KR20050038581A - Diode having vertical structure and method of manufacturing the same - Google Patents

Diode having vertical structure and method of manufacturing the same Download PDF

Info

Publication number
KR20050038581A
KR20050038581A KR1020047006203A KR20047006203A KR20050038581A KR 20050038581 A KR20050038581 A KR 20050038581A KR 1020047006203 A KR1020047006203 A KR 1020047006203A KR 20047006203 A KR20047006203 A KR 20047006203A KR 20050038581 A KR20050038581 A KR 20050038581A
Authority
KR
South Korea
Prior art keywords
layer
gan
electrode
emitting diode
forming
Prior art date
Application number
KR1020047006203A
Other languages
Korean (ko)
Other versions
KR100921456B1 (en
Inventor
유명철
Original Assignee
오리올 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오리올 인코포레이티드 filed Critical 오리올 인코포레이티드
Publication of KR20050038581A publication Critical patent/KR20050038581A/en
Application granted granted Critical
Publication of KR100921456B1 publication Critical patent/KR100921456B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • H01L33/325Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen characterised by the doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/3013AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials

Abstract

A light emitting diode includes a conductive layer, an n-GaN (105) layer on the conductive layer, an active layer (160) on the n-GaN layer, a p-GaN (140) layer on the active layer, and a p-electrode on the p-GaN layer. The conductive layer is an n- electrode.

Description

수직 구조를 갖는 다이오드 및 이의 제조방법{Diode having vertical structure and method of manufacturing the same}Diode having vertical structure and method of manufacturing the same

본 발명은 다이오드에 관한 것으로, 특히 수직 구조 발광 다이오드(vertical structure light emitting diode(LED))에 관한 것이다. 본 발명은 GaN 기반의 발광 다이오드를 참조하여 논의되지만, 본 발명은 여러 타입의 발광 다이오드를 위해 사용될 수 있고, 예컨대 레이저 다이오드와 같은 다른 타입의 다이오드를 포함하는 넓은 범위의 응용에서도 사용될 수 있다.TECHNICAL FIELD The present invention relates to diodes, and more particularly, to a vertical structure light emitting diode (LED). Although the present invention is discussed with reference to GaN based light emitting diodes, the present invention can be used for many types of light emitting diodes, and can also be used in a wide range of applications including other types of diodes such as, for example, laser diodes.

일반적으로 "LED"로 호칭되는 발광 다이오드는 전력을 발광으로 변환시키는 반도체 디바이스이다. 전자들이 원자 또는 분자 내에서 이들의 허용 에너지 레벨 간에 전이할 때, 이들 에너지 전이는 언제나 특정 양의 에너지 이득 또는 손실을 동반한다는 것이 본 기술분야에서 잘 알려져 있다. 발광 다이오드에 있어서, 다이오드 접합(junction)을 통과하는 전자 또는 홀 전류의 발생 또는 주입은 이러한 전자적 전이를 발생시키고, 이는 다시 진동 에너지 또는 광, 또는 이들 모두를 초래한다. 본 기술분야에서 더욱 잘 알려진 바와 같이, 발광 다이오드에 의해 발생되는 광의 색깔은 일반적으로는 반도체 재료의 특성에 의해, 가장 주요하게는 개별 원자의 가전자대 및 전도대 간의 에너지 레벨 차를 나타내는 밴드 갭에 의해 한정된다. Light emitting diodes, commonly referred to as "LEDs", are semiconductor devices that convert power into light emission. It is well known in the art that when electrons transition between their allowed energy levels in an atom or molecule, these energy transitions always carry a certain amount of energy gain or loss. In light emitting diodes, the generation or injection of electrons or hole currents through the diode junction creates this electronic transition, which in turn results in vibrational energy or light, or both. As is better known in the art, the color of light generated by light emitting diodes is generally determined by the nature of the semiconductor material, most notably by band gaps representing energy level differences between the valence and conduction bands of the individual atoms. It is limited.

질화갈륨(GaN)은 최근에 LED 분야의 연구자로부터 많은 주목을 받고 있다. 왜냐하면, 이 물질의 넓고 직접적인 밴드 갭의 특성은 청색 LED를 제조하는데 매우 적당하기 때문이다. 상기 청색 LED는 다른 적색 또는 녹색 LED들 중 제조하기에 가장 어려운 것으로 여겨져 왔다.Gallium nitride (GaN) has recently attracted much attention from researchers in the field of LEDs. This is because the wide direct bandgap nature of this material is very suitable for manufacturing blue LEDs. The blue LED has been considered the most difficult to manufacture among other red or green LEDs.

따라서, GaN 기반의 광전자 디바이스 테크놀로지는, 상기 디바이스들은 1994년에 시장에 소개된 이후로, 상용화를 위한 디바이스 연구 및 개발 분야로부터 급속도로 발전되어 왔다. 예를 들면, GaN 발광 다이오드의 효율은 백열 조명의 효율보다 우수하고, 형광 조명의 효율과 대등하다.Accordingly, GaN-based optoelectronic device technology has been rapidly developed from the field of device research and development for commercialization since the devices were introduced to the market in 1994. For example, the efficiency of a GaN light emitting diode is superior to that of incandescent lighting and is equivalent to that of fluorescent lighting.

GaN 기반 디바이스들의 시장 성장은 매년 산업 시장 예측보다 훨씬 앞서 왔다. 이러한 고속 성장에도 불구하고, GaN 기반의 디바이스들로써 총천연색 디스플레이를 구현하기에는 아직 너무 비용이 많이 든다. 이는 총천연색 디스플레이 구현에 필수적인 청색 LED의 제작비용이 다른 가시용 LED에 비해 너무 고가이기 때문이다. 청색 LED 제조용 웨이퍼 사이즈가 2인치로 제한되고, GaN 에피택시얼 층을 성장하는 공정이 다른 반도체 재료들보다 더 어렵다. 따라서, 청색 LED의 제조비용을 줄여서 현재 이용가능한 것보다 효율이 좋은 GaN LED를 사용한 총천연색 디스플레이를 저가로 이용함에 있어서, 성능 저하 없이 대량으로 생산하는 기술의 개발이 주요 쟁점이다.The market growth of GaN-based devices has been far ahead of the industrial market forecast each year. Despite this rapid growth, it is still too expensive to implement full color displays with GaN-based devices. This is because the manufacturing cost of the blue LED, which is essential for realizing a full color display, is too expensive compared to other visible LEDs. The wafer size for blue LED manufacturing is limited to 2 inches, and the process of growing a GaN epitaxial layer is more difficult than other semiconductor materials. Therefore, in using a full-color display using GaN LED, which is more efficient than currently available by reducing the manufacturing cost of the blue LED, at low cost, development of a technology for mass production without deterioration of performance is a major issue.

일반적으로, GaN 기반 LED는 사파이어 기판을 사용하여 측면 구조로 제조된다. 왜냐하면, 사파이어는 기판으로서 GaN 에피택시얼 층이 다른 물질들보다 적은 결점을 갖고 성장하도록 하는 물질이기 때문이다. 사파이어는 전기 절연체이기 때문에, 상단면에서 n 및 p 금속 접촉부를 모두 갖는 측면 타입 LED는 MQW 층에 전류를 주입하는 것이 불가피하다.In general, GaN based LEDs are manufactured in a side structure using a sapphire substrate. This is because sapphire is a material that allows the GaN epitaxial layer to grow with fewer defects than other materials. Since sapphire is an electrical insulator, side type LEDs with both n and p metal contacts on the top face inevitably inject current into the MQW layer.

도 1은 종래의 측면 타입 LED 디바이스를 개략적으로 도시한다. 도 1을 참조하면, 종래의 측면 타입 LED는 사파이어와 같은 기판(100)을 포함한다. 선택적이고 예컨대 잘화갈륨(GaN)으로 제조되는 버퍼층(120)이 기판(100) 상에 형성된다. n-타입 GaN 층(140)이 버퍼층(120) 상에 형성된다. 예컨대, 질화알루미늄인듐갈륨(AlInGaN)의 다중양자우물(MQW) 층(160)과 같은 활성층이 n-타입 GaN층(140) 상에 형성된다. p-타입 GaN층(180)이 활성층(160) 상에 형성된다. 투명 도전층(220)이 p-GaN층(180) 상에 형성된다. 투명도전층(220)은, 예컨대 Ni/Au 또는 산화인듐주석(ITO)을 포함하는 임의의 적당한 물질로 제조될 수 있다. 그 다음, p-타입 전극이 투명 도전층(220)의 한 면 상에 형성된다. p-타입 전극(240)은 예컨대 Ni/Au, Pd/Au, Pd/Ni 및 Pt를 포함하는 임의의 적당한 물질로 제조될 수 있다. 패드(260)가 p-타입 전극(240) 상에 형성된다. 패드는 예컨대 Au를 포함하는 적당한 물질로 제조될 수 있다. n-전극(250) 및 패드(270)를 형성하기 위해, 투명 도전층(220), p-GaN층(180), 활성층(160), 및 n-GaN층(140)이 한 부분에서 모두 에칭된다.1 schematically illustrates a conventional side type LED device. Referring to FIG. 1, a conventional side type LED includes a substrate 100 such as sapphire. An optional buffer layer 120, for example made of gallium arsenide (GaN), is formed on substrate 100. An n-type GaN layer 140 is formed on the buffer layer 120. For example, an active layer such as a multi-quantum well (MQW) layer 160 of aluminum indium gallium nitride (AlInGaN) is formed on the n-type GaN layer 140. The p-type GaN layer 180 is formed on the active layer 160. The transparent conductive layer 220 is formed on the p-GaN layer 180. Transparent conductive layer 220 may be made of any suitable material, including, for example, Ni / Au or indium tin oxide (ITO). Then, a p-type electrode is formed on one side of the transparent conductive layer 220. P-type electrode 240 may be made of any suitable material, including, for example, Ni / Au, Pd / Au, Pd / Ni, and Pt. Pad 260 is formed on p-type electrode 240. The pad can be made of any suitable material, including for example Au. In order to form the n-electrode 250 and the pad 270, the transparent conductive layer 220, the p-GaN layer 180, the active layer 160, and the n-GaN layer 140 are all etched in one portion. do.

사파이어는 절연체이기 때문에, n-GaN층은 n-금속 접촉부를 형성하기 위해 노출되어야 한다. GaN은 화학 에칭 방법에 의해 에칭되지 않기 때문에, 건식 에칭 방법이 일반적으로 사용된다. 이는 추가적 리소그래피(lithography) 및 스트리핑(stripping) 공정을 필요로 하기 때문에 심각한 문제점이 된다. 또한, 건식 에칭 공정 도중에 GaN 표면 상에 플라즈마 손상을 자주 입게 된다. 게다가, 측면 디바이스 구조는, 2개의 금속 접촉부가 디바이스의 상단부에 형성되어야 하기 때문에, 큰 디바이스 크기를 필요로 한다. 더욱이, 측면 구조 디바이스는, 2개의 금속 전극이 서로 가까이 위치하고 있기 때문에, 정전기에 손상을 받기 쉽다. 따라서, 측면 구조의 GaN 기반 LED는 교통 표지 또는 신호등과 같은 고압 응용에는 적합하지 않을 수 있다.Since sapphire is an insulator, the n-GaN layer must be exposed to form n-metal contacts. Since GaN is not etched by the chemical etching method, a dry etching method is generally used. This is a serious problem because it requires additional lithography and stripping processes. In addition, plasma damage is frequently caused on the GaN surface during the dry etching process. In addition, the side device structure requires a large device size because two metal contacts must be formed at the top of the device. Moreover, the side structure device is susceptible to static electricity because the two metal electrodes are located close to each other. Thus, GaN-based LEDs with side structures may not be suitable for high pressure applications such as traffic signs or traffic lights.

현재, 수직 구조의 GaN 기반 LED가 탄화규소(silicon carbide(SiC)) 기판을 사용하여 크리(Cree) 연구소에 의해 제조되고 있다. 그러나, 높은 제조 비용으로 인해, SiC 기판을 갖는 LED는 대량 생산에 적합하지 않다. 또한, SiC는 수소 원자에 매우 민감한 것으로 본 기술분야에서 알려져 있는데, 상기 수소 원자는, 에피택시얼 필름의 품질을 고려한 GaN 에피택시얼 층을 성장시키는 가장 흔한 방법인 유기 금속 화학증착법(MOCVD)에 의한 에피택시얼 성장 동안에 존재한다. 고품질의 GaN 기반 에피택시얼 필름을 성장시키기 위해서 "표면 처리"라고 불리우는 추가적 공정이 필요하다. 더욱이, SiC 기판을 갖는 GaN 기반 LED는 GaN 에피택시얼 층을 성장시키기 전에 SiC 기판 상에 추가적 도전 버퍼층을 필요로 하는데, 이는 측면 구조 디바이스를 위해서는 불필요하다.Currently, GaN-based LEDs with vertical structures are being manufactured by Cree Laboratories using silicon carbide (SiC) substrates. However, due to the high manufacturing cost, LEDs with SiC substrates are not suitable for mass production. In addition, SiC is known in the art to be very sensitive to hydrogen atoms, which are subjected to organometallic chemical vapor deposition (MOCVD), the most common method of growing a GaN epitaxial layer considering the quality of epitaxial films. Present during epitaxial growth. In order to grow high quality GaN based epitaxial films, an additional process called "surface treatment" is needed. Moreover, GaN based LEDs with SiC substrates require an additional conductive buffer layer on the SiC substrate prior to growing the GaN epitaxial layer, which is unnecessary for side structure devices.

