KR20050074167A - Producing method of the polyamide composite membrane having high performance and fouling resistence - Google Patents

Producing method of the polyamide composite membrane having high performance and fouling resistence Download PDF

Info

Publication number
KR20050074167A
KR20050074167A KR1020040002402A KR20040002402A KR20050074167A KR 20050074167 A KR20050074167 A KR 20050074167A KR 1020040002402 A KR1020040002402 A KR 1020040002402A KR 20040002402 A KR20040002402 A KR 20040002402A KR 20050074167 A KR20050074167 A KR 20050074167A
Authority
KR
South Korea
Prior art keywords
composite membrane
group
polyamide
polyamide composite
secondary coating
Prior art date
Application number
KR1020040002402A
Other languages
Korean (ko)
Other versions
KR100551574B1 (en
Inventor
김연수
윤성로
구자영
류관영
홍성표
Original Assignee
주식회사 새 한
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 새 한 filed Critical 주식회사 새 한
Priority to KR1020040002402A priority Critical patent/KR100551574B1/en
Publication of KR20050074167A publication Critical patent/KR20050074167A/en
Application granted granted Critical
Publication of KR100551574B1 publication Critical patent/KR100551574B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/02Filters adapted for location in special places, e.g. pipe-lines, pumps, stop-cocks
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/007Contaminated open waterways, rivers, lakes or ponds

Abstract

본 발명은 분리성능이 우수한 분리막에 관한 것으로, 분리막 표면에 2차 코팅을 함으로써 분리성능을 향상한 것이다. 본 발명에서 2차 코팅이라함은 반응성을 갖는 작용기를 갖는 화합물을 분리막 표면에 코팅하여 공유결합시킴으로써 분리막 고유한 표면전하를 변화시킴과 동시에 표면조도를 조절하여 분리성능을 향상시키는 것이다. The present invention relates to a separation membrane having excellent separation performance, and improves separation performance by applying a secondary coating on the surface of the separation membrane. In the present invention, the secondary coating is to improve the separation performance by controlling the surface roughness and simultaneously changing the surface charge inherent by coating and covalently bonding a compound having a reactive functional group on the surface of the separator.

Description

내오염성 또는 분리성능이 우수한 폴리아마이드 복합막 제조방법{Producing Method of the Polyamide Composite Membrane having high performance and fouling resistence}Producing Method of the Polyamide Composite Membrane having high performance and fouling resistence

본 발명은 분리성능이 우수한 특성을 지닌 선택적 분리막 및 그 제조방법에 관한 것이다.The present invention relates to a selective separator having a characteristic of excellent separation performance and a method of manufacturing the same.

일반적으로 해리된 물질은 정밀여과, 한외여과, 역삼투막과 같은 선택성을 갖는 막에 의해 용매에서 분리되어진다. 역삼투막은 기수나 해수 등의 염분을 제거하여 산업용수, 농업용수, 가정용수 등의 비교적 저염도 이면서 많은 양의 물로 담수화하는데 사용되어 왔다. 역삼투막을 이용한 반염수 탈염이나 또는 해수의 담수화란 염분이나 이온등이 녹아있는 수용액 을 가압하여 역삼투막을 통과시킬 때 수용액중 염분이나 이온등은 막을 통 과 하지 못하여 걸러지고 정제된 물은 막을 통과하여 일정한 용수가 되는 것을 의미한다. 이 때 가해지는 압력은 수용액이 가지는 삼투압 이상이어야 하고 그 작용은 삼투과정의 역방향이며, 또한 수용액의 농도가 높을수록 삼 투압이 커지므로 공급수에 가해지는 상기 압력은 더 높아지게 된다. In general, dissociated materials are separated from the solvent by membranes having selectivity such as microfiltration, ultrafiltration, and reverse osmosis membranes. Reverse osmosis membranes have been used to desalination with a large amount of water while removing salts such as brackish water and seawater, while relatively low salts such as industrial water, agricultural water, and household water. Semi-saline desalination using reverse osmosis membrane or desalination of seawater means that salt or ions in the aqueous solution cannot pass through the membrane when pressurized by the aqueous solution containing salt or ions, and the purified water passes through the membrane It means to be water. At this time, the pressure applied should be more than the osmotic pressure of the aqueous solution, the action is the reverse of the osmotic process, and the higher the concentration of the aqueous solution, the greater the osmotic pressure, the higher the pressure applied to the feed water.

기수나 해수 등의 물은 다량의 염을 함유하고 있기 때문에 이들 용액 을 담수화하는 역삼투막은 염 제거능력이 뛰어나야 하고(참고로 실험에 의 하면 98%이상의 염이 제거되어야만 일반용수로서 사용이 가능한 것으로 되어 있음), 또한 고농도의 염수를 운전하는데 필연적인 펌프의 대형화나 그로인한 소음, 낮은 에너지효율문제 등을 개선하기 위해 공정압력이 낮아 져야 하는 과제를 않고 있다. Since water such as brackish water and seawater contain a large amount of salts, reverse osmosis membranes desalination of these solutions should be excellent in salt removal ability (for reference, more than 98% of salts should be removed to be used as general water). In addition, there is no problem that the process pressure should be lowered to improve the size of the pump which is inevitable to operate the high concentration of brine, the noise and the low energy efficiency.

역삼투막이 갖추어야 할 또다른 조건으로, 종래 역삼투막의 경우, 다 량의 염분을 걸러내야 하는 특성상 실제 역삼투막을 통과하는 정수의 양이 너무 적어서 그 활용도가 미미했던 바 역삼투막이 가지는 우수한 정수능력 을 상업화하기 위해서는 비교적 낮은 압력에서도 다량의 정수가 막을 통과 하는 즉 고투과유량의 특성을 빼놓을수 없게 된다. As another condition that reverse osmosis membranes should have, conventional commercial reverse osmosis membranes have to filter out a large amount of salt, so the amount of purified water that passes through the reverse osmosis membrane is so small that its utilization is insignificant. Even at relatively low pressures, a large amount of purified water passes through the membrane, i.e., the characteristics of high permeate flow are indispensable.

알려진바로 막의 투과유량은 해수담수화 조건, 800psi에서는 10gallon/ft2 day(gfd), 반염수 탈염공정에서는 225psi 압력하에 15gallon/ft2day(gfd) 이상이 요구되어지고 있으며, 용도에 따라 염배제율보다 고유량이 중요하거나 이와 반대로 염배제율이 중요한 경우도 있다.Known immediately permeate flow rate is being required desalination conditions, 800psi In 10gallon / ft 2 day (gfd) , brackish water desalination process, 15gallon / ft 2day (gfd) at least under 225psi pressure, than the salt rejection according to the application In some cases, high flow rates are important, or vice versa.

역삼투막의 일반적인 유형은 다공성 지지층과 지지층상의 폴리아마이드계 박막으로 이루어져 있다. 전형적인 폴리아마이드막은 다관능성 아민과 다관능성 아실할라이드의 계면 중합에 의해 얻을 수 있다.The general type of reverse osmosis membrane consists of a porous support layer and a polyamide-based thin film on the support layer. Typical polyamide membranes can be obtained by interfacial polymerization of polyfunctional amines and polyfunctional acyl halides.

기존에 캐도트(Cadotte)에 의해 출원된 미국특허 4,277,344에는 두 개의 1급 아민치환체를 함유하는 방향족 다관능성 아민과 세 개 이상의 아실할라이드 관능기를 갖는 방향족의 아실할라이드를 계면 중합시켜 얻는 방향족의 폴리아마이드 박막에 관한 기술이 제시되었다. 여기에서 역삼투막은 미세 다공성 폴리술폰 지지체 상에서 메타페닐렌디아민(m-phenylendiamine)을 코팅한 후 잉여의 메타페닐렌디아민 용액을 제거한 후, 프레온(트리클로로트리플로로에탄)에 용해된 트리메조일클로라이드(TMC)와 반응시켜 제조하며, 이때 계면중합의 접촉시간은 10초이며 반응은 1초내에 이루어진다. 이같이, 우수한 염 제거율과 고유량의 개선된 막을 제공하기 위해 폴리아마이드 역삼투 복합막에 대한 다양한 연구가 진행되어 왔고, 또한 업계에서는 막의 내화학성을 개선하는 노력도 병행하여 왔는데, 상기 내화학성 개선에 대한 연구는 대부분 계면중합시 사용되는 용액에 여러 첨가제를 사용하는 방법이 주류를 이루었다고 할 수 있다.U.S. Patent 4,277,344, previously filed by Cadette, discloses aromatic polyamides obtained by interfacial polymerization of aromatic polyfunctional amines containing two primary amine substituents and aromatic acyl halides having three or more acyl halide functional groups. Techniques for thin films have been proposed. In this case, the reverse osmosis membrane is coated with methaphenylenediamine (m-phenylendiamine) on a microporous polysulfone support, followed by removal of the excess metaphenylenediamine solution, and then trimezoyl chloride dissolved in Freon (trichlorotrifluoroethane). It is prepared by reacting with (TMC), wherein the contact time of the interfacial polymerization is 10 seconds and the reaction takes place within 1 second. As such, various studies have been conducted on polyamide reverse osmosis composite membranes in order to provide excellent salt removal rate and high flow rate improved membranes. In addition, in the industry, efforts have been made to improve the chemical resistance of membranes. Most of the research has been based on the use of various additives in the solution used in interfacial polymerization.

한 예로 토마스키(Tomashke)의 미국특허 4,872,984(1989년 10월 등록)에서는 (a)미세 다공성 지지층상에서 액체층을 형성하기 위하여 최소한 두 개 이상의 아민 관능기를 가지는 본질적으로 단량체의 방향족 폴리아민 반응물과 단량체의 아민염을 함유하는 수용액으로서 미세 다공성 지지체를 도포하는 단계, (b) 아민 반응성 반응물이 평균적으로 반응물 분자당 최소한 약 2.2개의 아실 할라이드를 갖고, 다 관능성 아실 할라이드 또는 그 혼합물로 구성되는 본질적으로 단량체인 방향족 아민 반응성 반응물의 유기용매 용액으로써 상기 액체층을 접촉하는 단계 및 (c)상기 투수성 삼투막을 형성하기 위하여 2단계의 생성물을 60∼110℃의 온도에서 1∼10분간 건조시키는 단계로 이루어지는 역삼투막 제조방법을 제시하였다.As an example, Tomashke's U.S. Patent 4,872,984 (registered in October 1989) (a) consists of an aromatic polyamine reactant and a monomer of essentially monomers having at least two or more amine functional groups to form a liquid layer on the microporous support layer. Applying the microporous support as an aqueous solution containing an amine salt; (b) the amine reactive reactant has, on average, at least about 2.2 acyl halides per molecule of the reactant and consists essentially of a polyfunctional acyl halide or mixture thereof Contacting the liquid layer with an organic solvent solution of a phosphorus aromatic amine reactive reactant and (c) drying the product of step 2 at a temperature of 60 to 110 ° C. for 1 to 10 minutes to form the permeable osmotic membrane. The reverse osmosis membrane manufacturing method was proposed.

