KR20050011867A - Method of producing conducting film using Carbon Nano Tube and Nano Metal - Google Patents

Method of producing conducting film using Carbon Nano Tube and Nano Metal Download PDF

Info

Publication number
KR20050011867A
KR20050011867A KR1020030050915A KR20030050915A KR20050011867A KR 20050011867 A KR20050011867 A KR 20050011867A KR 1020030050915 A KR1020030050915 A KR 1020030050915A KR 20030050915 A KR20030050915 A KR 20030050915A KR 20050011867 A KR20050011867 A KR 20050011867A
Authority
KR
South Korea
Prior art keywords
group
poly
mixture
carbon nanotube
metal nanoparticles
Prior art date
Application number
KR1020030050915A
Other languages
Korean (ko)
Inventor
박종진
이상윤
구본원
강인남
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020030050915A priority Critical patent/KR20050011867A/en
Publication of KR20050011867A publication Critical patent/KR20050011867A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Abstract

PURPOSE: Provided is a production process of conductive film which is chemically combined with a carbon nanotube to improve conductivity of a film and to adjust conductivity as necessary so that it is effectively used in the field of electrodes, antistatic washable sticky mat, antistatic shoes, conductive polyurethane rollers or electromagnetic interference shielding. CONSTITUTION: The production process of conductive film comprises the steps of: (i) reacting acid-treated carbon nanotube and the tube with metal nano particles having self assembled monolayer of a compound represented by formula: HS-R-A on the surface, wherein R is C2-C20 organic group consisting of -NHCO-, -COO- or -O- group and A is carboxylate, hydroxyl, acylhalide or amine group to produce carbon nanotube-graft-nanometal by a linker; and (ii) distributing the compound in organic solvent or organic solution, coating and drying the compound.

Description

탄소나노튜브 및 금속나노입자를 이용한 도전성 필름 형성방법 {Method of producing conducting film using Carbon Nano Tube and Nano Metal}Method of producing conducting film using Carbon Nano Tube and Nano Metal}

본 발명은 금속나노입자 및 탄소나노튜브를 이용한 도전성 필름형성방법에 관한 것으로, 보다 상세하게는 산처리된 탄소나노튜브 및 표면에 자기분자조립층 (self assembled monolayer)이 형성된 금속나노입자를 반응시켜 링커로 그라프트된 탄소나노튜브-graft-금속나노입자(CNT-g-Namometal)의 혼합물을 수득하고, 상기 혼합물을, 유기용매 또는 고분자의 유기용액에 분산시키고 이를 기재 상에 도포한 후건조하여 도전성 필름을 형성하는 방법에 관한 것이다.The present invention relates to a method of forming a conductive film using metal nanoparticles and carbon nanotubes, and more particularly, by reacting metal nanoparticles having a self assembled monolayer on an acid-treated carbon nanotube and a surface thereof. A mixture of carbon nanotube-graft-metal nanoparticles (CNT-g-Namometal) grafted with a linker is obtained, and the mixture is dispersed in an organic solvent or an organic solution of a polymer and coated on a substrate, followed by drying. It relates to a method of forming a conductive film.

나노크기 소재 중, 금속나노입자는 전하이동(charge transfer) 내지 전자이동(electron transfer)등의 전기전도 메카니즘을 통해 전도성을 지니며, 그 크기에 따른 패킹밀도(packing density)를 조절하여 재료의 전도성을 조절할 수 있는 특징이 있다. 나노금속입자에 있어, 그 표면을 특정 화합물의 분자자기조립 (Self assembly)으로 감싸는 기술은 여러 가지 발표에 보고 된 예가 있는데 [Chem.Rev., 96, 1533 (1996)], 예를 들어, 멀켑토기를 포함한 화합물을 톨루엔과 같은 유기용매에 용해시키고 이를 금속염 수용액과 함께 섞어 반응시켜 표면상에 상기 멀켑토기를 포함한 화합물의 자기조립층이 형성된 나노 금속 입자를 직접 수득하는 방법 등이 공지되어 있다. 이 때, 상기 멀켑토기를 포함한 화합물의 공지된 예로서는 알칸사이올(alkanethiol), 디알킬디설파이드(dialkyl disulfide), 디알킬설파이드(dialkylsulfide), 알킬 잔네이트(alkyl xanthate), 디알킬사이올카바메이트(dialkylthiolcarbamate) 등을 들 수 있다.Among the nano-size materials, metal nanoparticles are conductive through electrical conductivity mechanisms such as charge transfer or electron transfer, and the conductivity of the material is controlled by controlling the packing density according to the size. There is a feature that can be adjusted. In the nano-metal particles, there example of the surface of self-assembled molecules of a particular compound to wrap (Self assembly) technique is reported in a number of published [Chem.Rev., 96, 1533 ( 1996)] , for, example, meolkep It is known to directly dissolve a compound including earthenware in an organic solvent such as toluene, react with a metal salt aqueous solution, and directly obtain nanometal particles having a self-assembled layer of the compound containing mullite earth on the surface thereof. At this time, known examples of the compound containing a multo earth group include alkan e thiol, dialkyl disulfide, dialkylsulfide, alkyl xanthate, dialkylcyol carbamate (dialkylthiolcarbamate) etc. are mentioned.

한편, 1991년 이지마 박사의 발견 이래, 나노크기의 또 다른 소재로서 많은 연구가 진행되어 온 탄소나노튜브는, 통상 흑연면으로 이루어진 직경 1 내지 20㎚ 정도의 원통형 구조를 가진다. 상기 탄소 나노튜브의 흑연면은 튼튼하고 평탄한 육각형 판상막 구조의 독특한 결합배열을 가지고, 나선모양으로 감기면서 튜브를 형성하며, 상이한 지점에서 모서리의 결합을 가지고, 상기 막의 상하부는 자유전자로 채워져 있으며, 상기 자유전자는 이산상태에서 막과 평행한 상태로 운동을 한다. 나노튜브의 전기적 특성은 구조와 직경의 함수인 것으로 알려져 있는바[Phys.Rev.Lett, 1804 (1992);Phys.Rev.Lett. 1579 (1992)], 그 구조와 직경에서의 차이에 따라 절연체로부터 반도체, 금속성까지 나타낼 수 있다. 예를 들면, 탄소나노튜브의 나선형 또는 키랄성(chirality)을 바꾸어 자유전자의 운동방식에 변화를 주게되면, 자유전자의 운동이 완전히 자유로워져 탄소나노튜브가 금속과 같은 도체적 성질을 갖게 되거나, 혹은 극복해야 될 배리어(barrier)의 존재로 인해 반도체의 특성을 나타내기도 한다. 이 때, 상기 배리어의 크기는 튜브의 직경에 따라 결정되며, 최소직경에서 1eV도 가능한 것으로 알려져 있다. 탄소나노튜브는 이처럼 역학적 견고성과 화학적 안정성이 뛰어나고, 반도체와 도체의 성질을 모두 띨 수 있으며, 직경이 작고 길이가 길며 속이 비어있다는 특성 때문에, 평판표시소자, 트랜지스터, 에너지 저장체 등의 소재로서 뛰어난 성질을 보이고, 나노크기의 각종 전자소자로서의 응용성이 매우 크다.On the other hand, carbon nanotubes, which have been studied as another nano-sized material since the discovery of Dr. Ijima in 1991, have a cylindrical structure with a diameter of about 1 to 20 nm, which is usually made of graphite surface. The graphite surface of the carbon nanotubes has a unique bond arrangement of a strong, flat hexagonal plate-like membrane structure, forms a tube wound in a spiral shape, has a bond of edges at different points, and the upper and lower portions of the film are filled with free electrons. The free electrons move in parallel with the film in discrete states. Electrical properties of nanotubes are known to be functions of structure and diameter [ Phys . Rev. Lett , 1804 (1992); Phys . Rev. Lett . 1579 (1992)], depending on the difference in structure and diameter, from insulators to semiconductors and metallics. For example, changing the helical or chirality of carbon nanotubes changes the way of free electrons move, and the free electrons are completely freed and the carbon nanotubes have the same conductive properties as metals. The presence of barriers to be overcome may also indicate the characteristics of the semiconductor. At this time, the size of the barrier is determined according to the diameter of the tube, it is known that even 1eV at the minimum diameter. Carbon nanotubes are excellent in mechanical properties such as flat panel display devices, transistors, and energy storage materials because of their excellent mechanical robustness and chemical stability, their ability to exhibit both semiconductor and conductor properties, and their small diameter, length, and hollowness. It shows properties, and its applicability as nano-sized various electronic devices is very large.

전자산업의 발달에 따라 물성이 우수하고 그 전도성을 임의로 조절할 수 있는, 도전성 필름 또는 패턴에 대한 요구가 증가하고 있는 상황에서, 상기 탄소나노튜브 및 금속나노입자는 우수한 전도특성 및 기계적 물성을 나타내는 전도성 필름제조를 위한 차세대 재료로써 기대되지만, 본 발명자들의 연구에 따르면, 상기 재료의 단순 블렌딩은 탄소나노튜브와 금속입자 간의 좋지 않은 계면특성 (혹은 상용성)으로 인해 만족할 만한 성과를 얻을 수 없으며, 균일 혼합된 경우에도 시간경과에 따라 상분리 등이 발생하는 등의 문제가 있다. 한편, 이러한 문제를 해결하기 위해 계면활성제 등의 제3의 성분을 사용한 경우, 탄소나노튜브 표면에서 상기 제3성분을 완전히 제거하기 힘들어 계면에 불순물로 존재하게 되어 순수한 탄소나노튜브만의 성질을 얻기가 힘들어진다.With the development of the electronics industry, the demand for conductive films or patterns, which have excellent physical properties and can arbitrarily control their conductivity, is increasing, and the carbon nanotubes and the metal nanoparticles have excellent conductivity and mechanical properties. Although expected as a next-generation material for film production, according to the inventors' research, the simple blending of the material can not achieve satisfactory performance due to poor interface properties (or compatibility) between the carbon nanotubes and the metal particles, uniform Even when mixed, there is a problem such as phase separation occurs over time. On the other hand, when a third component such as a surfactant is used to solve this problem, it is difficult to completely remove the third component from the surface of the carbon nanotubes, so that it exists as impurities at the interface to obtain the properties of pure carbon nanotubes only. Gets harder.

본 발명자들은 상기 문제를 해결하고자 예의 연구한 결과, 산처리에 의해 표면에 카르복실레이트기가 도입된 탄소나노튜브와 표면에 사이올 화합물의 자기분자조립층이 형성된 금속나노입자를 반응시킨 혼합물을 이용할 경우, 상용성 부재의 문제 또는 시간에 따른 상분리 문제없이 우수한 물성을 가진 도전성 필름을 수득할 수 있다는 것을 확인하고 본 발명에 이르게 되었다. 결국, 본 발명은 탄소나노튜브 및 금속나노입자를 이용하여 전도성을 포함한 전반적 물성이 뛰어나고, 그 전도성을 적당한 범위에서 조절할 수 있는 도전성 필름을 제공하기 위한 것이다.The present inventors have diligently studied to solve the above problems, and as a result, a mixture of carbon nanotubes having a carboxylate group introduced into the surface by acid treatment and metal nanoparticles having a magnetic molecular assembly layer of a siol compound formed on the surface thereof can be used. In this case, it was confirmed that a conductive film having excellent physical properties can be obtained without a problem of a compatibility member or a phase separation problem with time, and the present invention has been achieved. After all, the present invention is to provide a conductive film having excellent overall physical properties including conductivity using carbon nanotubes and metal nanoparticles, the conductivity can be adjusted in a suitable range.

도 1은, 본 발명의 바람직한 한 구현예에 있어, 링커에 의해 그라프트된 탄소나노튜브-graft-금속나노입자(CNT-g-Nanometal)의 구조를 모식적으로 나타낸 것으로서, 도 1 중,는 금, 은, 구리, 팔라듐, 또는 플라티늄의 나노입자를 나타내고,는 탄소나노 튜브를 나타내며, R은 아마이드기(-CONH-), -COO-기 또는 -O-기를 포함할 수 있는 탄소수 2 내지 20의 유기기를 나타낸다.FIG. 1 schematically shows a structure of carbon nanotube-graft-metal nanoparticles (CNT-g-Nanometal) grafted by a linker in a preferred embodiment of the present invention.Represents nanoparticles of gold, silver, copper, palladium, or platinum,Represents a carbon nanotube, R represents an amide group (-CONH-), An organic group having 2 to 20 carbon atoms that may include a -COO- group or an -O- group.

상기 목적을 달성하기 위한 본 발명의 한 측면은 (ⅰ) 산 처리된 탄소나노튜브 및 표면에 하기 화학식 1로 나타내어지는 사이올 화합물의 자기분자조립층(self assembled monolayer)이 형성된 금속나노입자를 반응시켜 링커에 의해 그라프트된 탄소나노튜브-graft-금속나노입자 (CNT-g-Nanometal)의 혼합물을 수득하는 단계; 및, (ⅱ) 상기 혼합물을, 유기용매 또는 고분자의 유기용액에 분산시키고 이를 기재 상에 도포한 후 건조하는 단계를 포함하는 도전성 필름 형성방법에 관한 것이다:One aspect of the present invention for achieving the above object is (i) reacting a metal nanoparticle formed with a self-assembled monolayer of the acid-treated carbon nanotubes and the surface of the siol compound represented by the following formula (1) To obtain a mixture of carbon nanotube-graft-metal nanoparticles (CNT-g-Nanometal) grafted by a linker; And (ii) dispersing the mixture in an organic solvent or an organic solution of a polymer, applying the same on a substrate, and then drying the mixture.

HS-R-AHS-R-A

(상기 식에서, R은 중간에 아마이드기(-CONH-), -COO-기 또는 -O-기를 포함할 수 있는 탄소원자 2 내지 20인 유기기이며, A는 축합반응을 일으킬 수 있는 카르복실레이트기, 히드록실기, 아실할라이드 또는 아민기이다).Wherein R is an amide group (-CONH-) in the middle, An organic group having 2 to 20 carbon atoms which may include a -COO- group or an -O- group, A is a carboxylate group, hydroxyl group, acyl halide or amine group capable of causing a condensation reaction).

본 발명의 또 다른 한 측면은 상기 방법에 의해 수득된 도전성 필름에 관한 것이다.Another aspect of the invention relates to a conductive film obtained by the above method.

이하, 본 발명을 단계별로 나누어 보다 상세히 설명한다.Hereinafter, the present invention will be described in detail by dividing step by step.

제 (ⅰ) 단계:First step:

산 처리된 탄소나노튜브와, 표면에 특정구조의 사이올 화합물로 이루어진 자기분자조립층(self assembled monolayer)이 형성된 금속나노입자를 반응시켜 링커에 의해 그라프트된 탄소나노튜브-graft-금속나노입자(CNT-g-Nanometal)의 혼합물을 수득한다.Carbon nanotube-graft-metal nanoparticles grafted by a linker by reacting an acid-treated carbon nanotube with a metal nanoparticle having a self assembled monolayer composed of a silol compound having a specific structure on its surface A mixture of (CNT-g-Nanometal) is obtained.

본 발명에서 사용되는 탄소나노튜브는 본 발명의 목적을 저해하지 않는 한 특별히 제한되지 않으며, 시판되는 제품을 구입하여 사용할 수 있다. 예컨대, 통상의 아크방전법, 레이저 삭마법(Laser ablation), 고온 필라멘트 플라즈마 화학기상증착법, 마이크로웨이브 플라즈마 화학기상증착법, 열화학 기상증착법 또는 열분해법으로 제조된 것을 사용할 수 있다. 다만, 상기의 방법으로 합성된 탄소나노튜브에는 부산물인 비정질 탄소, 플러렌 등의 탄소-함유 물질들과 튜브의 성장을 위한 촉매로 사용되는 전이금속 등이 포함되어 있기 때문에, 이를 제거하기 위한 별도의 정제공정이 필요하다. 탄소나노튜브의 정제는 당업계에 공지된 모든 방법을 사용할수 있으며, 바람직하게는 후술하는 방법에 따르나, 이에 제한되지는 아니한다: 우선, 탄소나노튜브를 100℃의 증류수 내에서 8 내지 24 시간, 바람직하게는 12시간 동안 환류시킨 후, 이를 여과하여 그 여과물을 완전히 건조시킨 다음, 건조된 분말을 톨루엔으로 세척하여 상술한 바와 같은 탄소-함유 물질들을 제거한다. 이어서, 이로부터 수득된 검뎅이 물질(soot)을 450 내지 500℃, 바람직하게는 470℃에서 20 내지 30 분간, 바람직하게는 20분간 가열하고, 마지막으로 4 내지 7M, 바람직하게는 6M의 염산으로 세척하여 모든 금속성 오염물을 제거함으로써 순수한 탄소나노튜브를 수득할 수 있다.The carbon nanotubes used in the present invention are not particularly limited as long as the object of the present invention is not impaired, and commercially available products can be purchased and used. For example, those manufactured by conventional arc discharge, laser ablation, high temperature filament plasma chemical vapor deposition, microwave plasma chemical vapor deposition, thermochemical vapor deposition or pyrolysis can be used. However, since the carbon nanotubes synthesized by the above method include carbon-containing materials such as by-products amorphous carbon and fullerene, and transition metals used as catalysts for growth of the tubes, a separate Purification process is required. Purification of carbon nanotubes may use any method known in the art, preferably according to the method described below, but not limited to: First, the carbon nanotubes in distilled water at 100 ℃ 8 to 24 hours, After refluxing preferably for 12 hours, it is filtered to dry the filtrate completely and then the dried powder is washed with toluene to remove the carbon-containing materials as described above. The soot obtained therefrom is then heated at 450 to 500 ° C., preferably at 470 ° C. for 20 to 30 minutes, preferably 20 minutes, and finally with 4 to 7 M, preferably 6 M of hydrochloric acid. Pure carbon nanotubes can be obtained by washing to remove all metallic contaminants.

탄소나노튜브는 산처리하여 표면에 카르복실레이트기가 존재하도록 한다. 산처리를 위해서는, 예를 들어 탄소나노튜브를 환류하는 강산, 예를 들어 질산, 황산 또는 이들의 혼합물 용액으로 처리하여 수행할 수 있으나, 이에 제한되지 않으며, 탄소나노튜브의 표면에 카르복실레이트기를 도입할 수 있는 모든 공지된 산 처리방법이 본 발명의 범위에 포함된다. 본 발명의 한 구현예에 따른 산처리 방법을 보다 상세히 설명하면, 다음과 같다: 먼저, 탄소나노튜브를 부피비 1:9 내지 9:1, 바람직하게는 2:8 내지 8:2의 질산 및 황산의 혼합산 용액 내에서 72 내지 120시간 동안 환류시키고 0.1 내지 0.4 ㎛, 바람직하게는 0.2㎛의 폴리카보네이트 필터로 여과한 후, 그 여과물을 다시 질산에 담가 90 내지 120 ℃에서 45 내지 60시간 동안 환류시킨 다음, 원심분리한다. 원심분리 후 상등액을 회수하여 폴리카보네이트 필터로 여과하고, 그 여과물을 완전히 건조시키고, 건조된 카르복실화 탄소나노튜브를 증류수 또는 디메틸포름알데히드 (DMF)에 분산시킨 후, 다시 폴리카보네이트 필터로 여과하여 일정한 크기를 갖는 탄소나노튜브만을 선별해 낸다. 수득된 탄소나노튜브를 용매에 첨가하고 초음파 처리하면 탄소나노튜브 입자가 골고루 분산될 수 있다. 본 발명에 있어, 탄소나노튜브 표면의 카르복실화는 라만스펙트럼 등으로 확인할 수 있으며, 산처리된 탄소나노튜브의 경우 표면에 존재하는 카르복실레이트때문에 일정한 점도를 가진 균일 슬러리로 존재하게 된다.Carbon nanotubes are acid treated so that carboxylate groups exist on the surface. For the acid treatment, for example, it can be carried out by treatment with a strong acid refluxing the carbon nanotubes, for example nitric acid, sulfuric acid or a mixture thereof, but is not limited thereto, the carboxylate group on the surface of the carbon nanotubes All known acid treatment methods which can be introduced are included in the scope of the present invention. The acid treatment method according to an embodiment of the present invention will be described in more detail as follows: First, the carbon nanotubes in a volume ratio of 1: 9 to 9: 1, preferably 2: 8 to 8: 2, nitric acid and sulfuric acid And refluxed for 72 to 120 hours in a mixed acid solution of and filtered through a polycarbonate filter of 0.1 to 0.4 μm, preferably 0.2 μm, and then the filtrate was immersed in nitric acid again for 45 to 60 hours at 90 to 120 ° C. It is refluxed and then centrifuged. After centrifugation, the supernatant was recovered, filtered through a polycarbonate filter, the filtrate was completely dried, the dried carboxylated carbon nanotubes were dispersed in distilled water or dimethylformaldehyde (DMF), and again filtered through a polycarbonate filter. To screen only carbon nanotubes with a certain size. When the obtained carbon nanotubes are added to the solvent and sonicated, the carbon nanotube particles may be evenly dispersed. In the present invention, the carboxylation of the surface of the carbon nanotubes can be confirmed by Raman spectrum, etc., and the acid-treated carbon nanotubes are present as a uniform slurry having a constant viscosity because of the carboxylate present on the surface.

상기와 같은 산처리를 거친 탄소나노튜브는, 표면에 하기 화학식 1로 이루어진 사이올화합물의 자기분자 조립층(self assembled monolayer)이 형성된 금속나노입자와 혼합·반응시켜 링커에 의해 그라프트된 탄소나노튜브-graft-금속나노입자 (CNT-g-Nanometal)를 제공한다(참조: 도 1):The carbon nanotubes subjected to the acid treatment as described above are mixed with and reacted with metal nanoparticles having a self assembled monolayer of a thiol compound of Formula 1 on the surface thereof, and are grafted with carbon nanoparticles. Tube-graft-metal nanoparticles (CNT-g-Nanometal) are provided (see FIG. 1):

[화학식 1][Formula 1]

HS-R-AHS-R-A

(상기 식에서, R은 중간에 아마이드기(-NHCO-), -COO-기 또는 -O-기를 포함할 수 있는 탄소원자 2 내지 20인 유기기이며, A는 축합반응을 일으킬 수 있는 카르복실레이트기, 히드록실기, 아실할라이드 또는 아민기이다.)Wherein R is an organic group having 2 to 20 carbon atoms, which may include an amide group (-NHCO-), -COO- group or -O- group in the middle, A is a carboxylate group, hydroxyl group, acyl halide or amine group which can cause a condensation reaction.)

본 발명에서 사용되는 금속 나노입자는 특별히 제한되지는 않으나, 바람직하게는 금, 은, 구리, 팔라듐 또는 플라티늄의 나노입자이다.The metal nanoparticles used in the present invention are not particularly limited, but are preferably nanoparticles of gold, silver, copper, palladium or platinum.

상기 금속나노입자상에 자기분자조립층을 형성할 화학식 1로 나타내어지는 사이올 화합물의 바람직한 예는 6-멀켑토-1-헥산올, 2-아미노에탄사이올, 4,4'-사이오디페놀 또는 3-아미노사이오페놀 등을 들 수 있으나, 이에 제한되는 것은 아니다.Preferred examples of the thiol compound represented by the formula (1) to form a magnetic molecular assembly layer on the metal nanoparticles are 6-multo-1-hexanol, 2-aminoethanecyol, 4,4'-thiodiphenol or 3-aminothiophenol, and the like, but are not limited thereto.

본 발명에 있어 금속나노입자표면상의 자기조립층 형성은 공지된 모든 방법에 의할 수 있으며, 특별히 제한되지 않는다. 예를 들면, 공지된 방법에 의해 금속나노입자를 수득한 다음, 상기 금속입자를, 적절한 유기 용매내에서 화학식 1로 나타내어지는 사이올 화합물과 함께 분산시켜 일정시간 교반하여 수득하거나, 혹은, 사이올계 화합물의 유기용액을 상전이 촉매하에 금속 수용액과 반응시켜 유기용액층에 사이올계 화합물 분자로 둘러싸인 금속입자의 분산액을 수득하고, 상기 분산액을 환원제로 처리하여 자기분자조립층을 포함한 금속나노입자를 석출시킨 후, 이를 원심분리함으로써 자기 조립층이 형성된 상태의 금속나노입자를 직접 수득할 수도 있다.In the present invention, the formation of the self-assembled layer on the surface of the metal nanoparticles may be performed by any known method, and is not particularly limited. For example, metal nanoparticles are obtained by a known method, and then the metal particles are dispersed together with a siol compound represented by the formula (1) in a suitable organic solvent to be obtained by stirring for a predetermined time, or a siol-based The organic solution of the compound was reacted with an aqueous metal solution under a phase transfer catalyst to obtain a dispersion of metal particles surrounded by a siol compound molecule in the organic solution layer, and the dispersion was treated with a reducing agent to precipitate metal nanoparticles including a magnetic molecular assembly layer. After that, the metal nanoparticles in a state in which the self-assembled layer is formed may be directly obtained by centrifugation.

상기 산처리된 탄소나노입자와 상기 자기조립층을 포함한 금속나노입자를 소정의 유기용매 내에서, 바람직하게는 축합반응제의 존재 하에 반응시키면, 산처리된 탄소나노입자 표면의 카르복실레이트기와 금속 나노입자 표면에 존재하는 상기 사이올 화합물의 반응성기 A가 축합반응함으로써 CNT-g-Nanometal의 혼합물을 수득할 수 있다. 상기 축합반응에서 사용할 수 있는 축합반응제의 예로서는 1,3-디시클로카르보디이미드 (1,3-Dicyclohexylcarbodiimide: DCC) N,N-디이소프로필에틸아민 (N,N-Diisopropylethylamine: DIEA), O-(7-아자벤조트리아졸-1-일)-N,N,N',N'-테트라메틸우로니움헥사플루오르포스페이트 [O-(7-Azabenzotriazol -1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate: HATU] 또는 이들의 2 이상의 혼합물을 들 수 있으나 이에 제한되는 것은 아니다.When the acid treated carbon nanoparticles and the metal nanoparticles including the self-assembled layer are reacted in a predetermined organic solvent, preferably in the presence of a condensation reagent, the carboxylate group and the metal on the surface of the acid treated carbon nanoparticles A mixture of CNT-g-Nanometal can be obtained by condensation of the reactive group A of the siol compound present on the surface of the nanoparticles. Examples of the condensation reaction agent that can be used in the condensation reaction include 1,3-dicyclohexylcarbodi i mide (DCC) N, N-diisopropylethylamine (DIEA) , O- (7-azabenzotriazol-1-yl) -N, N, N ', N'-tetramethyluronium hexafluorophosphate [O- (7-Azabenzotriazol-1-yl) -N, N , N ', N'-tetramethyluronium hexafluorophosphate: HATU] or a mixture of two or more thereof, but is not limited thereto.

상기 반응에 사용된 탄소나노튜브 및 금속나노입자의 반응비는 특별히 제한되지는 않으나, 바람직하게는 1:1 내지 20:1 비율로 혼합하여 반응시킨다.The reaction ratio of the carbon nanotubes and the metal nanoparticles used in the reaction is not particularly limited, but is preferably mixed in a ratio of 1: 1 to 20: 1.

제 (ⅱ) 단계:(Ii) step:

본 단계에서는, 제 (ⅰ)단계에서 수득한 CNT-g-Nanometal 혼합물을 (a) 유기용매 또는 (b) 고분자 유기용액에 분산시키고, 이를 기재 상에 도포한 후 건조하여 도전성 필름을 제조한다.In this step, the CNT-g-Nanometal mixture obtained in step (iii) is dispersed in (a) an organic solvent or (b) a polymer organic solution, which is coated on a substrate and dried to prepare a conductive film.

본 단계에서 사용가능한 (a) 유기용매의 예는 디메틸포름아마이드(DMF), 4-히드록시-4-메틸-2-펜타논(4-hydroxy-4-methyl-2-pentanone), 에틸렌글리콜모노에틸에테르 또는 2-메톡시에탄올을 포함하나 이에 한정되지는 않는다. 한편, 상기 (b) 고분자 유기용액은 전도성 고분자, 비전도성 고분자 또는 양자의 혼합물을 전술한 바와 같은 유기용매에 용해시킨 것으로서, 이를 사용할 경우, 코팅된 막에 균일성 및 다양한 기능성을 부여할 수 있는 점에서 추가로 유리하다.Examples of (a) organic solvents usable in this step are dimethylformamide (DMF), 4-hydroxy-4-methyl-2-pentanone, ethylene glycol mono Include but are not limited to ethyl ether or 2-methoxyethanol. On the other hand, (b) the polymer organic solution is a conductive polymer, a non-conductive polymer or a mixture of both is dissolved in the organic solvent as described above, when used, it can give uniformity and various functionalities to the coated film It is further advantageous in that point.

본 발명에서 사용가능한 상기 전도성 고분자의 예는 폴리아세틸렌 (polyacetylene: PA), 폴리티오펜 (polythiophene: PT), 폴리 (3-알킬)티오펜[poly(3-alkyl)thiophene: P3AT], 폴리피롤(polypyrrole: PPY), 폴리이소시아나프탈렌(polyisothianaphthalene: PITN), 폴리에틸렌 디옥시티오펜 (polyethylene dioxythiophene: PEDOT), 폴리파라페닐렌 비닐렌(polyparaphenylene vinylene: PPV), 폴리(2,5-디알콕시)파라페닐렌 비닐렌 [poly(2,5-dialkoxy)paraphenylene vinylene], 폴리파라페닐렌 [polyparaphenylene: PPP), 폴리헵타디엔(polyheptadiyne: PHT), 또는 폴리(3-헥실)티오펜 [poly(3-hexyl)thiophene: P3HT], 폴리아닐린 [polyaniline: PANI] 및 이들의 혼합물을 포함한다. 전도성 고분자의 분자량은 특별히 제한되지 않으며, 바람직하게는 20,000 이하 범위의 것을 사용한다. 상기 전도성 고분자를 CNT-g-Nanometal 100중량부에 대하여 0.05 내지 200 중량부로 사용할 수 있다.Examples of the conductive polymer usable in the present invention include polyacetylene (PA), polythiophene (PT), poly (3-alkyl) thiophene (poly (3-alkyl) thiophene: P3AT), polypyrrole ( polypyrrole: PPY), polyisothianaphthalene (PITN), polyethylene dioxythiophene (PEDOT), polyparaphenylene vinylene (PPV), poly (2,5-dialkoxy) paraphenylene Poly (2,5-dialkoxy) paraphenylene vinylene, polyparaphenylene (PPP), polyheptadiyne (PHT), or poly (3-hexyl) thiophene [poly (3-hexyl) thiophene: P3HT], polyaniline: PANI, and mixtures thereof. The molecular weight of the conductive polymer is not particularly limited, preferably those in the range of 20,000 or less. The conductive polymer may be used in an amount of 0.05 to 200 parts by weight based on 100 parts by weight of CNT-g-Nanometal.

본 발명에서 사용 가능한 상기 비전도성 고분자의 예는 폴리에스테르, 폴리카보네이트, 폴리비닐알코올, 폴리비닐부티랄, 폴리아세탈, 폴리아릴레이트, 폴리아마이드, 폴리아미드이미드, 폴리에테르이미드, 폴리페닐렌에테르, 폴리페닐렌설파이드, 폴리에테르설폰, 폴리에테르케톤, 폴리프탈아마이드, 폴리에테르니트릴, 폴리에테르설폰, 폴리벤즈이미다졸, 폴리카보디이미드, 폴리실록산, 폴리메틸메타크릴레이트, 폴리메타크릴아마이드, 니트릴고무, 아크릴 고무, 폴리에틸렌테트라플루오라이드, 에폭시 수지, 페놀 수지, 멜라민 수지, 우레아 수지, 폴리부텐, 폴리펜텐, 에틸렌-프로필렌 공중합체, 에틸렌-부텐-디엔 공중합체, 폴리부타디엔, 폴리이소프렌, 에틸렌-프로필렌-디엔 공중합체, 부틸고무, 폴리메틸펜텐, 폴리스티렌, 스티렌-부타디엔 공중합체, 수첨(hydrogenated)스티렌-부타디엔 공중합체, 수첨폴리이소프렌, 수첨폴리부타디엔 및 이들의 혼합물을 포함한다. 비전도성 고분자의 분자량은 특별히 제한되지 않으며, 바람직하게는 20,000 이하의 범위의 것을 사용한다. 상기 비전도성 고분자는 CNT-g-Nanometal 100중량부에 대하여 1 내지 50 중량부로 사용할 수 있다.Examples of the nonconductive polymer usable in the present invention include polyester, polycarbonate, polyvinyl alcohol, polyvinyl butyral, polyacetal, polyarylate, polyamide, polyamideimide, polyetherimide, polyphenylene ether, Polyphenylene sulfide, polyethersulfone, polyetherketone, polyphthalamide, polyethernitrile, polyethersulfone, polybenzimidazole, polycarbodiimide, polysiloxane, polymethylmethacrylate, polymethacrylamide, nitrile rubber , Acrylic rubber, polyethylene tetrafluoride, epoxy resin, phenol resin, melamine resin, urea resin, polybutene, polypentene, ethylene-propylene copolymer, ethylene-butene-diene copolymer, polybutadiene, polyisoprene, ethylene-propylene -Diene copolymer, butyl rubber, polymethylpentene, polystyrene, styrene-butadiene balls Polymers, hydrogenated styrene-butadiene copolymers, hydrogenated polyisoprene, hydrogenated polybutadiene and mixtures thereof. The molecular weight of the nonconductive polymer is not particularly limited, and preferably, one having a range of 20,000 or less is used. The nonconductive polymer may be used in an amount of 1 to 50 parts by weight based on 100 parts by weight of CNT-g-Nanometal.

제 (ⅰ) 단계에서 수득한 CNT-g-Nanometal의 사용량은 특별히 제한되지는 않으나, 바람직하게는 사용된 유기용매 100 중량부에 대하여 0.1 내지 15 중량부로 사용한다. 한편, CNT-g-Nanometal의 상기 분산액은, 본 발명의 목적을 저해하지 않는 범위내에서, 코팅 및 박막의 용도에 따라서 염료(dye), 충진제(filler), 난연화제 (retarding agent) 및 습윤제(wetting agent)와 같은 각종 첨가제를 추가로 포함할 수 있다.The amount of CNT-g-Nanometal obtained in step (iii) is not particularly limited, but is preferably used in an amount of 0.1 to 15 parts by weight based on 100 parts by weight of the organic solvent used. On the other hand, the dispersion of the CNT-g-Nanometal, dyes, fillers, retarding agents and wetting agents (depending on the purpose of the coating and the thin film within the scope that does not impair the object of the present invention) and various additives such as wetting agents).

분산액은 기재 상에 균일하게 도포된다. 이 경우, 기재의 재질은 본 발명의 목적을 저해하지 않는 한 특별히 제한되지 않으며, 유리 기재, 실리콘 웨이퍼, 또는 플라스틱 기재 등을 용도에 따라 선택하여 사용할 수 있다. 분산액의 도포는 간단한 화학적 습식공정, 예를 들어, 스핀 코팅(spin coating), 딥 코팅(dip coating), 분무 코팅(spray coating), 흐름 코팅(flow coating), 스크린 인쇄(screen printing) 등에 의해 이루어질 수 있으나 이에 제한되는 것은 아니다. 편의성 및 균일성의 측면에서 스핀 코팅이 바람직하다. 스핀코팅을 행하는 경우, 스핀속도는 200 내지 3500 rpm의 범위 내에서 조절되는 것이 바람직하며, 정확한 속도는 분산용액의 점도와 원하는 필름두께 및 전도성에 따라 결정한다.The dispersion is applied uniformly on the substrate. In this case, the material of the substrate is not particularly limited as long as the object of the present invention is not impaired, and a glass substrate, a silicon wafer, a plastic substrate, or the like can be selected and used depending on the application. Application of the dispersion is accomplished by a simple chemical wet process, for example, spin coating, dip coating, spray coating, flow coating, screen printing, or the like. May be, but is not limited thereto. Spin coating is preferred in view of convenience and uniformity. In the case of spin coating, the spin speed is preferably controlled within the range of 200 to 3500 rpm, and the exact speed is determined according to the viscosity of the dispersion solution and the desired film thickness and conductivity.

본 발명에 따른 방법으로 제조된 도전성 막의 경우, 금속 나노입자가 단순 도핑(doping)된 것이 아니라 탄소나노입자와 화학결합에 의해 연결된 구조를 가지므로, 필름의 전도성이 우수하고, 필요한 경우, 탄소나노튜브와 화학적 결합으로 연결되는 금속나노입자간의 비율을 조절하여 막의 전도성을 조절할 수도 있다.In the case of the conductive film prepared by the method according to the present invention, since the metal nanoparticles are not simply doped but have a structure connected by chemical bonding with carbon nanoparticles, the conductivity of the film is excellent, and if necessary, carbon nano The conductivity of the membrane may be controlled by controlling the ratio between the metal nanoparticles connected by the tube and the chemical bond.

이하, 실시예를 들어 본 발명을 보다 상세히 설명하나, 이들 실시예는 단지 본발명을 설명하기 위한 것으로 본 발명의 보호범위를 제한하는 것으로 해석되어서는 안된다.Hereinafter, the present invention will be described in more detail with reference to Examples, but these Examples are only for illustrating the present invention and should not be construed as limiting the protection scope of the present invention.

제조예 1 내지 5: 금속 나노입자 표면에 6-멀켑토-1-헥산올이 자기분자조립층으로 도입된 물질의 제조Preparation Examples 1 to 5: Preparation of a material in which 6-mulsent-1-hexanol was introduced into the magnetic molecular assembly layer on the surface of the metal nanoparticles

톨루엔 400 ㎖에 테트라옥틸암모늄브로마이드 (tetraoctylammonium bromide) 1.6g을 용해시키고, 상기용액에 하기 표 1에 나타난 금속화합물을 증류수 150㎖에 녹인 용액을 첨가하고 1시간 교반하였다. 상기 용액에 6-멀켑토-1-헥산올 (6-mercapto-1-hexanol) 0.2 ㎖를 톨루엔 50 ㎖에 녹인 용액을 30분간 적하한 후 1시간 동안 교반하여 반응시키고, 상기 반응물에 NaBH40.55g (1.47mmol)을 투입한 후 2시간 동안 교반하여 어두운 보라색의 유기층을 분리한 다음, 유기층을 분별깔대기에서 분리하여 0.2㎛ 필터로 여과하고 30℃ 오븐에서 5시간 동안 감압 건조시켜 표면에 6-멀켑토-1-헥산올의 자기조립층이 형성된 금속나노입자를 수득하였다. 수득된 금속나노입자를 유기용매에 분산시켜 TEM을 측정한 결과, 평균 크기는 0.4 내지 0.8㎚였다.1.6 g of tetraoctylammonium bromide was dissolved in 400 ml of toluene, and the solution of the metal compound shown in Table 1 in 150 ml of distilled water was added to the solution and stirred for 1 hour. A solution of 0.2 ml of 6-mercapto-1-hexanol dissolved in 50 ml of toluene was added dropwise to the solution for 30 minutes, stirred for 1 hour, and reacted with NaBH 4 0.55. g (1.47mmol) was added thereto, stirred for 2 hours to separate the dark purple organic layer, and then the organic layer was separated from a separatory funnel, filtered through a 0.2 μm filter, dried under reduced pressure in an oven at 30 ° C. for 5 hours, and then 6- Metal nanoparticles having a self-assembled layer of mulletto-1-hexanol were obtained. The obtained metal nanoparticles were dispersed in an organic solvent and the TEM was measured, and the average size was 0.4 to 0.8 nm.

제조예Production Example 금속metal 분자량Molecular Weight 반응몰수(mmol)Reaction Mole (mmol) 첨가량 (g)Amount (g) 1One HAuCl4·6H2OHAuCl 4 6H 2 O 393.83393.83 1.471.47 0.5780.578 22 AgNO3 AgNO 3 169.88169.88 1.471.47 0.2490.249 33 CuCl2 CuCl 2 134.45134.45 1.471.47 0.1970.197 44 NaPdCl4 NaPdCl 4 294.19294.19 1.471.47 0.4320.432 55 H2PtCl6·6H2OH 2 PtCl 6 · 6H 2 O 409.82409.82 1.471.47 0.6020.602

제조예 6: 탄소나노튜브의 정제 및 산처리Preparation Example 6 Purification and Acid Treatment of Carbon Nanotubes

100mg의 탄소나노튜브(상품명 ILJIN CNT AP-Grade, 일진나노텍, 한국)를 환류관이 장착된 500 ml 플라스크 내에서 50ml의 증류수를 사용하여 100℃에서 12시간 동안 환류시켰다. 환류가 끝난 후 필터를 통해 여과된 물질을 60℃에서 12시간 건조시킨 후, 톨루엔으로 잔류 플러렌을 씻어냈다. 남아있는 검댕이 물질을 플라스크로부터 회수하여 470℃ 가열로에서 20분간 가열한 후, 마지막으로 6M 염산으로 세척함으로써 금속 성분을 모두 제거하여 순수한 탄소나노튜브를 수득하였다.100 mg of carbon nanotubes (trade name ILJIN CNT AP-Grade, Iljin Nanotech, Korea) were refluxed at 100 ° C. for 12 hours using 50 ml of distilled water in a 500 ml flask equipped with a reflux tube. After refluxing, the material filtered through the filter was dried at 60 ° C. for 12 hours, and then the residual fullerene was washed with toluene. The remaining soot material was recovered from the flask and heated in a 470 ° C. heating furnace for 20 minutes, and finally washed with 6M hydrochloric acid to remove all metal components to obtain pure carbon nanotubes.

정제된 탄소나노튜브는 질산:황산 = 7:3(v/v)의 혼합산 용액이 담긴 소니케이터에서 96시간 동안 환류시키고, 0.2 ㎛ 폴리카보네이트 필터로 여과한 후, 그 여과물을 다시 질산에 담가 90℃에서 45시간 동안 환류시킨 다음, 12,000rpm에서 원심분리하여 얻은 상등액을 0.1 ㎛ 폴리카보네이트 필터로 여과하고, 60℃에서 12시간 동안 건조시켰다. 건조된 탄소나노튜브를 DMF에 분산시킨 후, 다시 0.1 ㎛ 폴리카보네이트 필터로 여과하여 선별 사용하였다.The purified carbon nanotubes were refluxed for 96 hours in a sonicator containing a mixed acid solution of nitric acid: sulfuric acid = 7: 3 (v / v), filtered through a 0.2 μm polycarbonate filter, and the filtrate was again nitric acid. It was immersed in reflux for 45 hours at 90 ℃, then the supernatant obtained by centrifugation at 12,000rpm was filtered through a 0.1 ㎛ polycarbonate filter and dried at 60 ℃ for 12 hours. The dried carbon nanotubes were dispersed in DMF, and filtered again using a 0.1 μm polycarbonate filter.

실시예 1 내지 5: CNT-g-Nanometal의 제조 및 이를 이용한 도전성 막의 형성Examples 1 to 5: Preparation of CNT-g-Nanometal and Formation of Conductive Film Using the Same

상기 제조예 1 내지 5에서 얻은 각각의 자기조립층 포함 금속나노입자 0.01g및 제조예 6에서 얻은 산처리된 탄소나노튜브 0.01g을 하기 DMF 250 ml 내에서 혼합하고, 하기 표 2에 나타난 바와 같은 조성의 축합반응제를 사용하여 12시간 축합 반응시킨 후 미반응물을 메탄올로 수 회 세정하였다. 침전물을 0.2 ㎛ 폴리카보네이트 필터로 여과하여 40℃에서 12시간 동안 건조시켜 CNT-g-Nanometal의 혼합물을수득하였다.0.01 g of each metal nanoparticle including self-assembled layers obtained in Preparation Examples 1 to 5 and 0.01 g of acid-treated carbon nanotubes obtained in Preparation Example 6 were mixed in 250 ml of DMF, as shown in Table 2 below. After 12 hours of condensation reaction using a condensation reagent of the composition, the unreacted product was washed several times with methanol. The precipitate was filtered through a 0.2 μm polycarbonate filter and dried at 40 ° C. for 12 hours to obtain a mixture of CNT-g-Nanometal.

수득한 CNT-g-Nanometal 혼합물 0.5g을 DMF 1.5g에 분산시키고 1시간 동안 초음파 처리하여 각 성분을 충분히 혼합함으로써 코팅액을 제조하였다. 상기 코팅액을 이소프로필알코올로 초음파 처리한 유리기판 (3㎝×3㎝) 위에 500rpm으로 스핀코팅한 후, 100℃에서 30초 건조하여 전도성 필름을 수득하고, 도전성 측정장비로서 Jandel Universal Probe Station를 사용하여 각각 수득한 필름의 전도성을 측정하였다.0.5 g of the obtained CNT-g-Nanometal mixture was dispersed in 1.5 g of DMF and sonicated for 1 hour to prepare a coating solution by sufficiently mixing each component. The coating solution was spin-coated at 500 rpm on a glass substrate (3 cm × 3 cm) sonicated with isopropyl alcohol, and dried at 100 ° C. for 30 seconds to obtain a conductive film. Jandel Universal Probe Station was used as a conductivity measuring device. The conductivity of the films thus obtained was measured.

실시예Example 금속나노입자/사용량Metal nanoparticles / usage CNT 사용량CNT usage 축합제A condensing agent 전도도(S/㎝)Conductivity (S / cm) 1One 제조예 1/ 0.01gPreparation Example 1 / 0.01 g 0.01g0.01 g DCC/DIEA(2.5g/1.2g)DCC / DIEA (2.5g / 1.2g) 3535 22 제조예 2/ 0.01gPreparation Example 2 / 0.01 g 0.01g0.01 g DCC/DIEA(2.5g/1.2g)DCC / DIEA (2.5g / 1.2g) 4040 33 제조예 3/ 0.01gPreparation Example 3 / 0.01 g 0.01g0.01 g DCC/DIEA(2.5g/1.2g)DCC / DIEA (2.5g / 1.2g) 2828 44 제조예 4/ 0.01gPreparation Example 4 / 0.01 g 0.01g0.01 g DCC/DIEA(2.5g/1.2g)DCC / DIEA (2.5g / 1.2g) 2525 55 제조예 5/ 0.01gPreparation Example 5 / 0.01 g 0.01g0.01 g HATU/DIEA(2.5g/1.2g)HATU / DIEA (2.5g / 1.2g) 2020

실시예 6 내지 10: CNT-g-Nanometal 및 도전성 고분자의 필름제조Examples 6 to 10 Film Preparation of CNT-g-Nanometal and Conductive Polymer

상기 실시예 1 내지 5로부터 수득한 CNT-g-Nanometal 혼합물 및 도전성 고분자인 폴리(3-헥실)티오펜 [poly(3-hexyl)thiophene: P3HT]을 하기 표 3과 같은 조성으로 혼합하고, 이를 1시간 동안 초음파 처리하여 코팅액을 제조하였다. 상기 코팅액을 이소프로필알코올로 초음파 처리한 유리기판 (3㎝×3㎝)상에 500rpm으로 스핀코팅한 후, 100℃에서 30초 건조하여 필름을 수득하고, 그 전도성을 측정하였다. 결과는 표 3에 나타내었다.The CNT-g-Nanometal mixture and the conductive polymer poly (3-hexyl) thiophene [poly (3-hexyl) thiophene: P3HT] obtained from Examples 1 to 5 were mixed in a composition as shown in Table 3 below. A coating solution was prepared by sonication for 1 hour. The coating solution was spin coated at 500 rpm on a glass substrate (3 cm × 3 cm) sonicated with isopropyl alcohol, dried at 100 ° C. for 30 seconds to obtain a film, and the conductivity thereof was measured. The results are shown in Table 3.

실시예Example P3HT/클로로포름/DMFP3HT / Chloroform / DMF CNT-g-Nanometal/사용량CNT-g-Nanometal / Usage 전도도(S/㎝)Conductivity (S / cm) 66 0.1g/2.5g/1g0.1g / 2.5g / 1g 실시예 1/0.05gExample 1 / 0.05 g 2828 77 0.1g/2.5g/1g0.1g / 2.5g / 1g 실시예 2/0.05gExample 2 / 0.05 g 2626 88 0.1g/2.5g/1g0.1g / 2.5g / 1g 실시예 3/0.05gExample 3 / 0.05 g 2525 99 0.1g/2.5g/1g0.1g / 2.5g / 1g 실시예 4/0.05gExample 4 / 0.05 g 2121 1010 0.1g/2.5g/1g0.1g / 2.5g / 1g 실시예 5/0.05gExample 5 / 0.05 g 1818

상기 표 2 및 표 3에 나타난 바와 같이, 본 발명에 따른 방법에 의해 수득한 필름의 경우, 15(S/cm) 이상의 우수한 전도성을 나타내고 있어 일반적인 도전성 고분자보다도 더 높은 전도성을 가지는 바, 상기 결과로부터 탄소나노튜브간 연결된 망목구조 사이에 금속이 화학적 연결로 도핑된 결과를 나타내어 코팅된 막의 전도성이 증가함을 알 수 있다.As shown in Table 2 and Table 3, the film obtained by the method according to the present invention exhibits excellent conductivity of 15 (S / cm) or more, and has higher conductivity than general conductive polymers. It can be seen that the conductivity of the coated film is increased by showing that the metal is doped by a chemical connection between the carbon nanotubes.

본 발명의 방법에 따라 제조된 필름의 경우, 수득된 필름의 전도성이 우수하고, 필요에 따라 전도성을 조절할 수 있어 전극, 대전방지성 점착성 시트 (antistatic washable sticky mat), 대전방지성 신발(antistatic shoes), 도전성 폴리우레탄 프린터 롤러 (conductive polyurethane printer roller), 도전성 대차바퀴와 산업롤러 (conductive wheel and industrial roller), 대전방지성 압력민감 접착필름 (antistatic pressure sensitive adhesive film), 전자파 차폐 EMI (Electromagnetic Interference shielding) 등에 유리하게 사용될 수 있다.In the case of the film produced according to the method of the present invention, the obtained film is excellent in conductivity, and the conductivity can be adjusted as necessary, so that the electrode, antistatic adhesive sheet (antistatic washable sticky mat), antistatic shoes (antistatic shoes) ), Conductive polyurethane printer rollers, conductive wheels and industrial rollers, antistatic pressure sensitive adhesive films, electromagnetic shielding EMI ) May be advantageously used.

Claims (6)

ⅰ) 산 처리된 탄소나노튜브 및 표면에 하기 화학식 1로 이루어진 화합물의 자기분자조립층(self assembled monolayer)이 형성된 금속나노입자를 반응시켜 링커에 의해 그라프트된 탄소나노튜브-graft-금속나노입자(CNT-g-Nanometal)의 혼합물을 수득하는 단계; 및, ⅱ) 상기 혼합물을, 유기용매 또는 고분자의 유기용액에 분산시키고 이를 기재 상에 도포한 후 건조하는 단계를 포함하는 도전성 필름 형성방법:Iii) carbon nanotube-graft-metal nanoparticles grafted by a linker by reacting an acid treated carbon nanotube and a metal nanoparticle having a self assembled monolayer of a compound of Formula 1 formed on a surface thereof; Obtaining a mixture of (CNT-g-Nanometal); And, ii) dispersing the mixture in an organic solvent or an organic solution of a polymer, applying the same on a substrate, and drying the mixture. [화학식 1][Formula 1] HS-R-AHS-R-A (상기 식에서, R은 중간에 아마이드기(-NHCO-), -COO-기 또는 -O-기를 포함할 수 있는 탄소원자 2 내지 20인 유기기이며, A는 축합반응을 일으킬 수 있는 카르복실레이트기, 히드록실기, 아실할라이드 또는 아민기이다).Wherein R is an organic group having 2 to 20 carbon atoms, which may include an amide group (-NHCO-), -COO- group or -O- group in the middle, A is a carboxylate group, hydroxyl group, acyl halide or amine group capable of causing a condensation reaction). 제 1항에 있어서, 금속나노입자는 금, 은, 팔라듐, 또는 플라티늄의 금속나노입자이고, 상기 고분자는 전도성고분자, 비전도성 고분자 또는 양자의 혼합물인 것을 특징으로 하는 방법.The method of claim 1, wherein the metal nanoparticles are metal nanoparticles of gold, silver, palladium, or platinum, and the polymer is a conductive polymer, a nonconductive polymer, or a mixture of both. 제 1항에 있어서, 상기 탄소나노튜브와 상기 금속나노입자의 반응은 1,3-디시클로카르보디이미드 (1,3-Dicyclohexylcarbodiimide: DCC) N,N-디이소프로필에틸아민 (N,N-Diisopropylethylamine: DIEA), O-(7-아자벤조트리아졸-1-일)-N,N,N',N'-테트라메틸우로니움헥사플루오르포스페이트 [O-(7-Azabenzotriazol -1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate: HATU] 및 이들의 2 이상의 혼합물로 이루어진 군으로부터 선택된 축합반응제의 존재하에 수행되는 것을 특징으로 하는 방법.According to claim 1, wherein the reaction of the metal nanoparticle and the carbon nanotube is 1,3-dicyclohexyl carbodiimide to: N, N- diisopropylethylamine (1,3-Dicyclohexylcarbodi i mide DCC) (N, N-Diisopropylethylamine: DIEA), O- (7-azabenzotriazol-1-yl) -N, N, N ', N'-tetramethyluronium hexafluorophosphate [O- (7-Azabenzotriazol-1- yl) -N, N, N ', N'-tetramethyluronium hexafluorophosphate (HATU)] and a mixture of two or more thereof. 제 1항에 있어서, 기재상의 상기 도포는 스핀코팅, 스프레이, 딥코팅, 또는 롤코팅에 의해 수행되는 것을 특징으로 하는 방법.The method of claim 1 wherein the application on the substrate is performed by spin coating, spraying, dip coating, or roll coating. 제 2항에 있어서, 상기 전도성 고분자는 폴리아세틸렌(polyacetylene: PA), 폴리티오펜(polythiophene: PT), 폴리(3-알킬)티오펜[poly(3-alkyl)thiophene: P3AT], 폴리피롤(polypyrrole: PPY), 폴리이소시아나프탈렌(polyisothianaphth alene: PITN), 폴리에틸렌 디옥시티오펜(polyethylene dioxythiophene: PEDOT), 폴리파라페닐렌 비닐렌(polyparaphenylene vinylene: PPV), 폴리(2,5-디알콕시)파라페닐렌 비닐렌 [poly(2,5-dialkoxy)paraphenylene vinylene], 폴리파라페닐렌(polyparaphenylene: PPP), 폴리헵타디엔(polyheptadiyne: PHT), 또는 폴리(3-헥실)티오펜[poly( 3-hexyl)thiophene: P3HT], 및 폴리아닐린 [polyaniline: PANI] 으로 이루어진 군으로부터 선택된 1 또는 2종 이상의 고분자이고, 상기 비전도성 고분자는 폴리에스테르, 폴리카보네이트, 폴리비닐알코올, 폴리비닐부티랄, 폴리아세탈, 폴리아릴레이트, 폴리아마이드, 폴리아미드이미드, 폴리에테르이미드, 폴리페닐렌에테르, 폴리페닐렌설파이드, 폴리에테르설폰, 폴리에테르케톤, 폴리프탈아마이드, 폴리에테르니트릴, 폴리에테르설폰, 폴리벤즈이미다졸, 폴리카보디이미드, 폴리실록산, 폴리메틸메타크릴레이트, 폴리메타크릴아마이드, 니트릴고무, 아크릴 고무, 폴리에틸렌테트라플루오라이드, 에폭시 수지, 페놀 수지, 멜라민 수지, 우레아 수지, 폴리부텐, 폴리펜텐, 에틸렌-프로필렌 공중합체, 에틸렌-부텐-디엔 공중합체, 폴리부타디엔, 폴리이소프렌, 에틸렌-프로필렌-디엔 공중합체, 부틸고무, 폴리메틸펜텐, 폴리스티렌, 스티렌-부타디엔 공중합체, 수첨스티렌-부타디엔 공중합체, 수첨폴리이소프렌 및 수첨폴리부타디엔으로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 고분자인 것을 특징으로 하는 방법.The method of claim 2, wherein the conductive polymer is polyacetylene (PA), polythiophene (PT), poly (3-alkyl) thiophene [poly (3-alkyl) thiophene (P3AT), polypyrrole : PPY), polyisothianaphth alene (PITN), polyethylene dioxythiophene (PEDOT), polyparaphenylene vinylene (PPV), poly (2,5-dialkoxy) paraphenylene Poly (2,5-dialkoxy) paraphenylene vinylene, polyparaphenylene ( PPP), polyheptadiyne (PHT), or poly (3-hexyl) thiophene [poly (3-hexyl) thiophene: P3HT], and polyaniline [polyaniline: PANI] is one or two or more polymers selected from the group consisting of polyester, polycarbonate, polyvinyl alcohol, polyvinyl butyral, polyacetal, polyarylene , Polyamide, polyamideimide , Polyetherimide, polyphenylene ether, polyphenylene sulfide, polyether sulfone, polyether ketone, polyphthalamide, polyether nitrile, polyether sulfone, polybenzimidazole, polycarbodiimide, polysiloxane, polymethyl meta Acrylate, polymethacrylamide, nitrile rubber, acrylic rubber, polyethylene tetrafluoride, epoxy resin, phenol resin, melamine resin, urea resin, polybutene, polypentene, ethylene-propylene copolymer, ethylene-butene-diene copolymer , Polybutadiene, polyisoprene, ethylene-propylene-diene copolymer, butyl rubber, polymethylpentene, polystyrene, styrene-butadiene copolymer, hydrogenated styrene-butadiene copolymer, hydrogenated polyisoprene and hydrogenated polybutadiene Species or two or more kinds of polymers. 제 1항 내지 제 5항 중 어느 한 항에 따른 방법에 의해 수득한 도전성 필름.Electroconductive film obtained by the method of any one of Claims 1-5.
KR1020030050915A 2003-07-24 2003-07-24 Method of producing conducting film using Carbon Nano Tube and Nano Metal KR20050011867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030050915A KR20050011867A (en) 2003-07-24 2003-07-24 Method of producing conducting film using Carbon Nano Tube and Nano Metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030050915A KR20050011867A (en) 2003-07-24 2003-07-24 Method of producing conducting film using Carbon Nano Tube and Nano Metal

Publications (1)

Publication Number Publication Date
KR20050011867A true KR20050011867A (en) 2005-01-31

Family

ID=37223796

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030050915A KR20050011867A (en) 2003-07-24 2003-07-24 Method of producing conducting film using Carbon Nano Tube and Nano Metal

Country Status (1)

Country Link
KR (1) KR20050011867A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004766A1 (en) * 2005-07-05 2007-01-11 Seoul National University Industry Foundation Cooling device coated with carbon nanotube and method of manufacturing the same
KR100685796B1 (en) * 2006-04-11 2007-02-22 한국과학기술원 Method for manufacturing the transparent conductive electrode using carbon nanotube films
KR100686612B1 (en) * 2005-04-14 2007-02-26 주식회사 이엠씨플러스 Conductive silicone compound including carbon nanotubes
KR100707382B1 (en) * 2005-07-20 2007-04-13 (주)메인일렉콤 Electron wave absorbent for thin plate a manufacturing method
KR100744517B1 (en) * 2005-09-28 2007-08-01 엘지전자 주식회사 Interception material of electromagnetic waves
KR100769684B1 (en) * 2006-05-08 2007-10-23 고려대학교 산학협력단 Method for dipersing of carbon-nano tube in a single direction of the viscoelastic fluid and polybutene composite thereby
WO2008001998A1 (en) * 2006-06-29 2008-01-03 Korea Advanced Institute Of Science And Technology Method for manufacturing a transparent conductive electrode using carbon nanotube films
KR100869163B1 (en) * 2007-05-18 2008-11-19 한국전기연구원 Fabrication method of transparent conductive films containing carbon nanotubes and polymer binders and the transparent conductive films
KR100869161B1 (en) * 2007-07-13 2008-11-19 한국전기연구원 Polymer binder composition for transparent conductive films containing carbon nanotubes
WO2009020263A1 (en) * 2007-08-06 2009-02-12 Industry-Academic Cooperation Foundation, Yonsei University Nanocomposite, preparation method thereof and capacitor comprising the same
WO2009038436A2 (en) * 2007-09-21 2009-03-26 Nanobase Inc. Carbon nano tube coating apparatus and method thereof
WO2010095844A3 (en) * 2009-02-17 2010-11-04 (주)엘지하우시스 Carbon nanotube sheet heater
KR101011447B1 (en) * 2009-01-20 2011-01-28 부산대학교 산학협력단 Manufacturing Method of Aligned Metal Nanowires Film by Stretching
KR20110094971A (en) * 2010-02-18 2011-08-24 삼성전자주식회사 Conductive carbon nanotube-metal composite ink
KR101123859B1 (en) * 2010-02-26 2012-03-20 고려대학교 산학협력단 Reverse Osmosis Membrane Containing Carbon Nanotube and Method for Preparing Thereof
KR101157515B1 (en) * 2009-06-19 2012-06-20 중앙대학교 산학협력단 Conductive adhesive and connection method between terminal employing the same
KR101219613B1 (en) * 2009-12-21 2013-01-09 성균관대학교산학협력단 Metal-carbon hybrid nanostructure film and preparing method of the same
KR101233480B1 (en) * 2005-12-20 2013-02-14 엘지전자 주식회사 Method for forming coating layer of carbon nanotube for heat exchanger
US8552631B2 (en) 2008-02-15 2013-10-08 Samsung Display Co., Ltd. Display devices with transparent electrodes containing nanocarbon materials
KR101394823B1 (en) * 2010-06-04 2014-05-30 주식회사 엘지화학 Carbon Nano Structure with High Electrical Conductivity And Dispersibility, Method For Preparing The Same And Polymer Composite Containing The Same
KR101447478B1 (en) * 2013-07-12 2014-10-06 (주)바이오니아 Ceramic paste using CNT or CNT-metal composition and conductive film including the same
KR20180027750A (en) 2016-09-07 2018-03-15 서울대학교산학협력단 Antistatic transparent protection film having grating pattern on surface and preparation method thereof
WO2020034033A1 (en) * 2018-08-13 2020-02-20 HANDA, Janak Composite materials, uses, and methods
CN116553880A (en) * 2023-03-10 2023-08-08 山东高速材料技术开发集团有限公司 Crack-resistant and antifreezing cement-based material, and preparation method and application thereof

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100686612B1 (en) * 2005-04-14 2007-02-26 주식회사 이엠씨플러스 Conductive silicone compound including carbon nanotubes
KR100674404B1 (en) * 2005-07-05 2007-01-29 재단법인서울대학교산학협력재단 Cooling device with carbon nanotube coating and method of forming the same
WO2007004766A1 (en) * 2005-07-05 2007-01-11 Seoul National University Industry Foundation Cooling device coated with carbon nanotube and method of manufacturing the same
KR100707382B1 (en) * 2005-07-20 2007-04-13 (주)메인일렉콤 Electron wave absorbent for thin plate a manufacturing method
KR100744517B1 (en) * 2005-09-28 2007-08-01 엘지전자 주식회사 Interception material of electromagnetic waves
KR101233480B1 (en) * 2005-12-20 2013-02-14 엘지전자 주식회사 Method for forming coating layer of carbon nanotube for heat exchanger
KR100685796B1 (en) * 2006-04-11 2007-02-22 한국과학기술원 Method for manufacturing the transparent conductive electrode using carbon nanotube films
KR100769684B1 (en) * 2006-05-08 2007-10-23 고려대학교 산학협력단 Method for dipersing of carbon-nano tube in a single direction of the viscoelastic fluid and polybutene composite thereby
WO2008001998A1 (en) * 2006-06-29 2008-01-03 Korea Advanced Institute Of Science And Technology Method for manufacturing a transparent conductive electrode using carbon nanotube films
US8637122B2 (en) 2007-05-18 2014-01-28 Korea Electrotechnology Research Institute Method of manufacturing transparent conductive film containing carbon nanotubes and binder, and transparent conductive film manufactured thereby
KR100869163B1 (en) * 2007-05-18 2008-11-19 한국전기연구원 Fabrication method of transparent conductive films containing carbon nanotubes and polymer binders and the transparent conductive films
KR100869161B1 (en) * 2007-07-13 2008-11-19 한국전기연구원 Polymer binder composition for transparent conductive films containing carbon nanotubes
WO2009020263A1 (en) * 2007-08-06 2009-02-12 Industry-Academic Cooperation Foundation, Yonsei University Nanocomposite, preparation method thereof and capacitor comprising the same
WO2009038436A2 (en) * 2007-09-21 2009-03-26 Nanobase Inc. Carbon nano tube coating apparatus and method thereof
WO2009038436A3 (en) * 2007-09-21 2009-06-25 Nanobase Inc Carbon nano tube coating apparatus and method thereof
US8552631B2 (en) 2008-02-15 2013-10-08 Samsung Display Co., Ltd. Display devices with transparent electrodes containing nanocarbon materials
KR101011447B1 (en) * 2009-01-20 2011-01-28 부산대학교 산학협력단 Manufacturing Method of Aligned Metal Nanowires Film by Stretching
US9237606B2 (en) 2009-02-17 2016-01-12 Lg Hausys, Ltd. Carbon nanotube sheet heater
WO2010095844A3 (en) * 2009-02-17 2010-11-04 (주)엘지하우시스 Carbon nanotube sheet heater
KR101157515B1 (en) * 2009-06-19 2012-06-20 중앙대학교 산학협력단 Conductive adhesive and connection method between terminal employing the same
KR101219613B1 (en) * 2009-12-21 2013-01-09 성균관대학교산학협력단 Metal-carbon hybrid nanostructure film and preparing method of the same
KR20110094971A (en) * 2010-02-18 2011-08-24 삼성전자주식회사 Conductive carbon nanotube-metal composite ink
KR101123859B1 (en) * 2010-02-26 2012-03-20 고려대학교 산학협력단 Reverse Osmosis Membrane Containing Carbon Nanotube and Method for Preparing Thereof
KR101394823B1 (en) * 2010-06-04 2014-05-30 주식회사 엘지화학 Carbon Nano Structure with High Electrical Conductivity And Dispersibility, Method For Preparing The Same And Polymer Composite Containing The Same
WO2015005665A1 (en) * 2013-07-12 2015-01-15 (주)바이오니아 Ceramic paste composition using carbon nanotube or carbon nanotube-metal complex, and conductive film containing same
KR101447478B1 (en) * 2013-07-12 2014-10-06 (주)바이오니아 Ceramic paste using CNT or CNT-metal composition and conductive film including the same
US10249404B2 (en) 2013-07-12 2019-04-02 Bioneer Corporation Ceramic paste composition using carbon nanotube or carbon nanotube-metal complex, and conductive film containing same
KR20180027750A (en) 2016-09-07 2018-03-15 서울대학교산학협력단 Antistatic transparent protection film having grating pattern on surface and preparation method thereof
WO2020034033A1 (en) * 2018-08-13 2020-02-20 HANDA, Janak Composite materials, uses, and methods
CN116553880A (en) * 2023-03-10 2023-08-08 山东高速材料技术开发集团有限公司 Crack-resistant and antifreezing cement-based material, and preparation method and application thereof
CN116553880B (en) * 2023-03-10 2023-10-20 山东高速材料技术开发集团有限公司 Crack-resistant and antifreezing cement-based material, and preparation method and application thereof

Similar Documents

Publication Publication Date Title
KR20050011867A (en) Method of producing conducting film using Carbon Nano Tube and Nano Metal
US20050284336A1 (en) Carbon fine particle structure and process for producing the same, carbon fine particle transcriptional body for producing the same, solution for producing carbon fine particle structure,carbon fine particle structure, electronic device using carbon fine particle structure and process for producing the same, and integrated circuit
Li et al. Efficient inkjet printing of graphene
Ford et al. Platinated DNA as precursors to templated chains of metal nanoparticles
US20070153362A1 (en) Fabric having nanostructured thin-film networks
KR100639449B1 (en) Silicon particles used as additives for improving the charge carrier mobility in organic semiconductors
US20090166592A1 (en) Liquid mixture, structure, and method of forming structure
JP3913208B2 (en) Carbon nanotube-containing composition, composite having coating film made thereof, and method for producing them
KR101317599B1 (en) Novel metal nanoparticle and formation method of conducting pattern using the same
KR101307303B1 (en) Transparent electroconductive thin film and process for producing the transparent electroconductive thin film
US8513804B2 (en) Nanotube-based electrodes
KR20040106947A (en) Method for preparing a Conductive Film and a Pattern using Metallic Nano particle and Carbon Nanotube
KR101887167B1 (en) Electronic device
WO2004106223A1 (en) Carbon nanotube device, process for producing the same and carbon nanotube transcriptional body
KR20100031475A (en) Metal nanobelt, preparation method thereof, conductive ink composition and conductive film comprising the same
Oh et al. Silver-plated carbon nanotubes for silver/conducting polymer composites
US20150083466A1 (en) Method For The Functionalisation Of Metal Nanowires And The Production Of Electrodes
KR20120085205A (en) Semiconductor composition
JP2007076998A (en) Carbon nanotube dispersion liquid and method for producing the same
US20120058255A1 (en) Carbon nanotube-conductive polymer composites, methods of making and articles made therefrom
KR101291855B1 (en) Novel metal nanoparticle and formation method of conducting pattern using the same
JP2012082120A (en) New nanocarbon dispersant, nanocarbon fluid dispersion, and method for manufacturing nanocarbon thin film using those and nanocarbon thin film
Im et al. Functionalized gold nanoparticles with a cohesion enhancer for robust flexible electrodes
WO2007013015A1 (en) Method of manufacturing an electrical element
Bhuyan et al. Selective sensing of methanol by poly (m-aminophenol)/copper nanocomposite

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
NORF Unpaid initial registration fee