KR20040055779A - 수중 덕트 터빈 - Google Patents

수중 덕트 터빈 Download PDF

Info

Publication number
KR20040055779A
KR20040055779A KR10-2004-7003856A KR20047003856A KR20040055779A KR 20040055779 A KR20040055779 A KR 20040055779A KR 20047003856 A KR20047003856 A KR 20047003856A KR 20040055779 A KR20040055779 A KR 20040055779A
Authority
KR
South Korea
Prior art keywords
turbine generator
hydro turbine
generator
duct
water flow
Prior art date
Application number
KR10-2004-7003856A
Other languages
English (en)
Other versions
KR101033544B1 (ko
Inventor
배리 브이. 데이비스
엠마누엘 그릴로스
스티븐 알리슨
Original Assignee
클린 커런트 파워 시스템즈 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 클린 커런트 파워 시스템즈 인코포레이티드 filed Critical 클린 커런트 파워 시스템즈 인코포레이티드
Publication of KR20040055779A publication Critical patent/KR20040055779A/ko
Application granted granted Critical
Publication of KR101033544B1 publication Critical patent/KR101033544B1/ko

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/12Blades; Blade-carrying rotors
    • F03B3/128Mounting, demounting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/08Machine or engine aggregates in dams or the like; Conduits therefor, e.g. diffusors
    • F03B13/083The generator rotor being mounted as turbine rotor rim
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/10Submerged units incorporating electric generators or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/26Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy
    • F03B13/264Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy using the horizontal flow of water resulting from tide movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/061Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially in flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/16Air or water being indistinctly used as working fluid, i.e. the machine can work equally with air or water without any modification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/40Flow geometry or direction
    • F05B2210/404Flow geometry or direction bidirectional, i.e. in opposite, alternating directions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • F05B2220/7066Application in combination with an electrical generator via a direct connection, i.e. a gearless transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • F05B2220/7068Application in combination with an electrical generator equipped with permanent magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/13Stators to collect or cause flow towards or away from turbines
    • F05B2240/133Stators to collect or cause flow towards or away from turbines with a convergent-divergent guiding structure, e.g. a Venturi conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/97Mounting on supporting structures or systems on a submerged structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/60Fluid transfer
    • F05B2260/63Preventing clogging or obstruction of flow paths by dirt, dust, or foreign particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Oceanography (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Hydraulic Turbines (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Earth Drilling (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

다수의 수중익 날개, 안내 베인(vane), 원통형 하우징, 및 발전기 수단을 가지는 적어도 하나의 회전자 디스크로 이루어지며 물 또는 공기 흐름으로부터 전력을 발생하기 위한 터빈용 장치가 개시된다. 자석 레이스 모터 림 및 고정된 고정자 코일로 이루어지는 림 발전기가 사용된다. 상기 장치는 잔해 및 해양 생물의 유입을 정지시키기 위한 스크린 및 베츠(Betz) 효과를 줄이기 위한 스커트(skirt) 증대(agument) 장치와 함께 끼워진다. 바람직하게는 상기 장치는 바닷속 개발을 위한 것이고 조수 해류(tidal current)에 의해 구동되며, 강의 흐름 또는 공기 또는 바람에 의해 구동된 파도에 의해 힘을 얻을 수도 있다. 상기 장치는 적어도 하나의 망원 기둥에 배치되고, 해저에 밧줄로 매어두고 하우징내에서 부유 결합체에 의해 부유상태를 유지하고, 바지선(barge)하에서 또는 조수 전력 어레이내에서 댐내에 삽입될 수 있다.