계면 중합시 사용되는 용액에 첨가제를 첨가하여 제막을 시도한 특허로는 차우(Chau)의 미국특허 4,983,291, 히로세(Hirose)의 미국특허 5,576,057과 5,614,099, 트란(Tran)의 미국특허 4,830,885, 구(Koo)의 미국특허 6,063,278과 6,015,495 등이 있다.Patents that attempt to form a film by adding an additive to a solution used in interfacial polymerization include Chau, U.S. Patent 4,983,291, Hirose, U.S. Patent 5,576,057, 5,614,099, and Tran, U.S. Patent 4,830,885, Koo U.S. Patents 6,063,278 and 6,015,495.

또 다른 예로, 이께다(Ikeda)의 미국특허 5,178,766에 따르면, 역삼투분리막의 분리성능을 향상시키기 위하여, 계면중합으로 제막한 폴리아마이드 박막 표면에 4급아민을 공유결합시키고자 하였으며, 사용된 4급 아민은 표면과 반응 사이트로 에폭시기, 아지리딘기, 에피설파이드기, 할로게네이티드 알킬기, 아미노기, 카르복실릭기, 할로게네이티드 카르보닐기, 하이드록시기를 반응기로 가지는 것을 제시한 바 있다.As another example, according to US Patent No. 5,178,766 of Ikeda, in order to improve the separation performance of the reverse osmosis membrane, an attempt was made to covalently bond the quaternary amine to the surface of the polyamide thin film formed by interfacial polymerization. The upper amine has been shown to have an epoxy group, an aziridine group, an episulfide group, a halogenated alkyl group, an amino group, a carboxyl group, a halogenated carbonyl group, and a hydroxyl group as a reactor on its surface and reaction site.

상기 발명들과 같은 노력의 결과로 폴리아마이드 복합박막들이 우수한 분리성능 및 투과성능을 갖고 내화학성이 뛰어난 역삼투 분리막이 나오긴 했으나 여전히 해결하지 못한 사안으로 막의 오염문제가 남게 되는데 막의 오염이란 예컨데, 부유물질 또는 용해물질이 막표면에 흡착 또는 부착함으로써 투과유량이 저하되는 것으로, 대체로 소수성결합 및 정전기적인력에 의해 여과되는 용액내의 부유, 용해물질과 막표면이 결합하여 발생하게 된다. 이러한 막의 오염은 분리막의 투과성능을 저하시키고 그로 인해 일정유량의 투과수를 얻기 위해서는 압력을 자주 보정해야 하거나 심각할 경우 잦은 세척을 해야 하기도 한다.As a result of the above-mentioned efforts, the reverse osmosis membrane of polyamide composite thin films having excellent separation performance and permeation performance and excellent chemical resistance is left, but the problem of membrane contamination remains as an unresolved problem. The permeate flow rate is lowered by adsorbing or adhering the substance or dissolved substance to the membrane surface, and is generally caused by the floating of the suspended substance in the solution filtered by the hydrophobic bond and the electrostatic force and the membrane surface. Such contamination of the membrane lowers the permeation performance of the membrane, and thus, in order to obtain a certain amount of permeate, the pressure must be frequently corrected or, in serious cases, frequent cleaning.

막오염을 줄이기 위한 시도로, 하치스카(Hachisuka)의 미국특허 6,177,011는 폴리아마이드 복합박막 표면에 폴리비닐알콜과 같은 정전기적으로 중성이고 친수성고분자를 재코팅함으로써 내오염성을 높일수 있음을 보여주고 있긴 하나 종래 역삼투막의 개발방향은 대부분 탈염공정에 초점이 맞추어져 있었기 때문에 상기의 개발기술을 바탕으로 한 역삼투막은 저농도에서 높은 유기물제거율이 필요한 제약 또는 초순수반도체 제조용에는 분리성능면에서 그 기대치에 미치지 못하는 약점을 들어내고 있다. In an attempt to reduce membrane fouling, Hachisuka (US Pat. No. 6,177,011) shows that it is possible to increase fouling resistance by recoating electrostatically neutral and hydrophilic polymers such as polyvinyl alcohol on the polyamide composite thin film surface. Since the direction of the development of the conventional reverse osmosis membrane was focused mainly on the desalination process, the reverse osmosis membrane based on the above-described development technology has a weakness that does not meet the expectation in terms of separation performance for pharmaceuticals or ultrapure semiconductor manufacturing requiring high organic matter removal rate at low concentration. It's coming out.

본 발명은 분리막의 표면을 개질함으로써 분리성능을 향상시킴을 그 목적으로 한 것으로, 특히 폴리아마이드 역삼투 복합막과 같은 선택적 분리막에 2차 코팅을 함으로써 분리성능 및 내오염성이 우수한 분리막을 제조하는 것을 목적으로 하여 안출된 것이다. The present invention aims to improve the separation performance by modifying the surface of the separator, and in particular, to prepare a separator having excellent separation performance and fouling resistance by performing a secondary coating on a selective separator such as a polyamide reverse osmosis composite membrane. It was created for the purpose.

본 발명은 다공성 지지체상에 폴리아마이드 박막을 형성시킨 후 상기 폴리아마이드 박막 위에 2차 코팅층을 형성시켜 폴리아마이드 역삼투 복합막 제조시, 상기 2차 코팅은 최소 1개이상의 반능기를 갖는 화합물을 폴리아마이드 박막위에 코팅한 후 결합시킴을 특징으로 하는 폴리아마이드 역삼투 복합막 제조에 관한 것이다.According to the present invention, a polyamide thin film is formed on a porous support, and then a secondary coating layer is formed on the polyamide thin film to prepare a polyamide reverse osmosis composite membrane, wherein the secondary coating is a polyamide compound having at least one semi-functional group. The present invention relates to a polyamide reverse osmosis composite membrane prepared by coating on a thin film and then bonding.

상기 2차 코팅은 다공성 지지체 위에 계면중합을 통한 폴리아마이드계 복합박막의 재질특성 및 용도에 제한되지 않고 적용이 가능하며, 또한 다공성지지체의 재질 및 종류에 제한없이 적용이 가능하다. 미세 다공성 지지체라함은 마이크로포러스(microporous)한 구조를 가지며, 특히 투과수가 충분히 투과할 수 있는 공경을 가져야하며, 박막을 형성하는데 있어 지지체로서 역할을 할 수 있도록 공경크기가 1∼500nm를 가져야 한다. 500nm 초과의 공경은 박막형성시 함몰로 인해 최종 복합막의 결점으로 발현될 수 있다. 본 발명에 유용하게 사용될 수 있는 마이크로포러스한 지지체로 폴리설폰, 폴리이서설폰, 폴리이미드, 폴리아마이드, 폴리이써이미드, 폴리아크릴로나이트릴, 폴리메틸메타크릴에이트, 폴리에틸렌, 폴리프로필렌 및 폴리비닐리덴 플로라이드와 같은 다양한 할로게네이티드 고분자가 재질로 사용될 수 있다. The secondary coating can be applied without being limited to the material properties and uses of the polyamide-based composite thin film through interfacial polymerization on the porous support, and also can be applied without limitation to the material and type of the porous support. The microporous support has a microporous structure, and in particular, should have a pore size through which permeate can be sufficiently transmitted, and have a pore size of 1 to 500 nm to serve as a support in forming a thin film. Pore diameters greater than 500 nm may be manifested as defects in the final composite film due to depressions in thin film formation. Polysulfones, polyisulfones, polyimides, polyamides, polyimides, polyacrylonitriles, polymethylmethacrylates, polyethylene, polypropylene and polyvinylidene are microporous supports that can be usefully used in the present invention. Various halogenated polymers such as fluoride can be used as the material.

또한 다공성 지지체의 두께는 본 발명에 있어 제한되지 않으나, 대략 25um∼125um범위(더욱 바람직하게는 40um∼75um)가 바람직하다.In addition, the thickness of the porous support is not limited in the present invention, but is preferably in the range of about 25um to 125um (more preferably 40um to 75um).

본 발명에 사용된 폴리아마이드계 복합박막은 일반적으로 폴리아민과 폴리아민과 반응하는 물질을 사용하여 계면중합에 의해 제막되며, 이때 폴리아민이라 함은 단량체당 2∼3개 아민 관능기를 갖는 물질로 1급아민 또는 2급아민류이다. 폴리아민의 예로 메타페닐렌디아민, 파라페닐렌디아민 및 치환체로 방향족 1급 디아민이 사용되며, 또다른 예로 알리파틱 1급디아민, 사이클로헥센디아민과 같은 사이클로알리파틱 1급 디아민, 피페라진과 같은 사이클로알리파틱 2급아민, 아로마틱 2급아민 등이 사용되며, 그외 적합한 물질들은 본 발명의 참고문헌에서 찾을수 있다. The polyamide-based composite thin film used in the present invention is generally formed by interfacial polymerization using a material that reacts with a polyamine and a polyamine, wherein the polyamine is a material having 2 to 3 amine functional groups per monomer. Or secondary amines. As examples of polyamines, aromatic primary diamines are used as metaphenylenediamines, paraphenylenediamines and substituents. In another example, cycloaliphatic primary diamines such as aliphatic primary diamines and cyclohexene diamines, and cycloaliphases such as piperazine Patic secondary amines, aromatic secondary amines and the like are used, and other suitable materials can be found in the references of the present invention.

본 발명은 폴리아민의 종류에 제한 받지는 않지만, 폴리아민으로서 아로마틱 1급 디아민인 메타페닐렌디아민 또는 사이클로알리파틱 2급 디아민인 피페라진으로 제막된 분리막에 적용하는 것이 특히 바람직하다. 폴리아민으로 피페라진을 사용한 경우 역삼투 분리막보다 비교적 공경크기가 큰 나노필트레이션 범위에서 폴리아마이드 복합막이 형성된다. 나노필트레이션은 역삼투분리막과 비교해 1가 이온의 염제거율은 낮지만 2가이온 및 분자량 300이상의 유기물질제거에는 효과적인 특징을 가지고 있기 때문에 칼슘, 마그네슘과 같은 경도성분을 제거하는 연수화 공정 및 음용수에 적용시 트리할로메센과 같은 발암물질의 전구체인 휴믹에시드를 제거하는데 효과적으로 이용된다.Although the present invention is not limited to the kind of polyamine, it is particularly preferable to apply it to a separator formed with a metaphenylenediamine which is an aromatic primary diamine or piperazine which is a cycloaliphatic secondary diamine as a polyamine. When piperazine is used as a polyamine, a polyamide composite membrane is formed in a nanofiltration range having a relatively larger pore size than a reverse osmosis membrane. Compared to reverse osmosis membranes, nanofiltration has a lower salt removal rate than monovalent ions, but it is effective for removing divalent ions and organic substances with molecular weight of 300 or more. Therefore, softening process and drinking water to remove hardness components such as calcium and magnesium When applied to, it is effectively used to remove humic acid, a precursor of carcinogens such as trihalomecene.

폴리아민 수용액은 주로 0.1∼20중량%의 농도로 사용되는데, 더욱 바람직하게는 0.5∼8중량% 폴리아민 수용액이 사용된다. 폴리아민 수용액의 pH는 7∼13의 영역을 가지며, 0.001∼5중량%의 산, 염기를 첨가함으로써 조절될 수 있다. 이러한 산,염기의 예로는 하이드록사이드, 카르복실레이트, 카보네이트, 보레이트, 알킬금속의 포스포레이트, 트리알킬아민등이 사용된다. 또한 폴리아민 수용액에는 계면중합시 발생되는 산(HCl)을 중화시킬수 있는 염기성 산받게를 첨가하기도 하며, 또다른 첨가제로 극성용매, 아민염, 폴리3급아민 등을 첨가하여 사용하기도 한다.The polyamine aqueous solution is mainly used at a concentration of 0.1 to 20% by weight, more preferably 0.5 to 8% by weight polyamine aqueous solution. The pH of the polyamine aqueous solution has a range of 7 to 13, and can be adjusted by adding 0.001 to 5% by weight of acid and base. Examples of such acids and bases include hydroxides, carboxylates, carbonates, borates, phosphorates of alkyl metals, trialkylamines, and the like. In addition, a basic acid support for neutralizing acid (HCl) generated during interfacial polymerization may be added to the polyamine aqueous solution, and another additive may be used by adding a polar solvent, an amine salt, a poly tertiary amine, and the like.

폴리아민과 반응하는 물질로는 폴리아실할라이드, 폴리설포닐할라이드, 폴리이소시아네이트 등이 사용되며, 더욱 바람직하게는 트리메조일클로라이드(TMC), 이소프탈로일클로라이드(IPC)와 같은 아로마틱 폴리아실할라이드가 사용된다. 아민과 반응하는 물질은 일반적으로 물과 섞이지 않는 유기용매에 0.005∼5중량%(더욱 바람직하게는 0.01중량%∼0.5중량%)로 용해시켜 사용된다. 유기용매의 예로서는 프레온류와 같은 할로게네이티드 하이드로카본, 헥산, 사이클로헥산, 헵탄, 탄소수 8∼12인 알칸등을 사용하며, 프레온류의 오존파괴와 같은 환경문제 및 비등점이 낮아 화재 발생등을 고려해 볼때, 탄소수 8∼12 알칸 혼합물질인 ISOPAR(Exxon Corp.)가 바람직하게 사용된다.Polyacyl halides, polysulfonyl halides, polyisocyanates, etc. may be used as the material that reacts with the polyamine. More preferably, aromatic polyacyl halides such as trimezoyl chloride (TMC) and isophthaloyl chloride (IPC) are used. do. The material which reacts with an amine is generally used by dissolving in an organic solvent which is not mixed with water at 0.005 to 5% by weight (more preferably 0.01 to 0.5% by weight). Examples of organic solvents include halogenated hydrocarbons such as freons, hexane, cyclohexane, heptane, alkanes having 8 to 12 carbon atoms, and environmental problems such as ozone destruction of freons and low boiling points. In view, ISOPAR (Exxon Corp.) which is a mixture of 8 to 12 alkane carbon atoms is preferably used.

본 발명에 있어서 적용되는 역삼투막의 일반적인 제조공정은 먼저 폴리아민(다관능성 아민)수용액으로 코팅된 다공성 지지체로부터 그 표면의 폴리아민 과잉용액을 롤링, 스폰지, 에어나이프 및 적당한 방법으로 제거한 후 폴리아민과 반응하는 물질을 함유한 유기용매에 침지 또는 스프레이이와 같은 방법에 의하여 5초∼10분(더욱바람직하게는 20초∼4분간) 접촉시킨다. 이러한 방법으로 얻어진 분리막을 50℃이하에서 약 1분간 건조후 0.2중량% 소디움카보네이트와 같은 염기수용액에 상온∼95℃의 적당한 수온에서 1∼30분간 침지시킨 후 증류수로 수세하여 역삼투막을 얻는다. 상기 방법을 통해 제막된 폴리아마이드 복합막을 수세하기 전에 폴리아마이드 박막 표면에 적당량의 2차 코팅 화합물을 이용하여 후 코팅을 하는데, 이때 사용되는 화합물은 적어도 아민, 하이드록시, 에폭시 관능기를 적어도 1개 이상 가지고 있으며, 폴리아마이드 복합막의 계면중합과정에서 미반응상태로 존재하는 아실할라이드 관능기와 공유결합을 함으로써 비수용성 특성을 갖는다. 여기서 공유결합을 형성시키는 것은 2차 코팅에 있어 매우 중요한 부분으로 공유결합이 이루어지지 않으면, 실제 분리막은 사용과정에서 분리막 표면으로부터 2차 코팅층이 씻겨나가는 결과를 초래한다.A general manufacturing process of the reverse osmosis membrane to be applied in the present invention is to remove the excess polyamine solution on the surface of the porous support coated with a polyamine (polyfunctional amine) solution by rolling, sponge, air knife and a suitable method, and then react with the polyamine. The organic solvent containing was contacted for 5 seconds to 10 minutes (more preferably, 20 seconds to 4 minutes) by immersion or spraying. The membrane obtained in this manner is dried at 50 ° C. or less for about 1 minute, and then immersed in a basic aqueous solution such as 0.2% by weight sodium carbonate at a suitable water temperature of normal to 95 ° C. for 1 to 30 minutes and washed with distilled water to obtain a reverse osmosis membrane. Before washing the polyamide composite film formed through the above method, the polyamide thin film surface is coated with an appropriate amount of a secondary coating compound, wherein the compound used is at least one amine, hydroxy or epoxy functional group. It has a water-insoluble property by covalently bonding to an acyl halide functional group present in an unreacted state during the interfacial polymerization of the polyamide composite membrane. The formation of covalent bonds here is a very important part of the secondary coating, and if no covalent bonds are made, the actual separator results in the secondary coating layer being washed away from the separator surface during use.

본 발명에 사용되는 2차 코팅 화합물은 아실할라이드와 공유결합을 형성할 수 있는 반응기를 적어도 1개 이상 가지고 있으며, 표면의 전하를 조절할 수 있는 작용기를 동시에 갖는 것이다. 상기 표면전하 조절이라 함은 폴리아마이드 복합막이 제조공정상 발생되는 고유한 표면전하를 인위적으로 2차 코팅을 함으로써 변화시키는 것을 의미한다. 상기 2차코팅은 작용기에 따라서 표면전하를 중성화, 음전하, 양전하로 개질할 수 있으며, 표면의 친수화, 소수화 또한 조절이 가능하다. 또한 상기 2차코팅 화합물의 코팅량을 조절하여 표면조도를 조절할 수 있다. The secondary coating compound used in the present invention has at least one reactor capable of forming covalent bonds with acyl halides, and at the same time has a functional group capable of controlling the charge on the surface. The surface charge control means that the polyamide composite film is changed by artificially coating the surface charges inherent in the manufacturing process. The secondary coating can be modified to neutralize the surface charges, negative charges, positive charges according to the functional group, and can also control the hydrophilicity, hydrophobicity of the surface. In addition, the surface roughness may be controlled by adjusting the coating amount of the secondary coating compound.

상기 아실할라이드와 공유결합을 형성할 수 있는 관능기로는 아민, 하이드록시, 에폭시 등 이다. 표면전하를 조절할 수 있는 그룹으로는 알킬기, 벤젠기, 에테르기, 에스테르기, 아마이드기, 우레아기, 우레탄, 하이드록시기, 실록산기, 인산기, 설폰산기, 카르복실기, 아민기로 사용된다. 표면전하를 조절하는 작용기의 구체적인 예로서, a)표면전하를 중성화하는 작용기로는 알킬기, 벤젠기, 하이드록시기, 실록산기이고, b) 표면전하를 음전하로 조절할 수 있는 작용기로는 카르복실기, 설폰산기 , 인산기이며, c) 표면전하를 양전하로 조절할 수 있는 작용기로는 1급아민, 2급아민, 3급아민, 4급아민 등으로 아민기를 사용하여 조절할 수 있다.The functional group capable of forming a covalent bond with the acyl halide is amine, hydroxy, epoxy or the like. Examples of the group capable of controlling the surface charge include alkyl, benzene, ether, ester, amide, urea, urethane, hydroxy, siloxane, phosphoric, sulfonic, carboxyl and amine groups. Specific examples of functional groups that control surface charge include a) functional groups that neutralize surface charges are alkyl groups, benzene groups, hydroxy groups, and siloxane groups, and b) carboxyl groups and sulfone functional groups that can control surface charges to negative charges. C) an acid group, a phosphoric acid group, and c) a functional group capable of controlling the surface charge to a positive charge, and may be controlled using an amine group such as primary amine, secondary amine, tertiary amine, and quaternary amine.

