KR20040102613A - 2-arch tunnel method controlling the load of tunnel - Google Patents

2-arch tunnel method controlling the load of tunnel Download PDF

Info

Publication number
KR20040102613A
KR20040102613A KR1020030034134A KR20030034134A KR20040102613A KR 20040102613 A KR20040102613 A KR 20040102613A KR 1020030034134 A KR1020030034134 A KR 1020030034134A KR 20030034134 A KR20030034134 A KR 20030034134A KR 20040102613 A KR20040102613 A KR 20040102613A
Authority
KR
South Korea
Prior art keywords
load
tunnel
central support
load control
support structure
Prior art date
Application number
KR1020030034134A
Other languages
Korean (ko)
Inventor
안태훈
Original Assignee
안태훈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 안태훈 filed Critical 안태훈
Priority to KR1020030034134A priority Critical patent/KR20040102613A/en
Publication of KR20040102613A publication Critical patent/KR20040102613A/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/14Layout of tunnels or galleries; Constructional features of tunnels or galleries, not otherwise provided for, e.g. portals, day-light attenuation at tunnel openings
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D15/00Props; Chocks, e.g. made of flexible containers filled with backfilling material
    • E21D15/14Telescopic props
    • E21D15/44Hydraulic, pneumatic, or hydraulic-pneumatic props
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D15/00Props; Chocks, e.g. made of flexible containers filled with backfilling material
    • E21D15/14Telescopic props
    • E21D15/46Telescopic props with load-measuring devices; with alarm devices
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/01Methods or apparatus for enlarging or restoring the cross-section of tunnels, e.g. by restoring the floor to its original level

Abstract

PURPOSE: A two-arch tunnel construction method with load control is provided to construct the tunnel safely by measuring and controlling load of the tunnel to a central support structure, and to reduce the construction period and damage by separating the central support structure into the load control structure and the reinforcing concrete. CONSTITUTION: A central tunnel(1) is excavated, and a load control structure(2) is installed. While excavating a side tunnel(4), load applied to the load control structure is measured and controlled to the desired support load. The load control structure is reinforced with reinforcing concrete(3), and a central supporting structure is finished. The tunnel is constructed safely at a low cost by measuring and controlling the tunnel bearing load to the central supporting structure of a two-arch tunnel. The load control structure is manufactured with a steel structure with a hydraulic screw jack, and the hydraulic jack is removed after checking the final load.

Description

하중제어 2아치 터널공법{2-ARCH TUNNEL METHOD CONTROLLING THE LOAD OF TUNNEL}2-ARCH TUNNEL METHOD CONTROLLING THE LOAD OF TUNNEL}

본 발명은 도로 및 지하철 등 토목분야에 적용되는 2아치터널 공법 및 본 공법을 위한 중앙지지구조체(2)에 관한 것으로, 더욱 상세하게는 2아치터널 굴착시 중앙지지구조체(2)에 작용하는 하중을 측정하고 제어함으로서 경제적이고 안전한 터널을 시공하는 것이다. 이를 실시하기 위한 일 실시예로 유압스크류잭(14) 및 로울러지점(9)으로 구성된 하중제어구조체(2)를 콘크리트로 보강한 중앙지지구조체(7)에 관한 것이다.The present invention relates to a two-arch tunnel method and a central support structure (2) for the present method, which is applied to civil engineering such as roads and subways, and more particularly, a load acting on the central support structure (2) when excavating a two-arch tunnel. By constructing and controlling tunnels, economic and safe tunnels are constructed. One embodiment for carrying out this is directed to a central support structure (7) reinforced with a load control structure (2) consisting of a hydraulic screw jack (14) and a roller point (9).

토목분야에서 2아치터널은 지하철 터널정거장 및 4차로 도로터널 등과 같이 수평방향으로 넓은 지하공간을 확보하기 위하여 적용된다. 그러나, 기존의 2아치 터널공법은 중앙터널(1) 굴착 후 철근콘크리트로 이루어진 중앙지지구조체를 영구구조물로 시공하고 측방터널(4)을 굴착한다. 이러한 시공방법에 따라 기존 방법은 다음과 같은 문제점을 가지고 있다.In the civil engineering field, the two-arch tunnel is applied to secure a wide underground space in the horizontal direction such as subway tunnel station and four-lane road tunnel. However, in the conventional two-arch tunnel method, after excavating the central tunnel 1, the central support structure made of reinforced concrete is constructed as a permanent structure, and the side tunnel 4 is excavated. According to this construction method, the existing method has the following problems.

첫째, 기존의 2아치터널 시공방법은 중앙지지구조체가 부담하는 하중을 과다하게 증가시켜 비경제적이며 수직하중이 큰 대심도터널에 적용이 어렵다.First, the existing two-arch tunnel construction method excessively increases the load on the central support structure, making it difficult to apply to large-depth tunnels that are uneconomical and have large vertical loads.

1아치터널에서는 지보재가 부담하는 하중을 경감시키기 위하여 가축성 지보재를 사용하며, 설계 시에는 하중분담율을 사용하여 지보재가 부담하는 하중을 줄임으로서 경제적인 터널설계를 수행한다. 일반적으로 적용하는 하중분담율은 40-30-30이며, 이것이 의미하는 것은 굴착상당력 100% 가운데 40%는 지반이 모두 부담하고, 30%는 연성숏크리트와 지반이 같이 분담하고, 마지막 30%는 강성숏크리트와 지반이 분담한다는 것이다. 따라서, 지반이 분담하는 하중 비율을 높이고자 한다.1 Arch tunnel uses livestock support materials to reduce the loads on the support materials. In designing, it is possible to design tunnels economically by reducing the loads on the support materials by using the load sharing ratio. In general, the applied load sharing ratio is 40-30-30, which means that 40% of the excavation equivalency is all burdened by the ground, 30% is ductile shotcrete and the ground, and the last 30% is rigid. The shotcrete and the ground share. Therefore, it is going to raise the load ratio which the ground shares.

그러나, 기존의 2아치터널에서는 측방터널을 굴착하기 전에 중앙지지구조체인 철근콘크리트를 완전 경화시킴으로 굴착상당력 100% 모두를 중앙지지구조체와 지반이 함께 분담하게 된다. 따라서, 1아치터널에 비하여 비경제적인 설계개념으로 이루어져 있다. 수직하중이 큰 수백 미터 심도의 터널에서는 중앙지지구조체가 분담하는 하중이 매우 크므로 설계시 많은 어려움이 따른다.However, in the existing two-arch tunnel, the central support structure and the ground share all 100% of excavation strength by completely hardening the reinforced concrete, which is the central support structure, before the side tunnel is excavated. Therefore, it is made of a design concept that is uneconomical compared to one-arch tunnel. In a tunnel with a depth of several hundred meters where the vertical load is large, the load that the central support structure shares is very large, which causes a lot of difficulties in design.

둘째, 기존 공법은 중앙지지구조체에 작용하는 하중을 정확히 확인할 수 있는 시스템이 없으며 확인하더라도 예상되는 문제에 대하여 대책을 강구하기 어렵다.Second, the existing method does not have a system that can accurately determine the load acting on the central support structure, and even if it is confirmed, it is difficult to take measures against the expected problems.

중앙지지구조체는 철근콘크리트 구조물로 이루어져 있으므로 작용하중을 확인하기 위해서는 스트레인게이지를 중앙지지구조체 표면 및 내부 철근에 부착하여 측정하여야 한다. 그러나, 중앙지지구조체의 시공이 완료된 상태이므로 터널하중이 설계시 예측한 하중 보다 작을 경우 측정한 결과에 따라 설계변경을 수행하여 단면을 축소하는 것은 불가능하다. 설계하중 초과가 확인될 경우 대책방안을 강구하는 것도 어렵다.Since the center supporting structure is composed of reinforced concrete structures, the strain gauge should be attached to the surface of the central supporting structure and the internal reinforcement to check the working load. However, since the construction of the central support structure is completed, it is impossible to reduce the cross section by changing the design according to the measured result when the tunnel load is smaller than the load expected at the time of design. It is also difficult to take countermeasures when design loads are found to be exceeded.

셋째, 기존 공법은 다양한 터널조건에 대하여 단일한 중앙지지구조체 형식을 제공하여 비경제적인 설계 및 시공이 된다.Third, the existing construction method provides a single central support structure type for various tunnel conditions, resulting in uneconomical design and construction.

터널굴착시 지지하여야 할 지반하중은 지반강도, 지반변형특성, 토피, 측압계수, 시공방법, 터널형상 등 매우 다양한 영향인자에 의하여 변화된다. 따라서, 설계단계에서 터널하중을 정확히 산정한다는 것은 거의 불가능하다. 일반 1아치터널은 그동안 많은 시공경험에 의하여 터널조건에 따른 경험적인 지보패턴이 제안되어 사용되고 있으나, 2아치터널에 있어서는 이러한 경험적 지보패턴이 없다.The ground load to be supported in tunnel excavation is varied by various influence factors such as ground strength, ground deformation characteristics, toffee, side pressure coefficient, construction method, tunnel shape. Therefore, it is almost impossible to accurately estimate the tunnel load at the design stage. In general, one arch tunnel has been proposed and used according to tunnel conditions by many construction experiences, but in the two arch tunnel, there is no such empirical support pattern.

따라서, 한정된 입력자료로 수행된 수치해석에 의해 계산된 하중을 적용하며 상당한 안전율을 고려하여 설계를 하고 있다. 가장 안전한 설계방법은 굴착상당력을 모두 중앙지지구조체에 부담시키는 방법이고, 일반적인 방법은 굴착상당력의 50%를 중앙지지구조체가 부담하게 하는 방법이다. 이러한 방법도 수직하중을 단순히 토피하중으로 가정하여 산정한 것으로 정확한 굴착상당력으로 볼 수 없다. 굴착상당력의 분담율은 2아치터널 측벽과 중앙지지구조체의 강성차이에 의하여 변할 수 있으므로 안전성에 대하여 확신할 수 없다.Therefore, the load calculated by the numerical analysis performed with the limited input data is applied and the design is made considering the considerable safety factor. The safest design method is to load all the excavation equivalents to the central support structure, and the general method is to make the central support structure bear 50% of the excavation equivalents. This method is also based on the assumption that the vertical load is simply the toffee load and cannot be seen as an accurate excavation equivalence. As the share of excavation equivalence can be changed by the stiffness difference between the two-arch tunnel sidewall and the central support structure, it is not certain about safety.

넷째, 측방터널 굴착시 수평편토압이 발생되어 중앙지지구조체에 모멘트를 유발시킨다.Fourth, horizontal excavation pressure is generated during the excavation of the side tunnel, which induces a moment in the central support structure.

중앙지지구조체에 모멘트가 발생할 경우 압축응력이 증가하게 되어 구조적으로 불리하다. 지하철터널에서는 대부분 지표면이 편평하여 수평편토압 발생량이 작지만, 산악터널에서는 지형 및 지중응력에 따른 수평편토압 발생량이 터널 안전에 영향을 줄 수 있다. 또한, 시공시 측방터널을 동시에 굴착할 수 없을 경우 수평편토압이 발생된다.When a moment occurs in the central support structure, the compressive stress increases, which is structurally disadvantageous. In underground tunnels, the level of horizontal earth pressure is small due to the flat surface, but in mountain tunnels, the level of horizontal earth pressure due to terrain and ground stress can affect tunnel safety. In addition, horizontal excavation pressure is generated when the side tunnel cannot be excavated at the same time during construction.

따라서, 과다한 수평편토압 발생시 이에 대한 대책이 필요하나, 기존의 2아치터널 공법에서는 대책마련이 어렵다.Therefore, it is necessary to take countermeasures when excessive horizontal earth pressure is generated, but it is difficult to prepare countermeasures in the existing two-arch tunnel method.

다섯째, 중앙지지구조체를 철근콘크리트 영구구조물로 설치하므로 발파굴착시 발파충격에 의한 손상이 발생한다.Fifth, since the central support structure is installed as a reinforced concrete permanent structure, damage caused by blasting shock occurs during blasting excavation.

발파굴착에 의한 손상이 발생할 경우 이를 복구하는 것은 매우 어렵다. 따라서, 가능한 기계굴착을 실시하여야 하며 이는 공사비 증액이 발생하고 발파굴착이 필요한 경우에는 적용에 상당한 제약이 따른다.If damage caused by blasting occurs, it is very difficult to repair it. Therefore, mechanical excavation should be carried out as much as possible, and there is considerable limitation in application when construction cost increases and blasting excavation is required.

여섯째, 중앙지지구조체 설치가 완료된 이후 측방터널 굴착이 가능하므로 중앙지지구조체 설치 완료 후 28일이 경과한 후에야 측방터널 굴착이 가능하여 공기가 증가한다.Sixth, since the side tunnel can be excavated after the installation of the central support structure is completed, the side tunnel can be excavated only 28 days after completion of the installation of the central support structure, thereby increasing the air.

이러한 문제점을 내포하고 있는 기존의 2아치터널의 설계개념을 살펴보면 다음과 같다. 터널굴착지반의 변형을 허용하여 터널지지하중을 지반이 부담하도록 하기 보다 변형을 최대한 억제하여 적정변형 이후에 발생될지도 모르는 터널지지하중의 증가를 방지토록 한 것이다. 이완영역이 발생될 경우 터널지지하중이 증가한다는 검증이 안 된 이론에 근거하여 적정변형 발생도 허용하지 않는 것은 문제가 있다.Looking at the design concept of the existing two-arch tunnel containing this problem is as follows. Rather than allowing the tunnel to bear the tunnel bearing load by allowing deformation of the tunnel excavation ground, the deformation is suppressed as much as possible to prevent an increase in tunnel bearing load that may occur after proper deformation. It is problematic to disallow proper strain generation based on the theory that the tunnel support load increases when a loosening zone occurs.

위의 설계개념에 따라 기존 2아치터널 설계는 다음의 두가지 가정에 근거하여 이루어졌다.According to the above design concept, the existing two-arch tunnel design was based on the following two assumptions.

첫째, 중앙터널굴착시 발생되는 변형 이상을 허용하게 될 경우 터널지지하중의 증가가 발생된다.First, when the deformation of the central tunnel is tolerated, the tunnel load increases.

둘째, 측방터널굴착에 따른 터널지지하중을 중간지지구조체가 충분히 부담할 수 있다Second, the intermediate supporting structure can bear the tunnel supporting load due to the side tunnel excavation.

따라서, NATM에서 제안하는 터널설계개념을 따르지 않고 과거의 ASSM공법의 개념과 유사하게 터널 굴착 시 터널붕괴방지를 위해 요구되는 터널지지하중 혹은 터널굴착상당력의 상당 부분을 중앙지지구조체가 부담하도록 한 것이다.Therefore, the central support structure should bear a large part of the tunnel support load or tunnel excavation equivalence required to prevent tunnel collapse during tunnel excavation, similar to the concept of the previous ASSM method, without following the tunnel design concept proposed by NATM. will be.

위와 같은 문제점들로 인하여 2아치터널의 적용 범위는 매우 제한되었다. 그러나, 지하철의 심도가 깊어져 터널정거장의 필요가 증대되고, 도로 교통량의 증가에 따라 차로수가 편도 2차로에서 4차로로 채택하는 사례가 늘어나면서 2아치터널의 필요성이 증대되고 있다. 따라서, 기존의 2아치터널의 문제점을 해결하는 공법의 개발은 매우 시급한 상황이다.Due to the above problems, the scope of application of 2 arch tunnel is very limited. However, as the depth of the subway deepens, the need for tunnel stations increases, and as the traffic volume increases, the number of lanes adopted from two-way lanes to four lanes increases, and the need for two-arch tunnels increases. Therefore, the development of a method for solving the problems of the existing two-arch tunnel is very urgent situation.

본 발명의 목적은 위에서 기술한 기존 2아치터널의 문제점들을 고려하여 안출한 것으로 측방터널(4) 굴착에 따라 발생되는 하중을 측정 및 제어할 수 있는 중앙지지구조체(7)를 설치하여 작용하는 터널하중을 계측 및 제어하면서 측방터널을 굴착하는 터널공법의 고안이다.An object of the present invention is to devise in consideration of the problems of the existing two-arch tunnel described above, the tunnel acting by installing a central support structure (7) that can measure and control the load generated by the side tunnel (4) excavation The tunneling method is designed to excavate the side tunnel while measuring and controlling the load.

본 발명의 다른 목적은 중앙지지구조체를 하중제어구조체(2)와 보강콘크리트(3)로 분리 시공하여 공기단축 및 발파굴착시 손상을 최소화하는 것을 특징으로 하며, 상부 로울러지점(9), 병렬유압스크류잭(14)이 부착된 하중제어구조체(2)를 제공하기 위한 것이다.Another object of the present invention is to separate the central support structure into the load control structure (2) and reinforcement concrete (3) to minimize damage during air shortening and blasting excavation, upper roller point (9), parallel hydraulic To provide a load control structure (2) attached with a screw jack (14).

NATM 개념에 근거하여 본 터널공법과 중앙지지구조체를 활용하므로 다음과 같은 기술적 과제를 이루고자 하였다.Based on the concept of NATM, this tunnel method and the central support structure were used to achieve the following technical tasks.

첫째, 중앙지지구조체에 작용하는 하중 계측으로 설계 검증 자료 확보.First, secure design verification data by measuring the load acting on the central support structure.

둘째, 중앙지지구조체에 과다하게 작용하는 하중 감소.Second, the reduction of the load acting excessively on the central support structure.

셋째, 중앙지지구조체에 작용하는 수평편토압 경감.Third, the reduction of horizontal seismic pressure acting on the central support structure.

넷째, 발파굴착에 의한 손상 최소화.Fourth, minimizing damage caused by blasting excavation.

다섯째, 중앙지지구조체 설치에 의한 공기 증가 억제.Fifth, suppression of air increase by installing central support structure.

도 1은 본 발명에 따른 2아치터널 시공의 일 실시예를 도시한 사시도1 is a perspective view showing an embodiment of a two-arch tunnel construction according to the present invention

도 2는 본 발명에 따른 2아치터널의 일 실시예를 도시한 단면도Figure 2 is a cross-sectional view showing an embodiment of a two-arch tunnel according to the present invention

도 3은 본 발명에 따른 중앙지지구조체를 구성하는 하중제어구조체의 일 실시예를 도시한 사시도Figure 3 is a perspective view showing an embodiment of the load control structure constituting the central support structure according to the present invention

도 4는 본 발명에 따른 중앙지지구조체를 구성하는 하중제어구조체의 일 실시예를 도시한 단면도Figure 4 is a cross-sectional view showing an embodiment of the load control structure constituting the central support structure according to the present invention

※도면의 주요 부분에 대한 부호의 설명※ Explanation of code for main part of drawing

1: 중앙터널 2: 하중제어구조체 3: 보강콘크리트1: central tunnel 2: load control structure 3: reinforced concrete

4: 측방터널 5: 콘크리트라이닝 6: (좌)측방터널4: side tunnel 5: concrete lining 6: (left) side tunnel

7: 중앙지지구조체 8: (우)측방터널 9: 로울러지점7: Central supporting structure 8: Right tunnel 9: Roller branch

10: 지지강판 11: 강재 지지보 12: 사보강재10: support steel plate 11: steel support plate 12: steel plate

13: 강재 기둥 14: 유압스크류잭 15: 콘크리트기초13: Steel column 14: Hydraulic screw jack 15: Concrete foundation

16: 배수관 17:유도배수관16: drain pipe 17: induction drain pipe

도 1은 하중제어 2아치 터널공법에 대한 일 실시예을 설명하기 위한 사시도이고, 도 2는 단면도이다.1 is a perspective view for explaining an embodiment of the load control two-arch tunnel method, Figure 2 is a cross-sectional view.

본 터널공법의 기본 순서는 다음과 같다.The basic procedure of this tunnel method is as follows.

1. 중앙터널(1)을 굴착한 후 하중제어구조체(2)를 설치한다.1. Excavate the central tunnel (1) and install the load control structure (2).

일 실시예로서 하중제어구조체 중 강재 지지보(11), 사보강재(12), 강재 기둥(13)은 H형강으로 제작하며 규격은 350×350×19×19 이다. 지지강판(10)은 두께 50mm의 강판으로 5.0m 길이로 제작한다. 로울러지점(9)은 직경 10mm, 길이 350mm 원형강봉으로 양끝단은 지지강판(10)과 용접하고 내부는 구리스를 칠하여 활동이 원활하도록 한다.In one embodiment, the steel support beam 11, the four-beam steel 12, the steel column 13 of the load control structure is made of H-shaped steel and the specification is 350 × 350 × 19 × 19. The support steel plate 10 is made of a 50 mm thick steel plate with a length of 5.0 m. Roller point (9) is a 10mm diameter, 350mm long round steel bar, both ends are welded to the support steel plate (10) and the inside is painted with grease to facilitate the activity.

터널의 폭을 D 라고 할 때, 터널 변형은 막장 전방 3D 정도 이격된 거리에서 시작되며, 막장에서 변형이 급격히 증가하고 막장 후방 3D 정도 떨어진 위치에서 변형이 수렴된다. 따라서, 하중제어구조체(2)는 측방터널(4) 막장 전방 3D 까지 1M 간격으로 설치한다. 배치간격은 기본적으로 1.0M로 규정하나, 터널조건에 따라 간격을 조정할 수 있다.When the width of the tunnel is D, the tunnel deformation starts at a distance about 3D from the front of the curtain, and the deformation rapidly increases at the curtain and converges at a position 3D behind the curtain. Therefore, the load control structure 2 is installed at intervals of 1M up to 3D in front of the side tunnel 4. Batch spacing is basically defined as 1.0M, but the spacing can be adjusted according to tunnel conditions.

2. 측방터널(4)을 굴착하면서 하중제어구조체(2)에 작용하는 하중을 계측하고 목표된 지지하중으로 제어한다.2. Measure the load acting on the load control structure (2) while excavating the side tunnel (4) and control it to the desired support load.

측방터널을 굴착하므로 발생되는 터널하중을 하중제어구조체에 부착된 유압게이지로 측정한다. 막장까지 전체 천단침하량의 약 30%가 발생하므로 막장 전방에 설치된 하중제어구조체에 발생되는 하중이 하중제어구조체 허용하중의 30% 이내 이면 하중제어가 필요 없으며 경제성을 고려하여 중앙지지구조체의 배치간격을 증가시킨다.Tunnel load generated by digging side tunnels is measured by hydraulic gauge attached to load control structure. Since about 30% of the total shear settlement to the curtain is generated, if the load generated on the load control structure installed in front of the curtain is within 30% of the allowable load, the load control is not necessary and the placement interval of the central support structure is considered considering economic efficiency Increase.

허용하중의 30%을 초과했을 때에는 유압스크류잭을 이용하여 터널작용하중이 수렴된 위치까지 변위를 발생시키는 방법으로 터널하중을 조정하는데, 위치별 하중은 다음 식 F=1/[1+ exp(-x/0.55)]^1.7 에 따라 조절한다. 여기서, x = 막장에서부터 이격된 거리, F = 중앙지지구조체 허용하중 비율이다. 이 식은 Chern et al(1998)이 제안한 터널 위치별 침하량 제안식으로 합리적인 위치별 중앙지지구조체의 지지하중으로 활용할 수 있다. 변위를 허용하되 설정 압력을 초과할 수 없는 유압제어밸브를 설치할 경우 자동적으로 변위가 조정될 수 있다.When the load exceeds 30% of the allowable load, the tunnel load is adjusted by using a hydraulic screw jack to generate a displacement to the position where the tunnel action load converges. The load for each position is expressed by the following formula F = 1 / [1+ exp ( -x / 0.55)] ^ 1.7. Where x = distance from the barrier, F = center load structure allowable load ratio. This formula proposed by Chern et al (1998) suggests the settlement amount by tunnel location and can be used as the supporting load of the rational location center support structure. If a hydraulic control valve is installed that allows displacement but cannot exceed the set pressure, the displacement can be adjusted automatically.

위와 같은 방법으로 하중제어구조체에 작용하는 하중을 측정하고 제어하므로 터널작용하중을 확인하고 과다한 하중 발생시 이를 경감시켜 안전하고 경제적인 2아치터널 시공이 가능하게 된다. 또한, 하중발생 경향을 분석하여 설계조건과 비교하여 피드백을 수행함으로서 설계의 타당성 검증 및 설계변경을 가능케 할 수 있다.By measuring and controlling the load acting on the load control structure in the same way as above, it is possible to construct a two-arch tunnel by checking the tunnel load and reducing it when excessive load occurs. In addition, it is possible to verify the feasibility of the design and to change the design by analyzing the load generation trend and performing feedback in comparison with the design conditions.

3. 최종적으로 보강콘크리트(3)로 하중제어구조체(2)를 보강하여 중앙지지구조체(7)를 완성한다.3. Finally, reinforce the load control structure (2) with reinforcement concrete (3) to complete the central support structure (7).

하중제어구조체를 터널내 화재, 차량충돌 및 강재부식 등에 대하여 보호하기 위하여 콘크리트로 보강한다. 또한 중앙지지구조체를 영구구조물로 사용하기 위하여 하중제어구조체와 콘크리트로 이루어진 철골콘크리트로 완성하여 안전율을 추가로 확보한다.The load control structure is reinforced with concrete to protect against tunnel fires, vehicle collisions and steel corrosion. In addition, in order to use the central support structure as a permanent structure, it is completed with steel concrete made of load control structure and concrete to secure additional safety factor.

본 공법에서 중요한 것은 하중제어구조체의 허용하중을 얼마로 정하냐는 것이다. 허용하중은 중앙지지구조체가 지지할 수 있는 극한지지하중 및 안전율을 고려하여 결정하여야 한다. 이것은 공사비에 직결되는 문제이며 안전율 확보와 직결되는 사항이다.What is important in this method is how much the allowable load of the load control structure is determined. Allowable loads are to be determined taking into account the ultimate bearing capacity and safety factor that the central support structure can support. This is directly related to the cost of construction and directly related to securing the safety factor.

일 예로 터널 토피고 100m, 터널폭 25m, 지반단위중량 2.0tf/m3이라고 가정할 경우 터널굴착에 따른 굴착상당력의 수직하중은 100 × 25 × 2.0 = 5,000 tf/m 가 된다. 기존 방식으로 중앙지지구조체가 부담하여야 할 최대하중은 2,500 tf/m 이다. 그러나 중앙지지구조체가 지지해야 하는 하중을 1아치터널로 시공시 추가 굴착해야 하는 지반하중이라 하면 2아치터널 폭이 25m 이며, 터널상반이 반원형일 경우 25^2/4 × π ÷ 4 × 2 = 245 tf/m 이다.As an example, assuming that the tunnel topi height 100m, tunnel width 25m, and ground unit weight 2.0tf / m 3 , the vertical load of excavation equivalence due to tunnel excavation is 100 × 25 × 2.0 = 5,000 tf / m. In the conventional way, the maximum load on the central support structure is 2,500 tf / m. However, if the load that the central support structure is to support is the ground load that requires additional excavation when constructing with one arch tunnel, the two arch tunnel width is 25m, and the upper half of the tunnel is 25 ^ 2/4 × π ÷ 4 × 2 = 245 tf / m.

그러므로, 중앙지지구조체의 변형을 허용하면 지지하여야 할 하중은 터널 토피고가 100m 일 경우 기존 공법보다 90% 감소될 수 있다. 또한 지반이 양호한 경우 보강 없이 자립하여 중앙지지구조체에 하중이 발생하지 않는다.Therefore, if the center supporting structure is allowed to be deformed, the load to be supported can be reduced by 90% compared to the existing method when the tunnel topi height is 100m. In addition, if the ground is good, it is self-supporting without reinforcement and no load is generated on the central support structure.

일 실시예로서 2아치터널의 중앙지지구조체에 작용하는 하중을 1아치터널 시공시 추가 굴착해야 하는 지반하중으로 가정하고 공사중 안전율을 Fs = 1.5 적용한다. 위의 터널조건에서 중앙지지구조체의 극한지지하중은 약 375 tf/m, 허용지지하중은 250 tf/m 로 산정된다. 완공 후 영구구조물로서의 안전율은 보강콘크리트로 보강하여 지반공학에서 적용하는 안전율 Fs = 3.0 이상으로 증가시킬 수 있다.As an example, assuming that the load acting on the central support structure of the two-arch tunnel is the ground load to be additionally excavated during the construction of the one-arch tunnel, the safety factor under construction is applied to Fs = 1.5. Under the above tunnel conditions, the ultimate support load of the central support structure is estimated to be about 375 tf / m and the allowable support load is 250 tf / m. After completion, the safety factor as a permanent structure can be reinforced with reinforced concrete to increase the safety factor Fs = 3.0 or more applied in geotechnical engineering.

도 3는 하중제어구조체(2)의 사시도이며, 도 4는 단면도이다. 하중제어구조체의 주요 특징은 다음과 같다.3 is a perspective view of the load control structure 2, and FIG. 4 is a sectional view. The main features of the load control structure are as follows.

첫째, 유압스크류잭(14)을 설치하여 터널지지하중을 측정하고 작용하중을 제어한다. 일 실시예로 유압스크류잭에 작용하는 하중을 측정할 수 있는 게이지를 설치하는 것이며 두 번째 실시예로 변위를 허용하되 설정 압력을 초과할 수 없는 유압제어밸브 설치하는 것이 있다. 전자는 하중계측에 중점을 둔 것으로 상부 토피가 적은 지하철 및 갱구부 적용에 적합하며, 후자는 하중제어에 중점을 둔 것으로 지지하중이 클 경우에 적합하다.First, the hydraulic screw jack 14 is installed to measure the tunnel support load and control the working load. One embodiment is to install a gauge that can measure the load acting on the hydraulic screw jack, and the second embodiment is to install a hydraulic control valve that allows displacement but cannot exceed the set pressure. The former focuses on load measurement and is suitable for subway and shaft applications with low top toffee, while the latter focuses on load control and is suitable for large loads.

유압스크류잭은 길이 조정 범위가 클수록 유리하나, 설계시 수치해석결과 및 중앙터널(1) 굴착시 예상천단침하량을 고려하여 채택하며 터널의 천단침하량이 클 경우 콘크리트 기초(15) 높이를 낮추고 강판으로 받침하여 높이 조정이 가능토록 한다.Hydraulic screw jacks are advantageous for the larger length adjustment range, but they are adopted in consideration of numerical analysis results and expected sedimentary settlements when excavating the central tunnel (1). Support the height to allow adjustment.

둘째, 발파에 의한 진동 손상을 최소화하기 위해 강재로 제작하고 발파충격에 의하여 손상이 발생된 경우에는 교체 가능토록 한다.Second, in order to minimize vibration damage caused by blasting, it is made of steel and replaceable when damage is caused by blasting shock.

셋째, 수평하중에 의한 모멘트 발생 여부를 확인하기 위하여 유압스크류잭(14)을 병렬로 설치하여 수평편토압 발생을 정량적으로 간단하게 확인할 수 있다.Third, in order to check whether the moment due to the horizontal load is generated by installing the hydraulic screw jack 14 in parallel it is possible to simply and quantitatively confirm the occurrence of horizontal earth pressure.

넷째, 수평편토압 발생을 최소화 하기 위해 상부 로울러 지점(9)을 채택한다. 로울러 지점은 기존의 고정방식과 정반대적인 개념으로 적용된 것이다. 본 공법에서 중앙지지구조체는 수직력을 받도록 하며 가능한 수평력 부담을 억제하여 모멘트 발생에 따른 압축력 증가를 막도록 한다.Fourth, the upper roller point 9 is adopted to minimize the occurrence of horizontal clay pressure. The roller point is applied in the opposite concept to the existing fixed method. In this method, the central support structure receives the vertical force and suppresses the horizontal force burden as much as possible to prevent the increase of the compressive force due to the moment.

로울러 지점을 설치하여도 수평력이 작용할 경우 병렬로 설치된 유압잭의 하중은 차이를 보일 것이다. 유압잭으로 하중을 제거한 후 병렬로 설치된 두 개의 유압잭에 동일한 압력을 재하하는 방법으로 작용되는 수평하중을 제거한다.Even if the roller point is installed, the load of the hydraulic jacks installed in parallel will be different if the horizontal force is applied. After removing the load with the hydraulic jack, remove the horizontal load acting by applying the same pressure to the two hydraulic jacks installed in parallel.

상기 설명한 바와 같이, 2아치터널에 있어서 중앙지지구조체에 작용하는 하중을 계측하고, 작용하중에 대하여 능동적으로 대응하며 수평하중을 해소시킴으로 안전하고 경제적인 2아치 터널 건설이 이루어질 수 있다. 또한, 본 발명은 기존의 철근콘크리트 중앙지지구조체에서 발생 가능한 발파굴착에 의한 손상 문제도 해결하여 발파굴착 터널에서도 적용이 가능하다.As described above, in the two-arch tunnel, a safe and economical two-arch tunnel construction can be achieved by measuring the load acting on the central support structure, actively responding to the working load, and releasing the horizontal load. In addition, the present invention can also be applied to the blasting tunnel to solve the problem of damage caused by blasting excavation that can occur in the existing reinforced concrete central support structure.

특히, 본 발명은 터널발전에 가장 큰 걸림돌이 된 터널하중을 계측할 수 있어 터널기술 발전에 큰 이바지를 할 것이다. 현 설계 개념에서는 중앙지지구조체에 작용하는 하중이 매우 클 것으로 예상되어 적용이 어려운 대심도 터널에서도 2아치 터널을 적용할 수 있다.In particular, the present invention can measure the tunnel load which is the biggest obstacle to the tunnel development will contribute to the development of tunnel technology. In the current design concept, the two-arch tunnel can be applied in the deep-depth tunnel, which is difficult to apply because the load on the central support structure is expected to be very large.

Claims (5)

2아치터널의 중앙지지구조체(7)에 작용하는 터널 지지하중을 계측 및 제어함으로서 안전하고 경제적인 설계 및 시공을 가능케 하는 터널공법Tunneling method that enables safe and economical design and construction by measuring and controlling the tunnel support load acting on the central support structure (7) of the 2-arch tunnel 중앙지지구조체를 구성하는 하중제어구조체(2)는 유압스크류잭(14)이 부착된 강재구조물로 제작하여 작용하중을 계측 및 제어할 수 있도록 하고 최종 하중 확인 후 유압잭을 제거하여도 하중지지가 가능한 구조The load control structure (2) constituting the central support structure is made of a steel structure with a hydraulic screw jack (14) to measure and control the working load and to support the load even if the hydraulic jack is removed after confirming the final load. rescue 설정압력을 유지시킬수 있는 유압제어밸브를 설치하여 과다 하중 발생에 의한 하중제어구조체의 손상 방지 및 자동하중제어가 가능토록 하는 하중제어구조체(2)Load control structure (2) to prevent damage to the load control structure caused by excessive load and to enable automatic load control by installing a hydraulic control valve capable of maintaining the set pressure (2) 하중제어구조체(2)의 상부의 지점은 수평편토압에 의한 벽체의 모멘트 발생 최소화시킬 수 있는 로울러지점(9)The upper point of the load control structure (2) is a roller point (9) that can minimize the generation of the moment of the wall due to the horizontal earth pressure 중앙지지구조체는 측방터널 굴착 중에는 철골구조체로 구성하여 발파굴착에 따른 벽체 손상을 최소화한 후 굴착 완료 후 콘크리트로 보강하는 철골콘크리트 중앙지지구조체The central support structure is constructed of steel structure during side tunnel excavation to minimize wall damage caused by blasting excavation and then to be reinforced with concrete after completion of excavation.
KR1020030034134A 2003-05-28 2003-05-28 2-arch tunnel method controlling the load of tunnel KR20040102613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030034134A KR20040102613A (en) 2003-05-28 2003-05-28 2-arch tunnel method controlling the load of tunnel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030034134A KR20040102613A (en) 2003-05-28 2003-05-28 2-arch tunnel method controlling the load of tunnel

Publications (1)

Publication Number Publication Date
KR20040102613A true KR20040102613A (en) 2004-12-08

Family

ID=37378837

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030034134A KR20040102613A (en) 2003-05-28 2003-05-28 2-arch tunnel method controlling the load of tunnel

Country Status (1)

Country Link
KR (1) KR20040102613A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100701633B1 (en) * 2005-06-01 2007-03-30 윤석렬 Load dispersing plate for supporting central part of a twin tunnel and a construction method of a twin tunnel using the load dispersing plate
CN108918287A (en) * 2018-09-19 2018-11-30 西安建筑科技大学 A kind of tunnel creep model experimental rig and test method
CN110566228A (en) * 2019-09-24 2019-12-13 中铁第六勘察设计院集团有限公司 tunnel middle partition wall with repeated jacking and locking functions and construction method thereof
CN114075985A (en) * 2020-08-20 2022-02-22 神华神东煤炭集团有限责任公司 Pressure arch-based waterproof layer protection method, arch springing construction method and arch springing structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100701633B1 (en) * 2005-06-01 2007-03-30 윤석렬 Load dispersing plate for supporting central part of a twin tunnel and a construction method of a twin tunnel using the load dispersing plate
CN108918287A (en) * 2018-09-19 2018-11-30 西安建筑科技大学 A kind of tunnel creep model experimental rig and test method
CN108918287B (en) * 2018-09-19 2023-09-19 西安建筑科技大学 Tunnel creep model test device and test method
CN110566228A (en) * 2019-09-24 2019-12-13 中铁第六勘察设计院集团有限公司 tunnel middle partition wall with repeated jacking and locking functions and construction method thereof
CN110566228B (en) * 2019-09-24 2024-02-09 中铁第六勘察设计院集团有限公司 Tunnel middle partition wall with repeated supporting and locking functions and construction method thereof
CN114075985A (en) * 2020-08-20 2022-02-22 神华神东煤炭集团有限责任公司 Pressure arch-based waterproof layer protection method, arch springing construction method and arch springing structure
CN114075985B (en) * 2020-08-20 2024-03-19 神华神东煤炭集团有限责任公司 Waterproof layer protection method based on pressure arch, arch foot construction method and arch foot structure

Similar Documents

Publication Publication Date Title
Li et al. Zoned and staged construction of an underground complex in Shanghai soft clay
CN102720201A (en) Support change construction building method implemented by using main structure of building
CN102966122B (en) The method of bridge deformation is controlled when building tunnel near the basis of bridge
KR20080005109A (en) Structure for supporting retaining wall of earth with arch material and method constructing the arch structure
CN111894641B (en) Treatment and construction process for tunnel to penetrate through super-huge water-containing cavity karst cave
CN103696429A (en) Concrete support and fish-belly sill combined supporting system of special-shaped foundation pit and construction method
CN205188981U (en) Assembled foundation ditch is gone along with sb. to guard him steel pipe concrete and is supported
KR20110060291A (en) Made of iron soil retaining plate and its support structure for form and retaining-wall vertical reinforcement
CN112879016A (en) Construction method of tunnel with upper soft and lower hard strata
CN110994523B (en) Method and system for protecting cable
Xiang et al. Assessment and control of metro-construction induced settlement of a pile-supported urban overpass
KR20040102613A (en) 2-arch tunnel method controlling the load of tunnel
CN109538219B (en) In-situ expansion super-large section and partial excavation method of broken hard rock tunnel
CN109209440B (en) Vault settlement treatment method for large-span tunnel
KR101431621B1 (en) Mehod for constructing underground wall in extension of undergound parking lot
KR102315382B1 (en) Numerical Analysis Method for Determining the Decompression Size of Preload for Stability of Securing Wall
KR101479267B1 (en) Method for constructing tunnel by using pipe
CN211873014U (en) System for bailey truss protects cable
Trushko et al. Arrangement of multistory underground parking garages in complex engineering and geological environment
CN105297577A (en) Assembly-type branch access road structure in mountainous and heavy hilly areas and construction method for same
CN204960366U (en) Tunnel passes through device that underpins of existing large diameter pile building
CN215948218U (en) A construction support frame for narrow and small space
KR102593945B1 (en) Construction method of an ultra-close parallel tunnel using steel beams and shotcrete reinforcement pillars
JP7096469B1 (en) Small cross-section underground continuous wall
CN217558352U (en) Upper-span and lower-penetrating proximity structure tunnel reinforcing structure

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination