KR20050023552A - Method of producing titanium dioxide powder for photocatalyst and titanium dioxide powder produced by the same - Google Patents

Method of producing titanium dioxide powder for photocatalyst and titanium dioxide powder produced by the same Download PDF

Info

Publication number
KR20050023552A
KR20050023552A KR1020030059874A KR20030059874A KR20050023552A KR 20050023552 A KR20050023552 A KR 20050023552A KR 1020030059874 A KR1020030059874 A KR 1020030059874A KR 20030059874 A KR20030059874 A KR 20030059874A KR 20050023552 A KR20050023552 A KR 20050023552A
Authority
KR
South Korea
Prior art keywords
titanium dioxide
dioxide powder
transition metal
tioh
producing
Prior art date
Application number
KR1020030059874A
Other languages
Korean (ko)
Other versions
KR100539613B1 (en
Inventor
이경섭
홍현선
김동현
Original Assignee
학교법인 한양학원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인 한양학원 filed Critical 학교법인 한양학원
Priority to KR10-2003-0059874A priority Critical patent/KR100539613B1/en
Publication of KR20050023552A publication Critical patent/KR20050023552A/en
Application granted granted Critical
Publication of KR100539613B1 publication Critical patent/KR100539613B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/08Intercalated structures, i.e. with atoms or molecules intercalated in their structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: A process is provided to produce titanium dioxide powder for a photocatalyst, which is a simple and stable method. The titanium dioxide powder can dope a transition metal, therefore can be used as a photocatalyst excellent in a light activation and a light efficiency. CONSTITUTION: The process for producing the titanium dioxide powder contains the steps of: neutralizing TiSO4 by a basic solution to prepare TiOH4; washing and drying TiOH4 at about 200deg.C or lower to produce the titanium dioxide(TiO2) powder. And the transition metal(M) doped titanium dioxide(Ti1-xMxO2) is produced by mixing the titanium dioxide(TiO2) and a transition metal(M) and then applying a mechanical alloy method to the mixture.

Description

광촉매제용 이산화티타늄 분말 제조방법 및 그로부터 제조된 이산화티타늄 분말{METHOD OF PRODUCING TITANIUM DIOXIDE POWDER FOR PHOTOCATALYST AND TITANIUM DIOXIDE POWDER PRODUCED BY THE SAME}METHOD OF PRODUCING TITANIUM DIOXIDE POWDER FOR PHOTOCATALYST AND TITANIUM DIOXIDE POWDER PRODUCED BY THE SAME}

본 발명은 광촉매용 이산화티타늄 분말에 관한 것으로서, 보다 상세하게는, 출발물질로서 TiSO4을 하는 보다 안정되면서도 간소한 공정을 통해 이산화티타늄 분말을 제조하는 방법과 그로부터 얻어진 이산화티타늄 분말에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to titanium dioxide powder for photocatalyst, and more particularly, to a method for producing titanium dioxide powder through a more stable and simple process in which TiSO 4 is used as a starting material, and a titanium dioxide powder obtained therefrom.

일반적으로, 광촉매제인 이산화티타늄(TiO2)분말은 인체 또는 환경에 유해한 영향을 주는 물질, 예컨대 유기 할로겐 화합물, 악취 가스, 오일류, 세균류, 균류 및 조류 등을 신속하게 효과적으로 제거하는 작용을 한다. 따라서, 오폐수, 매립지 침수 등 난분해성 유기물을 포함한 폐수의 수질정화, 배기가스 및 실내 공기정화, 조명기구, 위생도기 등의 항균, 방취 등의 환경제품으로서 각광을 받고 있다.In general, titanium dioxide (TiO 2 ) powder, which is a photocatalyst, functions to quickly and effectively remove substances harmful to humans or the environment, such as organic halogen compounds, odor gases, oils, bacteria, fungi and algae. Therefore, it has been spotlighted as an environmental product such as water quality purification of wastewater including hardly degradable organic matters such as wastewater and landfill infiltration, antibacterial and deodorization of exhaust gas and indoor air purification, lighting equipment, sanitary ware and the like.

특히, 광촉매제는 고도산화처리방식(AOP:Advanced Oxidation Process)에 사용되는데, 이 때에 광촉매제는 환경 오염물을 상온에서 완전히 분해하기 위해 특정 파장대의 태양광을 흡수하여 환경오염물을 분해시키는 보조물로서 작용한다. 또한, 그 처리효율이 높고 반응생성물이 부수적인 환경오염을 유발시키지 않을 뿐만 아니라, 반응 공정이 간소하여 환경오염물을 신속하게 분해시킬 수 있다는 장점이 있다.In particular, photocatalysts are used in the Advanced Oxidation Process (AOP), where photocatalysts act as an aid to decompose environmental pollutants by absorbing sunlight in a specific wavelength band to completely decompose environmental pollutants at room temperature. do. In addition, the treatment efficiency is high and the reaction product does not cause ancillary environmental pollution, but also has the advantage that the reaction process is simple and can quickly decompose the environmental pollutants.

이산화티타늄 분말은 그 결정구조에 따라 크게 루타일(rutile)구조와 아나타제 (anatase)구조로 구분할 수 있다. 특히, 아나타제상 이산화티타늄은 비교적 광활성도가 높아 트리클로로에텐을 광분해시키는 시스템과 태양에너지 변화시스템 등에서 광촉매제로 알려져 있다.Titanium dioxide powder can be roughly divided into rutile structure and anatase structure according to its crystal structure. In particular, anatase-type titanium dioxide has a relatively high photoactivity and is known as a photocatalyst in a system for photodegrading trichloroethene and a solar energy change system.

종래의 광촉매용 이산화티타늄 분말 제조방법으로는, 염소법(chloride process), 황산법(sulfate process) 및, 졸-겔법(sol-gel process)이 있다. Conventional methods for producing titanium dioxide powder for photocatalysts include the chloride process, the sulfate process, and the sol-gel process.

우선, 황산법은, 티타늄원석인 일메나이트(ilmenite)를 분쇄한 후에 황산에 용해시켜 완전히 녹지 않은 고체상태로부터 액상의 TiO2를 얻고 이를 가수분해하여 제조하는 방법이다. 하지만, 이산화티타늄 분말을 가수분해 후에 수산화물을 하소/분쇄과정을 많은 공정을 거쳐야 하므로, 그 과정에서 많은 불순물들의 혼입으로 인해 최종 제품의 품질이 크게 저하되는 문제가 있다.First, the sulfuric acid method is a method of producing a liquid TiO 2 from a solid state that is dissolved completely in sulfuric acid after pulverizing ilmenite, which is a titanium gemstone, and hydrolyzing it. However, since hydrolysis of the titanium dioxide powder requires a number of processes for calcining / crushing the hydroxide, there is a problem in that the quality of the final product is greatly reduced due to the incorporation of many impurities in the process.

이와 달리, 염소법은, 일메나이트에 염소가스를 반응시켜 사염화티타늄(TiCl4)를 생성하고, 이를 다시 산소가스와 반응시킴으로써 아나타제상의 이산화티타늄(TiO2)을 제조하는 방법이다. 하지만, 이 방법은 반응 중에 위험성이 높은 부식성가스(HCl, Cl2)가 발생되어, 이에 대한 보호설비가 요구되며, 원료가 풍부하지 못해, 생산단가가 높다는 문제점이 있다. 우수한 광촉매제로 알려진 독일 데구사(Degussa)의 P-25는 이러한 염소법으로 제조된 것이나, 광활성화도가 낮다는 문제가 있는 것으로 알려져 있다.In contrast, the chlorine method is a method of producing anatase titanium dioxide (TiO 2 ) by reacting chlorine gas with ilmenite to produce titanium tetrachloride (TiCl 4 ), and then reacting it with oxygen gas. However, this method generates high-risk corrosive gases (HCl, Cl 2 ) during the reaction, requires a protective device for this, there is a problem that the production cost is high because the raw material is not abundant. P-25 of Degussa, Germany, known as an excellent photocatalyst, is produced by such a chlorine method, but is known to have a problem of low photoactivation.

또한, 졸-젤법은 고순도 광촉매용 이산화티타늄을 제조할 수 있는 잇점에도 불구하고, 그 품질이 정교하고 공정상 물성제어가 용이하다는 장점이 있으나, 출발물질인 티타늄알콕사이드(Ti(OC3H7)4), Ti(OC2H5) 4)가 고가이며, 그 독성과 안정성이 문제된다.In addition, the sol-gel method has a high purity in spite of the photocatalyst advantage that the titanium dioxide can be prepared for, and the quality is elaborate and process the physical properties, but the advantage that control is easy, the starting material, titanium alkoxide (Ti (OC 3 H 7) 4 ), Ti (OC 2 H 5 ) 4 ) is expensive, its toxicity and stability is a problem.

이와 같이, 종래의 광촉매용 이산화티타늄(TiO2)제조공정은 복잡하면서 큰 비용이 소모되거나, 취급물질과 공정이 위험하다는 문제가 있다. 따라서, 당 기술분야에서는 우수한 광활성도와 광효율을 갖는 이산화티타늄 분말을 보다 간소한 공정을 통해 제조할 수 있는 방법이 요구되어 왔다.As described above, the conventional titanium dioxide (TiO 2 ) manufacturing process for photocatalysts has a problem of being complicated and costly, or handling materials and processes. Therefore, there is a need in the art for a method for producing titanium dioxide powder having excellent photoactivity and light efficiency through a simpler process.

본 발명은 상기 기술적 문제를 해결하기 위한 것으로서, 그 목적은 TiSO4를 출발물질로 이용하여 보다 안정되고 간단한 공정을 통해 전이금속이 도핑될 수 있는 이산화티타늄 분말(TiO2)을 제공하는데 있다.The present invention is to solve the above technical problem, an object of the present invention is to provide a titanium dioxide powder (TiO 2 ) that can be doped transition metal through a more stable and simple process using TiSO 4 as a starting material.

상기 기술적 과제를 달성하기 위해서, 본 발명은 TiSO4를 염기성 용액으로 중화시켜 TiOH4를 생성하는 단계와, 이산화티타늄(TiO2)분말이 형성되도록 상기 TiOH4를 건조시키는 단계를 포함하는 이산화티타늄분말 제조방법을 제공한다.In order to achieve the above technical problem, the present invention neutralizes TiSO 4 with a basic solution to produce TiOH 4 , and titanium dioxide powder comprising the step of drying the TiOH 4 to form a titanium dioxide (TiO 2 ) powder It provides a manufacturing method.

본 발명의 이산화티타늄분말 제조방법은, 상기 TiOH4를 생성한 후에, 상기 중화반응으로부터 얻어진 TiOH4를 수세하는 단계를 더 포함할 수 있다.상기 TiOH4의 건조단계는, TiOH4의 원하지 않는 상변이를 방지하기 위해 약 200℃이하의 온도에서 실시되는 것이 바람직하다.Preparation of titanium dioxide powder, the method of the present invention, after generating the TiOH 4, may further comprise the step of washing the TiOH 4 resulting from the neutralization reaction. The drying step of the TiOH 4 is unwanted phase change in TiOH 4 In order to prevent this, it is preferably carried out at a temperature of about 200 ℃ or less.

본 발명의 바람직한 실시형태는, 상기 이산화티타늄(TiO2)과 전이금속(M)을 혼합하는 단계와, 상기 이산화티타늄(TiO2)과 전이금속(M)의 혼합물에 기계적 합금법을 적용하여 전이금속(M)이 도핑된 이산화티타늄(Ti1-xMxO2)을 형성하는 단계를 더 포함할 수 있다. 본 실시형태에서 사용되는 전이금속(M)은 Fe, Cr, V, Nb, Sb, Sn, Si 및 Al로 이루어진 그룹에서 선택된 적어도 하나일 수 있으며, 상기 혼합물에 0.01∼0.1mol%로 함유되는 것이 바람직하다.A preferred embodiment of the present invention, the titanium dioxide (TiO 2) and comprising the steps of mixing the transition metal (M), the transition to apply a mechanical alloying method to a mixture of the titanium dioxide (TiO 2) and the transition metal (M) The method may further include forming titanium dioxide (Ti 1-x M x O 2 ) doped with metal (M). The transition metal (M) used in the present embodiment may be at least one selected from the group consisting of Fe, Cr, V, Nb, Sb, Sn, Si, and Al, which is contained in the mixture at 0.01 to 0.1 mol%. desirable.

또한, 본 발명에서 기계적 합금법을 구현하기 위해, 볼밀링공정을 실시하는 것이 바람직하다. 상기 볼밀링공정은 바람직하게는 상기 혼합물과 볼의 중량비를 13:1∼25:1로 하는 조건에서 실시하며, 본 발명에 채용되는 볼밀링 공정은 100∼300rpm의 회전속도로 적어도 8시간이상 실시하는 것이 바람직하다. 나아가, 볼밀링에 사용되는 볼로는 STS 313 물질로 이루어지고 2∼16인치(JIS규격)인 연마볼을 사용하는 것이 바람직하다.In addition, in order to implement the mechanical alloy method in the present invention, it is preferable to perform a ball milling process. The ball milling step is preferably carried out under the condition that the weight ratio of the mixture and the ball is 13: 1 to 25: 1, the ball milling step employed in the present invention is carried out for at least 8 hours at a rotational speed of 100 ~ 300rpm It is desirable to. Furthermore, it is preferable to use a grinding ball made of STS 313 material and a ball having a diameter of 2 to 16 inches (JIS standard).

이와 같이, 본 발명에 따른 이산화티타늄의 제조방법은, 종래의 방식과 전혀 다른 안정되면서 실용가능한 간소한 공정을 통해 TiO2분말을 제조할 수 있다. 또한,본 발명의 제조방법으로 얻어진 TiO2분말은 기계적 합금법을 적용하여 전이금속을 도핑시킴으로써, 약 50㎚이하로 비표면적이 클 뿐만 아니라 전이금속이 도핑되어 가시광선대역 파장(약 380㎚ ∼ 약 770㎚)이 흡수가능한 에너지밴드갭을 갖는 루타일상 이산화티타늄 분말을 얻을 수 있다. 이와 같이, 본 발명의 제조공정에 따르면, 전체 공정을 간소화하면서도 우수한 광활성도와 광효율을 갖는 이산화티타늄 분말을 제조할 수 있다.As described above, the method for producing titanium dioxide according to the present invention can produce TiO 2 powder through a simple process that is stable and practically different from the conventional method. In addition, the TiO 2 powder obtained by the production method of the present invention is doped with a transition metal by applying a mechanical alloying method, and has a large specific surface area of about 50 nm or less as well as a transition metal doped, so that visible light band wavelength (about 380 nm to Rutile phase titanium dioxide powder having an energy band gap of about 770 nm) can be obtained. As described above, according to the manufacturing process of the present invention, it is possible to produce a titanium dioxide powder having excellent light activity and light efficiency while simplifying the entire process.

이하, 도면을 참조하여 본 발명의 일실시예을 보다 상세히 설명하기로 한다.Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

도1은 본 발명에 따른 이산화티타늄분말의 제조방법의 일예를 설명하기 위한 공정흐름도이다.1 is a process flow diagram for explaining an example of a method for producing titanium dioxide powder according to the present invention.

도1와 같이, 본 발명에 따른 이산화티타늄분말의 제조방법은, TiSO4를 염기성 용액으로 중화시키는 공정(21)으로 시작된다. 이와 같이 본 발명에서는 종래의 방법과 달리 출발물질로서 TiSO4를 사용한다. TiSO4는 다른 종래 방법에서 사용되는 출발물질 또는 중간생성물에 비해 저렴하면서 취급이 용이한 물질로서 알려져 있다. 제1 단계에서는 산성인 TiSO4를 염기성 용액과 함께 혼합하여 중성물질인 TiOH4를 생성한다. 이러한 중화반응에 사용되는 염기성 용액으로 당 기술분야에 알려전 일반 염기성 용액이 사용될 수 있다.As shown in Fig. 1, the method for producing a titanium dioxide powder according to the present invention starts with step 21 of neutralizing TiSO 4 with a basic solution. Thus, in the present invention, unlike the conventional method, TiSO 4 is used as a starting material. TiSO 4 is known as an inexpensive and easy to handle material compared to starting materials or intermediates used in other conventional methods. In the first step, acidic TiSO 4 is mixed with the basic solution to produce a neutral TiOH 4 . As the basic solution used in this neutralization reaction, a general basic solution known in the art may be used.

이어, 제2 단계(23)와 같이, 상기 단계에서 얻어진 TiOH4를 증류수를 세척하는 공정을 선택적으로 추가할 수 있다. 제1 단계에서 얻어진 TiOH4물질은 젤상태로 존재하거나 용액에 존재하여 중화반응 중에 잔류물과 함께 혼재될 수 있다. 따라서, 잔류물을 제거하고 원하는 TiOH4물질의 순도를 높히기 위해 증류수를 이용하여 세척공정을 실시하는 것이 바람직하다.Subsequently, as in the second step 23, the process of washing the distilled water with TiOH 4 obtained in the step may be optionally added. The TiOH 4 material obtained in the first step may be present in the gel or in solution and mixed with the residue during the neutralization reaction. Therefore, it is preferable to perform the washing process with distilled water to remove the residue and to increase the purity of the desired TiOH 4 material.

다음으로, 제3 단계(25)에서는, 제2 단계에서 세척된 TiOH4를 건조하는 공정을 실시한다. 본 단계에서 충분한 건조를 실시함으로써 주위 수분과 함께 TiOH4로부터 H2O를 증발시킬 수 있다. 이를 통해 최종적으로 TiO2분말을 얻을 수 있다(27).Next, in the third step 25, a process of drying TiOH 4 washed in the second step is carried out. By carrying out sufficient drying in this step, H 2 O can be evaporated from TiOH 4 together with the ambient moisture. As a result, TiO 2 powder may be finally obtained (27).

제3 단계(25)에서 실시되는 건조공정은 200℃이하의 온도에서 실시하는 것이 바람직하다. 200℃가 초과하는 경우에는 상변이가 발생하여 원하는 상을 갖는 최종물질을 얻을 수 없다. 보다 바람직하게는 150℃이하의 건조가능한 온도에서 실시한다. 가장 바람직하게는 건조시에 소요되는 시간과 상변화를 고려하여 60∼150℃ 온도범위에서 실시한다.The drying process carried out in the third step 25 is preferably carried out at a temperature of 200 ℃ or less. If the temperature exceeds 200 ° C., phase shift occurs, and thus a final material having a desired phase cannot be obtained. More preferably, the drying is carried out at a temperature of 150 ° C. or lower. Most preferably, it is carried out in the temperature range of 60 ~ 150 ℃ in consideration of the time and phase change required during drying.

본 발명의 제조방법은 기계적 합금법에 의한 전이금속 도핑방법과 결합될 수 있다. 즉, TiSO4의 중화반응 및 그로부터 얻어진 TiOH4의 건조공정을 통해 얻어진 TiO2분말을 전이금속(M)과 혼합하고, 기계적 합금화법을 적용하여 도핑할 수 있다. 본 발명에서 채용되는 전이금속의 도핑공정은 기계적 합금법을 적용함으로써 스트레스 유도식 고상 확산(stress induced solid state diffusion)에 의해 결정구조를 유지하면서 균질한 조성분포를 가질 수 있다.The manufacturing method of the present invention can be combined with the transition metal doping method by the mechanical alloying method. In other words, the TiO 2 powder obtained through the neutralization reaction and from the drying step of the resultant TiOH 4 of TiSO 4 is mixed with the transition metal (M), and may be doped by applying the mechanical alloying speech. The doping process of the transition metal employed in the present invention may have a homogeneous composition distribution while maintaining the crystal structure by stress induced solid state diffusion by applying a mechanical alloying method.

본 발명에서, TiO2분말과 전이금속(M)의 혼합비율은 전체 혼합물에서 전이금속이 약 0.01 ∼ 약 1mol%가 되도록 하는 것이 바람직하다. 전이금속이 0.01mol% 미만일 경우에는 도핑효과가 거의 없으며, 1mol%를 초과하는 경우에는 최종 이산화티탄늄 산화물의 결정구조 자체가 손상되는 문제가 있다. 이러한 전이금속으로는 상기 전이금속(M)은 Fe, Cr, V, Nb, Sb, Sn, Si 및 Al로 이루어진 그룹에서 선택된 적어도 하나의 물질이 사용될 수 있다.In the present invention, the mixing ratio of the TiO 2 powder and the transition metal (M) is preferably such that the transition metal in the total mixture is about 0.01 to about 1 mol%. When the transition metal is less than 0.01 mol%, there is almost no doping effect, and when it exceeds 1 mol%, the crystal structure of the final titanium dioxide oxide itself is damaged. As the transition metal, at least one material selected from the group consisting of Fe, Cr, V, Nb, Sb, Sn, Si, and Al may be used.

본 발명에 결합가능한 전이금속 도핑방법으로, 국내특허출원 2002-84922(발명명칭: "전이금속이 도핑된 이산화티타늄 분말 및 그 제조방법", 출원일자: 2002.12.27)에 개시된 볼밀링공정을 이용한 기계적 합금법이 사용될 수 있다.As a transition metal doping method that can be combined with the present invention, a ball milling process disclosed in Korean Patent Application No. 2002-84922 (Invention name: "Titanium dioxide powder doped with a transition metal and its manufacturing method", application date: December 27, 2002) Mechanical alloying methods can be used.

본 발명에서 원하는 충분한 압축충격력을 얻기 위해서, 볼(B) 대 혼합물(P)의 비를 13:1∼25:1로 하여 실행하는 것이 바람직하다. B/P가 13미만일 경우에는 전이금속이 도핑에 충분한 압하력을 얻을 수 없으며, 25를 초과하면 오히려 결정구조 자체가 파괴되어 비정질화되는 문제가 있다. 또한, 적절한 에너지를 제공하기 위해서, 회전속도는 100∼300rpm로 하고, 적어도 8시간이상 실행하는 것이 바람직하다. In order to obtain sufficient compressive impact force desired in the present invention, it is preferable to carry out the ratio of the balls (B) to the mixture (P) in a ratio of 13: 1 to 25: 1. If the B / P is less than 13, the transition metal cannot obtain a sufficient reduction force for doping, and if it exceeds 25, rather than the crystal structure itself is destroyed, there is a problem that the amorphous. In addition, in order to provide adequate energy, the rotational speed is preferably 100 to 300 rpm, and preferably at least 8 hours.

또한, 본 공정에서는 내모성이 우수한 볼이 요구된다. 일반적인 STS 313인 볼 (JIS규격 2∼16인치)을 사용할 수 있다.In addition, this step requires a ball having excellent abrasion resistance. The ball, a standard STS 313 (JIS standard 2-16 inches), can be used.

이와 같은 전이금속 도핑공정을 통해, 전이금속(M)이 도핑된 이산화티타늄(Ti1-xMxO2)을 얻을 수 있다. 전이금속이 도핑되지 않은 통상의 이산화티타늄의 에너지밴드갭은 자외선대역(∼380㎚)에만 한정되어 태양광에 대한 반응하는 문제가 있었으나, 본 발명과 같이 전이금속을 도핑하여 TiO2의 에너지밴드갭을 낮춤으로써 가시광선대역의 파장도 흡수할 수 있는 광효율성이 대폭 개선된 새로운 형태의 이산화티타늄(Ti1-xMxO2)을 제공할 수 있다.Through such a transition metal doping process, titanium dioxide (Ti 1-x M x O 2 ) doped with a transition metal (M) may be obtained. The energy bandgap of the conventional titanium dioxide that is not doped with a transition metal is limited to only the ultraviolet band (˜380 nm), but there is a problem of reacting to sunlight. However, as in the present invention, the energy bandgap of TiO 2 is doped by doping the transition metal. Lowering can provide a new type of titanium dioxide (Ti 1-x M x O 2 ) with a greatly improved light efficiency that can absorb wavelengths in the visible light band.

이하, 본 발명을 실시예를 통해 보다 상세히 설명하기로 한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

(실시예)(Example)

우선, 출발물질로서 TiSO4(한국티탄주식회사 제품)를 마련하였다. 본 실시예에서 사용된 TiSO4는 졸(sol)상태의 물질로서 사용되었다. TiSO4를 중화시키기 위해서, 염기성 용액인 NH3 희석용액을 혼합하여 TiOH4물질을 생성하였다. 이어, TiOH4 물질을 증류수로 세척하여 잔류한 황산기 등의 잔류물을 제거하였다. 이 과정에서 원하는 중성상태로 추가적인 pH 조정이 가능하였다. 다음으로, 세척된 TiOH4를 약 100℃에서 8시간동안 충분한 건조공정을 실시하였다. 이러한 건조공정을 통해 TiOH4물질을 TiO2 분말로 형성할 수 있었다.First, TiSO 4 (manufactured by Titanium Korea) was prepared as a starting material. TiSO 4 used in this example was used as a sol material. In order to neutralize TiSO 4 , a basic solution of NH 3 dilution solution was mixed to form a TiOH 4 material. The TiOH 4 material was then washed with distilled water to remove residual residues such as sulfuric acid groups. In the process, additional pH adjustment was possible to the desired neutral state. Subsequently, the washed TiOH 4 was sufficiently dried at about 100 ° C. for 8 hours. Through this drying process it was possible to form a TiOH 4 material TiO 2 powder.

TiO2 분말을 325메쉬이며 99.9%순도인 금속 Fe 분말(코순도화학(Kosundo chemical)사 제품)과 혼합하여 14시간동안 Spex 8000D 볼밀러를 사용하여 기계적 합금화 공정을 실시하였다. 여기서, 볼(STS 바이얼)과, TiO2와 Fe분말의 혼합 분말의 무게비를 15:1로 하여 150rpm으로 볼밀링공정을 실시하였다.The TiO 2 powder was mixed with 325 mesh and 99.9% pure metal Fe powder (manufactured by Kosundo Chemical Co., Ltd.) and subjected to a mechanical alloying process using a Spex 8000D ball mill for 14 hours. Here, the weight ratio of the mixture of the ball (STS vial) and, TiO 2 powder and Fe powder 15: 1 was subjected to ball milling process to 150rpm.

볼밀링공정이 완료된 전이금속이 도핑된 이산화티타늄 분말(Ti1-xFexO2)을 수거하여, XRD를 통하여 상분석을 실시하였다. ICP(Inductively Coupled Plasma-Atomic Emission Spectrometry)를 통해 조성분석을 실시하였으며, BET(Brunauer-Emmett-Teller) BET 표면적 분석기를 통하여 비표면적을 측정하였다. ICP 조성분석결과, 도핑된 전이금속함량은 6.445 wt%로 나타났으며, BET측정결과가 비표면적이 약 160 m2/g으로 높게 나타났다.Titanium dioxide powder (Ti 1-x Fe x O 2 ) doped with a transition metal having a ball milling process was collected and subjected to phase analysis through XRD. Compositional analysis was performed by inductively coupled plasma-atomic emission spectrometry (ICP), and the specific surface area was measured by a Brunauer-Emmett-Teller (BET) BET surface area analyzer. As a result of ICP composition analysis, the doped transition metal content was 6.445 wt%, and the BET result showed that the specific surface area was about 160 m 2 / g.

도2는 본 실시예를 통해 제조된 Fe가 도핑된 이산화티타늄(Ti1-xFexO2)분말을 촬영한 SEM 사진이다. 도2와 같이, 본 실시예를 통해 얻어진 이산화티타늄 분말에는 라인스캐닝을 통해 확인된 Fe성분이 촬영부분의 폭을 따라 거의 균일하게 분포하고 있는 것으로 나타났다. 따라서, 본 실시예를 통해 얻어진 이산화티타늄분말은 Fe가 균일하게 도핑된 Ti1-xFexO2임을 확인할 수 있었다.FIG. 2 is a SEM photograph of Fe - doped titanium dioxide (Ti 1-x Fe x O 2 ) powder prepared according to the present embodiment. As shown in Figure 2, the titanium dioxide powder obtained through the present example was found that the Fe component identified through line scanning is almost uniformly distributed along the width of the photographing part. Therefore, the titanium dioxide powder obtained through the present example was confirmed that Fe is uniformly doped Ti 1-x Fe x O 2 .

본 실시예를 통해 얻어진, Fe가 도핑된 이산화티타늄(Ti1-xFexO2)분말(실시예)과 종래의 염소법으로 제조된 이산화티타늄 분말(독일의 데구사, 제품명: P-25, 종래예)를 광촉매제로서의 분해능을 평가 비교하였다. 본 비교평가를 위해, 난용성 유기물인 4-클로로페놀에 대한 분해능을 카본(C)농도로 평가하였으며, TOC 분석기를 통해 그 결과를 측정하였다. 도3은 그 결과를 나타내는 그래프이다.Fe-doped titanium dioxide (Ti 1-x Fe x O 2 ) powder obtained through this example (Example) and titanium dioxide powder prepared by the conventional chlorine method (Degussa, Germany, product name: P-25 , And the conventional example) were evaluated to compare the resolution as a photocatalyst. For this comparative evaluation, the resolution of 4-chlorophenol, a poorly soluble organic compound, was evaluated at a carbon (C) concentration, and the result was measured through a TOC analyzer. 3 is a graph showing the result.

그 결과, 도3의 그래프에 도시된 바와 같이, 종래예보다 본 실시예로 얻어진 이산화티타늄 분말이 초기 분해능은 물론 최종분해능까지 전반적으로 모두 우수한 것으로 나타났다.As a result, as shown in the graph of Figure 3, the titanium dioxide powder obtained in this example than the conventional example was found to be excellent overall as well as the initial resolution as well as the final resolution.

또한, 본 발명의 일실시예에 따른 전이금속이 도핑된 이산화티타늄분말은 태양광의 가시광선대역의 파장에서도 빛을 흡수하여 반응할 수 있으므로, 광효율이 획기적으로 개선될 것으로 기대할 수 있다.In addition, the titanium dioxide powder doped with a transition metal according to an embodiment of the present invention can be expected to significantly improve the light efficiency because it can absorb and react with light even in the visible wavelength range of sunlight.

이상에서 설명한 본 발명은 상술한 실시형태 및 첨부된 도면에 의해 한정되는 것이 아니고, 첨부된 청구범위에 의해 한정된다. 따라서, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 형태의 치환, 변형 및 변경이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 명백할 것이다. The present invention described above is not limited by the above-described embodiment and the accompanying drawings, but by the appended claims. Therefore, it will be apparent to those skilled in the art that various forms of substitution, modification, and alteration are possible without departing from the technical spirit of the present invention described in the claims.

상술한 바와 같이, 본 발명의 이산화티타늄분말 제조방법에 따르면, 비교적 취급이 용이하면서 저렴한 TiSO4를 출발물질로 사용하여 간단한 중화공정과 건조공정만으로 원하는 TiO2분말을 제조할 수 있으므로, 다른 종래의 제조방법에 비해 공정의 안정성과 실용성 측면에서 매우 우수하다.As it described above, according to the titanium dioxide powder producing method of the present invention, since relatively handling is possible to produce a TiO 2 powder want an inexpensive TiSO 4 by simple neutralization step and the drying step by using as a starting material and ease, another conventional Compared to the manufacturing method, the process is very excellent in terms of stability and practicality.

또한, 본 발명에서 얻어진 이산화티타늄 분말은 전이금속의 도핑효과를 통해 가시광선에서도 작용이 가능하므로, 우수한 광활성화도와 광효율을 갖는 광촉매제로서도 응용될 수 있다. In addition, the titanium dioxide powder obtained in the present invention can also be applied as a photocatalyst having excellent light activation and light efficiency because the titanium dioxide powder can also act in visible light through the doping effect of the transition metal.

도1는 본 발명에 따른 이산화티타늄분말 제조방법을 설명하기 위한 공정흐름도이다.1 is a process flowchart for explaining a method for producing titanium dioxide powder according to the present invention.

도2은 본 발명의 방법에 따라 제조된 이산화티타늄 분말을 주사전자현미경(SEM)으로 촬영한 사진이다.Figure 2 is a photograph taken with a scanning electron microscope (TEM) of titanium dioxide powder prepared according to the method of the present invention.

도3는 종래의 방법으로 얻어진 이산화티타늄 분말과 본 발명의 제조방법으로 얻어진 이산화티타늄 분말을 이용한 난분해성 유기물의 분해실험결과를 나타낸 그래프이다.Figure 3 is a graph showing the decomposition test results of a hardly decomposable organic material using titanium dioxide powder obtained by the conventional method and titanium dioxide powder obtained by the production method of the present invention.

Claims (12)

TiSO4를 염기성 용액으로 중화시켜 TiOH4를 생성하는 단계; 및, 이산화티타늄(TiO2)분말이 형성되도록 상기 TiOH4를 건조시키는 단계를 포함하는 이산화티타늄분말 제조방법.Neutralizing TiSO 4 with a basic solution to produce TiOH 4 ; And drying the TiOH 4 so that the titanium dioxide (TiO 2 ) powder is formed. 제1항에 있어서, The method of claim 1, 상기 TiOH4를 생성한 후에, 상기 중화반응으로부터 얻어진 TiOH4를 수세하는 단계를 더 포함하는 것을 특징으로 하는 이산화티타늄분말 제조방법.After producing the TiOH 4 , further comprising the step of washing the TiOH 4 obtained from the neutralization reaction. 제1항에 있어서,The method of claim 1, 상기 TiOH4를 건조시키는 단계는 약 200℃이하의 온도에서 실시되는 것을 특징으로 하는 이산화티타늄분말 제조방법.Drying the TiOH 4 is a method for producing titanium dioxide powder, characterized in that carried out at a temperature of about 200 ℃ or less. 제1항에 있어서,The method of claim 1, 상기 이산화티타늄(TiO2)과 전이금속(M)을 혼합하는 단계와, 상기 이산화티타늄(TiO2)과 전이금속(M)의 혼합물에 기계적 합금법을 적용하여 전이금속(M)이 도핑된 이산화티타늄(Ti1-xMxO2)을 형성하는 단계를 더 포함하는 것을 특징으로 하는 이산화티타늄 분말 제조방법.The titanium dioxide (TiO 2) and comprising the steps of mixing the transition metal (M), wherein the titanium dioxide (TiO 2) and by applying the mechanical alloying method to a mixture of a transition metal (M) The transition metal (M) is doped dioxide Titanium (Ti 1-x M x O 2 ) The method of producing a titanium dioxide powder, characterized in that it further comprises the step of forming. 제4항에 있어서,The method of claim 4, wherein 상기 전이금속(M)은 상기 혼합물에 0.01∼0.1mol%로 포함된 것을 특징으로 하는 이산화티타늄분말 제조방법.The transition metal (M) is titanium dioxide powder manufacturing method, characterized in that contained in the mixture 0.01 to 0.1 mol%. 제4항에 있어서,The method of claim 4, wherein 상기 전이금속(M)은 Fe, Cr, V, Nb, Sb, Sn, Si 및 Al로 이루어진 그룹에서 선택된 적어도 하나의 물질인 것을 특징으로 하는 이산화티타늄분말 제조방법.The transition metal (M) is a method for producing titanium dioxide powder, characterized in that at least one material selected from the group consisting of Fe, Cr, V, Nb, Sb, Sn, Si and Al. 제4항에 있어서,The method of claim 4, wherein 상기 기계적 합금법은 볼밀링공정으로 실시되는 것을 특징으로 하는 이산화타타늄분말 제조방법.The mechanical alloying method is a method for producing titanium dioxide powder, characterized in that carried out by a ball milling process. 제7항에 있어서,The method of claim 7, wherein 상기 볼밀링공정은 최종 이산화티타늄 분말의 평균입도가 40㎚이하가 되도록 실시하는 것을 특징으로 하는 이산화티타늄분말 제조방법.The ball milling process is a titanium dioxide powder production method, characterized in that the average particle size of the final titanium dioxide powder is carried out to be 40nm or less. 제7항에 있어서,The method of claim 7, wherein 상기 볼밀링공정은 상기 혼합물과 볼의 중량비를 13:1∼25:1로 하는 조건에서 실시되는 것을 특징으로 하는 이산화티타늄분말 제조방법.The ball milling process is a titanium dioxide powder production method characterized in that the weight ratio of the mixture and the ball is carried out under the conditions of 13: 1 to 25: 1. 제7항에 있어서,The method of claim 7, wherein 상기 볼밀링공정은 100∼300rpm의 회전속도로 적어도 8시간이상 실행되는 것을 특징으로 하는 이산화티타늄분말 제조방법.The ball milling process is a titanium dioxide powder production method, characterized in that performed at least 8 hours at a rotation speed of 100 ~ 300rpm. 제7항에 있어서,The method of claim 7, wherein 상기 볼밀링공정에서 사용되는 볼은 STS 313 물질로 이루어지고 2∼16인치(JIS규격)인 볼을 특징으로 하는 이산화티타늄분말 제조방법.The ball used in the ball milling process is a titanium dioxide powder manufacturing method, characterized in that the ball made of STS 313 material and 2 to 16 inches (JIS standard). 제1항 내지 제11항 중 어느 한 항에 따른 방법으로 제조된 이산화티타늄 분말.Titanium dioxide powder prepared by the method according to any one of claims 1 to 11.
KR10-2003-0059874A 2003-08-28 2003-08-28 Method of producing titanium dioxide powder for photocatalyst and titanium dioxide powder produced by the same KR100539613B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2003-0059874A KR100539613B1 (en) 2003-08-28 2003-08-28 Method of producing titanium dioxide powder for photocatalyst and titanium dioxide powder produced by the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0059874A KR100539613B1 (en) 2003-08-28 2003-08-28 Method of producing titanium dioxide powder for photocatalyst and titanium dioxide powder produced by the same

Publications (2)

Publication Number Publication Date
KR20050023552A true KR20050023552A (en) 2005-03-10
KR100539613B1 KR100539613B1 (en) 2005-12-29

Family

ID=37231043

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2003-0059874A KR100539613B1 (en) 2003-08-28 2003-08-28 Method of producing titanium dioxide powder for photocatalyst and titanium dioxide powder produced by the same

Country Status (1)

Country Link
KR (1) KR100539613B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101020738B1 (en) * 2008-07-24 2011-03-09 경상대학교산학협력단 Manufacturing method of Titanium dioxide having nano particles, Titanium dioxide having nano particles manufactured using the same method, and a solar battery using the same Titanium dioxide
US9260316B2 (en) 2011-12-29 2016-02-16 Posco Titanium dioxide nanoparticle, titanate, lithium titanate nanoparticle, and preparation methods thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130025536A (en) * 2011-09-02 2013-03-12 (주)현대단조 A titanium dioxide manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101020738B1 (en) * 2008-07-24 2011-03-09 경상대학교산학협력단 Manufacturing method of Titanium dioxide having nano particles, Titanium dioxide having nano particles manufactured using the same method, and a solar battery using the same Titanium dioxide
US9260316B2 (en) 2011-12-29 2016-02-16 Posco Titanium dioxide nanoparticle, titanate, lithium titanate nanoparticle, and preparation methods thereof

Also Published As

Publication number Publication date
KR100539613B1 (en) 2005-12-29

Similar Documents

Publication Publication Date Title
KR100430405B1 (en) manufacturing method of titanium dioxide powder for photocatalyst
US8791044B2 (en) Doped titanium dioxide as a visible and sun light photo catalyst
EP2519348B1 (en) Method of production of photocatalytic powder comprising titanium dioxide and manganese dioxide active under ultraviolet and visible light
EP2445635B1 (en) Method for the preparation doped catalytic carbonaceous composite materials
Valencia et al. Sol–gel and low-temperature solvothermal synthesis of photoactive nano-titanium dioxide
Jeon et al. Preparation and characterization of a nano-sized Mo/Ti mixed photocatalyst
Liu et al. A novel approach for the synthesis of visible-light-active nanocrystalline N-doped TiO2 photocatalytic hydrosol
JP4135921B2 (en) Titanium dioxide fine particles and method for producing the same
Kirankumar et al. Photocatalytic performance of cerium doped copper aluminate nanoparticles under visible light irradiation
JP2006335619A (en) Titanium oxide particle, and production method and application thereof
JP2006198464A (en) Visible light response type photocatalyst and its production method
Cavalheiro et al. Photocatalytic decomposition of diclofenac potassium using silver-modified TiO2 thin films
Ravi et al. Synthesis of Y 2 Ti 2 O 7-x N y with visible light responsive photocatalytic activity
KR100539613B1 (en) Method of producing titanium dioxide powder for photocatalyst and titanium dioxide powder produced by the same
Ba-Abbad et al. Solar photocatalytic degradation of environmental pollutants using ZnO prepared by sol-gel: 2, 4-dichlorophenol as case study
KR100576375B1 (en) Titanium dioxide powder doped with metal nickel and method of manufacturing the same
Hamdany Photocatalytic cementitious material for self-cleaning and anti-microbial application
KR100510052B1 (en) Titanium dioxide powder doped with transition metal element and method of manufacturing the same
JP2010149046A (en) Method for producing visible light-responsive photocatalyst and visible light-responsive photocatalyst
KR100545392B1 (en) Titanium dioxide powder doped with a plurality of transition metal elements and method of producing the same
KR100609132B1 (en) Composite titanium dioxide photocatalyst containing nickel and method for producing the same
WO2013032253A2 (en) Method for preparing titanium dioxide
EP2407236A1 (en) Photocatalyst comprising a doped material
KR101840038B1 (en) Titanium dioxide composition and method for prepairing the same
Bashir et al. Challenges and prospects of main-group metal-doped TiO2 photocatalysts for sustainable water remediation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121011

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20131002

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee