 소재를 연속적으로 제조할 수 있는 효과가 기대된다.Accordingly, an effect of continuously producing a copper (Cu) material having both high electroconductivity and high strength by using an ARB process is expected.

그리고, 본 발명으로 제조되는 구리(Cu) 소재를 기초재료로 하여 반도체, 통신용 소자 및 그 응용제품 등의 전기/전자 산업용 소재로 실용화될 수 있는 효과도 기대된다.Further, the copper (Cu) material produced by the present invention as a base material is also expected to be effective in the electrical / electronic industrial materials such as semiconductors, communication devices and applications thereof.

Claims (4)

구리판재를 표면처리하는 제 1 단계와,A first step of surface treating the copper sheet material, 상기 제 1 단계를 거친 두 개의 구리판재를 겹쳐 고정시키는 제 2 단계와,A second step of overlapping and fixing two copper plate members which have been subjected to the first step, 상기 제 2 단계를 거친 두 개의 구리판재를 압연하여 접합하는 제 3 단계와,A third step of rolling and joining the two copper plate members passed through the second step, 상기 제 3 단계를 거친 구리판재를 절단하는 제 4 단계를 포함하여 구성되며,It comprises a fourth step of cutting the copper plate material subjected to the third step, 상기 제 1 단계, 제 2 단계, 제 3 단계 및 제 4 단계는 연속적으로 다수회 반복됨을 특징으로 하는 반복겹침접합압연공정에 의한 고강도 구리판재 제조방법.The first step, the second step, the third step and the fourth step is a high-strength copper sheet material manufacturing method by a repeated overlap bonding rolling process, characterized in that repeated multiple times in succession. 제 1 항에 있어서, 상기 제 1 단계는 탈지(脫脂)과정과 와이어브러싱(Wire brushing)임을 특징으로 하는 반복겹침접합압연공정에 의한 고강도 구리판재 제조방법.The method of claim 1, wherein the first step is a degreasing process and a wire brushing process. 제 1 항에 있어서, 상기 제 3 단계는 겹쳐진 두 개의 구리판재를 50%의 압하율로 압연하여 접합하는 것을 특징으로 하는 반복겹침접합압연공정에 의한 고강도 구리판재 제조방법.The method of claim 1, wherein the third step is performed by joining two overlapping copper sheets by rolling at a reduction ratio of 50%. 제 1 항에 있어서, 상기 제 3 단계의 압연은 실온(25℃)과 중온(250℃) 사이의 온도에서 실시하는 것을 특징으로 하는 반복겹침접합압연공정에 의한 고강도 구 리판재 제조방법.The method of claim 1, wherein the rolling of the third step is performed at a temperature between room temperature (25 ° C.) and medium temperature (250 ° C.).
KR1020040062083A 2004-08-06 2004-08-06 A manufacturing method of high-strength cu workpiece using accumulative roll-bonding process KR20060013211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040062083A KR20060013211A (en) 2004-08-06 2004-08-06 A manufacturing method of high-strength cu workpiece using accumulative roll-bonding process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040062083A KR20060013211A (en) 2004-08-06 2004-08-06 A manufacturing method of high-strength cu workpiece using accumulative roll-bonding process

Publications (1)

Publication Number Publication Date
KR20060013211A true KR20060013211A (en) 2006-02-09

Family

ID=37122668

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040062083A KR20060013211A (en) 2004-08-06 2004-08-06 A manufacturing method of high-strength cu workpiece using accumulative roll-bonding process

Country Status (1)

Country Link
KR (1) KR20060013211A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009050543B3 (en) * 2009-10-23 2011-05-26 Peter Prof. Dr.-Ing. Dipl.-Wirtsch.-Ing. Groche Method and device for producing fine-grained, polycrystalline materials or workpieces from elongated or tubular semi-finished products
WO2012096456A2 (en) 2011-01-12 2012-07-19 한국기계연구원 Nano-grained multilayer copper alloy sheet having high strength and high electrical conductivity, and method for manufacturing same
WO2013113867A1 (en) 2012-02-01 2013-08-08 Bang & Olufsen A/S A method for manufacturing a multilayer structure of different metals and alloys
CN106583451A (en) * 2016-12-01 2017-04-26 桂林理工大学 Method for preparing multilayer-structured metal/nanoparticle composite material prepared by accumulation pack rolling and heat treatment
CN108441666A (en) * 2018-03-09 2018-08-24 盐城工学院 A kind of Ti2The preparation method of AlC granule reinforced copper base composite materials
WO2021000980A1 (en) 2019-06-03 2021-01-07 Johannes Scherer Method for producing an implant and implant

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009050543B3 (en) * 2009-10-23 2011-05-26 Peter Prof. Dr.-Ing. Dipl.-Wirtsch.-Ing. Groche Method and device for producing fine-grained, polycrystalline materials or workpieces from elongated or tubular semi-finished products
WO2011073745A2 (en) 2009-10-23 2011-06-23 Peter Groche Method and device for producing fine-grained, polycrystalline material or workpieces from elongated or tubular semi-finished products
WO2012096456A2 (en) 2011-01-12 2012-07-19 한국기계연구원 Nano-grained multilayer copper alloy sheet having high strength and high electrical conductivity, and method for manufacturing same
WO2013113867A1 (en) 2012-02-01 2013-08-08 Bang & Olufsen A/S A method for manufacturing a multilayer structure of different metals and alloys
CN106583451A (en) * 2016-12-01 2017-04-26 桂林理工大学 Method for preparing multilayer-structured metal/nanoparticle composite material prepared by accumulation pack rolling and heat treatment
CN108441666A (en) * 2018-03-09 2018-08-24 盐城工学院 A kind of Ti2The preparation method of AlC granule reinforced copper base composite materials
WO2021000980A1 (en) 2019-06-03 2021-01-07 Johannes Scherer Method for producing an implant and implant

Similar Documents

Publication Publication Date Title
CN110475885B (en) Aluminum alloy material, and conductive member, battery member, fastening member, spring member, and structural member using same
Saito et al. Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process
CN110337502B (en) Aluminum alloy material, and fastening member, structural member, spring member, conductive member, and battery member each using aluminum alloy material
JP5025122B2 (en) ELECTRODE WIRE FOR SOLAR CELL AND METHOD FOR PRODUCING THE SAME
CN101568658B (en) High-strength highly heat-conductive copper alloy pipe and process for producing the same
DE1577104C3 (en) Process for the production of a metallic composite body with a base metal made of copper or a copper alloy and a plating metal different therefrom
US8779294B2 (en) Flexible flat cable with dilute copper alloy containing titanium and sulfur
JP5490594B2 (en) Cu-Zn alloy strip for battery connection tab material
DE69919763T2 (en) Ceramic heating element
KR101486028B1 (en) Electrode wire for electrical discharge machining
CN111566240B (en) Aluminum alloy material, and conductive member, battery member, fastening member, spring member, and structural member using same
CN111511940A (en) Aluminum alloy material, and conductive member, battery member, fastening member, spring member, and structural member using same
DE112016003503T5 (en) Tinned product and method of making the same
KR20060013211A (en) A manufacturing method of high-strength cu workpiece using accumulative roll-bonding process
CN112534075A (en) Aluminum alloy material, and braided shield wire, conductive member, battery member, fastening member, spring member, structural member, and rubber-insulated cable using same
CN106011523A (en) Copper alloy sheet and press-molded product with same
DE1577105C3 (en) Roll cladding process for the production of composite sheets or strips clad on one or both sides
KR101227014B1 (en) High strength and High electric conductive multi-layer copper sheets and manufacturing method of the same
CN1223690C (en) Copper and copper alloy, and its method for making same
KR100601181B1 (en) Process of Equal Channel Angular Pressing for workpiece
KR20090025941A (en) A manufacturing method of phosphorus dioxidized copper sheet using three-layer stack accumulative roll-bonding process
JP2004183062A (en) Magnesium-based alloy wire and manufacturing method therefor
JP3348361B2 (en) Titanium plate excellent in press formability and surface treatment method thereof
KR101782611B1 (en) Clad plate and method for manufaturing the same
DE102020206441A1 (en) Process for the production of a multi-part cooling plate

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application