본 발명에 사용된 표면전하를 중성화하는 2차코팅 화합물로는 아릴아민, 아미노아세트알데하이드디메틸아세탈, 2-아미노벤지이미다졸, 2-아미노벤조씨아졸, 2-아미노헵단, 2-아미노-2-메틸-1,3-프로판디올, 2-아미노-2-메틸-1-프로판올, 1-아미노-2-프로판올, 3-아미노-1-프로판올, 아닐린, 2-아닐리노에탄올, 벤질아민, 2-(벤질아미노)에탄올, 3급부틸아민, n-부틸아민, N,O-디메틸하이드록실아민, 디프로필아민, 디에틸아민, 에탄올아민, 에틸아민, 2-(에틸아미노)에탄올, 퍼퍼릴아민, 4-하이드록시-3-메톡시벤질아민, 2-(4-하이드록시페닐)에틸아민, 2-(3,4-디하이드록시페닐)에틸아민, 1,1-이미노디-2-프로판올, 이소부틸아민, 이소펜틸아민, 이소프로필아민, 2-메톡시벤질아민, 4-메톡시벤질아민, 비스(2-메톡시에틸)아민, 2-메톡시에틸아민, 2-(4-메톡시페닐)에틸아민, 메틸아민, (메틸아미노)아세트알데하이드디메틸아세탈, 2-(메틸아미노)에탄올, 4-메틸벤질아민, N-메틸벤질아민, N-메틸부틸아민, N-메틸사이클로헥실아민, D(-)-N-메틸글루카민, N-메틸하이드록실아민, O-메틸하이드록실아민, n-펜틸아민, 프로필아민, 디-2급-부틸아민, 2급-부틸아민, 사이클로헥실아민, 사이클로펜틸아민, 사이클로프로판메틸아민, 사이클로프로필아민, 디아릴아민, 1,4-디아미노부탄, 1,2-디아미노사이클로헥산, 디부틸아민, N,N-디부틸아미노프로필아민, 디에탄올아민, 2,6-디플로오로아닐린, 2,5-디플로오로아닐린, 디이소프로필아민, 2-(3,4-디메톡시페닐)에틸아민, 2-테트라하이드로퍼릴아민, 3-(트리에톡시실릴)프로필아민, 2,3,4-트리플로오로아닐린, 3-(트리플로오로메틸)벤질아민, 3,4,5-트리메톡시아닐린, 3-(트리메톡시실릴)프로필아민, 2-(에틸아미노)에탄올, 트리스(하이드록시메틸)아미노메탄 등으로 단독 또는 혼합하여 사용할 수 있다. Secondary coating compounds for neutralizing the surface charge used in the present invention include arylamine, aminoacetaldehyde dimethylacetal, 2-aminobenzimidazole, 2-aminobenzothiazole, 2-aminoheptane, 2-amino-2- Methyl-1,3-propanediol, 2-amino-2-methyl-1-propanol, 1-amino-2-propanol, 3-amino-1-propanol, aniline, 2-anilinoethanol, benzylamine, 2- (Benzylamino) ethanol, tert-butylamine, n-butylamine, N, O-dimethylhydroxylamine, dipropylamine, diethylamine, ethanolamine, ethylamine, 2- (ethylamino) ethanol, perferylamine , 4-hydroxy-3-methoxybenzylamine, 2- (4-hydroxyphenyl) ethylamine, 2- (3,4-dihydroxyphenyl) ethylamine, 1,1-iminodi-2-propanol , Isobutylamine, isopentylamine, isopropylamine, 2-methoxybenzylamine, 4-methoxybenzylamine, bis (2-methoxyethyl) amine, 2-methoxyethylamine, 2- (4-methoxy Oxyphenyl) ethylamine, Tylamine, (methylamino) acetaldehydedimethylacetal, 2- (methylamino) ethanol, 4-methylbenzylamine, N-methylbenzylamine, N-methylbutylamine, N-methylcyclohexylamine, D (-)- N-methylglucamine, N-methylhydroxylamine, O-methylhydroxylamine, n-pentylamine, propylamine, di-butylamine, secondary-butylamine, cyclohexylamine, cyclopentylamine, Cyclopropanemethylamine, cyclopropylamine, diarylamine, 1,4-diaminobutane, 1,2-diaminocyclohexane, dibutylamine, N, N-dibutylaminopropylamine, diethanolamine, 2, 6-difluoroaniline, 2,5-difluoroaniline, diisopropylamine, 2- (3,4-dimethoxyphenyl) ethylamine, 2-tetrahydroperylamine, 3- (triethoxysilyl ) Propylamine, 2,3,4-trifluoroaniline, 3- (trifluoromethyl) benzylamine, 3,4,5-trimethoxyaniline, 3- (trimethoxysilyl) propylamine, 2- (on Amino) may be used either singly or in combination, such as ethanol, tris (hydroxymethyl) aminomethane.

본 발명에 사용된 표면에 양전하를 부여하는 2차코팅 화합물로는 3-디에틸아미노-1-프로필아민, N,N-디메틸-1,4-페닐디아민, N,N-디메틸-1,3-페닐디아민, 2,2-디메틸프로필렌디아민, N,N-디메틸트리메틸렌디아민, 에틸렌디아민, 히스타민디하이드로클로라이드, N-이소프로필에틸렌디아민, 2-(2-아미노에틸아미노)에탄올, N-(2-아미노에틸)모폴린, 2-아미노-4-메틸피리딘, 3-(아미노메틸)피리딘, 2-(아미노메틸)피리딘, 2-아미노-5-메틸피리딘, 2-아미노-3-메틸피리딘, 2-아미노-5-메틸씨아졸, N,N'-비스(3-아미노프로필)부탄-1,4-디아민, 2-아미노피리딘, 4-아미노피리딘, 3-아미노피리딘, 2-아미노피리미딘, N'-벤질-N,N-디메틸에틸렌디아민, 2,4,6-트리아미노-1,3,5-트리아진, 트리에틸렌테트라아민, 디에틸렌트리아민, N,N-디에틸렌디아민, N,N-디에틸-1,4-페닐렌디아민, N,N'-디메틸에틸렌디아민, N,N-디에틸에틸렌디아민, N,N-디메틸에틸렌디아민, 2-메틸-1,5-디아미노펜탄, 4,4'-메틸렌비스(2-메틸사이클로헥실아민), N-메틸에틸렌디아민, 4-메틸-1,3-페닐렌디아민, 4-메틸-1,2-페닐렌디아민, 4-메틸-1,4-페닐렌디아민, 3-모폴리노-1-프로필아민, 1,8-나프탈렌디아민, 1,5-나프탈렌디아민, 펜타에틸렌헥사아민, 1,2-페닐렌디아민, 1,3-페닐렌디아민, 1,4-페닐렌디아민, 피페라진, 2-(1-피페라지닐)에틸아민, 테트라에틸렌펜타아민 등으로 단독 혹은 혼합하여 사용할 수 있다. Secondary coating compounds that impart a positive charge to the surface used in the present invention include 3-diethylamino-1-propylamine, N, N-dimethyl-1,4-phenyldiamine, N, N-dimethyl-1,3 -Phenyldiamine, 2,2-dimethylpropylenediamine, N, N-dimethyltrimethylenediamine, ethylenediamine, histaminedihydrochloride, N-isopropylethylenediamine, 2- (2-aminoethylamino) ethanol, N- ( 2-aminoethyl) morpholine, 2-amino-4-methylpyridine, 3- (aminomethyl) pyridine, 2- (aminomethyl) pyridine, 2-amino-5-methylpyridine, 2-amino-3-methylpyridine , 2-amino-5-methylthiazol, N, N'-bis (3-aminopropyl) butane-1,4-diamine, 2-aminopyridine, 4-aminopyridine, 3-aminopyridine, 2-aminopyri Midine, N'-benzyl-N, N-dimethylethylenediamine, 2,4,6-triamino-1,3,5-triazine, triethylenetetraamine, diethylenetriamine, N, N-diethylenediamine , N, N-diethyl-1,4-phenylenediamine, N, N'-dimethyl Ethylenediamine, N, N-diethylethylenediamine, N, N-dimethylethylenediamine, 2-methyl-1,5-diaminopentane, 4,4'-methylenebis (2-methylcyclohexylamine), N- Methylethylenediamine, 4-methyl-1,3-phenylenediamine, 4-methyl-1,2-phenylenediamine, 4-methyl-1,4-phenylenediamine, 3-morpholino-1-propylamine , 1,8-naphthalenediamine, 1,5-naphthalenediamine, pentaethylenehexaamine, 1,2-phenylenediamine, 1,3-phenylenediamine, 1,4-phenylenediamine, piperazine, 2- ( 1-piperazinyl) ethylamine, tetraethylene pentaamine, etc. can be used individually or in mixture.

본 발명에 사용된 표면에 음전하를 부여하는 2차코팅 화합물로는 4-아미노나프탈렌-1-설폰닉에시드, 1-아미노-2-하이드록시-4-나프탈렌설폰닉에시드, N-[트리스(하이드록시메틸)-메틸]-2-아미노에탄설폰닉에시드, 설파닐릭에시드, 메탄닐릭에시드, N-(2-아세트아마이드)-2-아미노에탄설폰닉에시드, 2-(사이클로헥실아미노)에탄설폰닉에시드, 타우린, 4-아미노-5-하이드록시나프탈렌-2,7-디설폰닉에시드, N-메틸타우린, 4-아미노나프탈렌-1-설폰닉에시드, 아미노메탄설폰닉에시드, 2-아미노에틸하이드로즌설페이트, 2-아미노에틸디하이드로즌포스페이트, 2-아미노톨루엔-5-설폰닉에시드 등으로 단독 혹은 혼합하여 사용할 수 있다.Secondary coating compounds that impart a negative charge to the surface used in the present invention include 4-aminonaphthalene-1-sulfonic acid, 1-amino-2-hydroxy-4-naphthalenesulfonic acid, N- [tris (hydr Oxymethyl) -methyl] -2-aminoethanesulfonic acid, sulfanilic acid, methanenilic acid, N- (2-acetamide) -2-aminoethanesulfonic acid, 2- (cyclohexylamino) ethanesulfonic Acid, taurine, 4-amino-5-hydroxynaphthalene-2,7-disulfonic acid, N-methyltaurine, 4-aminonaphthalene-1-sulfonic acid, aminomethanesulfonic acid, 2-aminoethylhydrozene It can be used individually or in mixture with sulfate, 2-aminoethyl dihydrozen phosphate, 2-aminotoluene-5-sulfonic acid, etc.

상기 화합물을 분리막에 코팅시 물, 알콜류 또는 이들의 혼합물로 된 적당한 용매를 사용하여 용액상태로 적용하며, 이때 2차코팅 화합물의 함량은 0.00001∼20중량%(더욱 바람직하게는 0.0001∼5중량%)로 하는 것이 바람직하다. When the compound is coated on the membrane, it is applied in a solution state using a suitable solvent of water, alcohols or mixtures thereof, wherein the content of the secondary coating compound is 0.00001 to 20% by weight (more preferably 0.0001 to 5% by weight). It is preferable to make ().

한편, 필요에 따라서 적당량의 첨가제를 첨가하여, 스프레이법, T다이법, 딥핑, 클로드코팅법으로 폴리아마이드 복합박막 표면에 1초∼10분간(더욱 바람직하게는 5초∼5분간) 접촉시킨다. 필요에 따라서 코팅된 분리막은 열에 의해 반응이 촉진될 수 있도록 10∼150℃로(더욱 바람직하게는 20∼100℃)로 1초∼7일간(더욱 바람직하게는 5초∼3일간)건조시킨다. On the other hand, if necessary, an appropriate amount of additive is added to contact the surface of the polyamide composite thin film for 1 second to 10 minutes (more preferably, 5 seconds to 5 minutes) by the spray method, the T-die method, the dipping and the clad coating method. If necessary, the coated membrane is dried at 10 to 150 ° C. (more preferably at 20 to 100 ° C.) for 1 second to 7 days (more preferably, 5 seconds to 3 days) so as to promote the reaction by heat.

본 발명에서 상기 적당량의 첨가제라 함은 폴리아마이드 복합박막의 미반응 아실할라이드기와 2차 코팅 화합물과 반응도를 높이는 방법으로 염기촉매 또는 계면활성제등을 단독 또는 혼합하여 첨가하는 것이다. In the present invention, the appropriate amount of the additive is a method of increasing the reactivity with the unreacted acyl halide group of the polyamide composite thin film and the secondary coating compound, or adding a base catalyst or a surfactant alone or in combination.

상기에 언급된 염기촉매로 알콕사이드솔트, 하이드로옥사이드솔트, 카보네이트솔트, 페녹사이드솔트, 카르복시레이트솔트, 3급아민 등을 함유한 화합물을 사용한다. 상기에 언급된 계면활성제는 양이온성 계면활성제, 음이온성 계면활성제, 비이온성 계면활성제 등을 함유한 화합물을 사용한다.As the above-mentioned base catalyst, compounds containing alkoxide salt, hydroxide salt, carbonate salt, phenoxide salt, carboxylate salt, tertiary amine, and the like are used. The above-mentioned surfactants use compounds containing cationic surfactants, anionic surfactants, nonionic surfactants, and the like.

이상과 같이 본 발명에 따른 2차코팅된 폴리아마이드 복합막은 지표수처리, 단백질분리, 식음료정제등 여러 공정에서 단백질, 거대분자, 콜로이드에 의한 오염을 줄이는 효과를 얻을 수 있다. 또한 상기 제막된 역삼투 분리막은 반도체 초순수제조용 또는 제약용 초순수제조에서 처럼 희박농도에서 유기물제거를 높이는 효과가 있다.As described above, the secondary coated polyamide composite membrane according to the present invention can obtain the effect of reducing contamination by proteins, macromolecules and colloids in various processes such as surface water treatment, protein separation, food and beverage purification. In addition, the membrane formed reverse osmosis membrane has an effect of increasing organic matter removal at lean concentration as in the manufacture of semiconductor ultrapure water or pharmaceutical ultrapure water.

다음의 실시예와 비교예에는 본 발명을 더욱 구체적으로 설명하기 위한 것으로서, 본 발명의 범위를 제한하는 것은 아니다.The following examples and comparative examples are intended to illustrate the present invention more specifically, but do not limit the scope of the present invention.

[실시예 1]Example 1

부직포위에 캐스팅된 140um두께의 다공성 폴리설폰지지체를 2중량% 메타페닐렌디아민과 0.3중량% 2-에틸-1,3-헥산디올 용액에 40초간 담그고, 지지체로부터 과잉의 메타페닐렌디아민 용액을 제거한 후 용매로 이소파용매(Isopar solvent)를 사용하여 0.1중량% 트리메조일클로라이드 유기용액에 1분간 침적한 다음 과잉의 유기용액을 제거한후 1분간 공기중에 건조하여 폴리아마이드 복합박막을 형성한 후 표면에 0.2중량% 에탄올아민 수용액으로 20초간 스프레이한 후 과잉의 용액을 제거한 다음에 0.2%탄산소다 수용액에 침적하여 상온에서 30분간 수세후, 다시 순수로 충분히 수세하여 2차 코팅된 폴리아마이드 복합막을 제조하였다.A 140 μm thick porous polysulfone support cast on a nonwoven fabric was immersed in 2 wt% metaphenylenediamine and 0.3 wt% 2-ethyl-1,3-hexanediol solution for 40 seconds to remove excess metaphenylenediamine solution from the support. After dipping in an organic solution of 0.1% by weight trimezoyl chloride for 1 minute using an isopar solvent as a solvent and then removing the excess organic solution and dried in air for 1 minute to form a polyamide composite thin film surface After spraying with a 0.2 wt% aqueous solution of ethanolamine for 20 seconds, the excess solution was removed, and then immersed in a 0.2% aqueous solution of sodium carbonate, washed with water at room temperature for 30 minutes, and then washed with pure water sufficiently to prepare a second polyamide composite membrane. It was.

상기 방법으로 제조된 분리막의 성능평가는 2,000ppm 염화나트륨 수용액을 이용하여 25℃, 225psi 압력조건에서 교차흐름방식으로 투과유량과 염배제율을 측정하여 초기기본물성을 확인하였다. 그 결과 99.2%염배제율과 29.6gfd 투과성능을 얻었다. 이후 동일조건하에서 30ppm드라이밀크(드라이밀크에 함유되어 있는 단백질은 수용액상태에서 단백질 분자형태로 또는 단백질 분자들간의 엉겨서 콜로이드 형태로 존재하며, 이것들은 쉽게 막표면에 흡착될 것으로 추정)를 첨가하여 4시간 순환시킨 후 분리성능과 투과성능을 측정한 결과 99.4%, 28.3gfd를 얻었다.Performance evaluation of the membrane prepared by the above method was confirmed the initial basic properties by measuring the permeate flow rate and salt excretion rate in a cross-flow method at 25 ℃, 225psi pressure condition using a 2,000ppm sodium chloride aqueous solution. As a result, 99.2% salt rejection and 29.6 gfd permeability were obtained. Then, under the same conditions, 30 ppm dry milk (the protein contained in the dry milk is present in the form of protein molecules in aqueous solution or in the form of colloids between protein molecules, these are easily adsorbed on the membrane surface) After cycling for 4 hours, separation and permeation were measured, yielding 99.4% and 28.3 gfd.

[비교예 1]Comparative Example 1

상기 실시예 1에서 2차 코팅층을 형성시키지 않은 것 외에는 실시예 1과 동일하게 실시하여 폴리아마이드 복합막을 제조하였다.Except not forming a secondary coating layer in Example 1 was carried out in the same manner as in Example 1 to prepare a polyamide composite membrane.

상기 실시예 1과 비교예 1에 의해 얻어진 분리막을 그 성능을 평가하여 하기 표 1에 나타내었다.The separation membranes obtained in Example 1 and Comparative Example 1 were evaluated for their performance and are shown in Table 1 below.

분리막Separator 초기염제거율(%)Initial salt removal rate (%) 초기투과유량(gfd)Initial Permeate Flow Rate (gfd) 내오염성평가후 투과유량(gfd)Permeate flow rate (gfd) after contamination resistance evaluation 투과유량감소율(%)Permeate Flow Reduction Rate (%) 비교예 1Comparative Example 1 99.099.0 32.632.6 28.228.2 13.513.5 실시예 1Example 1 99.299.2 29.629.6 28.328.3 4.44.4

상기 표 1에서 실시예1의 경우 투과유량감소율이 비교예1에 비해 작은 것을 알 수 있다. 이것은 더 안정적으로 투과유량을 얻을수 있음을 의미하며, 주기적인 세척이나 압력조절과 같은 운전조건변경을 해야하는 수고를 덜기 때문에 경제적으로 시스템을 운영할 수 있을 것으로 생각된다. 또한 내오염성평가후 오염된막을 세척한 경우 실시예1의 경우 초기물성을 완전히 회복되는 반면, 비교예1은 초기물성의 80%만 회복되는 것을 통해 비교예1이 오염물질이 더 강하게 부착되어 있는것을 알 수 있다.In Table 1, in the case of Example 1, it can be seen that the transmission flow rate reduction rate is smaller than that of Comparative Example 1. This means that the permeate flow rate can be more stably obtained, and the system can be operated economically because it saves the trouble of changing the operating conditions such as periodic cleaning or pressure regulation. In addition, in the case of washing the contaminated membrane after fouling resistance evaluation, the initial physical properties of Example 1 are completely recovered, whereas Comparative Example 1 has only 80% of the initial physical properties, so that Comparative Example 1 is more strongly contaminated. It can be seen that.

[실시예 2]Example 2

실시예1에서 에탄올아민 대신 0.2중량% 2-아미노에틸렌설폰닉에시 드(타우린)와 0.2% N,N,N',N'-테트라메틸헥센디아민을 첨가하여 사용한 것 이외에는 동일한 방법으로 폴리아마이드 복합막을 제조하였다.Polyamide in the same manner as in Example 1 except that 0.2 wt% 2-aminoethylenesulfonic acid (taurine) and 0.2% N, N, N ', N'-tetramethylhexenediamine were used instead of ethanolamine. Composite membranes were prepared.

[비교예 2]Comparative Example 2

실시예 2에서 2차 코팅층을 형성시키지 않은 것 외에는 동일한 방법으로 폴리아마이드 역삼투막을 제조하였다.A polyamide reverse osmosis membrane was prepared in the same manner as in Example 2, except that no secondary coating layer was formed.

상기 실시예 2와 비교예 2에 의해 얻어진 분리막의 성능을 평가하여 하기 표 2에 나타내었다.The performance of the separator obtained in Example 2 and Comparative Example 2 was evaluated and shown in Table 2 below.

분리막Separator 초기염제거율(%)Initial salt removal rate (%) 초기투과유량(gfd)Initial Permeate Flow Rate (gfd) 내오염성평가후 투과유량(gfd)Permeate flow rate (gfd) after contamination resistance evaluation 투과유량감소율(%)Permeate Flow Reduction Rate (%) 비교예 2Comparative Example 2 99.099.0 32.632.6 28.228.2 13.513.5 실시예 2Example 2 99.199.1 33.733.7 31.631.6 6.26.2

표2에서 알수 있듯이 2차 코팅을 한것이 투과유량감소율이 작은것을 알 수 있다.As can be seen from Table 2, the secondary coating has a small permeation rate reduction rate.

[실시예 3]Example 3

실시예 1에서 에탄올아민 대신 N,N-디메틸아미노프로필아민을 첨가하여 사용한 것이외에는 동일한 방법으로 폴리아마이드 복합막을 제조하였다.A polyamide composite membrane was prepared in the same manner as in Example 1, except that N, N-dimethylaminopropylamine was added instead of ethanolamine.

[비교예 3]Comparative Example 3

실시예 3에서 2차 코팅층을 형성시키지 않은 것 외에는 실시예 3과 동일한 방법으로 폴리아마이드 복합막을 제조하였다.A polyamide composite film was prepared in the same manner as in Example 3, except that the secondary coating layer was not formed in Example 3.