Description

수중 덕트 터빈{UNDERWATER DUCTED TURBINE}
1. 기술분야
본 발명은 일반적으로 유체동력학(hydrokinetic) 전력 발생 터빈 및 그 사용 및 배치 방법에 관한 것이다. 더 자세하게는, 여러 가지 형태의 배치로 조수 흐름으로부터 전력을 발생하기 위한 덕트된(ducted) 림 형태 발전기, 양 방향 터빈이 개시된다.
2. 배경기술
조력(tidal power)은 오랜 세월동안 이용되어왔다. 조력 곡물 방앗간(mill)은 연안 입구에 위치되어, 바닷물은 낮은 댐내에 수문에 의해 높은 조류에서 갖혀질 수 있고 낮은 조수에서 방앗간 바퀴를 통해 해제될 수 있다. 그런 방앗간 바퀴는 초보적인 수력 터빈의 예이다.
에너지 부족은 노르망디, 프랑스 및 노바 스코티아, 카나다에서 더욱 현대적인 터빈 설계를 이용하는 조력 발전의 영역에서 현저한 시험 프로젝트의 구성을 포함하여 연구활동을 자극하고 있다. 노르망디 및 노바 스코티아 프로젝트는 조수 출입구의 현저한 하부구조 및 댐을 요구하고 있다. 해양 입구 및 강어귀(estuaies)에대한 그러한 모든 프로젝트의 결과는 조수 에너지를 방해하고 댐 뒤에 조수 상호 지대내에 해양 생물학적 생태계를 방해한다.
노르망디 및 노바 스코티아에서 시험 프로젝트가 여전히 진행되는 동안, 그들은 경제적인 것으로 판명되지 않았고, 전세계적으로 환경 의식이 일어나고, 이런 접근은 탐탁지 않게 여겨졌다. 더욱 최근 작업은 비용이 덜 들고 조수 동력학적 및 영향을 받는 해양 생태계에 덜 파괴적인 '자유-흐름' 기계에 초점이 맞추어져있다. 그런 장치의 '어레이'는 어느 정도는 풍력 기지에서 대양 입구 또는 통로로 횡 및/또는 종으로 배치된 자유 스트림의 단일 또는 다중 열로 구성된다. 용어 '터빈-기지'는 그런 배치를 설명하는데 사용된다.
1920년대, Harza의 미국 특허 제 1,498,154 호는 낮은 헤드 댐의 드래프트 튜브내에서 사용하기 위한 실질적으로 수평 축 워터(water) 터빈을 개시하며, 여기에서 상기 고정자 코일은 터빈 날개를 수용하는 러너(runner) 또는 림(rim)을 둘러싼다. Harza는 러너와 고정자사이에 워터 시일(water seals)을 제안했다. 수력 터빈(hydraulic turbine)내에서 일체형 워터 시일의 완전성을 유지하는 것을 매우 어렵다. 수면하의 터빈은 물의 밀도 및 속도로 인한 높은 레벨의 진동, 부식 및 비꼬임(torsion)을 받기 쉽다.
Mouton의 미국 특허 제 3,986,787호는 길이방향 트위스트를 포함하는 각이진 날개를 가진 단일 방향 수력 터빈을 개시한다. Mouton 특허는 강에서 바지선 상부에 발전기를 가지고 바지선아래 터빈을 장착하는 배치 방법을 나타낸다. Mouton 특허는 또한 원뿔형 케이블 어레이로 이루어지는 터빈의 정면에 트래시(trash) 화면을 개시한다. 대부분 종래 수력 터빈과 함께, 상기 Mouton 특허는 물 흐름 방향에 대해 각이진 충돌 형태 날개를 가진 허브(hub) 기초 발전기 시스템을 사용한다. Mouton 특허의 트래시 화면은 터빈의 일단에만 보호되고 자체-정화가 아닌 일정한 정규적 유지를 요구한다.
Skendrovic의 미국 특허 제 4,163,904호는 실질적 하부구조를 요구하며 허브 발전기를 가진 단일의 단방향 터빈 주의를 실링하는 수면하의 터빈 기계장치를 개시한다.
동력화하는 파동 운동의 조사는 Wells의 미국 특허 제 4,221,538호에 나와있고, 부력 챔버에 둘러싸인 파동 동작에 의해 생성된 물 기둥을 진동시켜 터빈을 통해 가해진 공기에 의해 힘을 받는 단일 방향의 날개 터빈을 개시한다. Wells 특허는 허버 기초 발전기를 가진 단일 회전자를 개시한다.
1980년대의 Heuss 및 Miller는 각이진 날개 및 림-기초 발전기를 가진 단방향 충격 터빈의 고정된 결합체 바지선을 가진 미국 특허 제 4,421,990호 조력 발전 장치를 개시한다. Heuss 특허는 실질적으로 댐, 드래프트 튜브 및 발전기 하우징을 포함하는 하부 구조를 요구한다. 상기 고정자는 댐 혹은 터빈 날개를 수용하는 러너 휠의 외측 림에서 기초에 수용되며 방수 시일을 요구한다.
Lee의 미국 특허 제 4,313,711호는 효과적인 회전을 야기하도록 다중의 Wells 형태의 단면 날개에 공기 또는 물의 흐름이 편향된 고정된 고정자 날개 또는 베인(vane)을 개시한다. Lee 특허는 전력을 발전하도록 파도 운동 또는 파도 구동 공기를 사용한다. 안내 베인은 고정되고 회전자는 같은 속도 같은 방향으로 회전한다.
1990년대, Curran 및 Gato는 일련의 다른 Wells 형태 공기 터빈을 시험하고 "몇가지 형태의 Wells 터빈 설계의 에너지 변환 성능"(Proc.Inst.Mech.Engrs. Vol 211 Part A(1997))라는 논문에서 그 결과를 발표했다. 상기 시험은 안내 베인을 구비 여하에 따른 단일 회전자 장치, 및 같은 방향 및 반대-방향으로 회전하는 회전자를 가진 이중 회전자 장치를 포함한다. 비록 Curran 및 Gato는 안내 베인을 가진 회전자들이 회전하는 이중 카운터의 효과를 조사하지는 않았지만, 그들은 두 개의 회전자가 하나 보다 더 효과적이라는 것과 반대-방향 회전자가 더 높은 댐핑(damping) 비율을 제공하며 한 쌍의 단일 방향보다 포스트-스톨 성능이 개선되었고, 입구 및 출구 안내 베인이 베인이 없는 장치와 비교하여 감소된 접선 운동 에너지 손실을 나타냈다는 결론을 내렸다.
이하 논문은 또한 수직 축 터빈 및 조수 흐름으로부터 바다속 전력 발전에 대한 가능성 연구에 관한 관심을 나타낸다:
Davis, Barry V.(1997) Nova Energy Ltd.: "A Major Source of Energy the worlds Oceans"IECEC-97 Conference, July 31, 1997, Honolulu.
Davis, Barry V.(1997) Nova Energy Ltd.: "Hydraulic Turbine Trials" Report No. NEL 002. DSS Contract No. OSX-00043.
Vauthier, 미국 특허 제 6,168,373 B1, 6,406,251 및 2002/0088222A1는 조수 또는 강 배치 중 하나에 대해 적당한 부양하는, 단 방향 및 양방향 경량의 이중 덕트 터빈 허브 발전기를 개시한다. 이중의 나란한 회전하는 단방향 터빈은 물 흐름에 자유롭게 진동한다. 따라서 상기 터빈은 단지 단 방향 물 흐름만을 받아들일 때 흐름 방향을 진동해야만 한다. 양 방향 장치는 양단부에 밧줄로 매어져서 그에 의해 물 흐름 방향에 관계없이 흐름 선을 유지한다. 추가적인 특징은 하중상에 안정화 핀(fin)을 포함하고 외부 물 흐름을 편향시키도록 상기 하우징의 하향흐름 단부에 증대 링(agumentor)을 포함하며 그에 의해 상기 하우징의 배출구에서 벤추리 효과를 생성시키고 아마도 상기 터빈을 통한 물의 흐름을 가속시킬 것이다. 상기 터빈 날개는 각이진 종래 형태이고 안내 베인은 사용되지 않았다.
2001년 가을 뉴질랜드 보텍 에너지 회사는 "정보 메모"에서 터빈 회전자의 저압 영역 하강흐름을 생성하기 위한 확산 링을 사용한 윈드 터빈(wind turbine)을 개시한다. 보텍 장치의 바람직한 실시예는 거대한 50m 지름이고 그위에 또는 앞바다에 더 큰 윈드 터빈이 배치된다. 바닷속 장치로서 바지선, 폴 및 블록이 고려되었으나 개발되지 않았다. 또한 보텍 메모는 대형 중앙 바디 구조 및 허브 메카니즘의 필요성을 제거하도록 림 발전기의 가능성을 제안한다. 보텍에 의해 소유된 폭스 등의 PCT 재 01/06122 A1는 터빈내에 슬롯이 형성된 단면 날개의 잇점이 개시된다.
수력 터빈의 현재 기술은 다수의 이동 부품 및 제조의 복잡성, 부식성 소금 물 환경내에서 터빈을 제조하고, 설치하고 유지하는 일 때문에 불만족스럽다.
따라서 최소한의 환경 영향으로 조수 에너지를 동력화 할 수 있는 효과적인 수력 터빈 발전기 장치의 필요성이 대두되고 있다. 마찰 및 흐름 손실을 최소화함으로써 에너지 보존을 최적화하고 실질적인 하부구조 비용없이 제조, 설치 및 유지될 수 있는 소수의 이동 부품을 가진 터빈이 요구되며, 유지 요구가 최소화되는 식으로 이동 부품과 무관한 단일 발전기가 요구된다. 본 발명은 종래 기술의 단점을 극복하는 증대 스커트(augmenter skirt)을 가진 회전자가 회전하는 둘이상의 동축 카운터를 가진 덕트화된, 조수가 밀려오는 림 발전기, 양방향 터빈을 제공한다.
3. 발명의 요약
본 발명의 목적은 종래 기술의 몇 몇 단점을 극복하는 수력 터빈 발전기용 장치를 구현하고자 하는 것이다.
다른 목적은 물 흐름에 평행한 허브, 다수의 날개, 원통형 하우징 및 만곡지고 직사각형이며 물 흐름을 최적의 각도에서 날개에 부딪히도록 새방향으로 돌리는(redirect) 다수의 안내 베인을 가진 장치를 제공하는 것을 포함한다. 상기 날개는 단면이 대칭인 수중날개(hydrofoil)일 수 있다.
변화는 고정될 수 있고 제 1 위치 및 제 2 위치와의 사이에서 움직일 수 있으며, 제 1 위치는 흐름을 재조정하기에 적당하고 제 2 위치는 하강 흐름 효율 손실을 최소화하도록 유출을 재조정하기에 적당하다.
본 발명의 또 다른 목적은 소용돌이 손실을 최소화하는 안정한, 효율적 터빈 발전기 장치를 창출하기 위하여 이중 카운터-회전 회전자 디스크를 가진 양방향 터빈을 제공하고자 하는 것이다.
본 발명의 또 다른 목적은 터빈 장치로 해양 생물 및 파편들의 진입을 차단하기 위한 스크린을 제공하고자 하는 것이다.
본 발명의 또 다른 목적은 베츠 효과(Betz effect)를 최소화하고 조수 변화로 인해 물 흐름이 방향이 변할 때 안내 베인을 회전하도록 채택된 증대 스커트(augmentor skirt)를 제공하고자 하는 것이다.
본 발명의 또 다른 목적은 발전기가 주위 유체로 넘치는 림 발전 수력 터빈을 제공하고자 하는 것이다.
본 발명의 또 다른 목적은 유지가 쉽도록 회전자 디스크를 포함하는 모듈형 제거가능한 장치를 가진 터빈 발전기를 제공하고자 하는 것이다.
본 발명의 또 다른 목적은 댐내에서, 강에, 또는 바닷속 급강하 침하 또는 계곡을 가로지르는 조수 배열(array)내에서 개별적 또는 임의의 수로 배치될 수 있고, 부잔교(raft)아래 탑문에 배치되고, 해양 바닥에 밧줄로 잡아매고, 완전한 부양 구조로 인해 부양될 수도 있다.
본 발명의 또 다른 잇점은 상세한 설명과 관련한 도면을 고려할 때 명백해질 것이다.
4. 도면의 간단한 설명
본 발명의 장치 및 방법은 첨부하는 도면을 참고로 설명될 것이다:
도 1 은 본 발명에 따른 하우징 및 안내 베인을 가진 이중 인라인 카운터-회전 회전자 디스크 집합의 절개 사시도이다.
도 2 는 본 발명에 따른 단일 회전자 디스크 및 발전기, 덕트 및 안내 베인으로 이루어지는 터빈의 절반의 등각 투상도(isometric view)이다.
도 3 은 터빈 회전자, 날개 및 첨단(tip)에 곡선으로 쓸려가는 날개를 가진 림 조립체의 정면도이다.
도 4 는 본 발명에 따른 터빈 회전자, 날개 및 넓은 기울어진(tipped) 날개를 가진 림 조립체의 정면도이다.
도 5 는 본 발명에 따른 터빈 회전자, 날개 및 수직 오프셋 날개를 가진 림 조립체의 정면도이다.
도 6 은 본 발명에 따른 터빈 회전자, 날개 및 수직 날개를 가진 림 조립체의 정면도이다.
도 7 은 본 발명에 따른 터빈 회전자, 날개 및 수직 오프셋 날개 및 바다 생물 터널을 가진 림 조립체의 정면도이다.
도 8 은 본 발명에 따른 터빈 날개 구조의 측단면도이다.
도 9 는 본 발명에 따른 수력 터빈 발전기 장치의 등각 투상도이다.
도 10 은 본 발명에 따른 덕트에 대한 터빈 발전기 플렉시블 증대 스커트의 등각 투상도이다.
도 11 은 본 발명에 따른 덕트에 대한 터빈 발전기 관절화된 증대 스커트의 등각 투상도이다.
도 12 는 종래 기술(prior art)에 따른 대칭 포일을 가로지르는 유체 흐름의 벡터 도표이다.
도 13 은 종래 기술에 따른 이중 인라인 터빈의 부품으로서 두 개의 카운터-회전 날개 단면을 가로지르는 흐름 도표이다.
도 14 는 본 발명에 따른 이중 인라인 터빈의 한 쌍의 캐스케이드 부품으로서 4개의 카운터-회전 날개 단면을 가로지르는 흐름 도표이다.
도 15 는 본 발명에 따른 터빈의 부품으로서 회전 날개 단면을 가로지르고 입구 및 출구 안내 베인 교대 위치를 지나는 흐름 도표이다.
도 16 은 본 발명에 따른 이중 인라인 터빈의 부품으로서 두 개의 수력 카운터-회전 날개 단면을 가로지르고 입구 및 출구 안내 베인을 지나는 흐름 도표이다.
도 17 은 본 발명에 따른 신축자재(telescoping) 기둥(pylon)상에 장착된 터빈 발전기 장치의 등각 투상도이다.
도 18 은 본 발명에 따른 텔레스코핑 목표탑상에 장착된 터빈 발전기 장치의 타측 정면도이다.
도 19 는 본 발명에 따른 밧줄로 매여진 터빈 발전기의 측면도이다.
도 20 은 본 발명에 따른 단일 터빈 발전기의 I-I선을 따르는 도 19의 단면도이다.
도 21 은 본 발명에 따른 단일 회전자 디스크 터빈 발전기의 II-II선을 따르는 도 19의 단면도이다.
도 22 는 이중 회전자 디스크 터빈 발전기의 I-I선을 따르는 도 19의 단면도이다.
도 23 은 본 발명에 따른 이중 회전자 디스크 터빈 발전기의 II-II선을 따르는 도 19의 단면도이다.
도 24 는 본 발명에 따른 바지선하에서 장착된 터빈 발전기 장치의 타측 정면도이다.
도 25 는 본 발명에 따른 작은 댐내에 장착된 터빈 발전기 장치의 평면도이다.
도 26 은 본 발명에 따른 조수 펜스의 정면도이다.
도 27 은 본 발명에 따른 조수 펜스의 정면도이다.
도 28 은 본 발명에 따른 조수 울타리내에서의 단일 터빈 발전기의 정면도이다.
도 29 는 조수 울타리의 단면에서 3개의 적층된 터빈 발전기의 도 27 의 단면도이다.
도 30 은 레일에서 탄약차의 상부에 위치된 받침대를 이용하는 카세트 형태의 터빈 발전기 장치를 제거하는 유지 성능의 단면도이다.
5. 발명의 상세한 설명
도 1을 참고로 하면, 본 발명의 바람직한 실시예의 절단 도면이 도시된다. 모듈형 덕트 터빈 발전기 장치(10)는 비록 설계는 강, 방수로 또는 풍력 에너지 장치들과 같은 다른 자연 환경내에서 사용될 수 있지만, 단일 터빈 발전기 장치(10)로서 사용되거나 보통 바닷속 조수 영역내에 배치된 다수의 터빈 발전기 장치(10)로서 사용될 수 있다. 상기 터빈 발전기 장치(10)의 목적은 최소한의 환경 충격을 가지며 조력을 사용하는 전력을 효과적으로 발생시키기 위한 것이다. 상기 바람직한 실시예는 바닷 속에 배치되는 것이 의도되었다. 본 발명은 최소한의 이동 부품을 가진 유효한 전력 발전 장치를 제공하기 위한 것이 명백하다.
상기 터빈 발전기 장치(10)는 대칭적이며 중심선 근처의 두 개의 단부를 가진다. 실질적으로 물 흐름(100) 방향에 평행인 축을 가진 허브(20)는 상기 터빈 발전기(20)의 중심축을 따라 배치된다. 상기 허브(20)는 임의의 수력학적인 형상으로 유리하게 형성될 수 있는 각각의 단부에 허브 노우즈(nose)(21)를 가진다. 상기 허브 노우즈(21)는 덕트(40)의 안쪽으로 당기는 것과 바깥으로 나가는 것을 최소화하기 위하여 첨두 아치 형태가 되거나 또는 첨두아치 형태의 캡(cap)을 가질 수 있다.
대칭 단면을 가진 다수의 하이드로포일 날개(30)는 그들의 뿌리에서 중앙 허브(26)에 부착되고, 그들의 주변 또는 첨두(tip)에서 회전자 림(54)로 불려지고 회전자 디스크(50)로 함께 이루어지는 영구 자석 레이스에 부착된다. 상기 바람직한 실시예에서는 정면 및 배면 구성으로 동축적으로 장착된 제 1 회전자 디스크(50) 및 제 2 회전자 디스크(52)가 있다. 회전자 디스크(50) 및 (52)는 날개(30)의 하이드로포일 형태로 인해 오로지 한 방향으로만 회전할 것이다. 트러스트 베어링(29)은 자유롭게 회전하고 각각의 회전자 디스크(50) 및 (52)에 대한 중앙 허브(26)과 허브 노우즈(21)에 사이에 접하고 있다. 바람직하게는 베어링은 윤활유가 칠해진 마찰 트러스트 베어링(29)이다. 바람직하게는 중앙 허브 또는 베어링-스페이서(28)는 상기 두 개의 회전자 디스크(50) 및 (52)의 상기 중앙 허브(26)와의 사이에 회전가능하게 동축적으로 자리잡고 있으며 상기 회전자 디스크(50) 및 (52)는 서로임의의 접촉으로부터 떨어져있다. 상기 회전자 디스크(50) 및 (52)는 상기 스페이서(28) 주위를 자유롭게 회전한다.
물 흐름(100)의 방향을 형성하는 것을 볼 때 상부 흐름 회전자 디스크(50)는 (시계방향 또는 반시계방향으로)항상 일방향으로 회전할 것이며, 하강흐름 회전자(52)는 항상 반대방향으로 회전할 것이다. 조수 및 물 흐름(100) 방향이 역으로 될 때, 상기 제 2 회전자(52)는 상향흐름이 될 것이고, 하이드로포일 형태로 인해 동일 방향으로 회전을 계속할 것이다. 따라서 상기 터빈 발전기 장치(10)는 상기 물 흐름(100)에 대하여 양방향이고, 각각의 회전자 디스크(50) 및 (52)는 항상 동일 방향으로 회전할 것이다. 상기 터빈 발전기 장치(10)가 단일 회전자 디스크(50)를 가질 때, 그것은 또한 단일 방향으로 회전한다.
날개(30)는 허브(26)로부터 보통 90도에서 방사상으로 투사하는 대칭적인 외장(airfoil) 또는 하이드로포일이다. 상기 날개(30)는 상부 및 저면 표면 및 선도 에지 및 추적 에지를 가진다. 날개(30)의 상부 및 저면 표면은 보통 물 흐름(100)에 수직하다. 날개(30)는 후방-청소(swept-back) 날개 구조처럼 사각으로 배치될 수 있다. 날개의 수(30)는 터빈의 크기에 의존한다. 날개(30)의 각각의 측면을 가로질러 흐르며 그에 의해 최적의 들어올림(lift) 및 견인(drag)을 생성하는 유체의 속도의 변화를 일으키는 종래 기술에 알려진 임의의 외장(airfoil) 및/또는 하이드로포일(hydrofoil) 형상이 사용될 수 있다.
덕트(40)는 덕트를 형성하고 상기 회전자(50)를 수용하도록 회전자(50)의 축 주위에 배치된 중공 실린더이다. 상기 덕트(40)는 일정한 내부 지름의 원통일 수있으며, 혹은 상기 내부 벽은 상기 덕트(40)를 통해 물 흐름 속도를 증가시키기 위하여 변환할 수 있다. 바람직한 실시예에서, 상기 덕트(40)의 내부 벽은 중앙 부분에서 변환하며 그에 의해 물 흐름(100)이 상기 덕트(40)를 통과할 때 벤추리 효과를 생성한다. 상기 회전자 림(54)은 상기 회전자 디스크(50) 및 (52)의 외측 림에 부착된 다수의 용접 밀폐 영구 자석(56)을 허용한다. 상기 회전자 디스크 림 영구 자석 레이스는 상기 용접 밀폐 고정자 코일(60)을 수용하는 상기 외측 덕트(40)내에 리세스내에 안착한다. 상기 제 2 회전자(52)는 소용돌이로 인한 유체 운동량 손실을 줄이고 상기 터빈 발전기 장치(10)을 더욱 효과적으로 만들기 위하여 상기 제 1 회전자(50)의 반대방향으로 회전한다. 고정된 고정자 코일(60)은 상기 마그네트(56)를 수용하는 상기 회전자 디스크(50)의 외측 에지에 인접한 상기 덕트(40)내에 장착된다.
선택적으로, 동심원으로 동작하고 측면 부하에 저항하도록, 마그네틱 베어링 시스템은 종래 기술에서 알려진 상기 회전자 림(54)에 사용될 수 있다. 상기 회전자 림(54)은 상기 덕트(40)내에 마그네틱 레이스(race) 또는 회전자 림 캐비티(55)내에 회전가능하게 안착하고, 물 윤활제처리된 저 마찰력 스키드 플레이트(도시안됨)는 상기 회전자 디스크(50) 및 (52)에 의한 과잉 편향(deflection)에 대항하여 상기 회전자 코일(60)을 보호하도록 상기 회전자 림(54)의 외부 측면상에 장착될 수 있다.
허브 지지대로서 또한 작용하는 다수의 만곡되고, 보통 직사각형 안내 베인(24)은 상기 회전자 디스크(50) 및 (52)가 회전하는 안정한 축을 형성하도록상기 허브(20)로부터 상기 회전자 하우징 또는 덕트(40)까지 연장한다. 상기 안내 베인(24)은 일반적으로 날카로운 선두 에지, 날카로운 트레일링 에지 및 두 개의 측면을 가진다. 수력학적인 소용돌이 운동량 손실을 최소화하도록 상기 안내 베인(24)은 상기 상부흐름 회전자 디스크(50)에, 출구 안내 베인(24)은 상기 하강흐름 회전자 디스크(52)의 후미에 초기 공격각도를 제공한다. 바람직한 실시예에서 상기 안내 베인의 표면은 상기 베인(24)를 때리는(striking) 물이 날개(30)를 때리기 전에 소정 공격 각도에서 새방향으로 돌려지는 식으로 원호형으로 만곡된다. 날개(30)는 상기 회전자 디스크(50)에 관하여 0도의 공격 각도를 가지며 대칭 단면을 가진다.
상기 터빈 발전기 장치(10)는 적소에 고정되어 있고 조수 및 그에 따른 물 흐름(100)이 역전하면, 상기 회전자는 그들 각각의 방향으로 회전하기 시작한다. 반대로-회전하는 회전자 디스크(50) 및 (52) 및 안내 베인(24)의 구성은 상기 회전자-디스크 축의 방향 및 최소화된 이동 기계 부품의 수로부터 상기 덕트(들)(40)로 들어오는 흐름(100)을 가진 고 효율 전력 전력을 제공한다.
도 2를 참고로하면, 터빈 조립체의 절반이 제거된 상세도면이고, 상기 회전자 디스크 허브(26), 날개(30), 영구 자석 회전자 림(54), 영구 자석(56), 고정자 코일(60), 안내 베인(24) 및 덕트(40) 단면이 도시된다.
회전자 디스크 토크(torque)는 날개(30)를 가로질러 상승력(lift)을 생성하여 그로인해 상기 제 1 회전자(50)의 회전을 시작하도록 하는 상기 안내 베인(24)에 의한 초기 공격 각도가 주어진 상기 덕트(40)로의 상기 물의 흐름(100)에 의해생성된다. 상기 물 흐름(100)은 상기 제 1 회전자(50)를 벗어나서 제 2 회전자(52)를 때리고 그에 의해 상기 제 2 회전자(52)가 상기 제 1 회전자(50)과는 반대 방향으로 회전하는 것과 같은 유익한 공격 각도를 가진 소용돌이다. 상기 회전자 디스크 림(54)내에 자석(56)이 상기 덕트(40)내에 상기 고정된 고정자(60)를 지날 때, 패러데이 법칙에서 잘알려진 것으로서, 회전자 코일의 회전수에 자속(flux)의 변화율이 곱해진 것과 동등한 전압이 유도된다. 전기 전류는 종래 기술에 의해 알려진 전기 케이블(도시안됨)에 의해 제거될 수 있다. 회전자(50), 자석(56) 및 회전자(60)으로 이루어지는 발전기는 종래 기술에서 알려진 것처럼 직류 또는 삼상 교류 전류를 생성하도록 배선할 수 있다. 상기 자석(56) 및 고정자(60)과의 사이의 공간은 주위 작동 유체로 가득차고 그에 의해 보통 상기 터빈 발전기 장치에 미치는 높은 유체역학적 부하로 인해 바다밑 응용시 실패하거나 높은 유지 비용을 요구하는 값이 비싸고 비실용적인 공기 시일(air seal)의 사용을 피하게 된다.
도 3 은 일정한 코드 치수의 직선 날개(30)를 가진 상기 회전자 디스크(50)의 정면도이다. 상기 날개(30)는 상기 허브(20) 축에 정렬된 쿼터(quarter) 코드(chord)가 배열된 것이다. 모든 날개(30)는 단면이 대칭적인 하이드로포일이다. 상기 날개(30)는 두 개에서 부터 복수개의 n개까지 될 수 있다.
도 4 는 상기 허브에서 좁고 상기 첨단(tip)에서 넓은 만곡된 날개(30)를 가지는 회전자 디스크(50)의 정면도이다. 선택적으로, 상기 허브에서 넓고 상기 첨단(tip)에서 좁은 만곡된 날개(30)가 사용될 수도 있다(도시안됨). 모든 날개(30)는 단면이 대칭적인 하이드로포일이다. 상기 날개(30)의 청소(sweep) 방향은 상기 터빈 발전기 장치 허브(20)의 중심을 향하거나 고물(aft)을 향하며, 전방 청소는 또한 선택적이다. 상기 날개(30)는 두 개에서 부터 복수개의 n개까지 될 수 있다.
도 5 는 터빈 회전자 디스크(50), 날개(30) 및 상기 허브(20) 축에 중심선에 정렬된 일정한 코드 치수의 직선 날개(30)를 가진 회전자 림(54)의 정면도이다. 상기 날개(30)는 두 개에서 부터 복수개의 n개까지 될 수 있다.
도 6 은 상기 허브에서 좁고 상기 첨단(tip)에서 넓은 직선 날개(30)를 가지는 회전자 디스크(50)의 정면도이다. 선택적으로, 상기 허브에서 넓고 상기 첨단(tip)에서 좁은 만곡된 날개(30)가 사용될 수도 있다(도시안됨). 모든 날개(30)는 단면이 대칭적인 하이드로포일이다. 상기 날개(30)는 두 개에서 부터 복수개의 n개까지 될 수 있다.
도 7 은 수직 오프셋 날개 및 바다 생물 바이패스(32)를 가진 회전자 디스크(50), 날개(30) 및 회전자 림(54)의 정면도이다. 상기 바다 생물 바이패스(bypass)(32)는 물고기 및 포유류와 같은 바다 생물이 만약 그들이 상기 터빈 발전기 방치(10)로 들어온 경우 통과할 수 있는 상기 허브(20)의 중심축을 지나는 길이방향 구멍이다. 상기 바이패스(32)는 축을 지지하는 회전자 디스크(50)로만 사용된 소형 구조의 부재로서 상기 허브(20)를 남겨놓고 상기 발전기(90)를 수용하지 않는 상기 터빈 발전기 장치(10)의 림 생산 형태로 인해 가능하다.
도 8 은 평평한 평면 대신에 상기 회전자 디스크용 만곡 표면을 가진 터빈 회전자 디스크 구조의 단면도이다. 상기 구조는 일정 두께 또는 가변 두께의날개(30)과 함께 사용될 수 있다. 이런 구조는 단일 또는 다중 회전자 디스크 및 이전 도면으로부터의 회전자 날개(30)의 구조와 함께 사용될 수도 있다.
도 9 는 본 발명의 바람직한 실시예의 등각 투상도이다. 상기 터빈 발전기 장치(10)는 상기 덕트 단부(40)에 부착된 보통 타원형 스크린(70)에 의해 캡슐화될 수 있다. 상기 스크린(70)은 상기 덕트(40)로부터 길이방향으로 연장하고 상기 두 개의 허브(20) 단부의 정면, 상부, 측면 또는 하부의 포인트에서 수렴하는 다수의 바(bar)로 이루어질 수 있다. 상기 스크린(70)은 해양 생물에 의한 유입을 최소화하며상기 터빈 날개(30), 및 안내 베인(24)이 막히거나 손상을 줄 수도 있는 상기 터빈 발전기 장치(10)에 들어오는 해초, 파편 및 해양 생물에 대항하는 방패(shield)로서 작용한다. 상기 스크린 및 조수 및 물 흐름(100) 변화 방향 때문에, 상기 스크린(70)은 자체-정화한다. 증대 스커트(74)는 상기 터빈 발전기 장치(10)의 주변의 길이방향 중간 평면 주위에 힌지(27)를 가지는 관절화된(articulating) 패널(36)로 구성된다.
도 7을 다시 참고하면, 상기 스크린(70)은 해양 생물 바이패스(32)와 결합하여 이용될 때, 파편이 상기 스크린(70)내에 잡히는 식으로 상기 바이패스 마우스(32)의 외부 림에서 끝을 형성하고 상기 덕트(42)의 선두 에지에 연장하고, 해양 생물은 상기 터빈 발전기 장치를 통과할 수 있으며 그에 의해 상기 전원 발전의 환경적 충격이 줄어든다.
상기 회전자 디스크(50)( 및 만약 가능하다면, 52) 및 발전기로 구성되는 상기 터빈 조립체는 적소에 상기 덕트(40) 및 배치 수단을 남겨두고, 쉽게 유지하기위한 장치로서 삽입되고 제거될 수 있다. 상기 회전자 디스크(50) 및 발전기(90)는 상부 표면에 손잡이(lug) 또는 후크를 가진 같은 종류가 포함된 코어 장치일 수도 있다. 상기 덕트(40)의 플렉시블 중앙 부분인 상기 덕트 림 스페이서(44)는 상기 터빈 조립체의 제거가 가능하도록 제공된다. 상기 덕트 림 스페이서(44)의 제거에 따라 상기 터빈 조립체(48)는 서비스 또는 교체를 위해 상기 표면으로 올려질 것이다.
도 10 은 상기 터빈 발전기(10)의 중심점에 부착된 플렉시블 증대 스커트(74)를 가진 덕트(40)를 도시한다. 스펙트라(Spectra) 직조 섬유와 같은 튼튼한 플렉시블 재료로 구성된 상기 스커트(74)는 상기 흐름(100)의 동적 압력이 상기 스커트(74)를 상기 덕트(40)의 출구에서 상기 스커트(74)의 플레어로된(flared) 단부를 가진 적당한 위치로 힘을 받을 것이다. 상기 스커트(74)는 그안에 묻힌(embedded) 딱딱한(stiff) 링(도시안됨)을 가질 것이지만, 상기 조수 흐름(100)의 큰 동적 압력에 지배된 적당한 형태를 유지하도록 그의 가장 크고 원심 지름에서 딱딱한 스커트 링(75)을 가질 것이다. 상기 스커트(74)는 '스펙트라 직조' 또는 금속성 관절화된 성분과 같은 견고한 합성 재료로 구성될 수 있다. 상기 스커트(74)는 상기 덕트(40)로부터 벌어지는 것과 같이 상기 트레일링 에지에서 더 큰 원주를 가진다. 상기 스커트(74)는 베츠(Betz)효과로 인해 터빈 효율 감소가 최소화되는 상기 터빈 발전기 장치(10)의 출구에서 저압 영역을 형성한다. 이런 형태의 고정된 증대는 상기 터빈을 통한 흐름이 증가되도록 하고 종래 기술에 익숙한 사람들에게 잘알려진 특징이다. 플렉시블 직조 및 관절화된 금속 스커트(74) 둘다상기 조수가 방향이 변할 때, 상기 조수 흐름의 동적인 힘에 의해 전후방으로 이동되고, 결국 상기 스커트(74)는 상기 덕트(40) 출구에 또는 출구위에 후방으로 항상 연장한다. 이것은 상기 터빈 덕트(40) 주변의 중심 점 근처에 힌지결합되거나 첨부된 양방향의, 단일하게 위치된 증대 스커트(74)이다. 상기 스커트는 바람직하다면 특정한 장치 또는 다수의 장치에 의해 전체 주위 근처 또는 단지 주위 부분에만 설치될 수 있다.
도 11 은 상기 터빈 장치(10)의 중간 포인트에서 힌지(37)에 의해 부착된 관절화된 증대 스커트(74)를 가진 덕트(40)를 보여준다. 상기 스커트(74)는 견고하고 딱딱한 패널(74)로 구성되고 상기 스커트(74)가 상기 덕트(40)의 출구에서 상기 스커트 세그먼트의 벌어진 단부를 가진 적당한 위치로 힘을 받을 것이다. 상기 터빈 발전기 장치(10)는 배치 및 유지 동작에 유용한 부양성(buoyancy)을 제공하는 덕트(40) 구조 및 재료로 구성된다.
상기 터빈 발전기 장치는 견고한 부패 방지 재료로 구성된다. 바람직한 실시예에서 내부적으로 경량의 딱딱한 것을 포함하는 해양 기울기 콘크리트는 상기 전체 구조가 명확하게 부양성인 것이 상기 덕트(40)에 사용되고 부패 저항의 높은 강도 재질이 상기 회전자(50), 및 상기 터빈(10) 및 다른 주요 부품을 이루는 축(19)에 사용된 충분한 비율로 모여서 된 것이다. 진보된 합성물, 콘크리트 및 강철과 같은 재료가 사용될 수 있다. 상기 터빈 발전기 장치(10)는 수력학 손실을 줄이고 해양 생물의 부착에 의한 악취를 최소화하는 종래 기술에서 알려진 것처럼 실리콘 유리 제품에 코팅된다.
상기 덕트(40)는 새로운 실리콘 유리 제품에 코팅되고 바람직하게는 상기 터빈 발전기 장치(10)를 배치를 위한 장소로 견인가능하도록 하는 경량의 부양성 콘크리트로부터 형성되고 상기 터빈 발전기 장치(10)가 상기 물(16)의 표면아래 소정 깊이에서 부양하는 식으로 정박시킨다. 상기 터빈 발전기 장치(10)는 강 또는 바람직하게는 바닷 속 장소에 하강된다. 바람직한 실시예에서 상기 터빈 발전기 장치는 전력을 생산하도록 조력을 이용한다.
도 12 는 미국 특허 제 4,221,538호 다이어그램에서 상기 구동 벡터가 상기 날개(30)의 하이드로포일 단면을 가로지르는 경우 종래 기술 대칭 포일(foil)을 가로지르는 공기 흐름 벡터 다이어그램으로, V가 상기 날개(30)의 방향에 대향하는 상대적인 속도 흐름인 경우, I1 및 I2는 결과적 유체 벡터 입사 속도이고, U1 및 U2는 양방향 물 흐름(100)을 표현하고 L1 및 L2는 정상적인 상승 성분을 나타낸다. 상기 하이드로포일 날개(30)를 가로지르는 상승은 효과적이고 강력한 방식으로 상기 회전자(50)를 가속시킨다.
도 13 은 이중 동축 회전자 디스크(50)를 가진 터빈 발전기의 성분으로서 두 개의 수력학 반대 회전 날개(30) 단면을 가로지르는 흐름 다이어그램이다. 이러한 종래 기술 시스템은 소용돌이로 인한 하강 흐름 에너지 손실을 줄이고 더 큰 속도 스펙트럼을 동작 효율을 증대시키는데 효과적이다.
도 14 는 캐스케이드 쌍의 동축 회전자(50) 터빈 발전기 장치를 가로지르는 흐름 다이어그램이다. 다중 캐스케이드의 사용은 매우 높은 속도의 체제를 위한 다중 장치를 가로지르는 압력 강하를 최소화한다. 캐스케이딩 쌍의 반대 회전 디스크의 수는 둘 또는 복수개의 n이다.
도 15 는 하이드로포일 날개(30) 단면을 가진 단일 회전자 디스크(50)를 가로지르고 교대로있는 입구 및 출구 안내 베인(24)을 통한 흐름 다이어그램이다. 상기 베인(24)은 플렉시블하고 상기 관절화된 스커트를 가진 결합(linkage)에 의해 제어된다. 상기 흐름(100)의 동적 압력은 상기 스커트를 조정하도록 야기하고, 그에 의해 적당한 위치로 상기 안내 베인을 이동시킨다. 상승흐름 안내 베인은 양의 공격 각도를 제공할 것이고 상기 하강흐름 안내 베인은 운동량 소용돌이 손실을 줄일 것이다. 상기 물 흐름(100)이 역전될 때, 상기 회전자(50)는 동일 방향으로 회전하지만, 상기 베인(24)은 점선(25)에 도시된 위치를 힌지에 의해 점유하여 역전 또는 뒤집는다(flip). 이런 변형에서, 상기 에지(28)를 이끄는 베인(24)은 상기 허브(20) 구조 및 상기 덕트(40)의 내부 표면에 강하게 고정된다.
도 16 은 두 개의 수력학적인 반대 회전 날개(30) 단면을 가로지르고 이중 인라인 회전자(50) 터빈 발전기 장치의 부품으로서 입구 및 출구 안내 베인(24)을 통한 흐름 다이어그램이다. 바람직한 실시예에서, 상기 안내 베인(24)은 도시된 구성으로 영구적으로 고정된다.
도 17 은 다수의 신축자재 기둥(telescopic pylon)(80)상에 장착된 수력학적 터빈 발전기 장치(10)이 등각 투상도이다. 바람직한 실시예에서 상기 터빈 발전기 방치(10)는 유지보수 목적을 위하여 물(16)의 표면 상에 상기 터빈 발전기 장치(10)을 들어올리는 것을 포함하여 상기 터빈 발전기 장치(10)의 원격 높이 조정이 가능하도록 신축적으로 될 수 있는 기둥(80)상에 장착된다.
도 18 은 강 또는 조수 흐름내에 수면하에 다수의 신축자재 기둥(80)상에 장착된 터빈 발전기의 정면도이다. 장치 제거 및 서비스는 상기 터빈 발전기 장치에 접근하기 위하여 상기 신축자재 기둥(80)을 들어올리거나 하강시켜 용이하게 된다. 상기 동일 기둥(80) 세트상에 추가적 터빈 발전기 장치(10) 뿐만 아니라 이중 동축 회전자 디스크(50) 및 (52)가 사용될 수 있다. 전원을 제거하고 상기 터빈 발전기 장치(10)를 제어하는 임의의 알려진 케이블 시스템이 사용될 수 있다.
도 19 는 대양 또는 강바닥(15)상에 4개 또는 그 이상의 앵커(ahchor)(14)의 두 개의 집합에 외부 돌기(lug)(12) 및 케이블(13)을 경유해 밧줄로 잡아맨 터빈 발전기 장치(10)의 측면도이다. 상기 앵커는 아연도금된(galvanized) 강철 배 앵커 또는 콘크리트 블록을 포함하는 임의의 형태가 될 수 있다. 상기 케이블(13)은 상기 터빈 발전기 장치(10)의 각각의 단부에 부착되고 적소에 지탱된다. 상기 회전자(50) 및 (52)가 양방향일 때, 상기 터빈 발전기 장치는 적소에 고정되어 남을 수 있다.
도 20 은 단일 회전자(50) 터빈 발전기의 도 19의 I-I선을 따르는 단면도이다.
도 21 은 단일 터빈 발전기 장치의 도 19의 II-II선을 따르는 단면도이다.
상기 터빈 발전기 장치(10)는 개별적으로 또는 둘 이상의 터빈 발전기 장치(10)에 배치될 수 있다. 도 22 는 본 발명의 이중의 나란한 터빈 발전기 장치(10)인 도 19의 I-I선을 따르는 단면도이다.
도 23 은 이중의 나란한 터빈 발전기 장치(10) 변형의 도 19의 종단도면(end view)이다. 상기 두 개의 터빈 발전기 장치(10)의 상기 덕트(40)는 수력학적 힘에 저항하는데 적당한 임의의 다른 수단에 의해 함께 용접되고, 볼트결합되거나 부착될 수 있다.
상기 터빈 발전기 장치(10)에 선행된 배치의 적어도 다섯가지의 가능한 방법이 있다. 이들 방법은:
·도 17 및 도 18에 도시된 것처럼 하나 이상의 신축자재 기둥(80)상에 장착된다.
·바지선(120) 아래에 부양하여 바지선에 부착된다.
·강변에 접을 수 있는 고무 댐(130)에 인접
·도 19에 도시된 것처럼 표면 아래에 밧줄로 매어져 부양하고, 및
·도 26-30에 도시된 것처럼 대양 입구 또는 통로를 가로지르는 조수 펜스내에 있다.
도 24 는 본 발명에 따른 바지선(120) 아래 장착된 터빈 발전기 장치(10)의 측면도이다.
도 25 는 본 발명에 따른 소형 댐(130)내에 장착된 터빈 발전기 장치(10)의 평면도이다.
도 26 은 본 발명에 따른 몇몇 열의 터빈 발전기 장치(10)를 보여주는 완전한 조수 펜스(140)의 정면도이다.
도 27 은 본 발명에 따른 9개의 적층된 터빈 발전기 장치(10)를 보여주는 조수 펜스(140)의 일부의 상세 정면도이다.
도 28 은 본 발명에 따른 조수 펜스(140)내의 단일 터빈 발전기 장치(10)의 정면도이다.
도 29 는 조수 펜스(140)의 구조에서 3개의 적층된 터빈 발전기 장치(10)를 보여주는 단면도이다. 본 발명에 따른 상기 조수 펜스(140)는 T-빔 구조(141), 전기 및 감시 갤리선(galley) 및 연관된 로드 베드(road bed)(142)를 가지며, 상기 컬럼 데크 구조는 T-빔(143), 억세스 커버(144) 및 수직지지 컬럼(147)에 의해 보조된(assisted) 레일 라인(lines)(145) 및 (146)으로 구성된다. 추가적으로 파동 전환기(diverter)(148) 및 제거가능한 안티-캐비테이션(anti-cavitation) 플랫폼(149), 중력 기초 구조(150), 및 연관된 지지 웹(web)(151), 및 기둥(152) 및 (153)으로 구성된다. 이런 구조는 다수의 터빈 발전기 장치(10)를 지지한다.
도 30 은 조수 펜스(140) 구조의 상부에서 레일 상에 위치된 겐트리(gantry)를 이용하는 카세트 형태로 터빈 발전기 장치(10)를 제거하기 위한 유지보수 성능의 단면도이다.
여기에서 바람직한 실시예들은 정확하게 개시된 형태에 본 발명의 청구범위를 소모하거나 제한하는 의도가 아니다. 그들은 그 기술 분야에 익숙한 기술자가 이해할 수 있도록 본 발명의 원칙 및 그 응용 및 실제적인 사용을 가장 잘 설명하기 위하여 선택되고 설명되었다.
앞서 개시된 것에 비추어 종래 기술에 익숙한 자에게 명백한 것처럼, 많은 변형 및 변경이 본 발명의 실행에서 그의 사상 및 청구범위를 벗어남이 없이 가능할 것이다. 따라서, 본 발명의 청구범위는 이하의 청구항에 정의된 대의에 따라 해석될 것이다.