도 1은 종래의 측면 구조 LED를 도시한다.1 illustrates a conventional side structure LED.

도 2는 본 발명의 일 실시예에 다른 수직 구조 LED를 도시한다.2 illustrates another vertical structure LED in one embodiment of the present invention.

도 3 내지 도 8은 본 발명에 따라 발광 다이오드를 형성하기 위한 제조 단계들을 도시한다.3 to 8 show manufacturing steps for forming a light emitting diode according to the present invention.

도 9는 본 발명의 수직 구조 LED의 다른 실시예를 도시한다.9 shows another embodiment of the vertical structure LED of the present invention.

따라서, 본 발명은 관련 기술의 제한 및 단점으로 인한 하나 이상의 문제점들을 실질적으로 제거하는, 대량 생산을 위한 단순 수직 구조 LED의 제조방법에 관한 것이다. Accordingly, the present invention relates to a method of manufacturing a simple vertical structure LED for mass production, which substantially eliminates one or more problems due to the limitations and disadvantages of the related art.

본 발명의 장점은 제한된 웨이퍼 면적 내에서 제조되는 LED 디바이스의 수를 증가시키는 것이다.An advantage of the present invention is to increase the number of LED devices manufactured within the limited wafer area.

본 발명의 또다른 장점은 LED 디바이스가 단순한 제조공정단계를 갖는다는 것이다.Another advantage of the present invention is that the LED device has a simple manufacturing process step.

본 발명의 추가적 특징 및 장점은 이후의 발명의 상세한 설명에서 자세히 설명될 것이고, 부분적으로는 발명의 상세한 설명으로부터 명백할 것이며, 본 발명의 실시에 의해 알게 될 것이다. 본 발명의 목적 및 다른 장점은 발명의 상세한 설명 및 이의 청구의 범위뿐만 아니라 첨부된 도면에서 특히 설명된 구조에 의해 실현되고 달성될 것이다.Additional features and advantages of the invention will be set forth in detail in the description which follows, and in part will be obvious from the description, and will be learned by practice of the invention. The objects and other advantages of the present invention will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.

본 발명의 목적에 따라 그리고 전술한 여러 장점들을 달성하기 위해, 구현되고 포괄적으로 설명된 바와 같이, 발광 다이오드 제조방법은, 사파이어 기판 상에 기상 에피택시(vapor phase epitaxy(VPE))에 의해 버퍼 GaN층을 형성하는 단계; 버퍼 GaN상에 MOCVD에 의해 n-GaN 에피택시얼 층을 형성하는 단계; n-GaN 에피택시얼 층 상에 다중양자우물(MQW) 층을 형성하는 단계; MOCVD에 의해 MQW층 상에 p-GaN층을 형성하는 단계; 사파이어 기판을 다른 층들로부터 분리시키는 단계; p 및 n 금속 접촉부를 형성하는 단계; p-GaN 층의 면 상에 금속 투명 접촉부를 형성하는 단계; 및 p-GaN층 상에 금속 패드를 형성하는 단계를 포함한다.In accordance with the object of the present invention and in order to achieve the various advantages described above, as embodied and comprehensively described, a method of manufacturing a light emitting diode comprises a buffer GaN by vapor phase epitaxy (VPE) on a sapphire substrate. Forming a layer; Forming an n-GaN epitaxial layer by MOCVD on the buffer GaN; forming a multi-quantum well (MQW) layer on the n-GaN epitaxial layer; Forming a p-GaN layer on the MQW layer by MOCVD; Separating the sapphire substrate from the other layers; forming p and n metal contacts; forming a metal transparent contact on a side of the p-GaN layer; And forming a metal pad on the p-GaN layer.

다른 태양에 있어서, 발광 다이오드 제조방법은, 사파이어 기판 상에 VPE에 의해 버퍼 GaN 층을 형성하는 단계; 버퍼 GaN층 위에 VPE에 의해 도핑되지 않은 GaN 층을 형성하는 단계; 도핑되지 않은 GaN층 위에 VPE에 의해 n-GaN 층을 형성하는 단계; VPE에 의해 성장된 n-GaN 위에 MOCVD에 의해 n-GaN 에피택시얼 층을 형성하는 단계; n-GaN 에피택시얼 층 위에 MQW 층을 형성하는 단계; MOCVD에 의해 MQW 층 위에 p-GaN층을 형성하는 단계; 사파이어 기판을 다른 층들로부터 분리시키는 단계; p 및 n 금속 접촉부들을 형성하는 단계;, p-GaN 층 위에 금속 투명접촉부를 형성하는 단계; 및 p GaN 층 위에 금속 패드를 형성하는 단계를 포함한다.In another aspect, a method of manufacturing a light emitting diode comprises: forming a buffer GaN layer by VPE on a sapphire substrate; Forming a undoped GaN layer by VPE over the buffer GaN layer; Forming an n-GaN layer by VPE over the undoped GaN layer; Forming an n-GaN epitaxial layer by MOCVD over n-GaN grown by VPE; forming an MQW layer over the n-GaN epitaxial layer; Forming a p-GaN layer over the MQW layer by MOCVD; Separating the sapphire substrate from the other layers; forming p and n metal contacts, forming a metal transparent contact over the p-GaN layer; And forming a metal pad over the p GaN layer.

다른 태양에 있어서, 발광 다이오드 제조방법은, 사파이어 기판 상에 VPE에 의해 버퍼 GaN층을 형성하는 단계; 버퍼 GaN층 위에 MOCVD에 의해 n-GaN 에피택시얼층을 형성하는 단계; n-GaN 에피택시얼 층 위에 MQW 층을 형성하는 단계;, MOCVD에 의해 MQW층 위에 p-AlGaN 클래드 층을 형성하는 단계; MOCVD에 의해 p-AlGaN층 위에 p-GaN 도전층을 형성하는 단계; 사파이어 기판은 다른 층들로부터 분리시키는 단계; p 및 n 접촉부들을 형성하는 단계; p-GaN층 위에 금속 투명접촉부를 형성하는 단계; 및 p-GaN층 위에 금속 패드를 형성하는 단계를 포함한다.In another aspect, a method of manufacturing a light emitting diode comprises: forming a buffer GaN layer by VPE on a sapphire substrate; Forming an n-GaN epitaxial layer by MOCVD over the buffer GaN layer; forming an MQW layer over the n-GaN epitaxial layer, forming a p-AlGaN clad layer over the MQW layer by MOCVD; Forming a p-GaN conductive layer on the p-AlGaN layer by MOCVD; Separating the sapphire substrate from the other layers; forming p and n contacts; forming a metal transparent contact on the p-GaN layer; And forming a metal pad on the p-GaN layer.

또다른 태양에 있어서, 발광 다이오드 제조방법은, 사파이어 기판 상에 VPE에 의해 버퍼 GaN층을 형성하는 단계; 버퍼 GaN층 위에 VPE에 의해 도핑되지 않은 GaN층을 형성하는 단계; 도핑되지 않은 GaN층 위에 VPE에 의해 n-GaN층을 형성하는 단계; VPE에 의해 성장된 n-GaN 위에 MOCVD에 의해 n-GaN 에피택시얼 층을 형성하는 단계; n-GaN 에피택시얼 층 위에 MQW층을 형성하는 단계; MOCVD에 의해 MQW 층 위에 p-AlGaN 클래드 층을 형성하는 단계; MOCVD에 의해 p-AlGaN층 위에 p-GaN 도전층을 형성하는 단계; 사파이어 기판을 다른 층들로부터 분리시키는 단계; p-GaN층 위에 금속 투명 접촉부를 형성하는 단계; 및 p-GaN 층 위에 금속 패드를 형성하는 단계를 포함한다.In another aspect, a method of manufacturing a light emitting diode comprises: forming a buffer GaN layer by VPE on a sapphire substrate; Forming a undoped GaN layer by VPE over the buffer GaN layer; Forming an n-GaN layer by VPE over the undoped GaN layer; Forming an n-GaN epitaxial layer by MOCVD over n-GaN grown by VPE; forming an MQW layer over the n-GaN epitaxial layer; Forming a p-AlGaN clad layer on the MQW layer by MOCVD; Forming a p-GaN conductive layer on the p-AlGaN layer by MOCVD; Separating the sapphire substrate from the other layers; forming a metal transparent contact over the p-GaN layer; And forming a metal pad over the p-GaN layer.

전술한 일반적 설명 및 후술할 발명의 상세한 설명은 예시적이며 설명을 위한 것이고, 청구항들의 발명을 설명하기 위한 것임을 이해해야 할 것이다.It is to be understood that the foregoing general description and the following detailed description of the invention are exemplary and explanatory and are intended to illustrate the invention of the claims.

본 발명을 더 잘 이해하기 위해 제공되고, 본 명세서의 일부를 구성하는 첨부된 도면은 본 발명의 실시예들을 도시하고 발명의 상세한 설명과 함께 본 발명의 원리를 설명하는 역할을 한다.BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are provided to better understand the present invention and which form part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention.

이하 본 발명에 대해 자세히 설명하겠다. 본 발명의 예들이 첨부 도면에 도시되어 있다.Hereinafter, the present invention will be described in detail. Examples of the invention are illustrated in the accompanying drawings.

도 2는 본 발명의 한 실시예에 따른 수직 구조 발광 다이오드를 도시한다. 도 2를 참조하면, 수직 LED는 n-접촉부(500)를 포함한다. GaN으로 만들어진 버퍼층(105)이 n-접촉부(500) 위에 있다. n-GaN층(140)이 버퍼층(105) 위에 있다. 예컨대, AlInGaN을 포함하는 다중양자우물(MQW)층으로 제조된 활성층(160)이 n-GaN층(140) 위에 있다. p-GaN층(180)이 활성층(160) 위에 있다. p-접촉층(220)이 p-GaN층(180) 위에 있다. p-전극(240) 및 패드(260)가 p-접촉층(220) 위에 형성된다.2 illustrates a vertical structure light emitting diode according to an embodiment of the present invention. Referring to FIG. 2, the vertical LED includes an n-contact 500. A buffer layer 105 made of GaN is over the n-contact 500. An n-GaN layer 140 is over the buffer layer 105. For example, an active layer 160 made of a multi-quantum well (MQW) layer containing AlInGaN is on the n-GaN layer 140. The p-GaN layer 180 is over the active layer 160. The p-contact layer 220 is over the p-GaN layer 180. P-electrode 240 and pad 260 are formed over p-contact layer 220.

도 2에 도시된 LED에 있어서, n-접촉부(500)는 2개의 기능을 할 수 있다. 첫째, n-접촉부(500)는 도전성 재료로서 전기적 기능을 한다. 둘째, n-접촉부는 또한 활성층(160)에서 n-접촉부(500)로 방출된 광자를 반사하는 역할을 할 수 있다. 이렇게 하지 않으면 어떤 다른 방식으로 흡수되거나 소모되는 광자가 n-접촉부(500)에서 반사되어 발광하기 때문에, 이는 LED의 휘도를 증가시킨다. 거울과 같은 좋은 반사 특성을 갖는 물질이 n-접촉부(500)로 사용될 수 있다. 상기 예 중 하나가 연마된 알루미늄층이다. 상기 반사 특성은, 유명철에 의해 발명되고 본 출원과 동일한 양수인에 의해 2001년 7월 17일에 출원된 발명의 명칭이 "고휘도를 갖는 다이오드 및 이의 방법"인 현재 계류 중인 출원에서 자세히 설명되어 있다. 상기 출원은 그 전체가 본 명세서에서 참조된다. 이하, n-접촉부(500)에 대한 물질에 대해 자세히 설명한다.In the LED shown in FIG. 2, the n-contact 500 can serve two functions. First, the n-contact portion 500 functions as an electrically conductive material. Second, the n-contact can also serve to reflect photons emitted from the active layer 160 to the n-contact 500. If this is not done, this increases the brightness of the LED because photons that are absorbed or consumed in some other way are reflected off the n-contact 500 and emit light. A material having good reflective properties such as a mirror can be used as the n-contact 500. One of the examples above is a polished aluminum layer. The reflective properties are described in detail in the currently pending application entitled "Diode with High Brightness and Method thereof", filed on July 17, 2001 by Inventive Iron and filed by the same assignee as the present application. This application is hereby incorporated by reference in its entirety. Hereinafter, the material for the n-contact portion 500 will be described in detail.

본 발명의 상기 수직 구조 LED의 장점은 종래 LED의 측면 구조와 비교할 때 LED 칩의 사이즈가 매우 작아진다는 것이다. 작은 칩 사이즈로 인해, 훨씬 많은 칩들이 사파이어와 같은 동일한 사이즈의 웨이퍼 상에서 형성될 수 있다. 더욱이, 이하에서 자세히 설명되는 바와 같이, 본 발명의 수직 구조 LED를 형성하는 공정 단계의 수가 줄어든다. 도 3 내지 도 8은 본 발명에 따른 수직 구조 GaN 기반 발광 다이오드(LED)를 제조하는 공정을 개략적으로 도시한다. GaN 기반 LED를 제조하기 위해, 사파이어가 매우 안정적이고 상대적으로 저렴하기 때문에, 사파이어 기판이 일반적으로 사용되어 왔다. 사파이어 기판 상에서 성장되는 다양한 GaN 층의 에피택시얼 층 품질은 열적 안정성 및 GaN의 유사한 결정 구조로 인해 다른 기판 물질들보다 우수하다.The advantage of the vertical structure LED of the present invention is that the size of the LED chip is very small compared with the side structure of the conventional LED. Due to the small chip size, much more chips can be formed on wafers of the same size, such as sapphire. Moreover, as will be described in detail below, the number of process steps for forming the vertical structure LED of the present invention is reduced. 3 to 8 schematically illustrate a process for manufacturing a vertical structure GaN based light emitting diode (LED) according to the present invention. To manufacture GaN-based LEDs, sapphire substrates have been commonly used because sapphire is very stable and relatively inexpensive. The epitaxial layer quality of various GaN layers grown on sapphire substrates is superior to other substrate materials due to thermal stability and similar crystal structure of GaN.

도 3을 참조하면, 버퍼층(120)이 투명 기판(100), 바람직하게는 사파이어 기판 상에 형성된다. 결국 사파이어 기판(100)의 기능을 대체하는 버퍼층(120)이 하나, 둘 또는 세 개의 층으로 형성될 수 있다. 예를 들면, 버퍼층(120)은 VPE에 의해 성장되는 n-GaN 층만을 가질 수 있다. 두 층의 버퍼층을 위해, GaN 층의 제 1 층(110)이 예컨대 VPE에 의해 사파이어 기판 상에 성장되고, n-GaN 층의 제 2 층(120)이 예컨대 VPE에 의해 GaN층(110) 상에 성장된다. 세 층의 버퍼층을 위해, GaN 층의 제 1 층(110)이 예컨대 VPE에 의해 사파이어 기판 상에 성장되고, 도핑되지 않은 GaN 층의 제 2 층(130)이 예컨대 VPE에 의해 GaN층의 제 1 층(110) 상에 성장되고, n-GaN 층의 제 3 층(120)이 예컨대 VPE에 의해 도핑되지 않은 GaN층(130) 상에 성장된다.Referring to FIG. 3, a buffer layer 120 is formed on a transparent substrate 100, preferably a sapphire substrate. As a result, the buffer layer 120 that replaces the function of the sapphire substrate 100 may be formed of one, two, or three layers. For example, the buffer layer 120 may have only an n-GaN layer grown by the VPE. For two buffer layers, the first layer 110 of the GaN layer is grown on the sapphire substrate, for example by VPE, and the second layer 120 of the n-GaN layer, on the GaN layer 110 by VPE, for example. Is grown on. For the three buffer layers, the first layer 110 of the GaN layer is grown on the sapphire substrate, for example by VPE, and the second layer 130 of the undoped GaN layer is the first layer of the GaN layer, for example by VPE. Grown on layer 110, a third layer 120 of n-GaN layer is grown on GaN layer 130, which is not doped, for example by VPE.

GaN 층(130)은 약 40 내지 50nm 범위의 두께를 갖도록 형성될 수 있다. 도핑되지 않은 GaN층(130)은 약 30 내지 40㎛ 범위의 두께를 갖도록 형성될 수 있다. n-GaN층(120)은 약 1 내지 2㎛의 두께를 갖도록 형성될 수 있다. n-GaN(120)을 위해, 실렌 가스(silene gas)(SiH4)가 n-type 도펀트로 사용될 수 있다.GaN layer 130 may be formed to have a thickness in the range of about 40-50 nm. The undoped GaN layer 130 may be formed to have a thickness in the range of about 30 to 40 μm. The n-GaN layer 120 may be formed to have a thickness of about 1 to 2 μm. For n-GaN 120, a silene gas (SiH 4 ) may be used as the n-type dopant.

도 4를 참조하면, n-GaN(140)과 같은 n-타입 에피택시얼 층이 유기 금속 화학증착법(MOCVD)에 의해 버퍼층(120) 상에 에피택시얼 성장된다. 유익하게, VPE 방법에 의해 성장된 버퍼층(120)의 화학적 클리닝 단계(도면에 도시되지 않음)가 MOCVD 방법에 의해 n-GaN층(140)을 성장시키기 전에 부가되어, 좋은 품질의 n-GaN 에피택시얼 층(140)을 얻을 수 있다. 본 예에서, n-GaN층(140)은 약 1017cm-3 또는 그 이상의 도핑 농도로 실리콘(Si)으로 도핑되었다.Referring to FIG. 4, an n-type epitaxial layer such as n-GaN 140 is epitaxially grown on the buffer layer 120 by organometallic chemical vapor deposition (MOCVD). Advantageously, a chemical cleaning step (not shown) of the buffer layer 120 grown by the VPE method is added before growing the n-GaN layer 140 by the MOCVD method, so as to produce good quality n-GaN epi. The taxi layer 140 may be obtained. In this example, n-GaN layer 140 was doped with silicon (Si) at a doping concentration of about 10 17 cm −3 or more.

도 5를 참조하면, AlInGaN 다중양자우물(MQW) 층과 같은 활성층(160)이 n-GaN 층(140) 상에 MOCVD 방법에 의해 형성된다. 활성층(160)은 단일 양자우물층 또는 이중 헤테로 구조를 포함하는 임의의 적당한 구조일 수 있다. 본 예에서, 인듐(In)의 양이 다이오드가 녹색을 띠는지 또는 청색을 띠는지를 결정한다. 청색을 갖는 LED를 위해서는, 약 22%의 인듐이 사용될 수 있다. 녹색을 갖는 LED를 위해서는, 약 40%의 인듐이 사용될 수 있다. 사용되는 인듐의 양은 청색 또는 녹색의 필요한 파장에 따라 변할 수 있다. 따라서, p-GaN층(180)은, 예컨대 활성층(160) 상에서 p-타입 도펀트로서 CP2Mg를 사용하여 MOCVD에 의해 형성된다. 본 예에 있어서, p-GaN층(180)은 약 1017cm-3 또는 그 이상의 도핑 농도로 마그네슘(Mg)으로 도핑되었다.Referring to FIG. 5, an active layer 160, such as an AlInGaN multi-quantum well (MQW) layer, is formed on the n-GaN layer 140 by the MOCVD method. Active layer 160 may be any suitable structure, including a single quantum well layer or a double heterostructure. In this example, the amount of indium (In) determines whether the diode is green or blue. For LEDs with blue, about 22% of indium can be used. For LEDs with green color, about 40% of indium can be used. The amount of indium used may vary depending on the required wavelength of blue or green. Thus, the p-GaN layer 180 is formed by MOCVD, for example, using CP 2 Mg as the p-type dopant on the active layer 160. In this example, the p-GaN layer 180 was doped with magnesium (Mg) at a doping concentration of about 10 17 cm −3 or more.

도 6A를 참조하면, 사파이어 기판(100)이 바람직하게는 레이저 분리 방법(laser lift-off method)에 의해 다른 층들로부터 분리된다. 사파이어 기판(100)을 다른 층들로부터 분리하기 위해 다른 적당한 기술이 사용될 수 있다. 상기 다른 층들은 버퍼층(120), n-GaN 층(140), 활성층(160), 및 p-GaN층(180)을 포함한다. 디바이스로부터 전기절연체인 사파이어 기판(100)을 제거함으로써, n-금속 접촉부가 전기 도전체인 n-타입 GaN 버퍼층(120) 아래에 형성될 수 있다. With reference to FIG. 6A, the sapphire substrate 100 is preferably separated from other layers by a laser lift-off method. Other suitable techniques may be used to separate the sapphire substrate 100 from other layers. The other layers include a buffer layer 120, an n-GaN layer 140, an active layer 160, and a p-GaN layer 180. By removing the sapphire substrate 100, which is an electrical insulator, from the device, an n-metal contact can be formed under the n-type GaN buffer layer 120, which is an electrical conductor.

도 6B를 참조하면, 기판(100)이 제거된 후에, 버퍼층(120) 아래의 층들이 또한 예컨대 건식 에칭을 사용하여 제거될 수 있다. 상기 단계는, 도 8에 도시된 바와 같이 n-접촉부(500)에 전기적으로 부착될 n-GaN 버퍼층(120)을 노출시킬 것이다.Referring to FIG. 6B, after the substrate 100 is removed, the layers under the buffer layer 120 may also be removed using, for example, dry etching. This step will expose the n-GaN buffer layer 120 to be electrically attached to the n-contact 500 as shown in FIG. 8.

도 8을 참조하면, 투명도전층(220)이 p-GaN층(180) 상에 형성된다. 투명도전층(220)은 예컨대 산화인듐주석(ITO)을 포함하는 임의의 적절한 물질로 제조될 수 있다. p-타입 전극(240)이 투명도전층(220) 상에 형성된다. n-타입 전극(500)이 버퍼층(120)의 하단부 상에 형성된다. p-타입 전극(240)은 예컨대 Ni/Au, Pd/Au, Pd/Ni 및 Pt를 포함하는 임의의 적당한 물질로 제조될 수 있다. n-타입 전극(500)은 예컨대 Ti/Al, Cr/Au 및 Ti/Au를 포함하는 임의의 적절한 물질로 제조될 수 있다. 패드(260)가 p-타입 전극(240) 상에 형성된다. 패드(260)는 예컨대 Au를 포함하는 임의의 적절한 물질로 제조될 수 있다. 패드(260)는 약 0.5㎛ 또는 그 이상의 두께를 가질 수 있다. p-타입 전극(240)과는 달리, n-타입 전극(500)은 패드를 필요로 하지 않는다. 다만, 바람직하게는 사용될 수 있다.Referring to FIG. 8, a transparent conductive layer 220 is formed on the p-GaN layer 180. The transparent conductive layer 220 may be made of any suitable material, including, for example, indium tin oxide (ITO). The p-type electrode 240 is formed on the transparent conductive layer 220. An n-type electrode 500 is formed on the lower end of the buffer layer 120. P-type electrode 240 may be made of any suitable material, including, for example, Ni / Au, Pd / Au, Pd / Ni, and Pt. The n-type electrode 500 may be made of any suitable material, including for example Ti / Al, Cr / Au and Ti / Au. Pad 260 is formed on p-type electrode 240. Pad 260 may be made of any suitable material, including, for example, Au. Pad 260 may have a thickness of about 0.5 μm or more. Unlike the p-type electrode 240, the n-type electrode 500 does not require a pad. However, it can be preferably used.

도 9는 클래드 층(cladding layer)(170)이 p-GaN 층(180) 및 활성층(160) 사이에 형성되는 다른 실시예를 도시한다. 클래드 층(170)은 바람직하게는 p-타입 도펀트로서 CP2Mg를 사용하여 MOCVD에 의해 p-AlGaN으로 형성된다. 클래드 층(170)은 LED 디바이스의 성능을 향상시킨다.9 illustrates another embodiment in which a cladding layer 170 is formed between the p-GaN layer 180 and the active layer 160. Clad layer 170 is preferably formed of p-AlGaN by MOCVD using CP 2 Mg as p-type dopant. Clad layer 170 enhances the performance of the LED device.

본 발명에 따르면, 종래의 측면 및 수직 GaN 기반 LED들 모두에 비해 많은 장점이 있다. 종래의 측면 구조 GaN 기반 LED에 비해, 본 발명에 따른 제조 공정은, 디바이스의 상부에 n-금속 접촉부가 없기 때문에, 주어진 웨이퍼 사이즈 상에 제조되는 LED 디바이스의 수를 증가시킨다. 예를 들면, 디바이스의 크기가 250 x 250 ㎛에서 약 160 x 160 ㎛ 또는 그 이하로 줄어들 수 있다. 디바이스의 상단 또는 기판 상부에 n-금속 접촉부를 가지지 않음으로써, 본 발명에 따라, 제조 공정이 매우 간략화될 수 있다. 이는 추가적 포토리소그래피 또는 에칭 공정이 n-타입 접촉부를 형성하기 위해 필요하지 않고, 종래의 측면 구조 GaN 기반 LED에 있어서 n-GaN 층 상에 자주 가해지는 플라즈마 손상이 없기 때문이다. 더욱이, 본 발명에 따라 제조되는 LED 디바이스는 정전기에 더욱 강하고, 이는 LED가 종래의 측면 구조 LED 디바이스보다 고압 응용에 적합하게 한다.According to the present invention, there are many advantages over both conventional side and vertical GaN based LEDs. Compared with conventional side structure GaN based LEDs, the manufacturing process according to the present invention increases the number of LED devices fabricated on a given wafer size since there are no n-metal contacts on top of the device. For example, the size of the device can be reduced from 250 × 250 μm to about 160 × 160 μm or less. By not having n-metal contacts on top of the device or on top of the substrate, according to the invention, the manufacturing process can be very simplified. This is because no additional photolithography or etching process is required to form the n-type contacts, and there is no plasma damage often applied on the n-GaN layer in conventional side structure GaN based LEDs. Moreover, LED devices made in accordance with the present invention are more resistant to static electricity, which makes LEDs more suitable for high pressure applications than conventional side structure LED devices.

일반적으로, VPE 증착 방법은 훨씬 더 간단하고, MOCVD 증착 방법보다 소정 두께로 에피택시얼 층을 성장시키는데 적은 시간을 필요로 한다. 따라서, 본 발명에 따른 제조 공정은 MOCVD 방법에 의해 버퍼 및 n-GaN 층들을 성장시킬 필요가 없다는 점에서, 종래의 수직 GaN 기반 LED에 비해 제조 공정이 더욱 간단하고, 공정 시간이 훨씬 줄어든다. 예컨대, 전체로 볼 때, 제조 공정 수가 종래 방법의 28단계에서 본 방법 발명의 15 단계로 줄어든다. 또한, 사파이어 기판보다 10배 이상 고가일 수 있는 탄화규소(SiC)를 기판으로 사용하는 종래의 수직 구조 GaN 기반 LED에 비해, 제조 비용이 상당히 줄어든다. 더욱이, 본 발명에 따른 방법은 종래의 수직 구조 GaN 기반 LED보다 접합 패드와 n 및 p 접촉부 간의 금속 부착 훨씬 향상시킨다. In general, the VPE deposition method is much simpler and requires less time to grow the epitaxial layer to a predetermined thickness than the MOCVD deposition method. Thus, the manufacturing process according to the present invention is simpler than the conventional vertical GaN based LED in that the manufacturing process does not need to grow buffer and n-GaN layers by the MOCVD method, and the process time is much shorter. For example, as a whole, the number of manufacturing processes is reduced from 28 steps of the conventional method to 15 steps of the present invention. In addition, manufacturing costs are significantly reduced compared to conventional vertical structure GaN based LEDs using silicon carbide (SiC), which can be 10 times more expensive than sapphire substrates. Moreover, the method according to the present invention significantly improves metal adhesion between the junction pad and the n and p contacts over conventional vertical structure GaN based LEDs.

본 발명으로써, LED의 바람직한 특성을 희생하거나 변경하지 않고, 저비용으로 GaN 기반 LED를 대량 생산하는 것이 가능해진다. 더욱이, 반사식 하단 n-접착부를 갖는 본 발명의 LED의 수직 구조는 LED의 휘도를 향상시킨다. 본 발명은 현재 상용 가능한 청색, 녹색, 적색, 및 백색 LED 뿐만 아니라 다른 적절한 디바이스에도 적용될 수 있다.With the present invention, it becomes possible to mass-produce GaN based LEDs at low cost without sacrificing or changing the desirable properties of the LEDs. Moreover, the vertical structure of the LED of the present invention with a reflective bottom n-junction improves the brightness of the LED. The present invention can be applied to other suitable devices as well as blue, green, red, and white LEDs currently available.

본 발명은 GaN 테크놀로지 다이오드를 참조로 자세히 설명되었지만, 본 발명은 수직 공진 표면 방출 레이저(Vertical Cavity Surface Emitting Laser(VCSEL))를 포함하는 레이저 다이오드 및 적색 LED를 포함하는 다른 타입의 다이오드에 용이하게 적용될 수 있다.Although the invention has been described in detail with reference to GaN technology diodes, the invention is readily applicable to other types of diodes, including laser diodes including vertical cavity surface emitting lasers (VCSELs) and red LEDs. Can be.

본 발명의 사상 및 범주를 벗어나지 않고 다양한 수정 및 변형이 본 발명 내에서 행해질 수 있음이 본 기술분야의 당업자에게 분명할 것이다. 따라서, 본 발명의 수정 및 변형이 첨부된 청구항들 및 이의 균등물의 범위 내에 속하면 본 발명에 속하는 것으로 의도된다.It will be apparent to those skilled in the art that various modifications and variations can be made within the present invention without departing from the spirit and scope of the invention. Accordingly, it is intended that the modifications and variations of this invention fall within the scope of the appended claims and their equivalents.

전술한 내용에 포함되어 있음.Included in the foregoing.

Claims (63)

도전층;Conductive layer; 도전층 위에 있는 n-GaN층;An n-GaN layer over the conductive layer; n-GaN 층 위에 있는 활성층;an active layer over the n-GaN layer; 활성층 위에 있는 p-GaN층; 및A p-GaN layer over the active layer; And p-GaN층 위에 있는 p-전극을 포함하고,a p-electrode on the p-GaN layer, 상기 도전층은 n-전극인, 발광 다이오드.Wherein the conductive layer is an n-electrode. 제 1 항에 있어서,The method of claim 1, 도전층이 반사층 역할도 하여, 활성층으로부터의 광을 반사시키는 것을 특징으로 하는 발광 다이오드.A light emitting diode, wherein the conductive layer also serves as a reflective layer to reflect light from the active layer. 제 1 항에 있어서,The method of claim 1, 도전층은 알루미늄으로 제조되는 것을 특징으로 하는 발광 다이오드.Light-emitting diode, characterized in that the conductive layer is made of aluminum. 제 1 항에 있어서,The method of claim 1, 도전층은, 알루미늄, 금, 팔라듐, 티타늄, 인듐, 니켈 및 백금으로 이루어진 그룹에서 선택된 금속을 포함하는 것을 특징으로 하는 발광 다이오드.The conductive layer includes a metal selected from the group consisting of aluminum, gold, palladium, titanium, indium, nickel and platinum. 제 4 항에 있어서,The method of claim 4, wherein 도전층은 약 99.999% 또는 그 이상의 농도를 갖는 알루미늄을 포함하는 것을 특징으로 하는 발광 다이오드.Wherein the conductive layer comprises aluminum having a concentration of about 99.999% or greater. 제 1 항에 있어서,The method of claim 1, 도전층은 약 3000Å의 알루미늄을 포함하는 것을 특징으로 하는 발광 다이오드.A light emitting diode, wherein the conductive layer comprises about 3000 kV of aluminum. 제 1 항에 있어서,The method of claim 1, 도전층은 n-GaN 층의 한 면을 완전히 덮는 것을 특징으로 하는 발광 다이오드.A light emitting diode, wherein the conductive layer completely covers one side of the n-GaN layer. 제 1 항에 있어서,The method of claim 1, 도전층 및 n-GaN 층 사이에 버퍼층을 더욱 포함하는 것을 특징으로 하는 발광 다이오드.A light emitting diode further comprising a buffer layer between the conductive layer and the n-GaN layer. 제 1 항에 있어서,The method of claim 1, 버퍼층은 n-GaN을 포함하는 것을 특징으로 하는 발광 다이오드.Light-emitting diode, characterized in that the buffer layer comprises n-GaN. 제 1 항에 있어서, The method of claim 1, p-전극 및 p-GaN 층 사이에 p-투명 접촉부를 더욱 포함하는 것을 특징으로 하는 발광 다이오드.and a p-transparent contact portion between the p-electrode and the p-GaN layer. 제 10 항에 있어서,The method of claim 10, p-투명 접촉부는 산화인듐주석(indium-tin-oxide)을 포함하는 것을 특징으로 하는 발광 다이오드.and the p-transparent contact portion comprises indium-tin-oxide. 제 1 항에 있어서,The method of claim 1, p-전극 상에 금속 패드를 더욱 포함하는 것을 특징으로 하는 발광 다이오드.and a metal pad on the p-electrode. 제 12 항에 있어서,The method of claim 12, 금속 패드는 약 5000Å 또는 그 이상인 것을 특징으로 하는 발광 다이오드.A light emitting diode, wherein the metal pad is about 5000 mW or more. 제 12 항에 있어서,The method of claim 12, 금속 패드는 Au를 포함하는 것을 특징으로 하는 발광 다이오드.The metal pad includes Au. 제 1 항에 있어서,The method of claim 1, 도전층은 Ti 및 Al(Ti/Al)을 포함하는 것을 특징으로 하는 발광 다이오드.Light-emitting diode, characterized in that the conductive layer comprises Ti and Al (Ti / Al). 제 1 항에 있어서, The method of claim 1, 도전층은 Ti/Al, Cr/Au 및 Ti/Au로 이루어진 그룹에서 선택된 물질을 포함하는 것을 특징으로 하는 발광 다이오드.The conductive layer is a light emitting diode comprising a material selected from the group consisting of Ti / Al, Cr / Au and Ti / Au. 제 1 항에 있어서,The method of claim 1, p-전극은 Ni 및 Au(Ni/Au)를 포함하는 것을 특징으로 하는 발광 다이오드.The p-electrode comprises Ni and Au (Ni / Au). 제 1 항에 있어서,The method of claim 1, p 전극은 Ni/Au, Pd/Au, Pd/Ni 및 Pt로 이루어진 그룹에서 선택된 물질을 포함하는 것을 특징으로 하는 발광 다이오드.p-electrode comprises a material selected from the group consisting of Ni / Au, Pd / Au, Pd / Ni and Pt. 제 1 항에 있어서,The method of claim 1, 활성층은 AlInGaN을 포함하는 것을 특징으로 하는 발광 다이오드.Light-emitting diode, characterized in that the active layer comprises AlInGaN. 제 1 항에 있어서,The method of claim 1, 활성층은 양자우물층(quantum well layer) 및 이중헤테로구조(double hetero structure) 중 적어도 하나를 포함하는 것을 특징으로 하는 발광 다이오드.The active layer comprises at least one of a quantum well layer (quantum well layer) and a double hetero structure (double hetero structure). 제 1 항에 있어서,The method of claim 1, 양자층은 다중 양자층을 포함하는 것을 특징으로 하는 발광 다이오드.A light emitting diode, characterized in that the quantum layer comprises multiple quantum layers. 제 1 항에 있어서,The method of claim 1, p-GaN 층 및 활성층 사이에 클래드층(cladding layer)을 더욱 포함하는 것을 특징으로 하는 발광 다이오드.A light emitting diode further comprising a cladding layer between the p-GaN layer and the active layer. 제 1 전극;A first electrode; 제 1 전극 상에 있는 n-타입층 및 p-타입층;An n-type layer and a p-type layer on the first electrode; n-타입층 및 p-타입층 사이에 있는 활성층; 및an active layer between the n-type layer and the p-type layer; And p-타입층과 접촉하는 제 2 전극을 포함하고,a second electrode in contact with the p-type layer, 제 1 전극은 n-타입층과 접촉하고, 반사층 역할을 하여 활성층으로부터의 광을 반사시키는, 발광 다이오드.The first electrode is in contact with the n-type layer and serves as a reflective layer to reflect light from the active layer. 제 23 항에 있어서,The method of claim 23, 반사층은 n-타입층을 완전히 덮는 것을 특징을 하는 발광 다이오드.And the reflective layer completely covers the n-type layer. 제 23 항에 있어서,The method of claim 23, 반사층은 알루미늄을 포함하는 것을 특징으로 하는 발광 다이오드.The light emitting diode, characterized in that the reflective layer comprises aluminum. 제 25 항에 있어서,The method of claim 25, 알루미늄은 약 99.999% 또는 그 이상의 농도를 갖는 것을 특징으로 하는 발광 다이오드.Light-emitting diodes, characterized in that aluminum has a concentration of about 99.999% or more. 제 23 항에 있어서,The method of claim 23, 제 1 전극 및 n-타입층 사이에 버퍼층을 더욱 포함하는 것을 특징으로 하는 발광 다이오드.A light emitting diode further comprising a buffer layer between the first electrode and the n-type layer. 제 27 항에 있어서,The method of claim 27, 버퍼층은 n-GaN을 포함하는 것을 특징으로 하는 발광 다이오드.Light-emitting diode, characterized in that the buffer layer comprises n-GaN. 제 23 항에 있어서,The method of claim 23, 활성층은 양자우물층 및 이중헤테로구조 중 적어도 하나를 포함하는 것을 특징으로 하는 발광 다이오드.The active layer includes at least one of a quantum well layer and a double hetero structure. 제 23 항에 있어서,The method of claim 23, 양자층은 다중양자층을 포함하는 것을 특징으로 하는 발광 다이오드.The quantum layer is a light emitting diode comprising a multi-quantum layer. 기판 상에 제 1 n-GaN층을 형성하는 단계;Forming a first n-GaN layer on the substrate; 제 1 n-GaN층 상에 활성층을 형성하는 단계;Forming an active layer on the first n-GaN layer; 활성층 상에 p-GaN층을 형성하는 단계;Forming a p-GaN layer on the active layer; 제 1 n-GaN층에서 기판을 분리시키는 단계;Separating the substrate from the first n-GaN layer; n-GaN층 상에 n-타입 접촉층을 형성하는 단계; forming an n-type contact layer on the n-GaN layer; p-GaN층 상에 p-전극을 형성하는 단계를 포함하고,forming a p-electrode on the p-GaN layer, n-타입 접촉층은 반사층 역할을 하여 활성층으로부터의 광을 반사시키는, 다이오드 제조방법.The n-type contact layer acts as a reflective layer to reflect light from the active layer. 제 31 항에 있어서,The method of claim 31, wherein p-전극이 기판을 분리시키는 단계 전에 형성되는 것을 특징으로 하는 다이오드 제조방법.and the p-electrode is formed before the step of separating the substrate. 제 31 항에 있어서,The method of claim 31, wherein 기판 및 제 1 n-GaN층 사이에 제 2 n-GaN층을 형성하는 단계를 더욱 포함하는 것을 특징으로 하는 다이오드 제조방법.And forming a second n-GaN layer between the substrate and the first n-GaN layer. 제 33 항에 있어서,The method of claim 33, wherein 제 2 n-GaN은 유기 금속 화학 증착법(MOCVD)을 사용하여 형성되는 것을 특징으로 하는 다이오드 제조방법.And the second n-GaN is formed using organometallic chemical vapor deposition (MOCVD). 제 31 항에 있어서,The method of claim 31, wherein 기판은 사파이어를 포함하는 것을 특징으로 하는 다이오드 제조방법.Diode manufacturing method characterized in that the substrate comprises sapphire. 제 31 항에 있어서, The method of claim 31, wherein 기판은 레이저를 사용하여 제 1 n-GaN에서 분리되는 것을 특징으로 하는 다이오드 제조방법.And the substrate is separated from the first n-GaN using a laser. 제 31 항에 있어서,The method of claim 31, wherein p-전극 및 p-GaN 층 사이에 투명 도전층을 형성하는 단계를 더욱 포함하는 것을 특징으로 하는 다이오드 제조방법.and forming a transparent conductive layer between the p-electrode and the p-GaN layer. 한 면 상에 에피택시얼 성장 GaN층을 갖는 제 1 전극;A first electrode having an epitaxially grown GaN layer on one side; 제 2 전극;Second electrode; 제 1 및 2 전극들 사이에 있는 활성층을 포함하고,An active layer between the first and second electrodes, 제 1 전극은 활성층으로부터의 광을 반사시키는 반사층인, 다이오드.The first electrode is a reflective layer that reflects light from the active layer. 제 38 항에 있어서,The method of claim 38, 반사층은 다이오드에서 나오는 광을 최대화하는 것을 특징으로 하는 조명장치.Illuminating device, characterized in that the reflective layer maximizes the light emitted from the diode. 제 1 GaN층을 갖는 기판 상에 제 2 GaN층을 형성하는 단계;Forming a second GaN layer on the substrate having the first GaN layer; 제 2 GaN층 상에 활성층을 형성하는 단계;Forming an active layer on the second GaN layer; 활성층 상에 제 3 GaN층을 형성하는 단계;Forming a third GaN layer on the active layer; 제 1 GaN층에서 기판을 분리시키는 단계; 및 Separating the substrate in the first GaN layer; And 기판이 분리된 제 1 GaN층 상에 제 1 전극을 형성하는 단계를 포함하고,Forming a first electrode on the separated first GaN layer; 제 1 전극은 활성층으로부터의 광을 반사시키는 반사층인, 다이오드 제조방법.The method of claim 1, wherein the first electrode is a reflective layer that reflects light from the active layer. 제 40 항에 있어서,The method of claim 40, 제 2 GaN층이 제 1 GaN층 상에 유기 금속 화학증착법(MOCVD)을 사용하여 형성되는 것을 특징으로 하는 다이오드 제조방법.And a second GaN layer is formed on the first GaN layer using organometallic chemical vapor deposition (MOCVD). 제 40 항에 있어서,The method of claim 40, 제 1 GaN층이 기판 상에 에피택시얼 성장되는 것을 특징으로 하는 다이오드 제조방법.A method for fabricating a diode, wherein a first GaN layer is epitaxially grown on a substrate. 제 40 항에 있어서,The method of claim 40, 기판이 레이저를 사용하여 분리되는 것을 특징으로 하는 다이오드 제조방법.Diode manufacturing method characterized in that the substrate is separated using a laser. 제 40 항에 있어서,The method of claim 40, 활성층은 다중 양자 우물을 포함하는 것을 특징으로 하는 다이오드 제조방법.12. A method of fabricating a diode, wherein the active layer comprises multiple quantum wells. 제 40 항에 있어서, The method of claim 40, 기판은 사파이어를 포함하는 것을 특징으로 하는 다이오드 제조방법.Diode manufacturing method characterized in that the substrate comprises sapphire. 제 40 항에 있어서,The method of claim 40, 제 1 전극은 알루미늄을 포함하는 것을 특징으로 하는 다이오드 제조방법.Diode manufacturing method, characterized in that the first electrode comprises aluminum. 제 1 극성의 반사도전층;A reflective conductive layer of a first polarity; 반사도전층 상에 있는 제 1 극성의 제1 GaN층;A first GaN layer of a first polarity on the reflective conductive layer; 제 1 GaN층 상에 있는 활성층;An active layer on the first GaN layer; 활성층 상에 있는 제 2 극성의 제 2 GaN층; 및A second GaN layer of second polarity on the active layer; And 제 2 GaN층 상에 있는 제 2 극성의 전극을 포함하는, 발광 다이오드.A light emitting diode comprising an electrode of a second polarity on the second GaN layer. 제 47 항에 있어서,The method of claim 47, 제 2 GaN층 및 전극 사이에 투명도전층을 더욱 포함하는 것을 특징으로 하는 발광 다이오드.The light emitting diode further comprising a transparent conductive layer between the second GaN layer and the electrode. 제 47 항에 있어서,The method of claim 47, 반사층은 도전성 물질을 포함하고, 제 1 극성의 전극 역할을 하는 것을 특징으로 하는 발광 다이오드.The reflective layer includes a conductive material and serves as an electrode of a first polarity. 제 47 항에 있어서, The method of claim 47, 반사층은 제 1 GaN층과 실질적으로 동일한 면적을 갖는 것을 특징으로 하는 발광 다이오드.A light emitting diode, wherein the reflective layer has an area substantially the same as that of the first GaN layer. 제 47 항에 있어서,The method of claim 47, 제 1 극성은 n-타입이고, 제 2 극성은 p-타입인 것을 특징으로 하는 발광 다이오드.Wherein the first polarity is n-type and the second polarity is p-type. 제 47 항에 있어서,The method of claim 47, 활성층 및 제 2 GaN층 사이에 클래드 층을 더욱 포함하는 것을 특징으로 하는 발광 다이오드.A light emitting diode further comprising a cladding layer between the active layer and the second GaN layer. 제 52 항에 있어서,The method of claim 52, wherein 클래드 층은 AlGaN을 포함하는 것을 특징으로 하는 발광 다이오드.The cladding layer comprises AlGaN. 제 47 항에 있어서,The method of claim 47, 활성층은 양자우물층 및 이중헤테로구조 중 적어도 하나를 포함하는 것을 특징으로 하는 발광 다이오드.The active layer includes at least one of a quantum well layer and a double hetero structure. 제 47 항에 있어서,The method of claim 47, 양자층은 다중 양자우물층을 포함하는 것을 특징으로 하는 발광 다이오드.The quantum layer is a light emitting diode comprising a multiple quantum well layer. n-GaN 버퍼층의 제 1 면 상에 n-GaN을 형성하는 단계;forming n-GaN on the first surface of the n-GaN buffer layer; n-GaN층 상에 AlInGaN 활성층을 형성하는 단계;forming an AlInGaN active layer on the n-GaN layer; AlInGaN 활성층 상에 클래드 층을 형성하는 단계;Forming a cladding layer on the AlInGaN active layer; p-AlGaN 클래드 층 상에 p-GaN층을 형성하는 단계;forming a p-GaN layer on the p-AlGaN clad layer; p-GaN층 상에 p-타입 전극을 형성하는 단계;forming a p-type electrode on the p-GaN layer; p-GaN층 상에 투명 도전층을 형성하는 단계; 및forming a transparent conductive layer on the p-GaN layer; And n-GaN 버퍼층의 제 2 면 상에 n-타입 전극을 형성하는 단계를 포함하는, n-접촉부를 갖는 발광 다이오드 제조방법.forming an n-type electrode on the second surface of the n-GaN buffer layer. 제 56 항에 있어서,The method of claim 56, wherein 클래드 층은 p-AlGaN을 포함하는 것을 특징으로 하는 발광 다이오드.The cladding layer comprises p-AlGaN. 제 56 항에 있어서,The method of claim 56, wherein 클래드 층은 유기 금속 화학증착법(MOCVD)에 의해 형성되는 것을 특징으로 하는 발광 다이오드.The cladding layer is formed by organic metal chemical vapor deposition (MOCVD). 제 1 및 2 포면을 갖는 버퍼층;A buffer layer having a first and a second surface; 버퍼층의 제 1 표면 상에 있는 n-GaN층;An n-GaN layer on the first surface of the buffer layer; n-GaN 층 상에 있는 활성층; an active layer on the n-GaN layer; 활성층 상에 있는 p-GaN층;A p-GaN layer on the active layer; p-GaN층 상에 있는 p-전극; 및a p-electrode on the p-GaN layer; And 버퍼층의 제 2 표면 상에 있는 n-전극을 포함하는 다이오드.And a n-electrode on the second surface of the buffer layer. 제 59 항에 있어서,The method of claim 59, 활성층 및 p-GaN층 사이에 형성되는 클래드 층을 더욱 포함하는 것을 특징으로 하는 다이오드.And a cladding layer formed between the active layer and the p-GaN layer. 제 60 항에 있어서,The method of claim 60, 클래드 층은 p-AlGaN을 포함하는 것을 특징으로 하는 다이오드.And wherein the cladding layer comprises p-AlGaN. 제 59 항에 있어서,The method of claim 59, 금속 투명접촉부가 p-GaN층 상에 형성되는 것을 특징으로 하는 다이오드.And a metal transparent contact portion is formed on the p-GaN layer. 제 62 항에 있어서,The method of claim 62, 금속 패드가 금속 투명접촉부의 한 면 상에 형성되는 것을 특징으로 하는 다이오드. And a metal pad is formed on one side of the metal transparent contact portion.
KR1020047006203A 2001-10-26 2002-10-21 Diode having vertical structure and method of manufacturing the same KR100921456B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/983,994 US7148520B2 (en) 2001-10-26 2001-10-26 Diode having vertical structure and method of manufacturing the same
US09/983,994 2001-10-26

Publications (2)

Publication Number Publication Date
KR20050038581A true KR20050038581A (en) 2005-04-27
KR100921456B1 KR100921456B1 (en) 2009-10-13

Family

ID=25530226

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020047006203A KR100921456B1 (en) 2001-10-26 2002-10-21 Diode having vertical structure and method of manufacturing the same

Country Status (5)

Country Link
US (11) US7148520B2 (en)
EP (3) EP1451853A4 (en)
JP (4) JP2005532673A (en)
KR (1) KR100921456B1 (en)
WO (1) WO2003038874A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8003414B2 (en) 2008-07-16 2011-08-23 Samsung Electronics, Co., Ltd. Light emitting elements and methods of fabricating the same
WO2011065665A3 (en) * 2009-11-30 2011-09-29 Siltron Inc. Method of manufacturing nitride semiconductor device
KR101448693B1 (en) * 2007-05-04 2014-10-08 세미엘이디즈 옵토일렉트로닉스, 컴퍼니 리미티드 Method of making high efficiency uv vled on metal substrate

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7067849B2 (en) 2001-07-17 2006-06-27 Lg Electronics Inc. Diode having high brightness and method thereof
US7211833B2 (en) * 2001-07-23 2007-05-01 Cree, Inc. Light emitting diodes including barrier layers/sublayers
US6949395B2 (en) 2001-10-22 2005-09-27 Oriol, Inc. Method of making diode having reflective layer
US7148520B2 (en) * 2001-10-26 2006-12-12 Lg Electronics Inc. Diode having vertical structure and method of manufacturing the same
CN101420004B (en) * 2002-02-15 2012-07-04 三菱化学株式会社 Light emitting device and illuminator using the same
US8294172B2 (en) 2002-04-09 2012-10-23 Lg Electronics Inc. Method of fabricating vertical devices using a metal support film
US20030189215A1 (en) 2002-04-09 2003-10-09 Jong-Lam Lee Method of fabricating vertical structure leds
US6841802B2 (en) 2002-06-26 2005-01-11 Oriol, Inc. Thin film light emitting diode
TWI344706B (en) * 2003-06-04 2011-07-01 Myung Cheol Yoo Method of fabricating vertical structure compound semiconductor devices
KR101034055B1 (en) * 2003-07-18 2011-05-12 엘지이노텍 주식회사 Light emitting diode and method for manufacturing light emitting diode
JP4766845B2 (en) * 2003-07-25 2011-09-07 シャープ株式会社 Nitride-based compound semiconductor light-emitting device and method for manufacturing the same
US20050079642A1 (en) * 2003-10-14 2005-04-14 Matsushita Elec. Ind. Co. Ltd. Manufacturing method of nitride semiconductor device
KR100647279B1 (en) * 2003-11-14 2006-11-17 삼성전자주식회사 light emitting device and method of manufacturing thereof
TWI249255B (en) 2004-04-07 2006-02-11 Epitech Corp Ltd Nitride light-emitting diode and mthod for manufacturing the same
CN101901858B (en) * 2004-04-28 2014-01-29 沃提科尔公司 Vertical structure semiconductor devices
KR100663324B1 (en) 2004-04-29 2007-01-02 주식회사 이츠웰 light emitting diode with vertical electrode and manufacturing method of the same
KR100593912B1 (en) 2004-06-04 2006-06-30 삼성전기주식회사 Gallium nitride based semiconductor light emitting device and fabrication method thereof
TWI433343B (en) * 2004-06-22 2014-04-01 Verticle Inc Vertical structure semiconductor devices with improved light output
US7795623B2 (en) 2004-06-30 2010-09-14 Cree, Inc. Light emitting devices having current reducing structures and methods of forming light emitting devices having current reducing structures
US7557380B2 (en) 2004-07-27 2009-07-07 Cree, Inc. Light emitting devices having a reflective bond pad and methods of fabricating light emitting devices having reflective bond pads
CN100590898C (en) * 2004-07-29 2010-02-17 昭和电工株式会社 Positive electrode for semiconductor light-emitting device
US8174037B2 (en) 2004-09-22 2012-05-08 Cree, Inc. High efficiency group III nitride LED with lenticular surface
US7737459B2 (en) 2004-09-22 2010-06-15 Cree, Inc. High output group III nitride light emitting diodes
TWI389334B (en) * 2004-11-15 2013-03-11 Verticle Inc Method for fabricating and separating semicondcutor devices
US7335920B2 (en) * 2005-01-24 2008-02-26 Cree, Inc. LED with current confinement structure and surface roughening
JP5138873B2 (en) 2005-05-19 2013-02-06 日亜化学工業株式会社 Nitride semiconductor device
US8674375B2 (en) * 2005-07-21 2014-03-18 Cree, Inc. Roughened high refractive index layer/LED for high light extraction
CN101882656B (en) * 2005-10-29 2014-03-12 三星显示有限公司 Semiconductor device and fabricating method thereof
US7829909B2 (en) * 2005-11-15 2010-11-09 Verticle, Inc. Light emitting diodes and fabrication methods thereof
KR100735488B1 (en) * 2006-02-03 2007-07-04 삼성전기주식회사 Method for forming the gan type led device
EP1821347B1 (en) * 2006-02-16 2018-01-03 LG Electronics Inc. Light emitting device having vertical structure and method for manufacturing the same
KR20070102114A (en) * 2006-04-14 2007-10-18 엘지이노텍 주식회사 Nitride semiconductor light-emitting device and manufacturing method thereof
US7915624B2 (en) 2006-08-06 2011-03-29 Lightwave Photonics, Inc. III-nitride light-emitting devices with one or more resonance reflectors and reflective engineered growth templates for such devices, and methods
KR101393745B1 (en) * 2007-06-21 2014-05-12 엘지이노텍 주식회사 Semiconductor LED and fabrication method thereof
US7915629B2 (en) * 2008-12-08 2011-03-29 Cree, Inc. Composite high reflectivity layer
WO2009108733A2 (en) * 2008-02-25 2009-09-03 Lightwave Photonics, Inc. Current-injecting/tunneling light-emitting device and method
RU2452061C2 (en) * 2009-10-16 2012-05-27 Общество с ограниченной ответственностью "Нитридные кристаллы" Semiconductor element emitting light in ultraviolet band
JP5526712B2 (en) * 2009-11-05 2014-06-18 豊田合成株式会社 Semiconductor light emitting device
WO2011069242A1 (en) * 2009-12-09 2011-06-16 Cooledge Lighting Inc. Semiconductor dice transfer-enabling apparatus and method for manufacturing transfer-enabling apparatus
US20110151588A1 (en) * 2009-12-17 2011-06-23 Cooledge Lighting, Inc. Method and magnetic transfer stamp for transferring semiconductor dice using magnetic transfer printing techniques
US8334152B2 (en) * 2009-12-18 2012-12-18 Cooledge Lighting, Inc. Method of manufacturing transferable elements incorporating radiation enabled lift off for allowing transfer from host substrate
KR101659738B1 (en) * 2010-07-08 2016-09-26 엘지이노텍 주식회사 Light emitting device fabrication method
CN102456825A (en) * 2010-10-25 2012-05-16 展晶科技(深圳)有限公司 Light-emitting diode and manufacturing method thereof
CN102157649B (en) * 2011-01-31 2014-05-21 杭州士兰明芯科技有限公司 Gallium nitride light-emitting diode (GaN LED) chip with vertical structure and manufacturing method thereof
CN102751403A (en) * 2011-04-20 2012-10-24 武汉迪源光电科技有限公司 Epitaxial structure of light emitting diode
US9728676B2 (en) 2011-06-24 2017-08-08 Cree, Inc. High voltage monolithic LED chip
US10243121B2 (en) 2011-06-24 2019-03-26 Cree, Inc. High voltage monolithic LED chip with improved reliability
CN102244087A (en) * 2011-07-29 2011-11-16 贵州大学 Controllable power flip array light emitting diode (LED) chip and manufacturing method thereof
US20140008660A1 (en) * 2012-03-14 2014-01-09 Lightwave Photonics, Inc. Materials, structures, and methods for optical and electrical iii-nitride semiconductor devices
CN102629652B (en) * 2012-04-23 2014-03-19 厦门市三安光电科技有限公司 Light emitting diode and preparation method thereof
US9450152B2 (en) 2012-05-29 2016-09-20 Micron Technology, Inc. Solid state transducer dies having reflective features over contacts and associated systems and methods
JP5881560B2 (en) * 2012-08-30 2016-03-09 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
EP2912685B1 (en) * 2012-10-26 2020-04-08 RFHIC Corporation Semiconductor devices with improved reliability and operating life and methods of manufacturing the same
CN103258926B (en) * 2013-04-28 2017-02-22 西安交通大学 LED vertical chip structure and manufacturing method
US9443728B2 (en) * 2013-08-16 2016-09-13 Applied Materials, Inc. Accelerated relaxation of strain-relaxed epitaxial buffers by use of integrated or stand-alone thermal processing
KR102084718B1 (en) * 2013-08-19 2020-03-05 삼성디스플레이 주식회사 Backlight unit and display device including the same
JP2015153826A (en) * 2014-02-12 2015-08-24 ウシオ電機株式会社 Nitride semiconductor light emitting element and manufacturing method of the same
CN104158086B (en) * 2014-08-27 2017-07-28 武汉光迅科技股份有限公司 A kind of light emitting semiconductor device
US10658546B2 (en) 2015-01-21 2020-05-19 Cree, Inc. High efficiency LEDs and methods of manufacturing
US10263144B2 (en) 2015-10-16 2019-04-16 Robbie J. Jorgenson System and method for light-emitting devices on lattice-matched metal substrates
CA3025350C (en) 2016-05-26 2021-11-16 Robbie Jorgenson Group iiia nitride growth system and method
TWI589023B (en) * 2016-06-27 2017-06-21 國立暨南國際大學 Substrate for semiconductor device and semiconductor device using the same
US10026863B2 (en) * 2016-07-13 2018-07-17 Dpix, Llc Method of manufacturing a sensor array
KR102302592B1 (en) * 2017-07-18 2021-09-15 삼성전자주식회사 Semiconductor light-emitting device
CN110858702A (en) * 2018-08-22 2020-03-03 三星电子株式会社 Back-emitting light source array device and electronic device having the same
CN109950375B (en) * 2019-01-31 2021-04-02 华灿光电(浙江)有限公司 Light emitting diode epitaxial wafer and growth method thereof
CN113270438B (en) * 2021-04-30 2024-02-20 广东德力光电有限公司 Manufacturing process of flip micro LED lattice

Family Cites Families (193)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4236296A (en) 1978-10-13 1980-12-02 Exxon Research & Engineering Co. Etch method of cleaving semiconductor diode laser wafers
US4704369A (en) 1985-04-01 1987-11-03 Energy Conversion Devices, Inc. Method of severing a semiconductor device
JPH06103751B2 (en) * 1988-05-18 1994-12-14 三洋電機株式会社 Silicon carbide light emitting diode device and method for manufacturing silicon carbide single crystal
JP2529397B2 (en) 1989-06-16 1996-08-28 松下電子工業株式会社 Electrode for mounting chip parts
JP2953468B2 (en) * 1989-06-21 1999-09-27 三菱化学株式会社 Compound semiconductor device and surface treatment method thereof
JP2588280B2 (en) 1989-07-10 1997-03-05 シャープ株式会社 Compound semiconductor light emitting device
US5593815A (en) 1989-07-31 1997-01-14 Goldstar Co., Ltd. Cleaving process in manufacturing a semiconductor laser
DE69025273T2 (en) 1989-11-22 1996-07-11 Daido Steel Co Ltd Light emitting diode with light reflecting layer
US6291257B1 (en) 1991-07-21 2001-09-18 Murata Manufacturing Co., Ltd. Semiconductor photonic device having a ZnO film as a buffer layer and method for forming the ZnO film
JP2666228B2 (en) 1991-10-30 1997-10-22 豊田合成株式会社 Gallium nitride based compound semiconductor light emitting device
US5578839A (en) 1992-11-20 1996-11-26 Nichia Chemical Industries, Ltd. Light-emitting gallium nitride-based compound semiconductor device
TW230822B (en) 1993-03-02 1994-09-21 Sumitomo Electric Industries
EP0622858B2 (en) 1993-04-28 2004-09-29 Nichia Corporation Gallium nitride-based III-V group compound semiconductor device and method of producing the same
US5656832A (en) 1994-03-09 1997-08-12 Kabushiki Kaisha Toshiba Semiconductor heterojunction device with ALN buffer layer of 3nm-10nm average film thickness
JPH07273368A (en) 1994-03-29 1995-10-20 Nec Kansai Ltd Light-emitting diode
US6130147A (en) 1994-04-07 2000-10-10 Sdl, Inc. Methods for forming group III-V arsenide-nitride semiconductor materials
JP3717196B2 (en) 1994-07-19 2005-11-16 豊田合成株式会社 Light emitting element
US5777350A (en) 1994-12-02 1998-07-07 Nichia Chemical Industries, Ltd. Nitride semiconductor light-emitting device
US5739554A (en) * 1995-05-08 1998-04-14 Cree Research, Inc. Double heterojunction light emitting diode with gallium nitride active layer
JP2987111B2 (en) 1995-08-31 1999-12-06 株式会社東芝 Semiconductor device and manufacturing method thereof
US5798537A (en) * 1995-08-31 1998-08-25 Kabushiki Kaisha Toshiba Blue light-emitting device
US6121638A (en) 1995-09-12 2000-09-19 Kabushiki Kaisha Toshiba Multi-layer structured nitride-based semiconductor devices
DE19549818B4 (en) 1995-09-29 2010-03-18 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor device
US6017774A (en) 1995-12-24 2000-01-25 Sharp Kabushiki Kaisha Method for producing group III-V compound semiconductor and fabricating light emitting device using such semiconductor
US5798536A (en) 1996-01-25 1998-08-25 Rohm Co., Ltd. Light-emitting semiconductor device and method for manufacturing the same
JPH09307189A (en) 1996-05-14 1997-11-28 Komatsu Ltd Light emitting element, semiconductor laser element, and device using these elements
JP3164016B2 (en) * 1996-05-31 2001-05-08 住友電気工業株式会社 Light emitting device and method for manufacturing wafer for light emitting device
US5977566A (en) 1996-06-05 1999-11-02 Kabushiki Kaisha Toshiba Compound semiconductor light emitter
WO1997049119A1 (en) 1996-06-19 1997-12-24 Matsushita Electric Industrial Co., Ltd. Photoelectronic material, device using the same, and method for manufacturing the same
US5684309A (en) * 1996-07-11 1997-11-04 North Carolina State University Stacked quantum well aluminum indium gallium nitride light emitting diodes
ATE251341T1 (en) 1996-08-01 2003-10-15 Surface Technology Systems Plc METHOD FOR ETCHING SUBSTRATES
JP3636835B2 (en) 1996-08-07 2005-04-06 ローム株式会社 Substrate dividing method and light emitting element manufacturing method using the substrate dividing method
JP3304787B2 (en) 1996-09-08 2002-07-22 豊田合成株式会社 Semiconductor light emitting device and method of manufacturing the same
US6057565A (en) 1996-09-26 2000-05-02 Kabushiki Kaisha Toshiba Semiconductor light emitting device including a non-stoichiometric compound layer and manufacturing method thereof
JP3087829B2 (en) * 1996-10-14 2000-09-11 日亜化学工業株式会社 Method for manufacturing nitride semiconductor device
JP3468644B2 (en) * 1996-10-22 2003-11-17 豊田合成株式会社 Group III nitride semiconductor light emitting device
WO1998019375A1 (en) * 1996-10-30 1998-05-07 Hitachi, Ltd. Optical information processor and semiconductor light emitting device suitable for the same
WO1998019188A1 (en) 1996-10-30 1998-05-07 Seiko Epson Corporation Color filter and its manufacturing method
US5904548A (en) 1996-11-21 1999-05-18 Texas Instruments Incorporated Trench scribe line for decreased chip spacing
US6291840B1 (en) 1996-11-29 2001-09-18 Toyoda Gosei Co., Ltd. GaN related compound semiconductor light-emitting device
JPH111399A (en) 1996-12-05 1999-01-06 Lg Electron Inc Production of gallium nitride semiconductor single crystal substrate and gallium nitride diode produced by using the substrate
JP3706452B2 (en) 1996-12-24 2005-10-12 ローム株式会社 Semiconductor light emitting device
CN100530719C (en) 1997-01-09 2009-08-19 日亚化学工业株式会社 Nitride semiconductor device
JP4146527B2 (en) * 1997-01-24 2008-09-10 ローム株式会社 Semiconductor light emitting device and manufacturing method thereof
JPH10294531A (en) 1997-02-21 1998-11-04 Toshiba Corp Nitride compound semiconductor light emitting element
US6185238B1 (en) 1997-02-21 2001-02-06 Kabushiki Kaisha Toshiba Nitride compound semiconductor laser and its manufacturing method
US6281524B1 (en) 1997-02-21 2001-08-28 Kabushiki Kaisha Toshiba Semiconductor light-emitting device
JPH10303460A (en) 1997-02-27 1998-11-13 Toshiba Corp Semiconductor element and its manufacture
JPH10247747A (en) 1997-03-05 1998-09-14 Toshiba Corp Semiconductor light emitting device and manufacture thereof
JP3439063B2 (en) 1997-03-24 2003-08-25 三洋電機株式会社 Semiconductor light emitting device and light emitting lamp
JP3897186B2 (en) 1997-03-27 2007-03-22 シャープ株式会社 Compound semiconductor laser
JPH10275936A (en) 1997-03-28 1998-10-13 Rohm Co Ltd Method for manufacturing semiconductor light-emitting element
JP3769872B2 (en) 1997-05-06 2006-04-26 ソニー株式会社 Semiconductor light emitting device
US6069021A (en) 1997-05-14 2000-05-30 Showa Denko K.K. Method of growing group III nitride semiconductor crystal layer and semiconductor device incorporating group III nitride semiconductor crystal layer
US6107647A (en) * 1997-05-15 2000-08-22 Rohm Co. Ltd. Semiconductor AlGaInP light emitting device
JPH10321913A (en) * 1997-05-19 1998-12-04 Sharp Corp Gallium nitride based light-emitting compound semiconductor element and its manufacture
US6239033B1 (en) 1998-05-28 2001-05-29 Sony Corporation Manufacturing method of semiconductor device
JP3462720B2 (en) 1997-07-16 2003-11-05 三洋電機株式会社 N-type nitride semiconductor electrode, semiconductor element having the electrode, and method of manufacturing the same
JP3693468B2 (en) 1997-07-23 2005-09-07 シャープ株式会社 Semiconductor light emitting device
JPH1168158A (en) 1997-08-20 1999-03-09 Sanyo Electric Co Ltd Gallium nitride based compound semiconductor device
US6335217B1 (en) 1997-10-10 2002-01-01 Toyoda Gosei Co., Ltd. GaN type semiconductor device fabrication
JP3517867B2 (en) * 1997-10-10 2004-04-12 豊田合成株式会社 GaN-based semiconductor devices
JPH11126925A (en) 1997-10-21 1999-05-11 Toyoda Gosei Co Ltd Gallium nitride compound semiconductor light-emitting element
US6026111A (en) * 1997-10-28 2000-02-15 Motorola, Inc. Vertical cavity surface emitting laser device having an extended cavity
US6479839B2 (en) 1997-11-18 2002-11-12 Technologies & Devices International, Inc. III-V compounds semiconductor device with an AlxByInzGa1-x-y-zN non continuous quantum dot layer
US5952681A (en) 1997-11-24 1999-09-14 Chen; Hsing Light emitting diode emitting red, green and blue light
US6146916A (en) 1997-12-02 2000-11-14 Murata Manufacturing Co., Ltd. Method for forming a GaN-based semiconductor light emitting device
JP3643225B2 (en) 1997-12-03 2005-04-27 ローム株式会社 Optical semiconductor chip
US6147363A (en) * 1997-12-25 2000-11-14 Showa Denko K.K. Nitride semiconductor light-emitting device and manufacturing method of the same
JP3301601B2 (en) 1998-01-27 2002-07-15 日亜化学工業株式会社 Nitride semiconductor light emitting device
JPH11238913A (en) 1998-02-20 1999-08-31 Namiki Precision Jewel Co Ltd Semiconductor light-emitting device chip
JPH11243251A (en) 1998-02-26 1999-09-07 Toshiba Corp Semiconductor laser
JPH11251612A (en) 1998-03-03 1999-09-17 Canon Inc Manufacture of photovoltaic element
JPH11261105A (en) 1998-03-11 1999-09-24 Toshiba Corp Semiconductor light-emitting device
US6249534B1 (en) 1998-04-06 2001-06-19 Matsushita Electronics Corporation Nitride semiconductor laser device
US6078064A (en) * 1998-05-04 2000-06-20 Epistar Co. Indium gallium nitride light emitting diode
US6936859B1 (en) * 1998-05-13 2005-08-30 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using group III nitride compound
US6218207B1 (en) 1998-05-29 2001-04-17 Mitsushita Electronics Corporation Method for growing nitride semiconductor crystals, nitride semiconductor device, and method for fabricating the same
US6194742B1 (en) 1998-06-05 2001-02-27 Lumileds Lighting, U.S., Llc Strain engineered and impurity controlled III-V nitride semiconductor films and optoelectronic devices
JP4352473B2 (en) 1998-06-26 2009-10-28 ソニー株式会社 Manufacturing method of semiconductor device
TW418549B (en) 1998-06-26 2001-01-11 Sharp Kk Crystal growth method for nitride semiconductor, nitride semiconductor light emitting device, and method for producing the same
DE19828970C2 (en) 1998-06-29 2000-05-18 Siemens Ag Process for the production and separation of semiconductor light-emitting diodes
US6504180B1 (en) 1998-07-28 2003-01-07 Imec Vzw And Vrije Universiteit Method of manufacturing surface textured high-efficiency radiating devices and devices obtained therefrom
JP3201475B2 (en) 1998-09-14 2001-08-20 松下電器産業株式会社 Semiconductor device and method of manufacturing the same
KR100277968B1 (en) 1998-09-23 2001-03-02 구자홍 Gallium nitride substrate manufacturing method
JP3896704B2 (en) * 1998-10-07 2007-03-22 松下電器産業株式会社 GaN compound semiconductor light emitting device
KR100304881B1 (en) 1998-10-15 2001-10-12 구자홍 GaN system compound semiconductor and method for growing crystal thereof
JP4212707B2 (en) 1998-11-26 2009-01-21 スピードファム株式会社 Wafer planarization system and wafer planarization method
JP2000174333A (en) * 1998-12-02 2000-06-23 Toshiba Corp Gallium nitride compound semiconductor light-emitting element and manufacture thereof
JP2000244068A (en) 1998-12-22 2000-09-08 Pioneer Electronic Corp Nitride semiconductor laser and fabrication thereof
US6744800B1 (en) 1998-12-30 2004-06-01 Xerox Corporation Method and structure for nitride based laser diode arrays on an insulating substrate
KR100316774B1 (en) 1999-01-15 2001-12-12 이형도 Method for fabricating a micro inertia sensor
US20010042866A1 (en) * 1999-02-05 2001-11-22 Carrie Carter Coman Inxalygazn optical emitters fabricated via substrate removal
US6456638B1 (en) 1999-02-08 2002-09-24 Fuji Photo Film Co., Ltd. High-power short-wavelength semiconductor light emitting device having active layer with increased indium content
JP2000244069A (en) * 1999-02-18 2000-09-08 Nippon Telegr & Teleph Corp <Ntt> Semiconductor hetero structure
CA2329810A1 (en) 1999-02-26 2000-09-08 The Furukawa Electric Co., Ltd. Semiconductor light-emitting device
EP1039555A1 (en) * 1999-03-05 2000-09-27 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor device
JP2000261035A (en) 1999-03-12 2000-09-22 Toyoda Gosei Co Ltd GaN-BASED SEMICONDUCTOR DEVICE
JP2000285409A (en) 1999-03-29 2000-10-13 Toshiba Corp Fabricating method of magnetic head and magnetic head
JP2000323797A (en) * 1999-05-10 2000-11-24 Pioneer Electronic Corp Nitride semiconductor laser and its manufacture
GB9912583D0 (en) * 1999-05-28 1999-07-28 Arima Optoelectronics Corp A light emitting diode having a two well system with asymmetric tunneling
US6803603B1 (en) * 1999-06-23 2004-10-12 Kabushiki Kaisha Toshiba Semiconductor light-emitting element
JP2001044491A (en) * 1999-07-13 2001-02-16 Korai Kagi Kofun Yugenkoshi Led and manufacturing method therefor
US6375790B1 (en) 1999-07-19 2002-04-23 Epion Corporation Adaptive GCIB for smoothing surfaces
JP2001102633A (en) * 1999-07-26 2001-04-13 Sharp Corp Method of manufacturing nitride-based compound semiconductor light emitting element
JP2001044490A (en) 1999-07-29 2001-02-16 Hitachi Cable Ltd Light-emitting diode
JP4412827B2 (en) 1999-08-20 2010-02-10 シャープ株式会社 Nitride semiconductor thick film substrate
JP4282173B2 (en) * 1999-09-03 2009-06-17 シャープ株式会社 Nitrogen compound semiconductor light emitting device and method of manufacturing the same
AU7621100A (en) 1999-09-29 2001-04-30 Nanovation Technologies, Inc. Method of forming smooth morphologies in inp-based semiconductors
JP2001119104A (en) * 1999-10-21 2001-04-27 Matsushita Electric Ind Co Ltd Method for manufacturing semiconductor
US6492661B1 (en) 1999-11-04 2002-12-10 Fen-Ren Chien Light emitting semiconductor device having reflection layer structure
JP2001144321A (en) * 1999-11-04 2001-05-25 Shurai Kagi Kofun Yugenkoshi Light-emitting device and manufacturing method therefor
JP2001148358A (en) 1999-11-19 2001-05-29 Disco Abrasive Syst Ltd Semiconductor wafer and deviding method thereof
JP3893874B2 (en) 1999-12-21 2007-03-14 日亜化学工業株式会社 Manufacturing method of nitride semiconductor light emitting device
US6992334B1 (en) * 1999-12-22 2006-01-31 Lumileds Lighting U.S., Llc Multi-layer highly reflective ohmic contacts for semiconductor devices
JP3929008B2 (en) 2000-01-14 2007-06-13 シャープ株式会社 Nitride-based compound semiconductor light-emitting device and method for manufacturing the same
JP2001217456A (en) 2000-02-03 2001-08-10 Sharp Corp Gallium nitride system compound semiconductor light- emitting device
JP4501225B2 (en) * 2000-02-21 2010-07-14 日亜化学工業株式会社 Light emitting device and method for manufacturing light emitting device
US6261929B1 (en) 2000-02-24 2001-07-17 North Carolina State University Methods of forming a plurality of semiconductor layers using spaced trench arrays
JP4057215B2 (en) 2000-03-07 2008-03-05 三菱電機株式会社 Manufacturing method of semiconductor device and manufacturing method of liquid crystal display device
TW497277B (en) 2000-03-10 2002-08-01 Toshiba Corp Semiconductor light emitting device and method for manufacturing the same
EP1134619A3 (en) 2000-03-16 2003-04-02 Canon Kabushiki Kaisha Light-receiving member, image-forming apparatus, and image-forming method
JP3636976B2 (en) 2000-03-17 2005-04-06 日本電気株式会社 Nitride semiconductor device and manufacturing method thereof
JP4060511B2 (en) * 2000-03-28 2008-03-12 パイオニア株式会社 Method for separating nitride semiconductor device
JP3662806B2 (en) * 2000-03-29 2005-06-22 日本電気株式会社 Method for manufacturing nitride-based semiconductor layer
JP3795298B2 (en) 2000-03-31 2006-07-12 豊田合成株式会社 Method for manufacturing group III nitride compound semiconductor light emitting device
EP1277241B1 (en) 2000-04-26 2017-12-13 OSRAM Opto Semiconductors GmbH Gan-based light-emitting-diode chip
DE20009283U1 (en) * 2000-04-26 2000-12-28 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor component based on GaN
WO2001082384A1 (en) * 2000-04-26 2001-11-01 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor element and method for producing the same
US6570186B1 (en) 2000-05-10 2003-05-27 Toyoda Gosei Co., Ltd. Light emitting device using group III nitride compound semiconductor
US6495894B2 (en) 2000-05-22 2002-12-17 Ngk Insulators, Ltd. Photonic device, a substrate for fabricating a photonic device, a method for fabricating the photonic device and a method for manufacturing the photonic device-fabricating substrate
TWI292227B (en) 2000-05-26 2008-01-01 Osram Opto Semiconductors Gmbh Light-emitting-dioed-chip with a light-emitting-epitaxy-layer-series based on gan
JP4050444B2 (en) 2000-05-30 2008-02-20 信越半導体株式会社 Light emitting device and manufacturing method thereof
US6693352B1 (en) 2000-06-05 2004-02-17 Emitronix Inc. Contact structure for group III-V semiconductor devices and method of producing the same
US6693935B2 (en) * 2000-06-20 2004-02-17 Sony Corporation Semiconductor laser
US6803906B1 (en) * 2000-07-05 2004-10-12 Smart Technologies, Inc. Passive touch system and method of detecting user input
US6562648B1 (en) 2000-08-23 2003-05-13 Xerox Corporation Structure and method for separation and transfer of semiconductor thin films onto dissimilar substrate materials
WO2002021604A1 (en) * 2000-09-08 2002-03-14 Sharp Kabushiki Kaisha Nitride semiconductor light-emitting device and optical device including the same
JP4553470B2 (en) 2000-09-13 2010-09-29 独立行政法人産業技術総合研究所 Method for growing p-type ZnO-based oxide semiconductor layer and method for manufacturing semiconductor light-emitting device using the same
JP2002176226A (en) 2000-09-22 2002-06-21 Toshiba Corp Optical element and its manufacturing method
US6489250B1 (en) 2000-11-21 2002-12-03 United Epitaxy Company Ltd. Method for cutting group III nitride semiconductor light emitting element
US6791119B2 (en) * 2001-02-01 2004-09-14 Cree, Inc. Light emitting diodes including modifications for light extraction
US20020117672A1 (en) 2001-02-23 2002-08-29 Ming-Sung Chu High-brightness blue-light emitting crystalline structure
US6956250B2 (en) 2001-02-23 2005-10-18 Nitronex Corporation Gallium nitride materials including thermally conductive regions
US6611002B2 (en) 2001-02-23 2003-08-26 Nitronex Corporation Gallium nitride material devices and methods including backside vias
US6576932B2 (en) * 2001-03-01 2003-06-10 Lumileds Lighting, U.S., Llc Increasing the brightness of III-nitride light emitting devices
US6555405B2 (en) * 2001-03-22 2003-04-29 Uni Light Technology, Inc. Method for forming a semiconductor device having a metal substrate
US6765232B2 (en) 2001-03-27 2004-07-20 Ricoh Company, Ltd. Semiconductor light-emitting device, surface-emission laser diode, and production apparatus thereof, production method, optical module and optical telecommunication system
US20020173062A1 (en) 2001-05-17 2002-11-21 Lung-Chien Chen Method for manufacturing GaN-based LED
US6479313B1 (en) 2001-05-25 2002-11-12 Kopin Corporation Method of manufacturing GaN-based p-type compound semiconductors and light emitting diodes
US6488767B1 (en) 2001-06-08 2002-12-03 Advanced Technology Materials, Inc. High surface quality GaN wafer and method of fabricating same
US6787435B2 (en) 2001-07-05 2004-09-07 Gelcore Llc GaN LED with solderable backside metal
US7067849B2 (en) 2001-07-17 2006-06-27 Lg Electronics Inc. Diode having high brightness and method thereof
US6379985B1 (en) 2001-08-01 2002-04-30 Xerox Corporation Methods for cleaving facets in III-V nitrides grown on c-face sapphire substrates
US6734111B2 (en) 2001-08-09 2004-05-11 Comlase Ab Method to GaAs based lasers and a GaAs based laser
US6762127B2 (en) 2001-08-23 2004-07-13 Yves Pierre Boiteux Etch process for dielectric materials comprising oxidized organo silane materials
US6526083B1 (en) 2001-10-09 2003-02-25 Xerox Corporation Two section blue laser diode with reduced output power droop
US6949395B2 (en) 2001-10-22 2005-09-27 Oriol, Inc. Method of making diode having reflective layer
US7148520B2 (en) * 2001-10-26 2006-12-12 Lg Electronics Inc. Diode having vertical structure and method of manufacturing the same
US6903379B2 (en) 2001-11-16 2005-06-07 Gelcore Llc GaN based LED lighting extraction efficiency using digital diffractive phase grating
US6869820B2 (en) 2002-01-30 2005-03-22 United Epitaxy Co., Ltd. High efficiency light emitting diode and method of making the same
US6819701B2 (en) 2002-03-26 2004-11-16 Joseph Reid Henrichs Super-luminescent folded cavity light emitting diode
US8294172B2 (en) 2002-04-09 2012-10-23 Lg Electronics Inc. Method of fabricating vertical devices using a metal support film
US20030189215A1 (en) 2002-04-09 2003-10-09 Jong-Lam Lee Method of fabricating vertical structure leds
US20040000672A1 (en) 2002-06-28 2004-01-01 Kopin Corporation High-power light-emitting diode structures
US6841802B2 (en) 2002-06-26 2005-01-11 Oriol, Inc. Thin film light emitting diode
US6744196B1 (en) 2002-12-11 2004-06-01 Oriol, Inc. Thin film LED
KR100571816B1 (en) 2003-09-08 2006-04-17 삼성전자주식회사 light emitting device and method of manufacturing the same
TW200520266A (en) 2003-11-21 2005-06-16 Sanken Electric Co Ltd Semiconductor luminous element and manufacturing method of the same
TWI433343B (en) 2004-06-22 2014-04-01 Verticle Inc Vertical structure semiconductor devices with improved light output
WO2006013867A1 (en) 2004-08-05 2006-02-09 Showa Denko K.K. Transparent electrode for semiconductor light-emitting device
US7291865B2 (en) 2004-09-29 2007-11-06 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device
TWI374553B (en) 2004-12-22 2012-10-11 Panasonic Corp Semiconductor light emitting device, illumination module, illumination apparatus, method for manufacturing semiconductor light emitting device, and method for manufacturing semiconductor light emitting element
US7384808B2 (en) 2005-07-12 2008-06-10 Visual Photonics Epitaxy Co., Ltd. Fabrication method of high-brightness light emitting diode having reflective layer
KR20080033545A (en) 2005-09-06 2008-04-16 쇼와 덴코 가부시키가이샤 Gallium nitride-based compound semiconductor light-emitting device and production method thereof
JP2007087973A (en) 2005-09-16 2007-04-05 Rohm Co Ltd Manufacture of nitride semiconductor device, method for manufacturing nitride semiconductor device, and nitride semiconductor light-emitting device obtained by the same
JP4137936B2 (en) 2005-11-16 2008-08-20 昭和電工株式会社 Gallium nitride compound semiconductor light emitting device
KR101261214B1 (en) 2006-05-18 2013-05-06 서울옵토디바이스주식회사 Method of fabricating light emitting diode
JP4854566B2 (en) 2006-06-15 2012-01-18 シャープ株式会社 Nitride semiconductor light emitting device manufacturing method and nitride semiconductor light emitting device
KR101262386B1 (en) 2006-09-25 2013-05-08 엘지이노텍 주식회사 Method for manufacturing nitride semiconductor light emitting device
JP2008117824A (en) 2006-11-01 2008-05-22 Sharp Corp Method of manufacturing nitride-based semiconductor element
JP2008182110A (en) 2007-01-25 2008-08-07 Matsushita Electric Ind Co Ltd Nitride semiconductor light-emitting device
US9634191B2 (en) 2007-11-14 2017-04-25 Cree, Inc. Wire bond free wafer level LED
JP2009283912A (en) 2008-04-25 2009-12-03 Sanyo Electric Co Ltd Nitride-based semiconductor device and method of manufacturing the same
TWI464899B (en) 2008-05-09 2014-12-11 Advanced Optoelectronic Tech A method for manufacturing a semiconductor element
JP2010003768A (en) 2008-06-18 2010-01-07 Showa Denko Kk Group iii nitride semiconductor light emitting element, method for manufacturing the same, and lamp
JP2010205988A (en) 2009-03-04 2010-09-16 Panasonic Corp Nitride semiconductor element and method for manufacturing the same
JP5517882B2 (en) 2010-10-20 2014-06-11 シャープ株式会社 Nitride semiconductor light emitting device
US20130146928A1 (en) 2011-04-06 2013-06-13 Panasonic Corporation Semiconductor light-emitting device
JP5729335B2 (en) 2012-03-19 2015-06-03 豊田合成株式会社 Group III nitride semiconductor light emitting device and method of manufacturing the same
US9595636B2 (en) 2012-03-28 2017-03-14 Sensor Electronic Technology, Inc. Light emitting device substrate with inclined sidewalls
TWI488336B (en) 2012-06-07 2015-06-11 Lextar Electronics Corp Light emitting diode and method of fabricating the same
KR102087933B1 (en) 2012-11-05 2020-04-14 엘지이노텍 주식회사 Light Emitting device and light emitting array

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101448693B1 (en) * 2007-05-04 2014-10-08 세미엘이디즈 옵토일렉트로닉스, 컴퍼니 리미티드 Method of making high efficiency uv vled on metal substrate
US8003414B2 (en) 2008-07-16 2011-08-23 Samsung Electronics, Co., Ltd. Light emitting elements and methods of fabricating the same
WO2011065665A3 (en) * 2009-11-30 2011-09-29 Siltron Inc. Method of manufacturing nitride semiconductor device
KR101105918B1 (en) * 2009-11-30 2012-01-17 주식회사 엘지실트론 Method of manufacturing nitride compound semiconductor device
US8124497B2 (en) 2009-11-30 2012-02-28 Siltron, Inc. Method of manufacturing nitride semiconductor device

Also Published As

Publication number Publication date
US10032959B2 (en) 2018-07-24
JP2013102243A (en) 2013-05-23
JP2005532673A (en) 2005-10-27
US7821021B2 (en) 2010-10-26
JP2015046647A (en) 2015-03-12
US20070057273A1 (en) 2007-03-15
US20130308671A1 (en) 2013-11-21
US20100109020A1 (en) 2010-05-06
WO2003038874A1 (en) 2003-05-08
US20030080344A1 (en) 2003-05-01
US7863638B2 (en) 2011-01-04
US8592846B2 (en) 2013-11-26
EP2528112A1 (en) 2012-11-28
US20180331259A1 (en) 2018-11-15
US20110049470A1 (en) 2011-03-03
EP3121857A2 (en) 2017-01-25
US10326055B2 (en) 2019-06-18
EP1451853A4 (en) 2010-01-27
US7148520B2 (en) 2006-12-12
WO2003038874A8 (en) 2003-07-10
EP3121857A3 (en) 2017-04-12
JP2009302589A (en) 2009-12-24
US20100314607A1 (en) 2010-12-16
EP1451853A1 (en) 2004-09-01
KR100921456B1 (en) 2009-10-13
US20170365742A1 (en) 2017-12-21
EP3121857B1 (en) 2019-10-09
US7371597B2 (en) 2008-05-13
US20110303933A1 (en) 2011-12-15
US8008681B2 (en) 2011-08-30
US20150179886A1 (en) 2015-06-25
EP2528112B1 (en) 2017-03-01
US7915632B2 (en) 2011-03-29
US9620677B2 (en) 2017-04-11
US20060091420A1 (en) 2006-05-04
US9000468B2 (en) 2015-04-07

Similar Documents

Publication Publication Date Title
US10326055B2 (en) Diode having vertical structure
US8759129B2 (en) Method of making diode having reflective layer
US7067849B2 (en) Diode having high brightness and method thereof
CN113871520B (en) Semiconductor light-emitting element and manufacturing method
CN113871520A (en) Semiconductor light-emitting element and manufacturing method thereof
KR20170108327A (en) Light emitting diode

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120926

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20130905

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140905

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150904

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160905

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170906

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180910

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190916

Year of fee payment: 11