상기 실시예 3과 비교예 3에 의해 얻어진 분리막의 성능을 평가하여 하기위해 실시예1의 평가조건에서 드라이밀크 대신에 50ppm 도데실트리메틸암모니움브로마이드(DTAB)로 첨가하여 내오염성평가를 진행하여 표3에 나타내었다.(DTAB는 양이온성 계면활성제로써 분리막표면에 소수성결합 및 정전기적 인력에 의해 강하게 흡착되는 성질이 있음.) In order to evaluate the performance of the separation membrane obtained in Example 3 and Comparative Example 3, 50 ppm dodecyltrimethylammonium bromide (DTAB) was added instead of dry milk under the evaluation conditions of Example 1 to carry out contamination resistance evaluation. It is shown in 3. (DTAB is a cationic surfactant, which is strongly adsorbed on the surface of the separator by hydrophobic bonding and electrostatic attraction.)

분리막Separator 초기염제거율(%)Initial salt removal rate (%) 초기투과유량(gfd)Initial Permeate Flow Rate (gfd) 내오염성평가후 투과유량(gfd)Permeate flow rate (gfd) after contamination resistance evaluation 투과유량감소율(%)Permeate Flow Reduction Rate (%) 비교예 3Comparative Example 3 99.099.0 32.632.6 28.228.2 13.513.5 실시예 3Example 3 98.998.9 36.236.2 36.036.0 0.50.5

표 3에서 알수 있듯이 2차 코팅을 한 것이 투과유량감소율이 작은 것을 알 수 있다.As can be seen from Table 3, the secondary coating has a small transmission flow rate reduction rate.

상기 실시예 및 비교예들에서 확인되듯이 본 발명에 따라 2차 코팅을 행한 폴리아마이드 복합막은 내오염성이 특히 우수하여 막 오염에 따른 분리막의 투과성능 저하와 잦은 세척 등과 같은 종래 분리막의 단점을 해결하였다.As can be seen from the above examples and comparative examples, the polyamide composite membrane subjected to the secondary coating according to the present invention is particularly excellent in fouling resistance, thereby solving the disadvantages of the conventional separator such as deterioration of permeability of the membrane due to membrane contamination and frequent washing. It was.

Claims (14)

다공성 지지체상에 폴리아마이드 박막을 형성시킨 후 상기 폴리아마이드 복합막 위에 2차 코팅을 실시하여 분리성능이 향상된 폴리아마이드 복합막을 제조하되 상기 2차 코팅은 상기 폴리아마이드 복합막에서 미반응된 아실할라이드기와 반응 할 수 있는 관능기를 1개이상을 갖는 화합물을 폴리아마이드 복합막에 코팅하여 상기 아실할라이드기와 공유결합시키는 것을 특징으로 하는 내오염성 또는 분리성능이 우수한 폴리아마이드 복합막 제조방법.After forming a thin film of polyamide on the porous support, a secondary coating is applied on the polyamide composite membrane to prepare a polyamide composite membrane having improved separation performance, but the secondary coating is an unreacted acyl halide group in the polyamide composite membrane. A method for producing a polyamide composite membrane having excellent fouling resistance or separation performance by coating a compound having at least one functional group capable of reacting on a polyamide composite membrane and covalently bonding the acyl halide group. 제 1항에 있어서, 폴리아마이드 박막은 폴리아민과 다관능성 아실할라이드, 다관능성 술포닐할라이드 및 다관능성 이소시아네이트로 이루어진 군에서 선택된 아민반응성 화합물을 계면중합시켜 얻어진 것임을 특징으로 하는 내오염성 또는 분리성능이 우수한 폴리아마이드 복합막 제조방법.The polyamide thin film is excellent in fouling resistance or separation performance, characterized in that obtained by interfacial polymerization of an amine-reactive compound selected from the group consisting of polyamine and polyfunctional acyl halide, polyfunctional sulfonyl halide and polyfunctional isocyanate. Polyamide Composite Membrane Manufacturing Method. 제 1항에 있어서, 2차 코팅 화합물은 표면의 전하를 조절할 수 있는 작용기를 동시에 갖는 것을 특징으로 하는 내오염성 또는 분리성능이 우수한 폴리아마이드 복합막 제조방법.The method of claim 1, wherein the secondary coating compound has a functional group capable of controlling charge on the surface at the same time. 제 1항에 있어서, 2차 코팅 화합물은 아실할라이드와 공유결합을 형성할 수 있는 관능기로서 아민, 하이드록시, 에폭시 등을 갖는 것을 특징으로 내오염성 또는 분리성능이 우수한 폴리아마이드 복합막 제조방법.The method of claim 1, wherein the secondary coating compound has amine, hydroxy, epoxy, etc. as a functional group capable of forming a covalent bond with an acyl halide. 제 3항에 있어서, 2차 코팅 화합물은 표면전하를 조절할 수 있는 그룹으로는 알킬기, 벤젠기, 에테르기, 에스테르기, 아마이드기, 우레아기, 우레탄, 하이드록시기, 실록산기, 인산기, 설폰산기, 카르복실기, 아민기 등으로 사용된다. 표면전하를 조절하는 관능기의 구체적인 예로서, a)표면전하를 중성화하는 관능기로는 알킬기, 벤젠기, 하이드록시기, 실록산기, 에테르기, 에스테르기, 아마이드기, 우레아기, 우레탄기 등 이고, b) 표면전하를 음전하로 조절할 수 있는 관능기로는 카르복실기, 설폰산기 , 인산기등 이며, c) 표면전하를 양전하로 조절할 수 있는 관능기로는 1급아민, 2급아민, 3급아민, 4급아민 등 아민기를 갖는 것을 특징으로 하는 내오염성 또는 분리성능이 우수한 폴리아마이드 복합막 제조방법.The method of claim 3, wherein the secondary coating compound is an alkyl group, benzene group, ether group, ester group, amide group, urea group, urethane, hydroxy group, siloxane group, phosphoric acid group, sulfonic acid group , Carboxyl group, amine group and the like. Specific examples of the functional group for controlling the surface charge include a) functional groups for neutralizing the surface charge include alkyl groups, benzene groups, hydroxy groups, siloxane groups, ether groups, ester groups, amide groups, urea groups, urethane groups, and the like. b) The functional groups that can control the surface charges to negative charges are carboxyl groups, sulfonic acid groups, and phosphate groups. c) The functional groups that can control the surface charges to positive charges are primary amines, secondary amines, tertiary amines and quaternary amines. Polyamide composite membrane manufacturing method excellent in fouling resistance or separation performance characterized by having an amine group. 제 5항에 있어서, 2차 코팅 화합물로 사용된 표면전하를 중성화하는 화합물로는 아릴아민, 아미노아세트알데하이드디메틸아세탈, 2-아미노벤지이미다졸, 2-아미노벤조씨아졸, 2-아미노헵단, 2-아미노-2-메틸-1,3-프로판디올, 2-아미노-2-메틸-1-프로판올, 1-아미노-2-프로판올, 3-아미노-1-프로판올, 아닐린, 2-아닐리노에탄올, 벤질아민, 2-(벤질아미노)에탄올, 3급부틸아민, n-부틸아민, N,O-디메틸하이드록실아민, 디프로필아민, 디에틸아민, 에탄올아민, 에틸아민, 2-(에틸아미노)에탄올, 퍼퍼릴아민, 4-하이드록시-3-메톡시벤질아민, 2-(4-하이드록시 페닐)에틸아민, 2-(3,4-디하이드록시페닐)에틸아민, 1,1-이미노디-2-프로판올, 이소부틸아민, 이소펜틸아민, 이소프로필아민, 2-메톡시벤질아민, 4-메톡시벤질아민, 비스(2-메톡시에틸)아민, 2-메톡시에틸아민, 2-(4-메톡시페닐)에틸아민, 메틸아민, (메틸아미노)아세트알데하이드디메틸아세탈, 2-(메틸아미노)에탄올, 4-메틸벤질아민, N-메틸벤질아민, N-메틸부틸아민, N-메틸사이클로헥실아민, D(-)-N-메틸글루카민, N-메틸하이드록실아민, O-메틸하이드록실아민, n-펜틸아민, 프로필아민, 디-2급-부틸아민, 2급-부틸아민, 사이클로헥실아민, 사이클로펜틸아민, 사이클로프로판메틸아민, 사이클로프로필아민, 디아릴아민, 1,4-디아미노부탄, 1,2-디아미노 사이클로헥산, 디부틸아민, N,N-디부틸아미노프로필아민, 디에탄올아민, 2,6-디플로오로아닐린, 2,5-디플로오로아닐린, 디이소프로필아민, 2-(3,4-디메톡시페닐)에틸아민, 2-테트라하이드로퍼릴아민, 3-(트리에톡시실릴) 프로필아민, 2,3,4-트리플로오로아닐린, 3-(트리플로오로메틸)벤질아민, 3,4,5-트리메톡시아닐린, 3-(트리메톡시실릴)프로필아민, 2-(에틸아미노) 에탄올, 트리스(하이드록시메틸)아미노메탄 등으로 단독 또는 혼합하여 사용하여 적용하는 것을 특징으로 하는 내오염성 또는 분리성능이 우수한 폴리아마이드 복합막 제조방법.The compound for neutralizing the surface charge used as the secondary coating compound is arylamine, aminoacetaldehyde dimethylacetal, 2-aminobenzimidazole, 2-aminobenzothiazole, 2-aminoheptane, 2 -Amino-2-methyl-1,3-propanediol, 2-amino-2-methyl-1-propanol, 1-amino-2-propanol, 3-amino-1-propanol, aniline, 2-anilinoethanol, Benzylamine, 2- (benzylamino) ethanol, tertiarybutylamine, n-butylamine, N, O-dimethylhydroxylamine, dipropylamine, diethylamine, ethanolamine, ethylamine, 2- (ethylamino) Ethanol, perylamine, 4-hydroxy-3-methoxybenzylamine, 2- (4-hydroxy phenyl) ethylamine, 2- (3,4-dihydroxyphenyl) ethylamine, 1,1-imi Nodi-2-propanol, isobutylamine, isopentylamine, isopropylamine, 2-methoxybenzylamine, 4-methoxybenzylamine, bis (2-methoxyethyl) amine, 2-methoxyethylamine, 2 -(4-methox Phenyl) ethylamine, methylamine, (methylamino) acetaldehydedimethylacetal, 2- (methylamino) ethanol, 4-methylbenzylamine, N-methylbenzylamine, N-methylbutylamine, N-methylcyclohexylamine, D (-)-N-methylglucamine, N-methylhydroxylamine, O-methylhydroxylamine, n-pentylamine, propylamine, di-tert-butylamine, secondary-butylamine, cyclohexylamine , Cyclopentylamine, cyclopropanemethylamine, cyclopropylamine, diarylamine, 1,4-diaminobutane, 1,2-diamino cyclohexane, dibutylamine, N, N-dibutylaminopropylamine, di Ethanolamine, 2,6-difluoroaniline, 2,5-difluoroaniline, diisopropylamine, 2- (3,4-dimethoxyphenyl) ethylamine, 2-tetrahydroperylamine, 3- (Triethoxysilyl) propylamine, 2,3,4-trifluoroaniline, 3- (trifluoromethyl) benzylamine, 3,4,5-trimethoxyaniline, 3- (trimethoxysil ) Propylamine, 2- (ethylamino) ethanol, tris (hydroxymethyl) aminomethane, etc. alone or stain resistance or separation performance is excellent polyamide composite membrane manufacturing method which comprises applying a mixture to use. 제 5항에 있어서, 2차 코팅 화합물로 사용된 표면에 양전하를 부여하는 화합물로는 3-디에틸아미노-1-프로필아민, N,N-디메틸-1,4-페닐디아민, N,N-디메틸-1,3-페닐디아민, 2,2-디메틸프로필렌디아민, N,N-디메틸트리메틸렌디아민, 에틸렌디아민, 히스타민디하이드로클로라이드, N-이소프로필에틸렌디아민, 2-(2-아미노에틸아미노)에탄올, N-(2-아미노에틸)모폴린, 2-아미노-4-메틸피리딘, 3-(아미노메틸)피리딘, 2-(아미노메틸)피리딘, 2-아미노-5-메틸피리딘, 2-아미노-3-메틸피리딘, 2-아미노-5-메틸씨아졸, N,N'-비스(3-아미노프로필)부탄-1,4-디아민, 2-아미노피리딘, 4-아미노피리딘, 3-아미노피리딘, 2-아미노피리미딘, N'-벤질-N,N-디메틸에틸렌디아민, 2,4,6-트리아미노-1,3,5-트리아진, 트리에틸렌테트라아민, 디에틸렌트리아민, N,N-디에틸렌디아민, N,N-디에틸-1,4-페닐렌디아민, , N,N'-디메틸에틸렌디아민, N,N-디에틸에틸렌디아민, N,N-디메틸에틸렌디아민, 2-메틸-1,5-디아미노펜탄, 4,4'-메틸렌비스(2-메틸사이클로헥실아민), N-메틸에틸렌디아민, 4-메틸-1,3-페닐렌디아민, 4-메틸-1,2-페닐렌디아민, 4-메틸-1,4-페닐렌디아민, 3-모폴리노-1-프로필아민, 1,8-나프탈렌디아민, 1,5-나프탈렌디아민, 펜타에틸렌헥사아민, 1,2-페닐렌디아민, 1,3-페닐렌디아민, 1,4-페닐렌디아민, 피페라진, 2-(1-피페라지닐)에틸아민, 테트라에틸렌펜타아민 등으로 단독 혹은 혼합하여 사용하는 것을 특징으로 하는 내오염성 또는 분리성능이 우수한 폴리아마이드 복합막 제조방법.The compound for imparting a positive charge to the surface used as the secondary coating compound is 3-diethylamino-1-propylamine, N, N-dimethyl-1,4-phenyldiamine, N, N- Dimethyl-1,3-phenyldiamine, 2,2-dimethylpropylenediamine, N, N-dimethyltrimethylenediamine, ethylenediamine, histaminedihydrochloride, N-isopropylethylenediamine, 2- (2-aminoethylamino) Ethanol, N- (2-aminoethyl) morpholine, 2-amino-4-methylpyridine, 3- (aminomethyl) pyridine, 2- (aminomethyl) pyridine, 2-amino-5-methylpyridine, 2-amino -3-methylpyridine, 2-amino-5-methylthiazole, N, N'-bis (3-aminopropyl) butane-1,4-diamine, 2-aminopyridine, 4-aminopyridine, 3-aminopyridine , 2-aminopyrimidine, N'-benzyl-N, N-dimethylethylenediamine, 2,4,6-triamino-1,3,5-triazine, triethylenetetraamine, diethylenetriamine, N, N-diethylenediamine, N, N-diethyl-1,4-phenylene Amines, N, N'-dimethylethylenediamine, N, N-diethylethylenediamine, N, N-dimethylethylenediamine, 2-methyl-1,5-diaminopentane, 4,4'-methylenebis (2 -Methylcyclohexylamine), N-methylethylenediamine, 4-methyl-1,3-phenylenediamine, 4-methyl-1,2-phenylenediamine, 4-methyl-1,4-phenylenediamine, 3 -Morpholino-1-propylamine, 1,8-naphthalenediamine, 1,5-naphthalenediamine, pentaethylenehexaamine, 1,2-phenylenediamine, 1,3-phenylenediamine, 1,4-phenyl A method for producing a polyamide composite membrane having excellent fouling resistance or separation performance, characterized in that it is used alone or mixed with rendiamine, piperazine, 2- (1-piperazinyl) ethylamine, tetraethylenepentaamine, and the like. 제 5항에 있어서, 2차 코팅 화합물로 사용된 표면에 음전하를 부여하는 화합물로는 4-아미노나프탈렌-1-설폰닉에시드, 1-아미노-2-하이드록시-4-나프탈렌설폰닉에시드, N-[트리스(하이드록시메틸)-메틸]-2-아미노에탄설폰닉에시드, 설파닐릭에시드, 메탄닐릭에시드, N-(2-아세트아마이드)-2-아미노에탄설폰닉에시드, 2-(사이클로헥실아미노) 에탄설폰닉에시드, 타우린, 4-아미노-5-하이드록시나프탈렌-2,7-디설폰닉에시드, N-메틸타우린, 4-아미노나프탈렌-1-설폰닉에시드, 아미노메탄설폰닉에시드, 2-아미노에틸하이드로즌설페이트, 2-아미노에틸 디하이드로즌포스페이트, 2-아미노톨루엔-5-설폰닉에시드 등으로 단독 혹은 혼합하여 사용하는 것을 특징으로 하는 내오염성 또는 분리성능이 우수한 폴리아마이드 복합막 제조방법. The compound for imparting a negative charge to the surface used as the secondary coating compound is 4-aminonaphthalene-1-sulfonic acid, 1-amino-2-hydroxy-4-naphthalenesulfonic acid, N -[Tris (hydroxymethyl) -methyl] -2-aminoethanesulfonic acid, sulfanilic acid, methanylalic acid, N- (2-acetamide) -2-aminoethanesulfonic acid, 2- (cyclohexyl Amino) ethanesulfonic acid, taurine, 4-amino-5-hydroxynaphthalene-2,7-disulfonic acid, N-methyltaurine, 4-aminonaphthalene-1-sulfonic acid, aminomethanesulfonic acid, 2 Preparation of polyamide composite membrane with excellent fouling resistance or separation performance, characterized in that it is used singly or in combination with aminoethylhydrogen sulfate, 2-aminoethyl dihydrozenphosphate, 2-aminotoluene-5-sulfonic acid, and the like. Way. 제 1항에 있어서, 2차 코팅 화합물을 폴리아마이드 분리막에 코팅시 물, 알콜류 또는 이들의 혼합물로 된 적당한 용매를 사용하여 용액상태로 적용하며, 이때 2차코팅 화합물의 함량은 0.00001∼20중량%(더욱 바람직하게는 0.0001∼5중량%)로 하는 것을 특징으로 하는 내오염성 또는 분리성능이 우수한 폴리아마이드 복합막 제조방법.The method of claim 1, wherein the secondary coating compound is applied to the polyamide separator in a solution state using a suitable solvent of water, alcohols or mixtures thereof, wherein the content of the secondary coating compound is 0.00001 to 20% by weight (More preferably 0.0001 to 5% by weight) polyamide composite membrane manufacturing method excellent in fouling resistance or separation performance, characterized in that. 제 1항에 있어서, 2차 코팅 화합물을 폴리아마이드 분리막에 코팅시, 스프레이법, T다이법, 딥핑, 클로드코팅법으로 폴리아마이드 복합박막 표면에 1초∼10분간(더욱 바람직하게는 5초∼5분간) 접촉시키는 것을 특징으로 하는 내오염성 또는 분리성능이 우수한 폴리아마이드 복합막 제조방법. The method of claim 1, wherein when coating the secondary coating compound on the polyamide separation membrane, the surface of the polyamide composite thin film is sprayed for 1 second to 10 minutes (more preferably 5 seconds to 1 minute) by spraying, T-die, dipping, or clad coating. Method for producing a polyamide composite membrane excellent in fouling resistance or separation performance, characterized in that the contacting (5 minutes). 제 1항에 있어서, 2차 코팅 화합물을 폴리아마이드 분리막에 코팅시, 코팅된 분리막을 열에 의해 반응이 촉진될 수 있도록 10∼150℃로(더욱 바람직하게는 20∼100℃)로 1초∼7일간(더욱 바람직하게는 5초∼3일간) 건조시키는 것을 특징으로 하는 내오염성 또는 분리성능이 우수한 폴리 아마이드 복합막 제조방법. The method according to claim 1, wherein when the secondary coating compound is coated on the polyamide separator, the coated separator is heated at 10 to 150 ° C (more preferably, 20 to 100 ° C) for 1 second to 7 so as to promote the reaction by heat. A method for producing a polyamide composite membrane having excellent fouling resistance or separation performance, which is dried for days (more preferably, 5 seconds to 3 days). 제 10항에 있어서, 2차 코팅 화합물을 폴리아마이드 분리막에 코팅시, 2차 코팅 화합물과 아실할라이드의 반응도를 높이는 방법으로 염기촉매 또는 계면활성제등을 단독 또는 혼합하여 사용하는 것을 특징으로하는 내오염성 또는 분리성능이 우수한 폴리아마이드 복합막 제조방법. The method according to claim 10, wherein when the secondary coating compound is coated on the polyamide separation membrane, a base catalyst or a surfactant is used alone or in a mixture to increase the reactivity between the secondary coating compound and the acyl halide. Or polyamide composite membrane having excellent separation performance. 제 12항에 언급된 염기촉매로 알콕사이드솔트, 하이드로옥사이드솔트, 카보네이트솔트, 페녹사이드솔트, 카르복시레이트솔트, 3급아민 등을 함유한 화합물을 사용하는 것을 특징으로하는 내오염성 또는 분리성능이 우수한 폴리아마이드 복합막 제조방법.A polyolefin having excellent fouling resistance or separation performance, characterized by using a compound containing an alkoxide salt, a hydroxide salt, a carbonate salt, a phenoxide salt, a carboxylate salt, a tertiary amine, etc. as the base catalyst mentioned in claim 12. Amide Composite Membrane Manufacturing Method. 제 12항에 언급된 계면활성제로 양이온성 계면활성제, 음이온성 계면활성제, 비이온성 계면활성제 등을 함유한 화합물을 사용하는 것을 특징으로 하는 내오염성 또는 분리성능이 우수한 폴리아마이드 복합막 제조방법.A method for producing a polyamide composite membrane having excellent fouling resistance or separation performance, using a compound containing a cationic surfactant, an anionic surfactant, a nonionic surfactant, or the like as the surfactant mentioned in claim 12.
KR1020040002402A 2004-01-13 2004-01-13 Producing Method of the Polyamide Composite Membrane having high performance and fouling resistence KR100551574B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040002402A KR100551574B1 (en) 2004-01-13 2004-01-13 Producing Method of the Polyamide Composite Membrane having high performance and fouling resistence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040002402A KR100551574B1 (en) 2004-01-13 2004-01-13 Producing Method of the Polyamide Composite Membrane having high performance and fouling resistence

Publications (2)

Publication Number Publication Date
KR20050074167A true KR20050074167A (en) 2005-07-18
KR100551574B1 KR100551574B1 (en) 2006-02-13

Family

ID=37263011

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040002402A KR100551574B1 (en) 2004-01-13 2004-01-13 Producing Method of the Polyamide Composite Membrane having high performance and fouling resistence

Country Status (1)

Country Link
KR (1) KR100551574B1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100619497B1 (en) * 2005-07-29 2006-09-06 주식회사 새한 Fouling resistant polyamide composite membrane and method of producing the same
KR100680111B1 (en) * 2005-12-05 2007-02-07 웅진코웨이주식회사 Polyamide reverse osmosis composite membrane and preparation method thereof
US7815987B2 (en) 2008-12-04 2010-10-19 Dow Global Technologies Inc. Polyamide membrane with coating of polyalkylene oxide and polyacrylamide compounds
KR101335949B1 (en) * 2011-11-04 2013-12-03 웅진케미칼 주식회사 Polyamid nanofiltration membrane and manufacturing method thereof
US8640886B2 (en) 2010-04-26 2014-02-04 Dow Global Technologies Llc Composite membrane including coating of polyalkylene oxide and triazine compounds
US8646616B2 (en) 2010-05-24 2014-02-11 Dow Global Technologies Llc Composite membrane with coating comprising polyalkylene oxide and imidazol compounds
US8721942B2 (en) 2010-03-10 2014-05-13 Dow Global Technologies Llc Composite membrane including coating of polyalkylene oxide and acetophenone compounds
US8733558B2 (en) 2010-05-24 2014-05-27 Dow Global Technologies Llc Composite membrane with coating comprising polyalkylene oxide and biguanide-type compounds
US8757396B2 (en) 2010-05-24 2014-06-24 Dow Global Technologies Llc Composite membrane with coating comprising polyalkylene oxide and oxy-substituted phenyl compounds
KR20180107605A (en) * 2017-03-22 2018-10-02 도레이케미칼 주식회사 Reverse-osmosis membrane having excellent salt rejection and method for manufacturing thereof
KR20180107612A (en) * 2017-03-22 2018-10-02 도레이케미칼 주식회사 Reverse-osmosis membrane having excellent salt rejection and method for manufacturing thereof
KR20180126750A (en) * 2017-05-18 2018-11-28 주식회사 엘지화학 Water treatment membrane and method for manufacturing the same
KR20190143239A (en) * 2018-06-20 2019-12-30 주식회사 엘지화학 Composition for interfacial polymerizing polyamide and method for manufacturing water-treatment membrane using the same
CN111788251A (en) * 2018-06-15 2020-10-16 株式会社Lg化学 Composition for interfacial polymerization of polyamide and method for manufacturing water treatment separation membrane by using the same
CN114130220A (en) * 2021-11-23 2022-03-04 万华化学集团股份有限公司 Preparation method of polytriazine alkali-resistant composite nanofiltration membrane
KR20220110949A (en) * 2021-02-01 2022-08-09 도레이첨단소재 주식회사 Method for manufacturing reverse osmosis membrane for domestic purifier, reverse osmosis membrane for domestic purifier manufactured therefrom, and reverse osmosis filter module

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101230843B1 (en) * 2010-09-02 2013-02-07 웅진케미칼 주식회사 Fouling resistance polyamide reverse osmosis membrane and manufacturing method thereof
EP2711071A4 (en) * 2011-05-20 2014-11-26 Lg Chemical Ltd Method for preparing a reverse osmosis membrane, and reverse osmosis membrane prepared thereby
WO2014069786A1 (en) 2012-11-05 2014-05-08 주식회사 엘지화학 Polyamide-based water treatment separating film having superior contamination resistance and method for manufacturing same
WO2014204220A1 (en) * 2013-06-18 2014-12-24 주식회사 엘지화학 Method for preparing polyamide-based reverse osmosis membrane having remarkable salt rejection and permeation flux, and reverse osmosis membrane prepared by said preparation method
JP2016518982A (en) * 2013-06-18 2016-06-30 エルジー・ケム・リミテッド Polyamide-based water treatment separation membrane excellent in salt removal rate and permeation flow rate characteristics and method for producing the same
KR102006133B1 (en) * 2015-11-24 2019-08-02 한국기계연구원 Cermic membrane having excellent fouling resistance by surface modification and water treatment method using the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100619497B1 (en) * 2005-07-29 2006-09-06 주식회사 새한 Fouling resistant polyamide composite membrane and method of producing the same
KR100680111B1 (en) * 2005-12-05 2007-02-07 웅진코웨이주식회사 Polyamide reverse osmosis composite membrane and preparation method thereof
US7815987B2 (en) 2008-12-04 2010-10-19 Dow Global Technologies Inc. Polyamide membrane with coating of polyalkylene oxide and polyacrylamide compounds
US8721942B2 (en) 2010-03-10 2014-05-13 Dow Global Technologies Llc Composite membrane including coating of polyalkylene oxide and acetophenone compounds
US8640886B2 (en) 2010-04-26 2014-02-04 Dow Global Technologies Llc Composite membrane including coating of polyalkylene oxide and triazine compounds
US8757396B2 (en) 2010-05-24 2014-06-24 Dow Global Technologies Llc Composite membrane with coating comprising polyalkylene oxide and oxy-substituted phenyl compounds
US8646616B2 (en) 2010-05-24 2014-02-11 Dow Global Technologies Llc Composite membrane with coating comprising polyalkylene oxide and imidazol compounds
US8733558B2 (en) 2010-05-24 2014-05-27 Dow Global Technologies Llc Composite membrane with coating comprising polyalkylene oxide and biguanide-type compounds
KR101335949B1 (en) * 2011-11-04 2013-12-03 웅진케미칼 주식회사 Polyamid nanofiltration membrane and manufacturing method thereof
KR20180107605A (en) * 2017-03-22 2018-10-02 도레이케미칼 주식회사 Reverse-osmosis membrane having excellent salt rejection and method for manufacturing thereof
KR20180107612A (en) * 2017-03-22 2018-10-02 도레이케미칼 주식회사 Reverse-osmosis membrane having excellent salt rejection and method for manufacturing thereof
KR20180126750A (en) * 2017-05-18 2018-11-28 주식회사 엘지화학 Water treatment membrane and method for manufacturing the same
CN111788251A (en) * 2018-06-15 2020-10-16 株式会社Lg化学 Composition for interfacial polymerization of polyamide and method for manufacturing water treatment separation membrane by using the same
CN111788251B (en) * 2018-06-15 2023-03-28 株式会社Lg化学 Composition for interfacial polymerization of polyamide and method for manufacturing water treatment separation membrane by using the same
KR20190143239A (en) * 2018-06-20 2019-12-30 주식회사 엘지화학 Composition for interfacial polymerizing polyamide and method for manufacturing water-treatment membrane using the same
KR20220110949A (en) * 2021-02-01 2022-08-09 도레이첨단소재 주식회사 Method for manufacturing reverse osmosis membrane for domestic purifier, reverse osmosis membrane for domestic purifier manufactured therefrom, and reverse osmosis filter module
CN114130220A (en) * 2021-11-23 2022-03-04 万华化学集团股份有限公司 Preparation method of polytriazine alkali-resistant composite nanofiltration membrane

Also Published As

Publication number Publication date
KR100551574B1 (en) 2006-02-13

Similar Documents

Publication Publication Date Title
KR100551574B1 (en) Producing Method of the Polyamide Composite Membrane having high performance and fouling resistence
EP1958685B1 (en) Selective membrane having a high fouling resistance
US7537697B2 (en) Selective membrane having a high fouling resistance
JP3860510B2 (en) Selective separation membrane manufacturing method with excellent contamination resistance
US7913857B2 (en) Selective membrane having a high fouling resistance
JP5835835B2 (en) Composite membrane with multilayer active layer
KR100781625B1 (en) Producing method of the polyamide reverse osmosis membrane having fouling resistence and improved durability
US6833073B2 (en) Composite nanofiltration and reverse osmosis membranes and method for producing the same
US9089820B2 (en) Selective membrane having a high fouling resistance
KR101335949B1 (en) Polyamid nanofiltration membrane and manufacturing method thereof
EP2140929A1 (en) Selective membrane having a high fouling resistance and preparation method thereof
KR100474169B1 (en) Producing method of the selective membrame having a high fouling resistance
US4885091A (en) Process for the preparation of chlorine-resistant semipermeable membranes
KR101230843B1 (en) Fouling resistance polyamide reverse osmosis membrane and manufacturing method thereof
KR20050004788A (en) A process for preparing semipermeable membranes having improved permeability
KR102041657B1 (en) Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
JP3611795B2 (en) Polyamide-based reverse osmosis composite membrane and method for producing the same
KR20190055664A (en) A polyamide composite membrane having improved salt and boron rejection and method for preparation thereof
KR100460011B1 (en) Post Treatment Process of Polyamide Reverse Osmosis Membrane
KR100619497B1 (en) Fouling resistant polyamide composite membrane and method of producing the same
KR100474170B1 (en) Composite polyamide nano membrane and method of producing the same
KR102054544B1 (en) Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
KR20060005881A (en) Producing method of nano composite membrane having high flow rate
KR20230158228A (en) Membrane for water treatment improving removing effect of nitrate, Manufacturing method thereof and Membrane module comprising the same
KR20190076243A (en) Method for manufacturing water-treatment separation membrane, water-treatment separation membrane manufactured by thereof, and composition for manufacturing water-treatment separation membrane

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130205

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140205

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150210

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160203

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170203

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180201

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190129

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20200205

Year of fee payment: 15