Claims (39)

  1. (a) 물 흐름에 실질적으로 평행한 허브;
    (b) 상기 허브에 회전가능하게 부착되고 상기 허브로부터 방사상으로 연장하는 다수의 날개로 구성된 적어도 하나의 회전자 디스크;
    (c) 덕트를 정의하는 보통 원통형 하우징, 상기 덕트는 상기 날개의 팁에 인접하고 연결 수단에 의해 상기 허브에 부착되고;
    (d) 상기 허브로부터 방사상으로 연장하는 다수의 가이드 베인; 및
    (e) 적어도 하나의 발전기;로
    구성되는 것을 특징으로 하는 물 흐름으로부터 전력을 발생시키기 위한 수력 터빈 발전기.
  2. 제 1 항에 있어서, 상기 날개는 대칭적 하이드로포일 단면 날개인 것을 특징으로 하는 물 흐름으로부터 전력을 발생시키기 위한 수력 터빈 발전기.
  3. 제 2 항에 있어서, 상기 날개는 상기 물 흐름에 수직하게 배치된 두 개의 평평한 면을 가지는 것을 특징으로 하는 물 흐름으로부터 전력을 발생시키기 위한 수력 터빈 발전기.
  4. 제 1 항에 있어서, 제 1 회전자 디스크 및 제 2 회전자 디스크가 있고, 상기제 1 회전자 디스크는 상방향이고 상기 물 흐름에 제 1 방향으로 회전하고 상기 제 2 회전자 디스크는 하류방향이고 상기 물 흐름에 제 2 방향으로 상기 제 1 회전자 디스크에 관련하여 반대로 회전하는 것을 특징으로 하는 물 흐름으로부터 전력을 발생시키기 위한 수력 터빈 발전기.
  5. 제 2 항에 있어서, 상기 제 1 방향은 상기 물 흐름의 방향으로부터 반시계 방향이고 상기 제 2 방향은 상기 물 흐름 방향으로부터 시계방향인 것을 특징으로 하는 물 흐름으로부터 전력을 발생시키기 위한 수력 터빈 발전기.
  6. 제 4 항에 있어서, 상기 제 1 방향은 상기 물 흐름의 방향으로부터 시계 방향이고 상기 제 2 방향은 상기 물 흐름 방향으로부터 반시계방향인 것을 특징으로 하는 물 흐름으로부터 전력을 발생시키기 위한 수력 터빈 발전기.
  7. 제 4 항에 있어서, 상기 물 흐름이 방향을 바꿀 때, 상기 제 2 회전자 디스크는 상부흐름 디스크가 되고 동일 방향으로 계속 회전하고, 한편 상기 제 1 회전자 디스크가 하강흐름 디스크가 되고 동일 방향 상부흐름 디스크와 관련하여 반대 회전을 계속하는 것을 특징으로 하는 물 흐름으로부터 전력을 발생시키기 위한 수력 터빈 발전기.
  8. 제 1 항에 있어서, 상기 안내 베인은 상기 허브의 일단 또는 양단에 배치된것을 특징으로 하는 물 흐름으로부터 전력을 발생시키기 위한 수력 터빈 발전기.
  9. 제 1 항에 있어서, 상기 안내 베인은 만곡되고 실질적으로 직사각형이고 상기 만곡부가 상기 물 흐름 방향을 변화시키고 그것이 들어올림 및 그에 따른 회전자 디스크의 회전을 일으키도록 최적의 각도에서 상기 하이드로포일 날개를 때리고 식으로 상기 허브 및 상기 덕트의 내부 벽과의 사이에 상기 허브로부터 방사상으로 연장하는 것을 특징으로 하는 물 흐름으로부터 전력을 발생시키기 위한 수력 터빈 발전기.
  10. 제 1 항에 있어서, 상기 베인은 적소에 고정된 것을 특징으로 하는 물 흐름으로부터 전력을 발생시키기 위한 수력 터빈 발전기.
  11. 제 1 항에 있어서, 상기 베인은 조정가능한 것을 특징으로 하는 물 흐름으로부터 전력을 발생시키기 위한 수력 터빈 발전기.
  12. 제 8 항에 있어서, 상기 안내 베인은 상기 허브 및 상기 덕트와 관련하여 회전가능하게 조정가능한 것을 특징으로 하는 물 흐름으로부터 전력을 발생시키기 위한 수력 터빈 발전기.
  13. 제 7 항에 있어서, 상기 물 흐름이 방향이 변할 때, 상기 안내 베인은 상기안내 베인의 만곡부가 반전되고 그에 의해 바람직한 각도에서 상기 물 흐름을 지도하는 식으로 회전하는 것을 특징으로 하는 물 흐름으로부터 전력을 발생시키기 위한 수력 터빈 발전기.
  14. 제 7 항에 있어서, 상기 물 흐름이 방향이 변할 때, 상기 만곡진 안내 베인은 상기 상승흐름 회전자 디스크에 흐르는 상기 물 흐름을 지도하는(directing) 상기 베인이 새로운 하강흐름 회전자 디스크 밖으로 상기 물 흐름을 지도하기 위한 최적 각도로 역전되고, 상기 터빈 발전기 밖으로 상기 물 흐름을 지도하는 상기 허브의 하강흐름 단부에 배치된 상기 베인은 상기 이전 하강흐름 회전자 디스크에 상기 물 흐름을 지도하기 위한 최적 각도로 현재 반전되는 식으로 회전하는 것을 특징으로 하는 물 흐름으로부터 전력을 발생시키기 위한 수력 터빈 발전기.
  15. 제 12,13, 및 14 항중 어느 한 항에 있어서, 상기 베인은 상기 물 흐름 방향이 변할 때 상기 덕트의 일단에서부터 타단까지 뒤집는 스커트에 기계적 결합을 이용하여 회전되는 것을 특징으로 하는 물 흐름으로부터 전력을 발생시키기 위한 수력 터빈 발전기.
  16. 제 1 항에 있어서, 상기 발전기는 림 발전기인 것을 특징으로 하는 물 흐름으로부터 전력을 발생시키기 위한 수력 터빈 발전기.
  17. 제 16 항에 있어서, 상기 발전기는 상기 날개의 팁(tip)에 배치된 자석 및 상기 덕트의 내부 벽에 배치된 솔레노이드로 구성된 것을 특징으로 하는 물 흐름으로부터 전력을 발생시키기 위한 수력 터빈 발전기.
  18. 제 16 항에 있어서, 상기 발전기는 상기 회전자 디스크의 림내에 있는 영구 자석으로 구성되고 고정자 코일은 상기 덕트의 내부벽내에 배치된 것을 특징으로 하는 물 흐름으로부터 전력을 발생시키기 위한 수력 터빈 발전기.
  19. 제 1 항에 있어서, 상기 발전기는 이중 또는 단일 자속 발전기 중 하나 또는 이중 또는 단일 방사상 자속 발전기 중의 하나인 것을 특징으로 하는 물 흐름으로부터 전력을 발생시키기 위한 수력 터빈 발전기.
  20. 제 1 항에 있어서, 상기 발전기는 주위에 물이 넘치는 것을 특징으로 하는 물 흐름으로부터 전력을 발생시키기 위한 수력 터빈 발전기.
  21. 제 1 항에 있어서, 상기 회전자 디스크 및 발전기는 유지보수 및 교체가 쉽게 수행되는 식으로 모듈형 장치로서 제거되도록 채택된 것을 특징으로 하는 물 흐름으로부터 전력을 발생시키기 위한 수력 터빈 발전기.
  22. 제 1 항에 있어서, 상기 덕트의 외측 표면의 중간선 근처에 배치되고 상기물 흐름 방향에서 상기 덕트의 지나는 하나의 개구 단부를 연장하는 스커트를 더 포함하는 것을 특징으로 하는 물 흐름으로부터 전력을 발생시키기 위한 수력 터빈 발전기.
  23. 제 23 항에 있어서, 상기 스커트는 상기 스커트가 상기 수력 터빈이 하강흐름 단부를 향해 항상 상기 덕트의 중간선으로부터 연장하는 식으로 상기 물 흐름이 상반될 때 상승 및 뒤집기 위하여 채택된 것을 특징으로 하는 물 흐름으로부터 전력을 발생시키기 위한 수력 터빈 발전기.
  24. 제 22 항 또는 제 23 항에 있어서, 상기 스커트는 플렉시블 재료로 구성된 것을 특징으로 하는 물 흐름으로부터 전력을 발생시키기 위한 수력 터빈 발전기.
  25. 제 22 항 또는 제 23 항에 있어서, 상기 스커트는 관절화된 패널로 구성된 것을 특징으로 하는 물 흐름으로부터 전력을 발생시키기 위한 수력 터빈 발전기.
  26. 제 1 항에 있어서, 상기 파편 및 생물이 스크린에 의해 편향되는 식으로 상기 덕트의 개구 단부 근처에 배치된 스크린을 더 포함하여 구성된 것을 특징으로 하는 물 흐름으로부터 전력을 발생시키기 위한 수력 터빈 발전기.
  27. 제 26 항에 있어서, 상기 스크린은 금속 막대(bar)로 구성된 것을 특징으로하는 물 흐름으로부터 전력을 발생시키기 위한 수력 터빈 발전기.
  28. 제 26 항에 있어서, 상기 막대는 상기 덕트 단부로부터 상기 덕트 단부의 중심 정면내의 점까지 전방으로 연장하는 것을 특징으로 하는 물 흐름으로부터 전력을 발생시키기 위한 수력 터빈 발전기.
  29. 제 26 항에 있어서, 상기 스크린은 파편 및 생물이 상기 터빈 주위로 편향되는 식으로 상기 물 흐름에 접하는 각도를 가진 널조각(slats)으로 구성된 것을 특징으로 하는 물 흐름으로부터 전력을 발생시키기 위한 수력 터빈 발전기.
  30. 제 1 항에 있어서, 적어도 하나의 터빈 발전기는 물 표면상에 상기 터빈 발전기를 선택적으로 하강 또는 상승시키고 전력 발전이 최적화되는 식으로 바닷속 깊이를 선택하도록 채택된 적어도 하나의 바닷 속 신축자재 기둥상에 장착된 것을 특징으로 하는 물 흐름으로부터 전력을 발생시키기 위한 수력 터빈 발전기.
  31. 제 1 항에 있어서, 상기 수력 터빈 발전기는 양방향으로 두 개의 개구 단부중 하나로부터의 상기 물 흐름 접수하고 전력을 발생할 수 있는 것을 특징으로 하는 물 흐름으로부터 전력을 발생시키기 위한 수력 터빈 발전기.
  32. 제 1 항에 있어서, 상기 덕트는 벤추리 효과가 생성되는 식으로 수렴하는 내부 표면을 가진 것을 특징으로 하는 물 흐름으로부터 전력을 발생시키기 위한 수력 터빈 발전기.
  33. 제 4 항에 있어서, 상기 회전자 디스크는 동축이고 반대의 회전을 하는 것을특징으로 하는 물 흐름으로부터 전력을 발생시키기 위한 수력 터빈 발전기.
  34. 제 33 항에 있어서, 상기 2 내지 n 캐스케이드 쌍의 동축 반대 회전 터빈 발전기가 있는 것을 특징으로 하는 물 흐름으로부터 전력을 발생시키기 위한 수력 터빈 발전기.
  35. (a) 축;
    (b) 상기 축으로부터 방사상으로 연장하는 다수의 회전가능한 날개; 및
    (c) 상기 축으로부터 방사상으로 연장하는 다수의 조정가능한 안내 베인;으로 구성되는 것을 특징으로 하는 기체 또는 유체 터빈용 장치.
  36. 제 35 항에 있어서, 상기 날개의 팁이 상기 덕트 근처에 있는 식으로 상기 날개 주위에 배치된 덕트를 더 포함하여 구성된 것을 특징으로 하는 기체 또는 유체 터빈용 장치.
  37. 제 35 항에 있어서, 림 발전기 수단을 포함하는 것을 특징으로 하는 기체 또는 유체 터빈용 장치.
  38. (a) 중심축;
    (b) 상기 축에 회전가능하게 부착된 다수의 날개를 가지는 적어도 하나의 회전자 디스크;
    (c) 상기 회전자 디스크의 상승흐름에 배치되고 상기 유체 또는 기체가 상기 날개의 회전을 시작하도록 최적 각도로 상기 날개를 때리는 식의 만곡진 다수의 만곡된 안내 베인;
    으로 구성된 것을 특징으로 하는 유체 흐름 또는 기체로부터 전력을 생성하는 터빈.
  39. (a) 허브;
    (b) 상기 허브 주위에 방사상으로 회전가능하게 배치된 다수의 대칭적 하이드로포일 날개;
    (c) 상기 날개 주위에 배치되고 적어도 하나의 허브 지지대에 의해 상기 허브에 부착된 하우징;
    상기 터빈 발전기가 소정 바닷속 깊이에서 부양하는 식으로 상기 허브와 일체인 부양물 수단;
    으로 구성된 것을 특징으로 하는 조수 흐름으로부터 전력을 생성하는 수력 터빈.
KR1020047003856A 2001-09-17 2002-09-16 수중 덕트 터빈 KR101033544B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US32244301P 2001-09-17 2001-09-17
US60/322,443 2001-09-17
PCT/CA2002/001413 WO2003025385A2 (en) 2001-09-17 2002-09-16 Underwater ducted turbine

Publications (2)

Publication Number Publication Date
KR20040055779A true KR20040055779A (ko) 2004-06-26
KR101033544B1 KR101033544B1 (ko) 2011-05-11

Family

ID=23254911

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020047003856A KR101033544B1 (ko) 2001-09-17 2002-09-16 수중 덕트 터빈

Country Status (13)

Country Link
US (3) US7471009B2 (ko)
EP (1) EP1430220B1 (ko)
JP (1) JP4024208B2 (ko)
KR (1) KR101033544B1 (ko)
CN (1) CN1636111B (ko)
AT (1) ATE298042T1 (ko)
AU (1) AU2002328217B2 (ko)
CA (1) CA2460479C (ko)
DE (1) DE60204707T2 (ko)
ES (1) ES2243756T3 (ko)
NO (2) NO328222B1 (ko)
PT (1) PT1430220E (ko)
WO (1) WO2003025385A2 (ko)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101041539B1 (ko) * 2009-09-30 2011-06-17 한국전력공사 유속 유량 조절형 초저낙차 수차의 구조
KR101136812B1 (ko) * 2011-09-21 2012-04-17 손창희 소수력 발전수단과 그 장치
KR101155290B1 (ko) * 2009-12-16 2012-06-13 한국해양연구원 파력발전 시스템
WO2013048007A2 (ko) * 2011-09-29 2013-04-04 현대건설주식회사 고효율 다단 조류 발전기 및 복합 발전 시스템
KR101405494B1 (ko) * 2006-07-14 2014-06-11 오픈하이드로 그룹 리미티드 조력발전 터빈
KR101432758B1 (ko) * 2006-07-14 2014-08-21 오픈하이드로 그룹 리미티드 부력챔버를 구비한 잠수형 유체동력 터빈
KR101489218B1 (ko) * 2007-11-16 2015-02-04 엘리멘털 에너지 테크널러지스 리미티드 동력발생장치 조립체, 발전장치 설비 및 추진 또는 펌프장치
US9000604B2 (en) 2010-04-30 2015-04-07 Clean Current Limited Partnership Unidirectional hydro turbine with enhanced duct, blades and generator
KR101642676B1 (ko) * 2016-05-11 2016-07-29 (주)큰나무 내장형 인라인스크류 소수력발전장치
KR20200017173A (ko) 2018-08-08 2020-02-18 공대원 수중발전기

Families Citing this family (310)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL152090A0 (en) * 2002-10-03 2003-05-29 Kobi Miller Mechanism for rotating the rotors and stators of electric power generators
NO321755B1 (no) * 2003-06-25 2006-07-03 Sinvent As Fremgangsmate og anordning for omforming av energi fra/til vann under trykk.
US20050005592A1 (en) * 2003-07-07 2005-01-13 Fielder William Sheridan Hollow turbine
GB0328732D0 (en) * 2003-12-11 2004-01-14 Uws Ventures Ltd Water turbine
SE526789C2 (sv) * 2004-03-16 2005-11-08 Uppsala Power Man Consultants Aggregat innefattande en vattenturbin och en generator, vars rotor är direktförbunden med vardera av turbinens blad
US7258523B2 (en) * 2004-05-25 2007-08-21 Openhydro Group Limited Means to regulate water velocity through a hydro electric turbine
DE102004037985A1 (de) * 2004-08-05 2006-03-16 Voith Siemens Hydro Power Generation Gmbh & Co. Kg Hydraulische Turbine oder Pumpturbine
NO323923B1 (no) * 2004-08-25 2007-07-23 Norpropeller As Elektrisk generator og turbin-generator-aggregat
US7235894B2 (en) * 2004-09-01 2007-06-26 Roos Paul W Integrated fluid power conversion system
CA2640643C (en) * 2004-09-17 2011-05-31 Clean Current Power Systems Incorporated Flow enhancement for underwater turbine generator
WO2006047739A2 (en) * 2004-10-27 2006-05-04 Murphy Michael A Device to give torque to generator using water
EP1834087A4 (en) * 2004-12-17 2009-10-21 Composite Support & Solutions DIFFUSER IMPROVED WIND TURBINE
FR2880388B1 (fr) * 2005-01-05 2017-07-28 Electricite De France Service Nat Unite de production d'electricite immergee
FR2880389B1 (fr) * 2005-01-05 2007-04-20 Electricite De France Structure de connexion pour une unite de production d'electricite immergee
ES2300180B1 (es) * 2006-03-27 2009-02-16 Maria Elena Novo Vidal Sistema de generacion de energia electrica a partir de corrientes marinas y del movimiento del oleaje.
ES2285895B1 (es) * 2005-04-11 2008-09-01 Maria Elena Novo Vidal Generador electrico accionado por turbina.
US7843099B2 (en) * 2005-04-25 2010-11-30 William Sheridan Fielder Hollow generator
ITRM20050216A1 (it) * 2005-05-05 2006-11-06 Francis Allen Farrelly Dispositivo di ugello asimmetrico con turbina idrica per lo sfruttamento dell'energia idrocinetica.
US7215036B1 (en) * 2005-05-19 2007-05-08 Donald Hollis Gehring Current power generator
US7352078B2 (en) * 2005-05-19 2008-04-01 Donald Hollis Gehring Offshore power generator with current, wave or alternative generators
DE102005032381A1 (de) * 2005-07-08 2007-01-11 Wobben, Aloys, Dipl.-Ing. Turbine für eine Wasserkraftanlage
US7378750B2 (en) 2005-07-20 2008-05-27 Openhybro Group, Ltd. Tidal flow hydroelectric turbine
GB0516149D0 (en) * 2005-08-05 2005-09-14 Univ Strathclyde Turbine
GB0600942D0 (en) * 2006-01-18 2006-02-22 Marine Current Turbines Ltd Improvements in gravity foundations for tidal stream turbines
DE102006003799B4 (de) * 2006-01-25 2010-05-06 Daimler Ag Brennstoffzellensystem mit Brennstoffzelle, Wasserstoffspeicher und Anodenkreislauf und dessen Verwendung
CA2645258A1 (en) * 2006-03-21 2007-09-27 Shell Canada Limited Turbine assembly and generator
FR2898941A1 (fr) * 2006-03-25 2007-09-28 Max Sardou Energie renouvelable l'hydrolienne flottante
CA2544108C (en) 2006-04-19 2013-06-04 Metin Ilbay Yaras Vortex hydraulic turbine
US7528497B2 (en) * 2006-07-11 2009-05-05 Hamilton Sundstrand Corporation Wind-turbine with load-carrying skin
ATE409279T1 (de) * 2006-07-14 2008-10-15 Openhydro Group Ltd Turbinen mit einer rutsche zum durchfluss von fremdkörpern
EP1879280B1 (en) * 2006-07-14 2014-03-05 OpenHydro Group Limited A hydroelectric turbine
US20080018115A1 (en) * 2006-07-20 2008-01-24 Boray Technologies, Inc. Semi-submersible hydroelectric power plant
DE102006043946A1 (de) * 2006-09-14 2008-03-27 Oswald Elektromotoren Gmbh Turbinenvorrichtung
US20110049894A1 (en) * 2006-10-06 2011-03-03 Green William M Electricity Generating Assembly
BRPI0719251B1 (pt) * 2006-10-13 2019-03-19 Stephen Mark West Unidade de turbina e conjunto de turbinas
GB0621381D0 (en) * 2006-10-27 2006-12-06 Neptune Renewable Energy Ltd Tidal power apparatus
US7710081B2 (en) 2006-10-27 2010-05-04 Direct Drive Systems, Inc. Electromechanical energy conversion systems
US7603864B2 (en) * 2006-11-29 2009-10-20 General Electric Company Blade tip electric machine
GB0700128D0 (en) * 2007-01-04 2007-02-14 Power Ltd C Tidal electricity generating apparatus
GB0704897D0 (en) * 2007-03-14 2007-04-18 Rotech Holdings Ltd Power generator and turbine unit
US8376686B2 (en) * 2007-03-23 2013-02-19 Flodesign Wind Turbine Corp. Water turbines with mixers and ejectors
US8622688B2 (en) 2007-03-23 2014-01-07 Flodesign Wind Turbine Corp. Fluid turbine
US8123457B2 (en) * 2007-03-27 2012-02-28 Hydro Green Energy, Llc System and apparatus for improved turbine pressure and pressure drop control using turbine head potential
DE602007007294D1 (de) * 2007-04-11 2010-08-05 Openhydro Group Ltd Verfahren zum Installieren von hydroelektrischen Turbinen
DE602007001582D1 (de) * 2007-04-11 2009-08-27 Openhydro Group Ltd Verfahren zum Einsetzen einer hydroelektrischen Turbine
CA2723631C (en) * 2007-05-05 2017-10-31 Gordon David Sherrer System and method for extracting power from fluid
GB0710822D0 (en) * 2007-06-05 2007-07-18 Overberg Ltd Mooring system for tidal stream and ocean current turbines
US8049351B2 (en) * 2007-06-15 2011-11-01 E-Net, Llc Turbine energy generating system
WO2009026620A1 (en) 2007-08-24 2009-03-05 Fourivers Power Engineering Pty Ltd Marine power generation apparatus using ocean currents
US8575775B1 (en) 2007-09-19 2013-11-05 Julio Gonzalez-Carlo Electrical power generation system for harvesting underwater currents
US7928595B1 (en) 2007-09-19 2011-04-19 Julio Gonzalez-Carlo Electric power generation system for harvesting underwater currents
US20100148515A1 (en) * 2007-11-02 2010-06-17 Mary Geddry Direct Current Brushless Machine and Wind Turbine System
EP2213872A4 (en) * 2007-11-15 2013-09-04 Univ Kyushu Nat Univ Corp FLOW MACHINE WITH UNBELTED RIVER, WIND TURBINE AND METHOD FOR INCREASING THE SPEED OF THE INTERNAL RIVER OF A FLOW MACHINE
WO2009062262A1 (en) * 2007-11-16 2009-05-22 Elemental Energy Technologies Limited A power generator
KR20100102618A (ko) * 2007-11-23 2010-09-24 아틀란티스 리소시스 코포레이션 피티이 리미티드 수류에서 전력을 추출하기 위한 제어 시스템
US7586207B2 (en) * 2007-12-05 2009-09-08 Kinetic Wave Power Water wave power system
US20090146430A1 (en) * 2007-12-10 2009-06-11 Walter Edmond Sear Tidal/water current electrical generating system
DE602007008924D1 (de) 2007-12-12 2010-10-14 Openhydro Group Ltd Generatorkomponente für eine hydroelektrische Turbine
DE202007017544U1 (de) * 2007-12-13 2009-04-23 Schiller, Helmut Unterwasser Turbine
US7928594B2 (en) * 2007-12-14 2011-04-19 Vladimir Anatol Shreider Apparatus for receiving and transferring kinetic energy from a flow and wave
WO2009079787A1 (en) * 2007-12-20 2009-07-02 Rsw Inc. Kinetic energy recovery turbine
FR2925621B1 (fr) * 2007-12-21 2018-01-26 Dcns Dispositif electrohydraulique de generation d'electricite et utilisation
EP2240685B1 (en) * 2008-01-08 2020-08-05 Richard Arthur Henry Reynolds Turbine assembly
NL2001190C1 (nl) * 2008-01-16 2009-07-20 Lagerwey Wind B V Generator voor een direct aangedreven windturbine.
NL1034952C2 (nl) * 2008-01-25 2009-07-30 Antonie Ten Bosch Een vaarbare getijdenstroom turbinemuur energiecentrale.
DE102008007043A1 (de) * 2008-01-31 2009-08-06 Voith Patent Gmbh Freistehende, tauchende Energieerzeugungsanlage mit einer Axialturbine
DE102008007616A1 (de) * 2008-02-04 2009-08-06 Universität Siegen Rotorblattgestaltung für eine Wellsturbine
EP2088311B1 (en) 2008-02-05 2015-10-14 OpenHydro Group Limited A hydroelectric turbine with floating rotor
US8759997B2 (en) * 2008-02-19 2014-06-24 Jeffrey Ryan Gilbert Energy recovery system for exhaust energy capture and electrical generation with generator built into fan
US20100283248A1 (en) * 2009-02-20 2010-11-11 Moffat Brian L Venturi based ocean wave energy conversion system
US8925313B2 (en) 2008-02-22 2015-01-06 Brian Lee Moffat Wave energy conversion apparatus
RU2362043C1 (ru) * 2008-03-28 2009-07-20 Виктор Михайлович Лятхер Энергетический агрегат
US20090250937A1 (en) * 2008-04-07 2009-10-08 Stuart Manuel I Relative wind vortex rotary turbine alternating current device (RWVT)
US20090257863A1 (en) * 2008-04-11 2009-10-15 Asia Power Dev. Foundation, Inc. Turbine assembly
AU2009238205B2 (en) * 2008-04-14 2014-06-05 Atlantis Resources Corporation Pte Limited Central axis water turbine
KR101284236B1 (ko) * 2008-04-14 2013-07-09 아틀란티스 리소시스 코포레이션 피티이 리미티드 수력 터빈용 블레이드
WO2009129309A2 (en) * 2008-04-15 2009-10-22 Sonic Blue Aerospace, Inc. Superconducting turbine wind ring generator
WO2009129420A1 (en) * 2008-04-16 2009-10-22 Flodesign Inc. Water turbines with mixers and ejectors
EP2110910A1 (en) * 2008-04-17 2009-10-21 OpenHydro Group Limited An improved turbine installation method
EP2112370B1 (en) * 2008-04-22 2016-08-31 OpenHydro Group Limited A hydro-electric turbine having a magnetic bearing
RS20080196A (en) * 2008-05-08 2011-02-28 PAUNOVIĆ, Nenad PIPE TURBINE WITH ROLE OF ELECTROGENERATOR AND DRIVE PROPELLER
RU2453725C2 (ru) * 2008-05-26 2012-06-20 Аратек Энженариа Консульториа Э Репрезентасойнс Лтда. Электрогенерирующее устройство
WO2009153124A2 (de) 2008-05-27 2009-12-23 Siemens Aktiengesellschaft Strömungsmaschine mit zumindest zwei rotoren
ES2354799B1 (es) * 2008-06-09 2012-01-25 Sebastián Enrique Bendito Vallori Sistema de amortiguación neumática subacuática transformadora de las energías cinética y potencial propias de la mar.
DE102008032411A1 (de) * 2008-07-10 2010-01-14 INSTI-EV-Sachsen e.V. c/o IREG mbH Strömungswandler
US20110109090A1 (en) 2009-11-09 2011-05-12 Bolin William D Fin-Ring Propeller For A Water Current Power Generation System
US8183734B2 (en) 2008-07-28 2012-05-22 Direct Drive Systems, Inc. Hybrid winding configuration of an electric machine
GB2462257B (en) 2008-07-29 2010-09-29 Clean Current Power Systems Electrical machine with dual insulated coil assembly
ES2351826B1 (es) * 2008-07-30 2011-12-01 Pablo Gonzalez Alvarez Sistema de aprovechamiento energético para canales de agua.
JP5466703B2 (ja) * 2008-08-22 2014-04-09 フォーリヴァーズ パワー エンジニアリング プロプライエタリー リミテッド 発電装置
AU2012216624B2 (en) * 2008-08-22 2014-04-17 4Rivers Power Engineering Pty Ltd Power Generation Apparatus
CN102165183B (zh) * 2008-09-01 2016-03-16 海洋运输有限公司 海浪能量提取的改进
US8338974B2 (en) * 2008-09-12 2012-12-25 AGlobal Tech, LLC Wind turbine
GB2463504B (en) * 2008-09-16 2011-02-16 Verderg Ltd Method and apparatus for installing tidal barrages
GB0818825D0 (en) * 2008-10-14 2008-11-19 Evans Michael J Water turbine utilising axial vortical flow
US8959907B2 (en) * 2008-10-29 2015-02-24 Inventua Aps Rotating apparatus
DE102008054361A1 (de) * 2008-11-03 2010-05-12 Ksb Aktiengesellschaft Energieerzeugungseinheit sowie Verfahren zur Wartung einer Energieerzeugungseinheit
WO2010062788A2 (en) * 2008-11-03 2010-06-03 Mary Geddry Direct current brushless machine and wind tubrine system
US20110286832A1 (en) * 2010-05-24 2011-11-24 Israel Ortiz Back to back turbine
US8193653B2 (en) * 2010-05-07 2012-06-05 Israel Ortiz Automatic pitch turbine
CA2645296A1 (en) * 2008-11-27 2010-05-27 Organoworld Inc. Annular multi-rotor double-walled turbine
WO2010064918A1 (en) * 2008-12-03 2010-06-10 Prototech As Energy conversion system
EP2199598B1 (en) 2008-12-18 2012-05-02 OpenHydro IP Limited A hydroelectric turbine comprising a passive brake and method of operation
EP2209175B1 (en) 2008-12-19 2010-09-15 OpenHydro IP Limited A method of installing a hydroelectric turbine generator
WO2010074670A1 (en) * 2008-12-22 2010-07-01 Anthony Branco Fluid turbine for generating electricity
RS20090054A (en) * 2009-02-06 2010-12-31 Nenad PAUNOVIĆ Housing for hydro and aero turbines
GB0902289D0 (en) * 2009-02-12 2009-03-25 Marine Current Turbines Ltd Methods for installing pin-piled jacket type structures at sea
WO2010107830A1 (en) * 2009-03-16 2010-09-23 Bersiek Shamel A Wind jet turbine
US8558402B2 (en) * 2009-03-26 2013-10-15 Hydro Green Energy, Llc Method and apparatus for improved hydropower generation at existing impoundments
US8378518B2 (en) * 2009-03-26 2013-02-19 Terra Telesis, Inc. Wind power generator system, apparatus, and methods
EP3239518B1 (en) * 2009-03-27 2020-02-12 Brian Lee Moffat Wave energy conversion apparatus
US8400006B2 (en) * 2009-09-02 2013-03-19 Blue Energy Canada Inc. Hydrodynamic array
EP2241749B1 (en) 2009-04-17 2012-03-07 OpenHydro IP Limited An enhanced method of controlling the output of a hydroelectric turbine generator
US8373298B2 (en) * 2009-04-20 2013-02-12 Gerald L. Barber Electrical generator for wind turbine
US7825532B1 (en) * 2009-04-20 2010-11-02 Barber Gerald L Electrical generator for wind turbine
DE102009018758A1 (de) 2009-04-27 2010-10-28 Voith Patent Gmbh Unterwasserkraftwerk mit einer bidirektional anströmbaren, gleichsinnig umlaufenden Wasserturbine
CA2760192A1 (en) * 2009-04-28 2010-11-04 Atlantis Resources Corporation Pte Limited Underwater power generator
US20100290900A1 (en) * 2009-05-17 2010-11-18 Wayne Krouse Hydropower system with increased power input characteristics
BRPI1011172A2 (pt) * 2009-05-20 2016-03-15 E Net Llc turbina eólica
US8178987B2 (en) * 2009-05-20 2012-05-15 E-Net, Llc Wind turbine
US20100295305A1 (en) * 2009-05-20 2010-11-25 E-Net, Llc Wind turbine and control system
US7969029B2 (en) * 2009-06-01 2011-06-28 Santiago Vitagliano Dynamic pressure differential hydroelectric generator
US8461713B2 (en) * 2009-06-22 2013-06-11 Johann Quincy Sammy Adaptive control ducted compound wind turbine
JP4422789B1 (ja) * 2009-08-03 2010-02-24 日本システム企画株式会社 水力発電装置の設置構造
US20140028028A1 (en) * 2009-08-19 2014-01-30 Clarence Edward Frye Free-flow hydro powered turbine system
US8344536B1 (en) 2009-09-01 2013-01-01 Valentino Gotay Sewer electrical generation apparatus
US8446032B2 (en) * 2009-09-04 2013-05-21 Chaup Inc. Hydroelectric power generator and related methods
AU2010292974A1 (en) * 2009-09-08 2012-03-22 Atlantis Resources Corporation Pte Limited Power generator
EP2302204A1 (en) 2009-09-29 2011-03-30 OpenHydro IP Limited A hydroelectric turbine system
EP2302755B1 (en) 2009-09-29 2012-11-28 OpenHydro IP Limited An electrical power conversion system and method
EP2302766B1 (en) 2009-09-29 2013-03-13 OpenHydro IP Limited A hydroelectric turbine with coil cooling
US20110080002A1 (en) * 2009-10-02 2011-04-07 Jose Ramon Santana Controlled momentum hydro-electric system
US8920200B2 (en) 2009-10-27 2014-12-30 Atlantis Resources Corporation Pte Connector for mounting an underwater power generator
DE102009053879A1 (de) * 2009-11-20 2011-05-26 Voith Patent Gmbh Gezeitenkraftwerk und Verfahren für dessen Erstellung
US8063528B2 (en) * 2009-12-18 2011-11-22 General Electric Company Counter-rotatable generator
EP2516954B1 (en) 2009-12-23 2020-03-11 Energy Recovery, Inc. Rotary energy recovery device
GB2477532B (en) * 2010-02-05 2012-10-24 Rolls Royce Plc A bidirectional water turbine
RU2592660C2 (ru) 2010-03-16 2016-07-27 Вердерг Лтд Установка и метод для генерирования энергии из потока жидкости
DE102010018804A1 (de) * 2010-04-29 2011-11-03 Voith Patent Gmbh Wasserturbine
US8461730B2 (en) * 2010-05-12 2013-06-11 Science Applications International Corporation Radial flux permanent magnet alternator with dielectric stator block
GB2480694B (en) * 2010-05-28 2014-06-25 Robert William Wallace Burden Energy extraction from the ocean depths
US9097233B1 (en) * 2010-06-01 2015-08-04 Dennis Allen Ramsey Suction-augmented hydropower turbine
CN102269096B (zh) * 2010-06-07 2016-05-04 黄滕溢 水流发电系统及其设置及维修方法
DE102010017343B4 (de) * 2010-06-11 2014-04-10 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Strömungsenergieanlage
US8814493B1 (en) * 2010-07-02 2014-08-26 William Joseph Komp Air-channeled wind turbine for low-wind environments
US20120038158A1 (en) * 2010-08-13 2012-02-16 Chen Tzeng-Yuan Wind power generating module for use with electric scooter
US20120070275A1 (en) * 2010-09-16 2012-03-22 Flodesign Wind Turbine Corporation Airfoil for energy extracting shrouded fluid turbines
US8558403B2 (en) * 2010-09-27 2013-10-15 Thomas Rooney Single moored offshore horizontal turbine train
US8653682B2 (en) 2010-09-27 2014-02-18 Thomas Rooney Offshore hydroelectric turbine assembly and method
US8506244B2 (en) 2010-09-29 2013-08-13 George F. MCBRIDE Instream hydro power generator
US20120187693A1 (en) * 2010-10-13 2012-07-26 Houvener Robert C Hydrokinetic energy transfer device and method
AU2011318238B2 (en) * 2010-10-22 2016-06-02 Wave Power Renewables Limited Turbine rotor assembly
CN103429821B (zh) 2010-10-26 2015-11-25 加拿大蓝色能量有限公司 具有公共交通隧道的流体动力阵列
EP2450562B1 (en) 2010-11-09 2015-06-24 Openhydro IP Limited A hydroelectric turbine recovery system and a method therefore
US8487468B2 (en) 2010-11-12 2013-07-16 Verterra Energy Inc. Turbine system and method
CN102230442B (zh) * 2010-12-09 2013-03-27 胡彬 无轴海流涡轮发电机
EP2469257B1 (en) 2010-12-23 2014-02-26 Openhydro IP Limited A hydroelectric turbine testing method
WO2012100128A2 (en) * 2011-01-21 2012-07-26 Anagnou Mars C Hydroelectric power generating system
WO2012103654A1 (en) * 2011-02-04 2012-08-09 Sabella Energies Inc. Marine turbine assembly
US8974184B2 (en) 2011-02-18 2015-03-10 Concepts Eti, Inc. Turbomachinery having self-articulating blades, shutter valve, partial-admission shutters, and/or variable pitch inlet nozzles
CA141974S (en) * 2011-02-22 2012-07-23 Guinard En Sarl Turbine device for generating electricity from ocean currents
US9822757B2 (en) * 2011-02-23 2017-11-21 The Woods Hole Group, Inc. Underwater tethered telemetry platform
WO2012113031A1 (en) * 2011-02-24 2012-08-30 Portlane Technologies Pty Ltd Apparatus for generating electricity
US9051918B1 (en) 2011-02-25 2015-06-09 Leidos, Inc. Vertical axis wind turbine with tensile support structure having rigid or collapsible vanes
JP5479388B2 (ja) * 2011-02-28 2014-04-23 三菱重工業株式会社 風車翼およびこれを備えた風力発電装置
US20120269628A1 (en) * 2011-04-06 2012-10-25 Liu Kuo-Shen Device of Floating Wind Turbine Capable of Counterbalancing Torques Therein
CN103321820B (zh) * 2011-04-18 2016-02-10 浙江海洋学院 多向自适应悬浮型潮流能水轮机
CN102146867A (zh) * 2011-04-18 2011-08-10 浙江海洋学院 多向自适应悬浮型潮流能水轮机
US8672624B2 (en) 2011-04-27 2014-03-18 SkyWolf Wind Turbine Corp. High efficiency wind turbine having increased laminar airflow
US9322391B2 (en) 2011-04-27 2016-04-26 SkyWolf Wind Turbine Corp. Housing for a high efficiency wind turbine
US8851836B2 (en) 2011-04-27 2014-10-07 SkyWolf Wind Turbine Corp. High efficiency wind turbine including photovoltaic cells
US8721279B2 (en) 2011-04-27 2014-05-13 SkyWolf Wind Turbines Corp. Multiple mixing internal external fluid driven high efficiency wind turbine having reduced downstream pressure
US9133815B1 (en) 2011-05-11 2015-09-15 Leidos, Inc. Propeller-type double helix turbine apparatus and method
DE102011075700A1 (de) * 2011-05-12 2012-11-15 Robert Bosch Gmbh Offshore-System zur Erzeugung regenerativer Energie
GB2490737B (en) * 2011-05-13 2013-04-10 Sustainable Marine Technologies Ltd A modular turbine assembly
GB2490729A (en) * 2011-05-13 2012-11-14 Alan Saunders Hydro kinetic water turbine duct
EP2989319A4 (en) * 2011-05-16 2020-08-05 Henry Obermeyer HYDRO-MOTOR MACHINE
US8866328B1 (en) 2011-06-07 2014-10-21 Leidos, Inc. System and method for generated power from wave action
CN102230440B (zh) * 2011-06-16 2013-04-17 中国海洋大学 双向导流罩及潮流发电装置
GB201113694D0 (en) 2011-08-09 2011-09-21 Univ Southampton Turbine generator
EP2557662B1 (en) 2011-08-10 2017-05-31 Openhydro IP Limited A hydroelectric turbine coil arrangement
GB2494138A (en) * 2011-08-31 2013-03-06 Rolls Royce Plc Exit swirl sensor arrangement for a tidal generator
AT511478B1 (de) * 2011-10-04 2012-12-15 Penz Alois Windkraftanlage
KR101264872B1 (ko) * 2011-10-14 2013-05-30 (주)파워이에프씨 수력 발전용 발전기
CN102400843A (zh) * 2011-10-26 2012-04-04 哈尔滨工程大学 导流型反击式双转子潮流能水轮机
USD660230S1 (en) * 2011-12-07 2012-05-22 Blevio Sr Henry Turbine rotor
CN104204509A (zh) * 2011-12-12 2014-12-10 英德集团 水力涡轮机
US20130154423A1 (en) * 2011-12-14 2013-06-20 Steven C. Hench Axial flux alternator with one or more flux augmentation rings
FR2986279B1 (fr) * 2012-01-27 2016-07-29 Converteam Tech Ltd Pale pour rotor d'hydrolienne, rotor d'hydrolienne comprenant une telle pale, hydrolienne associee et procede de fabrication d'une telle pale
EP2817511A4 (en) * 2012-02-20 2016-02-17 Re 10 Ltd DEVICE AND SYSTEMS FOR GENERATING ELECTRICAL ENERGY FROM WIND
IL218451A0 (en) * 2012-03-01 2012-04-30 Birarov Ofer Wind turbine
US9051913B2 (en) * 2012-03-06 2015-06-09 Fred John Feiler Portable hydroelectric kinetic energy conversion device
US9331535B1 (en) 2012-03-08 2016-05-03 Leidos, Inc. Radial flux alternator
US8853881B2 (en) * 2012-04-09 2014-10-07 Steven James Andrews Hoegg Split venturi ring maglev generator turbine
US8968437B2 (en) 2012-05-02 2015-03-03 Michael J Kline Jet engine with deflector
CN103423075A (zh) * 2012-05-17 2013-12-04 厦门锐思达机电科技有限公司 一种潮汐能发电模块及阵列
US8956103B2 (en) * 2012-05-23 2015-02-17 Donald H. Gehring Hydroelectricity generating unit capturing marine wave energy and marine current energy
US20130314023A1 (en) * 2012-05-25 2013-11-28 Michael Orlando Collier Wind energy fan-turbine generator for electric and hybrid vehicles
JP5209811B1 (ja) 2012-06-11 2013-06-12 彰憲 田邊 浮体型潮流発電装置
GB2503250B (en) 2012-06-20 2015-05-27 Verderg Ltd Apparatus for converting energy from fluid flow
JP5976414B2 (ja) * 2012-06-22 2016-08-23 株式会社東芝 水流発電装置
CN102777314B (zh) * 2012-06-26 2015-04-22 浙江大学宁波理工学院 潮流能的轴流发电装置
CN102767458B (zh) * 2012-06-26 2014-10-15 浙江大学宁波理工学院 潮流能发电机
CN102720626B (zh) * 2012-06-26 2015-06-24 张珩 一种浅水区波浪发电装置
US9938958B2 (en) 2012-07-19 2018-04-10 Humberto Antonio RUBIO Vertical axis wind and hydraulic turbine with flow control
JP5518275B1 (ja) * 2012-10-03 2014-06-11 株式会社協和コンサルタンツ 水車発電装置
ITMI20121662A1 (it) * 2012-10-04 2014-04-05 Saipem Spa Modulo, sistema e metodo per generare energia elettrica all'interno di una tubazione
US9284850B1 (en) * 2012-10-24 2016-03-15 Amazon Technologies, Inc. Energy reclamation from fluid-moving systems
US9217332B2 (en) * 2012-11-05 2015-12-22 Mohammad Ismail Abbassi Shakibapour Uni-directional axial turbine blade assembly
DE102012021689A1 (de) * 2012-11-07 2014-01-09 Voith Patent Gmbh Strömungskraftwerk mit einer Wasserturbine und einem Generator
EP2733822B1 (en) * 2012-11-19 2015-07-29 GE Energy Power Conversion Technology Ltd Axial flux machine
CN102953922A (zh) * 2012-11-26 2013-03-06 梁林杰 一体双向涡轮海流发电机
CN103114960B (zh) * 2013-02-05 2015-08-19 厦门大学 可用于低速环境的潮流能发电装置
CN103133224A (zh) * 2013-03-15 2013-06-05 江苏中蕴风电科技有限公司 半潜式洋流风力组合发电系统
CN104061126A (zh) * 2013-03-21 2014-09-24 三江学院 万向受风轴流式风力发电机
US9112389B2 (en) * 2013-03-25 2015-08-18 Deere & Company Machine for generating electrical energy or sensing material flow
CN103206332B (zh) * 2013-04-01 2015-08-12 武汉理工大学 一种贯流式水轮机自动清洁装置
GB2512963A (en) * 2013-04-11 2014-10-15 Hangzhou Lhd Inst Of New Energy Llc Ocean energy generating device and built-in module thereof
JP6196468B2 (ja) * 2013-05-15 2017-09-13 川崎重工業株式会社 水力発電装置
FR3006012B1 (fr) * 2013-05-22 2015-05-08 Crea Concept Hydrolienne a generatrice electrique integree
CN103233853B (zh) * 2013-05-22 2015-11-04 江苏中蕴风电科技有限公司 蓄能式海浪发电系统
CN103277254B (zh) * 2013-05-22 2015-09-16 江苏中蕴风电科技有限公司 管流直驱式发电装置
ITMI20130858A1 (it) * 2013-05-27 2014-11-28 Flavio Novelli Impianto per convertire l'energia meccanica di un fluido in energia elettrica o viceversa, in grado di funzionare completamente immerso
US9709023B2 (en) 2013-06-03 2017-07-18 Dresser-Rand Company Shut off valve for oscillating water column turbines
US9863238B2 (en) 2013-07-30 2018-01-09 Schlumberger Technology Corporation Submersible electrical machine and method
DE102013012711B4 (de) * 2013-08-01 2017-10-19 Rolf Mohl Turbinenvorrichtung sowie deren Herstellung und Verwendung
CA2918777A1 (fr) * 2013-08-08 2015-02-12 Optydro Concept Sarl Hydrolienne de riviere
CN103397974B (zh) * 2013-08-16 2015-10-14 重庆同利实业有限公司 磁悬浮水轮发电机
RU2540888C1 (ru) * 2013-09-03 2015-02-10 Виктор Михайлович Бельфор Система питания электроприводов транспортных средств с различными движителями
US9850877B2 (en) 2013-09-23 2017-12-26 George F McBride Spent flow discharge apparatus for an instream fluid power-extraction machine
PH12013000303A1 (en) * 2013-10-10 2015-09-02 Wegentech Inc Estadola Karl Ivan Counter rotating wind turbine generator in the perimeter
AU2014336963B2 (en) * 2013-10-16 2018-05-10 Wave Power Renewables Limited Coastal protection and wave energy generation system
US9334847B2 (en) * 2013-12-23 2016-05-10 Grover Curtis Harris Bi-rotational generator
CN103742334B (zh) * 2013-12-27 2016-02-03 河海大学 一种带有前后对称等宽活动导叶的贯流式水轮机
US10060775B2 (en) 2014-03-10 2018-08-28 Driblet Labs, LLC Smart water management system
GB2524782B (en) * 2014-04-02 2016-04-20 Verderg Ltd Turbine assembly
RU2549753C1 (ru) * 2014-04-24 2015-04-27 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Дальневосточный Федеральный Университет" (Двфу) Гидроагрегат
RU2582714C9 (ru) * 2014-05-06 2016-07-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Государственный университет-учебно-научно-производственный комплекс" Микрогидроэлектростанция
WO2015175535A1 (en) * 2014-05-13 2015-11-19 Oceana Energy Company Components for hydroelectric turbines
JP6636954B2 (ja) 2014-05-30 2020-01-29 オーシャナ エナジー カンパニー 水力発電タービンおよび水力発電タービンシステム
US20160003212A1 (en) * 2014-07-07 2016-01-07 Stephanie M. Holt Underwater Multi-Turbine Generator
GB2530048A (en) * 2014-09-10 2016-03-16 Rolls Royce Plc A self-rectifying turbine
PE20171483A1 (es) * 2014-10-17 2017-10-17 Toro Victor Manuel Gonzalez Turbo maquina para transformar energia
US20160141911A1 (en) * 2014-11-14 2016-05-19 King Fahd University Of Petroleum And Minerals Offshore power generation system
WO2016076425A1 (ja) 2014-11-14 2016-05-19 株式会社リアムウィンド 流体発電方法及び流体発電装置
WO2016099594A1 (en) * 2014-12-19 2016-06-23 E-Eye, Inc. Underwater camera system and assembly
JP2016117457A (ja) * 2014-12-24 2016-06-30 ヤマハ発動機株式会社 回転電機装置
NO341700B1 (no) 2015-01-28 2018-01-02 Quick Response As Flytende vindkraftverk
US9995307B2 (en) * 2015-02-10 2018-06-12 Kevin Allan Dooley Inc. Two-way flow control device, associated systems and methods
US11022088B2 (en) * 2015-02-12 2021-06-01 Hydrokinetic Energy Corp Accelerated and-or redirected flow-inducing and-or low pressure field or area-inducing arrangement, their use with turbine-like devices and method for using same
CN107429656A (zh) 2015-02-12 2017-12-01 液力能源公司 水电/水力涡轮机及其制造和使用方法
KR101599708B1 (ko) * 2015-03-18 2016-03-04 이동인 잠수형 발전 플랫폼
JP6061980B2 (ja) * 2015-04-20 2017-01-18 モファット,ブライアン,リー 波エネルギー装置
WO2016173602A1 (de) * 2015-04-27 2016-11-03 Ingenieurbüro Kurt Stähle Wasserkraftwerk mit freistehender drehachse
CA2990499C (en) * 2015-07-21 2022-09-13 G Lucio Tiago FIHO Axial-flow turbine for low-head installations
CN105298715A (zh) * 2015-08-10 2016-02-03 方祖彭 深水能源发电站、动力站、船舶动力装置及其海上浮城
US10107143B2 (en) * 2015-09-01 2018-10-23 The Boeing Company Methods and apparatus to adjust hydrodynamic designs of a hydrokinetic turbine
US10107253B2 (en) 2015-09-04 2018-10-23 The Boeing Company Methods and apparatus for test a performance of a generator
US10626569B2 (en) 2015-10-14 2020-04-21 Littoral Power Systems, Inc. Modular variable-head hydroelectric energy conversion system
CA2908534A1 (en) * 2015-10-16 2017-04-16 Memorial University Of Newfoundland Power generation unit for oceanographic sensor moorings
WO2017070180A1 (en) * 2015-10-22 2017-04-27 Oceana Energy Company Hydroelectric energy systems, and related components and methods
US9874197B2 (en) 2015-10-28 2018-01-23 Verterra Energy Inc. Turbine system and method
GB2544347A (en) * 2015-11-14 2017-05-17 Smith Rodney Low cost underwater turbine
CN105526038A (zh) * 2016-02-17 2016-04-27 惠州市铼汇清洁设备有限公司 一种水马达
ES1161633Y (es) * 2016-04-29 2016-10-21 Elaborados Castellano S L Maquina para generar energia de las olas y corrientes de agua
NO20160787A1 (en) 2016-05-10 2017-06-19 Norwegian Tidal Solutions Underwater electrical power plant
US10337486B2 (en) * 2016-08-12 2019-07-02 William Jasper White Direct drive portable hydroelectric generator and power source
US20180051667A1 (en) * 2016-08-17 2018-02-22 Kai-Te YANG Flowing water hydroelectric generator
US10516854B2 (en) * 2016-08-22 2019-12-24 Outdoor's Insight, Inc. Underwater camera assembly
CN106438166B (zh) * 2016-08-23 2019-11-12 杭州江河水电科技有限公司 全贯流无轴双向洋流发电装置
CN106499669B (zh) * 2016-10-28 2018-09-14 扬州大学 采用柔性导叶的水泵
US9745951B1 (en) * 2016-11-07 2017-08-29 Robert E. Doyle Self-positioning robotic subsea power generation system
MY196180A (en) * 2016-12-09 2023-03-20 Kinetic Nrg Tech Pty Ltd A Hydrokinetic Power Generator
RU2637280C1 (ru) * 2017-01-20 2017-12-01 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Безвальная прямоточная гидротурбина
DK3595967T3 (da) * 2017-03-14 2021-11-08 Misal Tasarim Danismanlik Makina Medikal Ithalat Ihracat San Ve Tic Ltd Sti Elektrisk undervandsjetmotor med flere statorer til mari-nefartøjer
US9970419B1 (en) 2017-03-29 2018-05-15 Tarek O. Souryal Energy collection pod
US9784244B1 (en) * 2017-03-29 2017-10-10 Tarek O. Souryal Energy collection pod
CN108730109A (zh) * 2017-04-13 2018-11-02 许昌义 自动转换的双向轴伸贯流式水轮机
US9909560B1 (en) * 2017-06-22 2018-03-06 Daniel F. Hollenbach Turbine apparatus with airfoil-shaped enclosure
CN109253032B (zh) * 2017-07-13 2020-12-29 枣庄市山亭区诚豆豆制品专业合作社 带有圆锥台离合器的双向灯泡贯流式水轮机
CN108005857B (zh) * 2017-08-07 2024-05-14 陆继荣 电动飞机专用涵道式涡旋平衡风力发电机
US20190048846A1 (en) * 2017-08-10 2019-02-14 GT Hydrokinetic, LLC Hydrokinetic Turbine Having Helical Tanks
CN107387300A (zh) * 2017-08-22 2017-11-24 哈尔滨工程大学 一种筒形波浪能发电装置
US20190085814A1 (en) * 2017-09-21 2019-03-21 Roy Bee Energy Storage Process and System
WO2019094726A1 (en) * 2017-11-09 2019-05-16 Hydrokinetic Energy Corp Accelerated and/or redirected flow-inducing and/or low pressure field/area-inducing arrangement their use with turbine-like devices and method for using same
CN108194250A (zh) * 2017-12-28 2018-06-22 张建洲 一种水流发电装置
CN108361145B (zh) * 2018-01-30 2019-12-27 中国海洋大学 一种基于传统威尔斯式透平进行优化的自俯仰控制叶片式透平
CA3034183C (en) * 2018-02-22 2021-03-16 Ralph Dominic Raina Single or bi-directional, scalable turbine
IT201800004645A1 (it) * 2018-04-18 2019-10-18 Zupone Giacomo Francesco Lo Macchina cinetica modulare per la produzione di energia da correnti fluide
CN112534129A (zh) 2018-05-30 2021-03-19 海洋能源公司 水电能源系统和方法
CN108979937A (zh) * 2018-08-15 2018-12-11 南昌大学 一种便携式水力平流发电机
CN109778808B (zh) * 2018-10-30 2021-03-19 杭州江河水电科技有限公司 一种涵道式双向潮流电站系统
CN109469511A (zh) * 2018-12-19 2019-03-15 江苏大学 一种轴流式对旋双转子多工况透平
WO2020219010A1 (en) * 2019-04-22 2020-10-29 Cummings Michael Scot Continuous fluid flow power generator
GB2593425B (en) * 2019-11-18 2023-05-03 Frank Murphy Stuart Turbine house
US12025090B2 (en) 2019-12-04 2024-07-02 Michael Scot Cummings Reactive, reversible blade turbine for power generation and pumping water
PL73040Y1 (pl) * 2020-01-16 2023-06-12 Politechnika Swietokrzyska Przepływowa mikroelektrownia wodna
EP4150202A4 (en) * 2020-05-13 2023-11-15 Natel Energy, Inc. BEHAVIORAL GUIDANCE SYSTEM FOR FISH
CN111852738A (zh) * 2020-06-22 2020-10-30 中国海洋大学 悬浮自动对向轮辋式潮流能发电装置及其控制方法
CN112796919B (zh) * 2020-12-30 2022-05-24 浙江大学 一种高效率双转子电机结构的潮流能发电装置
US12012924B2 (en) * 2021-03-05 2024-06-18 Aquantis, Inc. Fixed and pitching blades, spar shaft, bearings and materials for marine current turbine
US11313341B1 (en) * 2021-03-05 2022-04-26 Trevor Tillison Portable river turbine system
US11353001B1 (en) 2021-04-30 2022-06-07 Sitkana Inc. Hydrokinetic generator
US11866251B2 (en) * 2021-05-06 2024-01-09 Ovivo Inc. Seal for cover on wastewater treatment tank
EP4348038A1 (en) * 2021-05-25 2024-04-10 Next Marine Solutions, Inc. Hydrodynamic power generator and system
CN113525606A (zh) * 2021-07-23 2021-10-22 周城宇 一种海洋工程平台提示方法
SE2230012A1 (sv) * 2022-01-18 2023-07-19 Mats Hjort Månkraft
CN114776516B (zh) * 2022-01-25 2023-07-21 江苏科技大学 一种可调节振子阵列的流致振动海流能发电装置
CN114776515B (zh) * 2022-03-31 2023-12-22 西南石油大学 一种悬臂引流和旋转耦合的同步发电与抑振装置及方法
NO20230983A1 (en) * 2023-09-13 2024-04-22 Hoegmoe Joergen Bi-directional wave energy converter

Family Cites Families (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1498154A (en) 1924-06-17 Flushing valve
US1326730A (en) 1919-12-30 Shaetless propeller
US654654A (en) * 1900-03-20 1900-07-31 Henry T Lawrence Water-wheel.
US1123491A (en) * 1913-05-12 1915-01-05 Elbert A Corbin Power-conversion plant.
US1486186A (en) 1918-02-21 1924-03-11 Gulbransen Dickinson Company Key-slip and fall-roard construction for player planos
US1493154A (en) 1920-05-10 1924-05-06 Leroy F Harza Hydraulic-power station
FR26223E (fr) 1922-04-08 1923-09-05 Turbine aérienne
FR604390A (fr) 1925-10-09 1926-05-03 Leblanc Vickers Maurice Sa Turbine à axe de rotation transversal à la direction du courant
FR866053A (fr) 1940-02-27 1941-06-16 Dispositif de conduites d'air créant des pressions et des dépressions pour l'amélioration du rendement des moteurs à vent
FR891697A (fr) 1942-10-30 1944-03-15 Turbines motrices à rotor réduit
FR56102E (fr) 1943-03-16 1952-09-17 Turbine aérienne
US2471892A (en) * 1944-02-14 1949-05-31 Lockheed Aircraft Corp Reactive propulsion power plant having radial flow compressor and turbine means
US2509442A (en) 1945-04-17 1950-05-30 Matheisel Rudolph Inverse rotor
US2501696A (en) * 1946-01-12 1950-03-28 Wolfgang Kmentt Stream turbine
US2652505A (en) 1950-04-28 1953-09-15 Rudolph A Matheisel Inverse rotor
DE1028948B (de) * 1952-04-30 1958-04-24 Arno Fischer Axial durchstroemte Turbine oder Pumpe mit verstellbaren Laufradschaufeln
US2782321A (en) * 1952-04-30 1957-02-19 Fischer Arno Turbine for driving a generator
US3323592A (en) * 1962-07-23 1967-06-06 Orpha B Brandon Method of treating and/or producing fluids from reservoirs of variable permeability
GB1106371A (en) * 1963-11-06 1968-03-13 English Electric Co Ltd Improvements in or relating to water-turbines, pumps, and reversible pump/turbines
US3504990A (en) * 1967-05-09 1970-04-07 David B Sugden Undulating flow promoting rotor and assemblies embodying same
US3740565A (en) * 1971-04-26 1973-06-19 Adams B Air driven modular tandem electrical generator
JPS5094339A (ko) 1973-12-24 1975-07-28
CA1004274A (en) * 1974-04-04 1977-01-25 Canadian General Electric Company Limited Permanent magnet hermetic synchronous motor
US3986787A (en) 1974-05-07 1976-10-19 Mouton Jr William J River turbine
US3980894A (en) * 1974-07-02 1976-09-14 Philip Vary Flow tubes for producing electric energy
US4025220A (en) * 1975-06-11 1977-05-24 Thompson David F Fluid current turbine with flexible collectors
CA1109800A (en) * 1975-07-10 1981-09-29 Oliver C. Eckel Wind turbine
US4095918A (en) 1975-10-15 1978-06-20 Mouton Jr William J Turbine wheel with catenary blades
CH606793A5 (ko) * 1975-12-02 1978-11-15 Escher Wyss Ag
US4163904A (en) 1976-03-04 1979-08-07 Lawrence Skendrovic Understream turbine plant
GB1595700A (en) 1976-11-13 1981-08-12 Univ Belfast Fluid driven rotary transducer
US4159188A (en) 1977-07-11 1979-06-26 Atencio Francisco J G Dam with reversible hydroelectric station
GB1574379A (en) 1977-08-24 1980-09-03 English Electric Co Ltd Turbines and like rotary machines
US4219303A (en) * 1977-10-27 1980-08-26 Mouton William J Jr Submarine turbine power plant
US4166596A (en) 1978-01-31 1979-09-04 Mouton William J Jr Airship power turbine
US4219302A (en) * 1978-02-13 1980-08-26 Towmotor Corporation Cylinder arrangement for raising a carriage and uprights of a mast
JPS555402A (en) 1978-06-19 1980-01-16 Mouton William J Jr Fluidic motor
JPS5572665A (en) * 1978-11-27 1980-05-31 Kunio Saito Flow generating set
US4524285A (en) * 1979-09-14 1985-06-18 Rauch Hans G Hydro-current energy converter
US4385492A (en) 1979-09-20 1983-05-31 The English Electric Company Limited Turbine
JPS5677565A (en) * 1979-11-29 1981-06-25 Shizukiyo Kawasaki Ocean current power generating system utilizing sea bottom current
JPS622929Y2 (ko) * 1980-04-10 1987-01-23
US4367413A (en) * 1980-06-02 1983-01-04 Ramon Nair Combined turbine and generator
US4324985A (en) 1980-07-09 1982-04-13 Grumman Aerospace Corp. Portable wind turbine for charging batteries
JPS5751967A (en) 1980-07-26 1982-03-27 Gilchrist Timothy M Wind force turbine construction
JPS57157004A (en) 1981-03-20 1982-09-28 Toshiba Corp Combined electric power generator
CH660216A5 (de) * 1981-04-07 1987-03-31 Escher Wyss Ag Ringfoermige dichtung und deren verwendung in einer aussenkranz-rohrturbine.
US4368392A (en) 1981-06-03 1983-01-11 Pinson Energy Corporation Water turbine
CH655529B (ko) 1981-09-29 1986-04-30
US4468153A (en) 1982-05-12 1984-08-28 Gutierrez Atencio Francisco J Symmetric tidal station
FR2527803B1 (fr) 1982-05-28 1985-06-07 Barbarin Joseph Regulateur de debit d'air en particulier pour installations de renouvellement d'air des locaux
US4476396A (en) 1982-09-27 1984-10-09 Commonwealth Associates Inc. Low-head hydroelectric generation system
US5228800A (en) 1983-03-29 1993-07-20 Kazuaki Akai Purifying breakwater
JPH0633766B2 (ja) 1984-01-13 1994-05-02 株式会社東芝 動力装置
SE443545B (sv) 1984-01-26 1986-03-03 Philip Jochum Anordning vid tryckalstrare for vetska
JPS61192859A (ja) 1985-02-20 1986-08-27 Hitachi Ltd 円筒水車のガイドベ−ン開閉装置
CN85201823U (zh) 1985-05-13 1986-03-05 中国科学院广州能源研究所 一种新型的对称翼涡轮波力发电装置
JPS6238876A (ja) 1985-08-13 1987-02-19 Mitsubishi Heavy Ind Ltd 一体形同期発電水力タ−ビン
US4720640A (en) * 1985-09-23 1988-01-19 Turbostar, Inc. Fluid powered electrical generator
JPS6271381A (ja) 1985-09-24 1987-04-02 Takenaka Denshi Kogyo Kk 走査形光電スイツチ
JPS6271381U (ko) 1985-10-23 1987-05-07
US4740711A (en) * 1985-11-29 1988-04-26 Fuji Electric Co., Ltd. Pipeline built-in electric power generating set
US4781522A (en) * 1987-01-30 1988-11-01 Wolfram Norman E Turbomill apparatus and method
US4755690A (en) 1987-02-13 1988-07-05 Obermeyer Henry K Hydroelectric power installation and turbine generator apparatus therefor
US4804855A (en) * 1987-02-13 1989-02-14 Obermeyer Henry K Hydromotive machine apparatus and method of constructing the same
US4868408A (en) * 1988-09-12 1989-09-19 Frank Hesh Portable water-powered electric generator
JPH03222869A (ja) 1989-09-28 1991-10-01 Fuji Electric Co Ltd 円筒形プロペラ水車の異常水圧上昇防止装置
FR2660701A1 (fr) 1990-04-04 1991-10-11 Carre Francois Groupe hydro-electrique a helice a axe horizontal pour production au fil de l'eau.
CH684430A5 (de) 1991-08-16 1994-09-15 Siegfried Frei Anordnung mit einer Wasserturbine.
FR2684250B1 (fr) 1991-11-27 1994-04-01 Merlin Gerin Systeme de distribution d'energie electrique de haute qualite.
JP3001130B2 (ja) 1992-03-24 2000-01-24 宇部興産株式会社 アルミナ系無機繊維強化セラミックス複合材料
US5375505A (en) * 1993-02-25 1994-12-27 The United States Of America As Represented By The Secretary Of The Army Dynamic rotating ballistic shield
JPH0687671U (ja) * 1993-06-02 1994-12-22 株式会社東芝 エネルギ変換装置
NL9400050A (nl) 1994-01-12 1995-08-01 Tocardo B V Inrichting voor het opwekken van energie uit de stromende beweging van een fluidum.
US5440176A (en) * 1994-10-18 1995-08-08 Haining Michael L Ocean current power generator
US5592816A (en) 1995-02-03 1997-01-14 Williams; Herbert L. Hydroelectric powerplant
JP3530911B2 (ja) * 1995-03-29 2004-05-24 正 深尾 可変速発電電動機
JPH08338354A (ja) 1995-06-12 1996-12-24 Seiichi Kitabayashi 低流速用水車装置と低流速用水車装置の導水方向設定方 法
DE19780950D2 (de) 1996-09-10 1999-08-05 Voest Alpine Mach Const System von Rohrturbinen
JPH10115278A (ja) * 1996-10-09 1998-05-06 Fuji Electric Co Ltd バルブ形水車発電装置およびバルブ形水車発電装置用の支持装置
US6049188A (en) * 1996-11-07 2000-04-11 Smith; Otto J. M. Single-phase motor starters
US5825094A (en) * 1996-11-13 1998-10-20 Voith Hydro, Inc. Turbine array
US5982070A (en) * 1996-12-27 1999-11-09 Light Engineering Corporation Electric motor or generator having amorphous core pieces being individually accomodated in a dielectric housing
FR2760492B1 (fr) 1997-03-10 2001-11-09 Jeumont Ind Systeme de production d'energie electrique associe a une eolienne
AUPP698798A0 (en) 1998-11-09 1998-12-03 Davidson, Aaron Tidal energy generation caisson
US6109863A (en) * 1998-11-16 2000-08-29 Milliken; Larry D. Submersible appartus for generating electricity and associated method
JP2000213446A (ja) 1999-01-22 2000-08-02 Shibaura Densan Kk 水力発電機
JP2000240552A (ja) 1999-02-17 2000-09-05 Hitachi Ltd 水車発電機、その運用方法及び水車発電機プラント
GB9904108D0 (en) * 1999-02-24 1999-04-14 I T Power Limited Water tubine sleeve mounting
NZ334382A (en) 1999-02-26 2001-10-26 Vortec Energy Ltd Diffuser, to surround the rotor of a wind turbine, of a venturi-like shape
NZ334681A (en) 1999-03-17 2001-09-28 Vortec Energy Ltd Annular diffuser, for a wind turbine, assembled from arcuate segments by lifting alternate ends and attaching segments
US6168373B1 (en) 1999-04-07 2001-01-02 Philippe Vauthier Dual hydroturbine unit
NL1012489C2 (nl) 1999-05-25 2000-11-28 Tocardo B V Turbine en turbinesamenstel voor toepassing in een stromende vloeistof.
US6139255A (en) 1999-05-26 2000-10-31 Vauthier; Philippe Bi-directional hydroturbine assembly for tidal deployment
AU6325000A (en) 1999-07-21 2001-02-05 Vortec Energy Limited Diffuser
US6281597B1 (en) 1999-08-13 2001-08-28 Syndicated Technologies, Llc. Hydroelectric installation and method of constructing same
DE19948198B4 (de) 1999-10-06 2005-06-30 Wobben, Aloys, Dipl.-Ing. Transportables Meeresstrom-Kraftwerk
US20020088222A1 (en) 2000-04-06 2002-07-11 Philippe Vauthier Dual hydroturbine unit with counter-rotating turbines
US6648589B2 (en) 2000-09-19 2003-11-18 Herbert Lehman Williams Hydroelectric turbine for producing electricity from a water current
US6476513B1 (en) * 2000-09-28 2002-11-05 Lubomir B. Gueorguiev Electrical generator system
US6836028B2 (en) 2001-10-29 2004-12-28 Frontier Engineer Products Segmented arc generator
US7042109B2 (en) * 2002-08-30 2006-05-09 Gabrys Christopher W Wind turbine
US6982498B2 (en) * 2003-03-28 2006-01-03 Tharp John E Hydro-electric farms
US20040219303A1 (en) * 2003-04-30 2004-11-04 Klaus Wissing Process for multi-layer coating of substrates
US7002317B2 (en) * 2004-02-18 2006-02-21 Honeywell International Inc. Matched reactance machine power-generation system
US7154193B2 (en) * 2004-09-27 2006-12-26 General Electric Company Electrical machine with double-sided stator
US7378750B2 (en) * 2005-07-20 2008-05-27 Openhybro Group, Ltd. Tidal flow hydroelectric turbine
US7600963B2 (en) * 2005-08-22 2009-10-13 Viryd Technologies Inc. Fluid energy converter
US7385303B2 (en) * 2005-09-01 2008-06-10 Roos Paul W Integrated fluid power conversion system
BRPI0715330A2 (pt) 2006-08-04 2012-12-25 Clean Current Power Systems Inc mÁquina de eixos de interrupÇço a ar tendo o estator e os discos rotores formados por méltiplos segmentos destacÁveis

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101405494B1 (ko) * 2006-07-14 2014-06-11 오픈하이드로 그룹 리미티드 조력발전 터빈
KR101432758B1 (ko) * 2006-07-14 2014-08-21 오픈하이드로 그룹 리미티드 부력챔버를 구비한 잠수형 유체동력 터빈
KR101489218B1 (ko) * 2007-11-16 2015-02-04 엘리멘털 에너지 테크널러지스 리미티드 동력발생장치 조립체, 발전장치 설비 및 추진 또는 펌프장치
KR101041539B1 (ko) * 2009-09-30 2011-06-17 한국전력공사 유속 유량 조절형 초저낙차 수차의 구조
KR101155290B1 (ko) * 2009-12-16 2012-06-13 한국해양연구원 파력발전 시스템
US9000604B2 (en) 2010-04-30 2015-04-07 Clean Current Limited Partnership Unidirectional hydro turbine with enhanced duct, blades and generator
KR101136812B1 (ko) * 2011-09-21 2012-04-17 손창희 소수력 발전수단과 그 장치
WO2013048007A2 (ko) * 2011-09-29 2013-04-04 현대건설주식회사 고효율 다단 조류 발전기 및 복합 발전 시스템
WO2013048007A3 (ko) * 2011-09-29 2013-05-23 현대건설주식회사 고효율 다단 조류 발전기 및 복합 발전 시스템
KR101642676B1 (ko) * 2016-05-11 2016-07-29 (주)큰나무 내장형 인라인스크류 소수력발전장치
KR20200017173A (ko) 2018-08-08 2020-02-18 공대원 수중발전기

Also Published As

Publication number Publication date
JP4024208B2 (ja) 2007-12-19
NO335484B1 (no) 2014-12-15
CN1636111B (zh) 2010-05-26
NO20080819L (no) 2004-04-19
PT1430220E (pt) 2005-11-30
JP2005502821A (ja) 2005-01-27
CA2460479C (en) 2008-02-26
NO20041591L (no) 2004-04-19
EP1430220A2 (en) 2004-06-23
EP1430220B1 (en) 2005-06-15
US20090243300A1 (en) 2009-10-01
DE60204707T2 (de) 2006-05-18
ATE298042T1 (de) 2005-07-15
US20100007148A1 (en) 2010-01-14
AU2002328217A2 (en) 2003-04-01
ES2243756T3 (es) 2005-12-01
CN1636111A (zh) 2005-07-06
US7471009B2 (en) 2008-12-30
NO328222B1 (no) 2010-01-11
WO2003025385A3 (en) 2003-05-30
US20050285407A1 (en) 2005-12-29
CA2460479A1 (en) 2003-03-27
DE60204707D1 (de) 2005-07-21
AU2002328217B2 (en) 2005-09-22
KR101033544B1 (ko) 2011-05-11
WO2003025385A2 (en) 2003-03-27
US8022567B2 (en) 2011-09-20

Similar Documents

Publication Publication Date Title
KR101033544B1 (ko) 수중 덕트 터빈
AU2002328217A1 (en) Underwater ducted turbine
JP6962816B2 (ja) 水力発電/流体動力タービンならびにその製作および使用方法
US8853873B2 (en) Power generator
US8354758B1 (en) Cyclo-turbine power generator
US7465147B2 (en) Portable power generating devices
US8123482B2 (en) Device for maintaining a hydraulic turbomachine
KR20150027249A (ko) 유동 제어를 가진 수직축 풍력 및 수력 터빈
NZ214080A (en) Propeller type water reaction turbine which is tapered along its axis
CA2615808C (en) Underwater ducted turbine
JP2012237268A (ja) 水力発電装置
KR101049421B1 (ko) 조류 발전 시스템
AU2007200888B1 (en) Electricity generation device
CA2694150A1 (en) The helical pathway system and method for harvesting electrical power from water flows using oval helical turbines
KR101717425B1 (ko) 계류식 조류발전기
BR102022023259B1 (pt) Hidroturbina com difusor de flange curto e aletas estruturais
JP2022553340A (ja) 静圧タービン及びそのためのタービン・ランナ
GB2625082A (en) Reduced cost tidal and/or water flow power generator
CN117693627A (zh) 水电涡轮机
JPWO2021077203A5 (ko)

Legal Events

Date Code Title Description
AMND Amendment
AMND Amendment
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
N231 Notification of change of applicant
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
J501 Disposition of invalidation of trial
B601 Maintenance of original decision after re-examination before a trial
S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140428

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee