KR20040020789A - Hyaluronic acid derivatives and processes for preparing them - Google Patents

Hyaluronic acid derivatives and processes for preparing them Download PDF

Info

Publication number
KR20040020789A
KR20040020789A KR1020030057234A KR20030057234A KR20040020789A KR 20040020789 A KR20040020789 A KR 20040020789A KR 1020030057234 A KR1020030057234 A KR 1020030057234A KR 20030057234 A KR20030057234 A KR 20030057234A KR 20040020789 A KR20040020789 A KR 20040020789A
Authority
KR
South Korea
Prior art keywords
hyaluronic acid
glycol polymer
peg
plu
meo
Prior art date
Application number
KR1020030057234A
Other languages
Korean (ko)
Other versions
KR100507545B1 (en
Inventor
조광용
김진훈
이재영
문태석
민병혁
Original Assignee
주식회사 엘지생명과학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지생명과학 filed Critical 주식회사 엘지생명과학
Publication of KR20040020789A publication Critical patent/KR20040020789A/en
Application granted granted Critical
Publication of KR100507545B1 publication Critical patent/KR100507545B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0072Hyaluronic acid, i.e. HA or hyaluronan; Derivatives thereof, e.g. crosslinked hyaluronic acid (hylan) or hyaluronates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/05Polymer mixtures characterised by other features containing polymer components which can react with one another

Abstract

PURPOSE: Hyaluronic acid derivatives having excellent biocompatibility, high viscoelasticity and a different structure from the conventional hyaluronic acid derivatives, are provided to apply various fields such as anti-adhesion gel, wrinkle treatment agent, prosthesis used in plastic surgery, arthritis treatment implant, drug carrier, and the like in the form of gel, film or thread. CONSTITUTION: The hyaluronic acid derivatives have a structure in which glycol polymer is bonded to hyaluronic acid through amide bond. The preparation method for the hyaluronic acid derivatives comprises the steps of: introducing free amine group to one or both end of the glycol polymer; and carrying out amidation of glycol polymer having the introduced free amine group with hyaluronic acid.

Description

히알루론산 유도체 및 그의 제조방법 {HYALURONIC ACID DERIVATIVES AND PROCESSES FOR PREPARING THEM}Hyaluronic acid derivative and its manufacturing method {HYALURONIC ACID DERIVATIVES AND PROCESSES FOR PREPARING THEM}

본 발명은 글리콜 고분자가 아미드 결합에 의해 히알루론산에 결합되어 있는 히알루론산 유도체 및 그것의 제조방법에 관한 것으로서, 더욱 상세하게는, 자유아민기가 한쪽 또는 양쪽 말단에 도입된 글리콜 고분자가 아미드 결합에 의해 히알루론산에 직접 연결되어 있거나, 또는 키토산을 경유하여 히알루론산에 결합되어 있는 히알루론산 유도체와 그것의 제조방법에 관한 것이다. 본 발명에 따른 히알루론산 유도체는 젤, 주름살 치료용 삽입물, 성형보조물, 관절염 치료용 삽입물, 약물 전달체 등의 다양한 생체적합성 소재로 사용될 수 있다.The present invention relates to a hyaluronic acid derivative in which a glycol polymer is bonded to hyaluronic acid by an amide bond, and to a method for producing the same. More specifically, a glycol polymer in which a free amine group is introduced at one or both ends thereof is formed by an amide bond. The present invention relates to a hyaluronic acid derivative directly connected to hyaluronic acid or bound to hyaluronic acid via chitosan, and a method for producing the same. Hyaluronic acid derivatives according to the present invention can be used in a variety of biocompatible materials, such as gels, wrinkle treatment inserts, cosmetic aids, arthritis treatment inserts, drug carriers.

히알루론산(이하에서는, 때때로 "HA"로 약침함)은, 하기 화학식 1에서와 같이, N-아세틸-D-글루코사민과 D-글루쿠론산으로 이루어진 반복 단위가 선형으로 연결되어 있는 생체 고분자 물질로, 안구의 유리액, 관절의 활액, 닭벼슬 등에 많이 존재한다.Hyaluronic acid (hereinafter, sometimes abbreviated as "HA") is a biopolymer material in which a repeating unit consisting of N-acetyl-D-glucosamine and D-glucuronic acid is linearly connected, as shown in Chemical Formula 1 below. Is present in a lot of eye fluid, joint synovial fluid, chicken crust.

상기 식에서, n 은 1 또는 그 이상의 정수이다.Wherein n is an integer of 1 or more.

히알루론산 유도체는 수술후 유착방지용 필름 또는 젤, 주름살 치료용 삽입물, 성형 보조물, 관절염 치료용 삽입물, 약물 전달체 등 여러 가지 용도로 개발되고 있다. 특히, 히알루론산 유도체 젤은 그 독특한 유변 물성으로 인하여 여러 응용 분야에서 관심이 집중되고 있다. 미국특허 제5,356,883호는 다양한 카르보디이미드를 사용하여 O-아실우레아나 N-아실우레아로 카르복시기가 변형된 히알루론산 유도체 젤의 합성예를 개시하고 있다. 또한, 미국특허 제5,827,937호는 두 단계의 가교반응에 의해 가교화된 다당류 젤의 합성예를 개시하고 있고, 미국특허 제5,399,351호에서는 다양한 유변 물성의 젤의 제조에 대해 개시하고 있다.Hyaluronic acid derivatives have been developed for a variety of uses, such as post-adhesion anti-adhesion films or gels, wrinkle treatment inserts, molding aids, arthritis treatment inserts, drug carriers, and the like. In particular, the hyaluronic acid derivative gel has attracted attention in various applications due to its unique rheological properties. U.S. Patent 5,356,883 discloses a synthesis of hyaluronic acid derivative gels in which the carboxyl group is modified with O-acylurea or N-acylurea using various carbodiimides. In addition, US Pat. No. 5,827,937 discloses the synthesis of polysaccharide gels crosslinked by a two-step crosslinking reaction, and US Pat. No. 5,399,351 discloses the preparation of gels of various rheological properties.

그러나, 이들 특허들에 개시되어 있는 히알루론산 유도체는 높은 점탄성을 가지고 있지 못하다.However, the hyaluronic acid derivatives disclosed in these patents do not have high viscoelasticity.

따라서, 본 발명의 목적은 종래에 알려져 있는 히알루론산 유도체와 화학적 구조가 전혀 다르면서 높은 점탄성을 나타내는 히알루론산 유도체를 제공하는 것이다.Accordingly, it is an object of the present invention to provide a hyaluronic acid derivative which exhibits high viscoelasticity while having a completely different chemical structure from a hyaluronic acid derivative known in the art.

본 발명의 또다른 목적은 이러한 히알루론산 유도체를 간단한 과정에 의해 제조하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for preparing such hyaluronic acid derivatives by a simple procedure.

본 발명의 또다른 목적은 이러한 히알루론산 유도체의 생체적합성 소재로서의 용도에 관한 것이다.Another object of the present invention relates to the use of such hyaluronic acid derivatives as biocompatible materials.

도 1은 본 발명에 따른 히알루론산 유도체의 점탄성을 종래의 히알루론산과 비교하여 레오미터로 나타내는 도면이다.1 is a diagram showing the viscoelasticity of the hyaluronic acid derivative according to the present invention as a rheometer compared with the conventional hyaluronic acid.

본 발명에 따른 히알루론산 유도체는 글리콜 고분자가 아미드 결합에 의해 히알루론산에 결합되어 있는 구조로 되어 있다.The hyaluronic acid derivative according to the present invention has a structure in which a glycol polymer is bonded to hyaluronic acid by an amide bond.

본 발명에서의 상기 히알루론산은 히알루론산 자체와 그것의 염을 모두 포함하는 개념이므로, 본 발명에서의 용어 "히알루론산"은 히알루론산, 히알루론산 염, 또는 히알루론산과 히알루론산의 혼합물을 의미한다. 상기 히알루론산 염에는, 히알루론산 나트륨, 히알루론산 칼륨, 히알루론산 칼슘, 히알루론산 마그네슘, 히알루론산 아연, 히알루론산 코발트 등과 같은 무기염과, 히알루론산 테트라부틸암모늄 등과 같은 유기염이 모두 포함된다. 경우에 따라서는, 이들의 둘 또는 그 이상의 조합이 사용될 수도 있다. 본 발명에서 히알루론산의 분자량은 특별히 제한되는 것은 아니며, 바람직하게는 100,000 내지 10,000,000이다.Since the hyaluronic acid in the present invention is a concept including both hyaluronic acid itself and salts thereof, the term "hyaluronic acid" in the present invention means a hyaluronic acid, a hyaluronic acid salt, or a mixture of hyaluronic acid and hyaluronic acid. . The hyaluronic acid salt includes both inorganic salts such as sodium hyaluronate, potassium hyaluronate, calcium hyaluronate, magnesium hyaluronic acid, zinc hyaluronate, cobalt hyaluronic acid, and organic salts such as tetrabutylammonium hyaluronic acid. In some cases, a combination of two or more thereof may be used. The molecular weight of hyaluronic acid in the present invention is not particularly limited, preferably 100,000 to 10,000,000.

상기 글리콜 고분자는 분자쇄의 양 말단에 수산기(-OH)를 가지고 있는 고분자로서, 본 발명에 사용될 수 있는 바람직한 글리콜 고분자로는 폴리에틸렌글리콜과, 폴리에틸렌글리콜 및 폴리프로필렌글리콜의 블록 공중합체(일명, 플루로닉(Pluronic))를 들 수 있다. 폴리에틸렌글리콜과 플루로닉은 독성이 없고 용해도가 우수하기 때문에 히알루론산 유도체의 안정성을 향상시키는데 기여한다.The glycol polymer is a polymer having hydroxyl groups (-OH) at both ends of the molecular chain. Preferred glycol polymers that can be used in the present invention include polyethylene glycol and block copolymers of polyethylene glycol and polypropylene glycol (aka, flu). Pluronic) is mentioned. Polyethyleneglycol and pluronic are not toxic and have good solubility, which contributes to the stability of hyaluronic acid derivatives.

본 발명에 따른 히알루론산 유도체는 이러한 글리콜 고분자가 아미드 결합에 의해 히알루론산 또는 그것의 염에 결합되어 있다. 히알루론산은, 상기 화학식 1에서 보는 바와 같이, 분자쇄 중에 카르복실기(-COOH)를 가지고 있고, 글리콜 고분자는 양쪽 말단에 수산기(-OH)를 가지고 있으므로, 근본적으로 아미드 결합(-CONH-)을 형성할 수 없다. 그러나, 이후 제조방법에서 설명하는 바와 같이, 본 발명에서는 글리콜 고분자의 한쪽 말단 또는 양쪽 말단의 수산기를 활성화시켜 자유아민기를 도입하고, 그러한 자유아민기가 히알루론산의 카르복실기와 아미드 결합을 형성한다.In the hyaluronic acid derivative according to the present invention, such glycol polymer is bound to hyaluronic acid or a salt thereof by an amide bond. As shown in Formula 1, hyaluronic acid has a carboxyl group (-COOH) in the molecular chain, and the glycol polymer has a hydroxyl group (-OH) at both ends, thereby essentially forming an amide bond (-CONH-). Can not. However, as described later in the preparation method, in the present invention, hydroxyl groups at one or both ends of the glycol polymer are activated to introduce free amine groups, and such free amine groups form amide bonds with the carboxyl groups of hyaluronic acid.

본 발명에 따른 히알루론산 유도체는 유착방지용 젤, 주름살 치료용 삽입물, 성형보조물, 관절염 치료용 삽입물, 약물전달체 등 다양한 용도에 사용될 수 있고, 젤, 필름, 실 등과 같이 용도에 따라 다양한 형태로 제조될 수 있다. 특히, 본 발명에 따른 히알루론산 유도체 젤은 점탄성이 매우 우수하여 관절염 치료용 삽입물 등에 매우 유용하게 사용될 수 있다. 또한, 본 발명에 히알루론산 유도체는 히알루론산과 글리콜 고분자가 아미드 결합(공유 결합)으로 연결되어 있으므로, 생체내 여러 조건에서도 견딜 수 있는 특징을 가지며, 카르보디이미드를 이용한 종래의 히알루론산 유도체와는 전혀 다른 물성을 가진 새로운 생체 소재이다.Hyaluronic acid derivatives according to the present invention can be used in various applications, such as anti-adhesion gel, wrinkle treatment insert, molding aid, arthritis treatment insert, drug carrier, etc. Can be. In particular, the hyaluronic acid derivative gel according to the present invention is very excellent in viscoelasticity can be very useful for inserts for treating arthritis. In addition, the hyaluronic acid derivative according to the present invention is characterized in that the hyaluronic acid and the glycol polymer are linked by an amide bond (covalent bond), so that the hyaluronic acid derivative can withstand various conditions in vivo, and the conventional hyaluronic acid derivative using carbodiimide It is a new biomaterial with completely different physical properties.

본 발명에 따른 히알루론산 유도체의 바람직한 예로는, 글리콜 고분자의 양쪽 말단에 각각 히알루론산이 아미드 결합되어 있는 구조로서, 하기 화학식 2와 3의 유도체를 들 수 있다.Preferred examples of the hyaluronic acid derivative according to the present invention include a structure in which hyaluronic acid is amide-bonded to both ends of the glycol polymer, and the derivatives of the formulas (2) and (3) below.

상기 식에서, m, n, x, y 및 z 는 각각 1 또는 그 이상의 정수로서, n>z>y>x 의 조건을 만족한다.Wherein m, n, x, y and z are each an integer of 1 or more, satisfying the condition of n> z> y> x.

상기 식에서, a, b, n, x, y 및 z 는 각각 1 또는 그 이상의 정수로서, n>z>y>x 의 조건을 만족한다.In the above formula, a, b, n, x, y and z are each an integer of 1 or more, and satisfy the condition of n> z> y> x.

화학식 2의 히알루론산 유도체는 글리콜 고분자로서 폴리에틸렌글리콜을 포함하는 [히알루론산-폴리에틸렌글리콜-히알루론산]의 골격을 가지고 있고, 화학적 3의 히알루론산 유도체는 글리콜 고분자로서 플루로닉을 포함하는 [히알루론산-(폴리에틸렌글리콜-폴리프로필렌글리콜-폴리에틸렌글리콜)-히알루론산]의 골격을 가지고 있다. 앞서의 설명과 같이, 히알루론산과 글리콜 고분자의 연결은 아미드 결합으로 이루어져 있다.The hyaluronic acid derivative of the formula (2) has a skeleton of [hyaluronic acid-polyethyleneglycol-hyaluronic acid] containing polyethylene glycol as a glycol polymer, and the hyaluronic acid derivative of the chemical formula 3 includes a hyaluronic acid containing a pluronic as a glycol polymer. -(Polyethylene glycol-polypropylene glycol-polyethylene glycol)-hyaluronic acid]. As described above, the connection between the hyaluronic acid and the glycol polymer consists of amide bonds.

본 발명의 히알루론산 유도체는, 글리콜 고분자가 히알루론산에 아미드 결합에 의해 직접적으로 결합되어 있는 경우뿐만 아니라, 키토산을 경유하여 간접적으로 결합되어 있는 경우도 포함한다. 즉, 히알루론산과 글리콜 고분자 사이에 키토산이 위치하는 유도체들을 포함한다. 이 경우에도, 글리콜 고분자가 연결되어 있는 키토산과 히알루론산의 연결은 아미드 결합으로 이루어져 있다. 그러한 바람직한 예로서, 하기 화학식 4와 5의 히알루론산 유도체를 들 수 있다.The hyaluronic acid derivative of the present invention includes not only the case where the glycol polymer is directly bonded to hyaluronic acid by an amide bond, but also the case where the glycol polymer is indirectly bonded via chitosan. That is, derivatives in which chitosan is positioned between hyaluronic acid and a glycol polymer are included. Even in this case, the link between the chitosan and hyaluronic acid, to which the glycol polymer is linked, consists of amide bonds. As such a preferable example, the hyaluronic acid derivative of the following general formula (4) and (5) can be mentioned.

상기 식에서, a, l, m, n, x 및 y 는 각각 1 또는 그 이상의 정수로서, m>l 및 n>x>y 의 조건을 만족한다.Wherein a, l, m, n, x, and y are integers of 1 or more, respectively, and satisfy the conditions of m> l and n> x> y.

상기 식에서, a, b, l, m, n, x 및 y 는 각각 1 또는 그 이상의 정수로서, m>l 및 n>x>y 의 조건을 만족한다.Wherein a, b, l, m, n, x and y are integers of 1 or more, respectively, and satisfy the conditions of m> l and n> x> y.

화학식 4의 히알루론산 유도체는 글리콜 고분자로서 폴리에틸렌글리콜을 포함하는 [히알루론산-키토산-폴리에틸렌글리콜]의 골격을 가지고 있고, 화학적 5의 히알루론산 유도체는 글리콜 고분자로서 플루로닉을 포함하는 [히알루론산-키토산-(폴리에틸렌글리콜-폴리프로필렌글리콜-폴리에틸렌글리콜)]의 골격을 가지고 있다. 키토산을 경유하여 글리콜 고분자가 히알루론산에 연결되어 있는 화학식 4와 5의 히알루론산 유도체에 있어서, 글리콜 고분자와 키토산의 연결은 우레탄 결합(-NHC(=O)O-)으로 이루어져 있지만, 궁극적으로 히알루론산에 결합되는 부위, 즉, 히알루론산과 키토산의 연결은 아미드 결합(-NHC(=O)-)으로 이루어져 있다.The hyaluronic acid derivative of the formula (4) has a skeleton of [hyaluronic acid-chitosan-polyethylene glycol] containing polyethylene glycol as a glycol polymer, and the hyaluronic acid derivative of Chemical Formula 5 contains a pluronic as a glycol polymer. Chitosan- (polyethylene glycol-polypropylene glycol-polyethylene glycol)]. In the hyaluronic acid derivatives of formulas (4) and (5) in which a glycol polymer is connected to hyaluronic acid via chitosan, the connection between the glycol polymer and chitosan consists of a urethane bond (-NHC (= O) O-), but ultimately hyaluronic acid. The linkage to the lonic acid, ie the link between hyaluronic acid and chitosan, consists of an amide bond (-NHC (= O)-).

상기 키토산은 히알루론산 유도체의 점탄성을 향상시키는 역할을 한다. 본 발명에서의 키토산은 키토산 자체와 그것의 올리고머를 모두 포함하는 개념이며,그것의 분자량은 특별히 제한되는 것은 아니며 바람직하게는 10,000 내지 1,000,000이다.The chitosan serves to improve the viscoelasticity of the hyaluronic acid derivative. Chitosan in the present invention is a concept including both chitosan itself and oligomers thereof, the molecular weight thereof is not particularly limited and is preferably 10,000 to 1,000,000.

본 발명은 또한, 아미드 결합에 의해 히알루론산에 글리콜 고분자가 결합되어 있는 히알루론산 유도체를 제조하는 방법에 관한 것이다.The present invention also relates to a method for producing a hyaluronic acid derivative in which a glycol polymer is bonded to hyaluronic acid by an amide bond.

본 발명에 따른 히알루론산 유도체의 제조방법은, 글리콜 고분자가 직접 히알루론산에 연결되어 있는 구조의 유도체(Ⅰ)(예를 들어, 화학식 2와 3의 유도체)와, 글리콜 고분자가 키토산을 경유하여 히알루론산에 연결되어 있는 구조의 유도체(Ⅱ)(예를 들어, 화학식 4와 5의 유도체)에서 서로 다르다.In the method for preparing a hyaluronic acid derivative according to the present invention, a derivative (I) having a structure in which a glycol polymer is directly connected to hyaluronic acid (for example, derivatives of Chemical Formulas 2 and 3), and a glycol polymer via hyaluronic acid via chitosan The derivative (II) having a structure linked to lonic acid (for example, derivatives of formulas 4 and 5) differs from one another.

우선, 글리콜 고분자가 직접 히알루론산에 연결되어 있는 구조의 유도체(Ⅰ)를 제조하는 방법은,First, a method for producing a derivative (I) having a structure in which a glycol polymer is directly linked to hyaluronic acid,

(A) 글리콜 고분자의 한쪽 또는 양쪽 말단에 자유아민기를 도입하는 단계; 및(A) introducing a free amine group at one or both ends of the glycol polymer; And

(B) 상기 자유아민기가 도입된 글리콜 고분자를 히알루론산과 아미드화 반응을 행하는 단계;(B) amidating a glycol polymer having the free amine group introduced therein with hyaluronic acid;

를 포함하는 것으로 구성되어 있다.It is configured to include.

상기 단계(A)에서, 글리콜 고분자의 말단(한쪽 또는 양쪽 말단)에 자유아민기의 도입은,In the step (A), the introduction of the free amine group at the end (one or both ends) of the glycol polymer,

(a) 글리콜 고분자의 한쪽 또는 양쪽 말단을 활성화시키는 단계; 및(a) activating one or both ends of the glycol polymer; And

(b) 활성화된 글리콜 고분자를 디아민 화합물과 반응시키는 단계;(b) reacting the activated glycol polymer with a diamine compound;

를 포함하는 것으로 구성된 방법에 의해 실행될 수 있다.It may be executed by a method configured to include.

상기 단계(a)에서의 활성화는, 단계(b)에서 디아민 화합물과의 반응에 의해 글리콜 고분자의 말단에 자유아민기가 도입될 수 있는 상태로 변화시키는 것으로서, 예를 들어, 하기 화학식 6 또는 7에서와 같은 구조를 가지는 활성화된 글리콜 고분자를 제조하는 것이다. 자유아민기를 글리콜 고분자의 양쪽 말단에 도입하는 경우에는, 당연히 하기 화학식 6 또는 7이 각각 대칭적인 구조를 가지도록 단계(a)에서 활성화된 글리콜 고분자를 제조한다.The activation in step (a) is to change the free amine group to be introduced into the terminal of the glycol polymer by reaction with the diamine compound in step (b), for example, in the following formula (6) To prepare an activated glycol polymer having a structure such as. In the case where the free amine group is introduced at both ends of the glycol polymer, the glycol polymer activated in step (a) is prepared so that the following Chemical Formula 6 or 7 each have a symmetrical structure.

상기 화학식 6과 7에서, R1 과 R2 는 각각, HO-PEG-CH2CH2O-, HO-PEG-CH2CH2CH2O-, HO-PEG-CONH(CH2)5O-, HO-PEG-S-OCH2CH2O-, HO-PEG-S-CH2CH2O-, HO-PEG-NHCOCH2CH2O-, HO-PEG-CO(CH2)3O-, HO-PEG-COCH2CH2O-, HO-PEG-, HO-PEG-CH2O-, MeO-PEG-CH2CH2O-, MeO-PEG-CH2CH2CH2O-, MeO-PEG-CONH(CH2)5O-, MeO-PEG-S-OCH2CH2-, MeO-PEG-S-CH2CH2O-, MeO-PEG-NHCOCH2CH2O-, MeO-PEG-CO(CH2)3O-, MeO-PEG-COCH2CH2O-,MeO-PEG-, MeO-PEG-CH2O-, HO-PLU-CH2CH2O-, HO-PLU-CH2CH2CH2O-, HO-PLU-CONH(CH2)5O-, HO-PLU-S-OCH2CH2O-, HO-PLU-S-CH2CH2O-, HO-PLU-NHCOCH2CH2O-, HO-PLU-CO(CH2)3O-, HO-PLU-COCH2CH2-, HO-PLU-, HO-PLU-CH2O-, MeO-PLU-CH2CH2O-, MeO-PLU-CH2CH2CH2O-, MeO-PLU-CONH(CH2)5O-, MeO-PLU-S-OCH2CH2O-, MeO-PLU-S-CH2CH2O-, MeO-PLU-NHCOCH2CH2O-, MeO-PLU-CO(CH2)3O-, MeO-PLU-COCH2CH2-, MeO-PLU- 또는 MeO-PLU-CH2O- 이고, 여기서, PEG 는 -(CH2CH2O)n- 이고 (n 은 1 이상의 정수), PLU 는 -(CH2CH2O)a-(CH2CH(CH3)O)b-(CH2CH2O)c- 이며(a, b, c 는 각각 1 이상의 정수), Me 는 메틸기이다.In Formulas 6 and 7, R1 and R2 are each HO-PEG-CH 2 CH 2 O-, HO-PEG-CH 2 CH 2 CH 2 O-, HO-PEG-CONH (CH 2 ) 5 O-, HO-PEG-S-OCH 2 CH 2 O-, HO-PEG-S-CH 2 CH 2 O-, HO-PEG-NHCOCH 2 CH 2 O-, HO-PEG-CO (CH 2 ) 3 O-, HO-PEG-COCH 2 CH 2 O-, HO-PEG-, HO-PEG-CH 2 O-, MeO-PEG-CH 2 CH 2 O-, MeO-PEG-CH 2 CH 2 CH 2 O-, MeO -PEG-CONH (CH 2 ) 5 O-, MeO-PEG-S-OCH 2 CH 2- , MeO-PEG-S-CH 2 CH 2 O-, MeO-PEG-NHCOCH 2 CH 2 O-, MeO- PEG-CO (CH 2 ) 3 O-, MeO-PEG-COCH 2 CH 2 O-, MeO-PEG-, MeO-PEG-CH 2 O-, HO-PLU-CH 2 CH 2 O-, HO-PLU -CH 2 CH 2 CH 2 O-, HO-PLU-CONH (CH 2 ) 5 O-, HO-PLU-S-OCH 2 CH 2 O-, HO-PLU-S-CH 2 CH 2 O-, HO -PLU-NHCOCH 2 CH 2 O-, HO-PLU-CO (CH 2 ) 3 O-, HO-PLU-COCH 2 CH 2- , HO-PLU-, HO-PLU-CH 2 O-, MeO-PLU -CH 2 CH 2 O-, MeO-PLU-CH 2 CH 2 CH 2 O-, MeO-PLU-CONH (CH 2 ) 5 O-, MeO-PLU-S-OCH 2 CH 2 O-, MeO-PLU -S-CH 2 CH 2 O-, MeO-PLU-NHCOCH 2 CH 2 O-, MeO-PLU-CO (CH 2 ) 3 O-, MeO-PLU-COCH 2 CH 2- , MeO-PLU- or MeO and -PLU-CH 2 O-, wherein, PEG is - (CH 2 CH 2 O) n - and (n is 1, Integer), PLU is - (CH 2 CH 2 O) a - (CH 2 CH (CH 3) O) b - (CH 2 CH 2 O) c - , and (a, b, c are each an integer of 1 or more) And Me are methyl groups.

활성화된 글리콜 고분자의 합성방법의 예들이 이후 설명하는 실시예 1 내지 4에 설명되어 있다.Examples of methods for synthesizing activated glycol polymers are described in Examples 1-4 described below.

상기 단계(a)에서 얻어진 활성화된 글리콜 고분자의 예로는 하기 화학식 8 내지 10의 고분자를 들 수 있다.Examples of the activated glycol polymer obtained in the step (a) may be a polymer of the formula 8 to 10.

상기 화학식 8 내지 10에서 분자쇄의 반복단위인 a, b, n, x 및 y 는 각각 1 또는 그 이상의 정수이다.In Formulas 8 to 10, a, b, n, x and y, which are repeating units of the molecular chain, are each an integer of 1 or more.

화학식 8의 고분자는 글리콜 고분자로서 폴리에틸렌글리콜의 양쪽 말단이 활성화되어 있고, 화학식 9의 고분자는 글리콜 고분자로서 플루로닉의 한쪽 말단이 활성화되어 있으며, 화학식 10의 고분자는 글리콜 고분자로서 플루로닉의 양쪽 말단이 각각 활성화되어 있다.The polymer of Formula 8 is a glycol polymer and both ends of polyethylene glycol are activated, the polymer of Formula 9 is a glycol polymer and one end of the pluronic is activated, and the polymer of Formula 10 is a glycol polymer and both sides of Pluronic are The ends are each activated.

화학식 8에서와 같이, 양쪽 말단이 활성화된 폴리에틸렌글리콜의 바람직한 분자량은 1,000 내지 40,000이며, 화학식 10에서와 같이, 양쪽 말단이 활성화된 플루로닉의 경우 바람직한 분자량은 5,000 내지 50,000이다.As in Formula 8, the preferred molecular weight of the polyethylene glycol activated at both ends is 1,000 to 40,000, and in the case of Pluronic activated at both ends, as in Formula 10, the preferred molecular weight is 5,000 to 50,000.

상기 단계(b)에서 활성화된 글리콜 고분자를 디아민 화합물과 반응시키면 치환반응에 의해 자유아민기를 가지는 글리콜 고분자가 얻어진다. 상기 디아민 화합물은 특별히 제한되는 것은 아니며, 예를 들어, 에틸렌디아민, 프로필렌디아민, 이소프로필렌디아민, 부틸렌디아민 등을 포함하며, 그 중에서도 에틸렌디아민이 특히 바람직하다. 하기 화학식 11과 12에는 각각, 상기 화학식 8과 10의 활성화된 글리콜 고분자에 에틸렌디아민 화합물을 치환반응시켜 양쪽 말단에 자유아민기를 가지는 글리콜 고분자들의 예가 개시되어 있다.When the glycol polymer activated in the step (b) is reacted with a diamine compound, a glycol polymer having a free amine group is obtained by a substitution reaction. The diamine compound is not particularly limited, and includes, for example, ethylenediamine, propylenediamine, isopropylenediamine, butylenediamine, and the like, with ethylenediamine being particularly preferred. Formulas 11 and 12 below disclose examples of glycol polymers having free amine groups at both ends by substituting an ethylenediamine compound to the activated glycol polymers of Formulas 8 and 10, respectively.

활성화된 글리콜 고분자의 한쪽 또는 양쪽 말단에 자유아민기를 도입하는 예시적인 방법들이, 이후 설명하는 실시예 5 내지 8에 설명되어 있다.Exemplary methods for introducing free amine groups at one or both ends of an activated glycol polymer are described in Examples 5-8 described below.

이렇게 자유아민기가 도입된 글리콜 고분자를 히알루론산과 아미드화 반응을 시키면(단계(B)), 글리콜 고분자가 아미드 결합에 의해 히알루론산이 직접 연결되는 히알루론산 유도체(Ⅰ)가 제조된다.When the glycol polymer into which the free amine group is introduced is subjected to an amidation reaction with hyaluronic acid (step (B)), a hyaluronic acid derivative (I) is prepared in which the glycol polymer is directly connected to the hyaluronic acid by an amide bond.

적정한 가교반응을 유도하기 위하여, 아미드화 반응에서 히알루론산의 농도는 0.01 내지 100 ㎎/㎖인 것이 바람직하고, 자유아민기가 도입된 글리콜 고분자와 히알루론산의 혼합비는 1 : 100 내지 100 : 1(히알루론산의 카르복실기 : 글리콜 고분자의 자유아민기)의 비인 것이 바람직하다.In order to induce an appropriate crosslinking reaction, the concentration of hyaluronic acid in the amidation reaction is preferably 0.01 to 100 mg / ml, and the mixing ratio of the glycol polymer to which the free amine group is introduced and the hyaluronic acid is 1: 100 to 100: 1 (hyaluronic acid). It is preferable that it is ratio of the carboxyl group of lonic acid: the free amine group of glycol polymer).

히알루론산은, 앞서 설명한 바와 같이, 분자쇄 중에 카르복실기를 포함하고 있으며, 자유아민기와의 반응에 의해 아미드 결합을 이룰 수 있다. 상기 아미드화 반응은, 히알루론산의 카르복실기를 활성화시켜 행해질 수도 있는데, 이러한 활성화는 카르복실기 활성화제를 반응액에 첨가함으로써 달성될 수 있다. 그러한 카르복실기 활성화제의 예로는 카르보디이미드(carbodiimide)계 화합물을 들 수 있으며, 그것의 바람직한 예로는 1-에틸-3-(3-디메틸아미노프로필)카르보디이미드(EDC), 1-에틸-3-(3-(트리메틸암모니오)프로필) 카르보디이미드(ETC), 1-사이클로헥실-3-(2-모르폴리노에틸) 카르보디이미드(CMC) 등을 들 수 있다. 그 중에서도 EDC가 특히 바람직하다.As described above, hyaluronic acid includes a carboxyl group in the molecular chain and can form an amide bond by reaction with a free amine group. The amidation reaction may be carried out by activating a carboxyl group of hyaluronic acid, which can be achieved by adding a carboxyl group activator to the reaction solution. Examples of such carboxyl group activators include carbodiimide compounds, and preferred examples thereof include 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDC), 1-ethyl-3 -(3- (trimethylammonio) propyl) carbodiimide (ETC), 1-cyclohexyl-3- (2-morpholinoethyl) carbodiimide (CMC), and the like. Especially, EDC is especially preferable.

바람직하게는, 상기 카르복실기 활성화제와 함께 활성반응 보조제를 사용할 수 있다. 상기 활성반응 보조제의 바람직한 예로는 N-히드록시석신이미드(NHS), 1-히드록시벤조트리아졸(HOBt), 3,4-디히드로-3-히드록시-4-옥소-1,2,3-벤조트리아진(HOOBt), 1-히드록시-7-아자벤조트리아졸(HOAt), N-히드록시-설포석신이미드(Sulfo-NHS) 등을 들 수 있다. 그 중에서도 NHS가 특히 바람직하다.Preferably, an activation assistant may be used together with the carboxyl group activator. Preferred examples of the activity aid include N-hydroxysuccinimide (NHS), 1-hydroxybenzotriazole (HOBt), 3,4-dihydro-3-hydroxy-4-oxo-1,2, 3-benzotriazine (HOOBt), 1-hydroxy-7-azabenzotriazole (HOAt), N-hydroxy-sulfosuccinimide (Sulfo-NHS), etc. are mentioned. Especially NHS is especially preferable.

활성화제와 활성반응 보조제의 첨가량은 이들의 활성도, 히알루론산의 농도 등 여러 요인들에 의해 결정될 수 있으며, 예를 들어, 0.0001 내지 100 ㎎/㎖의 EDC와 0.00001 내지 100 ㎎/㎖의 NHS를 바람직하게 사용할 수 있다.The amount of the activator and the activity assistant may be determined by various factors such as their activity and the concentration of hyaluronic acid. For example, 0.0001 to 100 mg / ml of EDC and 0.00001 to 100 mg / ml of NHS are preferable. Can be used.

본 발명에서의 반응은 0 내지 40℃, 바람직하게는 실온에서, pH 2 내지 8로 0.5 내지 20 시간 동안 행할 수 있다.The reaction in the present invention can be carried out at 0 to 40 ° C., preferably at room temperature, at pH 2 to 8 for 0.5 to 20 hours.

다음으로, 글리콜 고분자가 키토산을 경유하여 히알루론산에 연결되어 있는 구조의 유도체(Ⅱ)를 제조하는 방법은,Next, a method for producing a derivative (II) having a structure in which a glycol polymer is linked to hyaluronic acid via chitosan,

(A1) 글리콜 고분자의 한쪽 말단에 자유아민기를 도입하는 단계;(A1) introducing a free amine group to one end of the glycol polymer;

(B1) 상기 자유아민기가 도입된 글리콜 고분자를 키토산과 반응시켜 키토산-글리콜 고분자 결합체를 제조하는 단계; 및(B1) preparing a chitosan-glycol polymer conjugate by reacting the glycol polymer into which the free amine group is introduced with chitosan; And

(C1) 상기 키토산-글리콜 고분자 결합체를 히알루론산과 아미드화 반응을 행하는 단계;(C1) amidating the chitosan-glycol polymer conjugate with hyaluronic acid;

를 포함하는 것으로 구성되어 있다.It is configured to include.

상기 단계(A1)에서의 자유아민기 도입 방법은, 글리콜 고분자의 한쪽 말단에만 자유아민기를 도입한다는 것을 제외하고는, 히알루론산 유도체(Ⅰ)의 제조방법에서의 단계(A)와 동일하다.The free amine group introduction method in the step (A1) is the same as the step (A) in the method for producing the hyaluronic acid derivative (I), except that the free amine group is introduced only at one end of the glycol polymer.

상기 단계(B1)에서의 키토산-글리콜 고분자 결합체의 제조는 치환반응에 의해 이루어지며, 하기 화학식 13과 14에는, 글리콜 고분자로서 폴리에틸렌글리콜과 플루로닉을 각각 사용한 상기 결합체들의 예가 개시되어 있다.Preparation of the chitosan-glycol polymer conjugate in the step (B1) is made by a substitution reaction, and in the following formulas (13) and (14), examples of the above-described conjugates using polyethylene glycol and pluronic, respectively, as glycol polymers are disclosed.

상기 화학식 13과 14에 있어서, a, b, m, n, x 및 y 는 1 또는 그 이상의 정수로서, n>x>y 의 조건을 만족한다.In Formulas 13 and 14, a, b, m, n, x, and y are integers of 1 or more and satisfy the condition of n> x> y.

키토산-글리콜 고분자 결합체를 제조함에 있어서, 키토산과 활성화된 글리콜 고분자의 혼합비는 1 : 100 내지 100 : 1(키토산의 아민기 : 글리콜 고분자의 반응기)인 것이 바람직하다.In preparing the chitosan-glycol polymer conjugate, the mixing ratio of the chitosan and the activated glycol polymer is preferably 1: 100 to 100: 1 (amine group of chitosan: reactor of glycol polymer).

키토산-글리콜 고분자 결합체의 제조방법의 예들이, 이후 설명하는 실시예 15 내지 18에 설명되어 있다.Examples of methods for preparing chitosan-glycol polymer conjugates are described in Examples 15-18 described below.

상기 단계(C1)에서의 아미드화 반응은, 키토산과 히알루론산의 아미드화 반응이라는 점을 제외하고는, 히알루론산 유도체(Ⅰ)의 제조방법의 단계(B)에서의 아미드화 반응과 동일하다.The amidation reaction in the step (C1) is the same as the amidation reaction in step (B) of the method for producing the hyaluronic acid derivative (I), except that it is an amidation reaction of chitosan and hyaluronic acid.

경우에 따라서는 상기 단계(C1)에서 아미드화 반응을 행하여 얻어진 히알루론산 유도체(Ⅱ)를 젤, 필름, 실 등과 같은 일정한 형태로 만든 다음, 잔류 카르복실기 및 아민기에 대해 추가적인 아미드화 반응을 행할 수도 있다. 이는 히알루론산 유도체(Ⅰ)의 경우에도 마찬가지이다.In some cases, the hyaluronic acid derivative (II) obtained by the amidation reaction in step (C1) may be made into a constant form such as gel, film, yarn, etc., and then further amidation reaction may be performed on the residual carboxyl group and the amine group. . The same is true for the hyaluronic acid derivative (I).

본 발명에 따른 제조방법들의 각 반응단계에서의 생성물은 당업계에 공지된 통상의 방법에 의하여 반응계로부터 분리 및/또는 정제될 수 있다. 분리 및 정제방법의 예로는, 증류(대기압하 증류 및 감압증류를 포함), 재결정, 칼럼 크로마토그래피, 이온교환 크로마토그래피, 겔 크로마토그래피, 친화성 크로마토그래피, 박층 크로마토그래피, 상 분리, 용매 추출, 투석, 세척 등을 들 수 있다. 정제는 각 반응단계마다 또는 일련의 반응단계들 이후에 수행할 수 있다.The product in each reaction step of the preparation methods according to the invention can be separated and / or purified from the reaction system by conventional methods known in the art. Examples of separation and purification methods include distillation (including distillation under atmospheric pressure and distillation under reduced pressure), recrystallization, column chromatography, ion exchange chromatography, gel chromatography, affinity chromatography, thin layer chromatography, phase separation, solvent extraction, Dialysis, washing and the like. Purification can be carried out for each reaction step or after a series of reaction steps.

또한, 본 발명의 효과를 손상시키지 않는 범위내에서, 공정의 효율성 및 수율의 향상을 위하여, 상기 공정들의 일부가 변형되거나 기타 제조공정들이 포함될 수 있으며, 이들은 모두 본 발명에 포함되는 것으로 해석되어야 한다.In addition, to the extent that the effects of the present invention are not impaired, in order to improve the efficiency and yield of the process, some of the above processes may be modified or other manufacturing processes may be included, all of which should be construed as being included in the present invention. .

본 발명에 따른 히알루론산 유도체의 합성에 필요한 원료물질 및 시약은 문헌의 방법에 의해 또는 전술한 방법에 의해 용이하게 제조 가능하거나, 상업적으로 구입 가능하다.Raw materials and reagents necessary for the synthesis of hyaluronic acid derivatives according to the present invention can be easily prepared by the methods of the literature or by the aforementioned methods, or can be purchased commercially.

이하, 실시예를 참조하여 본 발명의 내용을 상세히 설명하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.Hereinafter, the content of the present invention will be described in detail with reference to Examples, but the scope of the present invention is not limited thereto.

[실시예 1] 폴리에틸렌글리콜의 활성화 - 1Example 1 Activation of Polyethylene Glycol-1

폴리에틸렌글리콜(분자량: 2,000)을 100 ㎎/㎖의 농도로 용매인 염화메틸렌 30 ㎖에 용해시켰다. 여기에, 중화제인 트리에틸아민 607.2 ㎕을 넣은 다음, 4-니트로페닐 클로로포메이트를 40.3 ㎎/㎖의 농도로 첨가하였다. 실온에서 24 시간 동안 반응시킨 후, 반응물을 빈용매(poor solvent)인 n-핵산에 넣어 침전시키고,침전물을 분리한 후 여러 차례 빈용매로 세척하였다. 침전물은 질소가스로 3 일간 건조시켰다(4.0956g, 수율: 97.3%).Polyethylene glycol (molecular weight: 2,000) was dissolved in 30 ml of methylene chloride as a solvent at a concentration of 100 mg / ml. 607.2 μl of triethylamine, a neutralizing agent, was added thereto, and then 4-nitrophenyl chloroformate was added at a concentration of 40.3 mg / ml. After reacting at room temperature for 24 hours, the reactant was precipitated in n-nucleic acid, which is a poor solvent, and the precipitate was separated and washed several times with poor solvent. The precipitate was dried for 3 days with nitrogen gas (4.0956 g, yield: 97.3%).

[실시예 2] 폴리에틸렌글리콜의 활성화 - 2Example 2 Activation of Polyethylene Glycol-2

폴리에틸렌글리콜(분자량: 5,000)을 100 ㎎/㎖의 농도로 용매인 염화메틸렌 30 ㎖에 용해시켰다. 여기에, 중화제인 트리에틸아민 379.5 ㎕을 넣은 후, 4-니트로페닐 클로로포메이트를 25.19 ㎎/㎖의 농도로 첨가하였다. 실온에서 24 시간 동안 반응시킨 후, 반응물을 빈용매인 n-핵산에 넣어 침전시키고, 침전물을 분리한 후 빈용매로 여러 차례 세척하였다. 침전물은 질소가스로 3 일간 건조시켰다(3.6881g, 수율: 98.2%).Polyethylene glycol (molecular weight: 5,000) was dissolved in 30 ml of methylene chloride as a solvent at a concentration of 100 mg / ml. 379.5 µl of triethylamine as a neutralizing agent was added thereto, and then 4-nitrophenyl chloroformate was added at a concentration of 25.19 mg / ml. After reacting for 24 hours at room temperature, the reaction was precipitated in n-nucleic acid as a poor solvent, and the precipitate was separated and washed several times with a poor solvent. The precipitate was dried for 3 days with nitrogen gas (3.6881 g, yield: 98.2%).

[실시예 3] 폴리에틸렌글리콜의 활성화 - 3Example 3 Activation of Polyethylene Glycol-3

폴리에틸렌글리콜(분자량: 8,000)을 100 ㎎/㎖의 농도로 용매인 염화메틸렌 30 ㎖에 용해시켰다. 여기에, 중화제인 트리에틸아민 151.8 ㎕을 넣은 후, 4-니트로페닐 클로로포메이트를 10.08 ㎎/㎖의 농도로 첨가하였다. 실온에서 24 시간 동안 반응시킨 후, 반응물을 빈용매인 n-핵산에 넣어 침전시키고, 침전물을 분리한 후 빈용매로 여러 차례 세척하였다. 침전물은 질소가스로 3 일간 건조시켰다(3.2390g, 수율: 98.08%).Polyethylene glycol (molecular weight: 8,000) was dissolved in 30 ml of methylene chloride as a solvent at a concentration of 100 mg / ml. 151.8 µl of triethylamine as a neutralizing agent was added thereto, and then 4-nitrophenyl chloroformate was added at a concentration of 10.08 mg / ml. After reacting for 24 hours at room temperature, the reaction was precipitated in n-nucleic acid as a poor solvent, and the precipitate was separated and washed several times with a poor solvent. The precipitate was dried for 3 days with nitrogen gas (3.2390 g, yield: 98.08%).

[실시예 4] 플루로닉의 활성화Example 4 Activation of Pluronic

플루로닉 F127(분자량: 12,600)을 100 ㎎/㎖의 농도로 용매인 염화메틸렌 30 ㎖에 용해시켰다. 여기에, 중화제인 트리에틸아민 192.9 ㎕을 넣은 후, 4-니트로페닐 클로로포메이트를 12.8 ㎎/㎖의 농도로 첨가하였다. 실온에서 24 시간 동안 반응시킨 후, 반응물을 빈용매인 n-핵산에 넣어 침전시키고, 침전물을 분리한 후 빈용매로 여러 차례 세척하였다. 침전물은 질소가스로 3 일간 건조시켰다(3.190g, 수율: 94.27%).Pluronic F127 (molecular weight: 12,600) was dissolved in 30 ml of methylene chloride as a solvent at a concentration of 100 mg / ml. 192.9 µl of triethylamine as a neutralizing agent was added thereto, and then 4-nitrophenyl chloroformate was added at a concentration of 12.8 mg / ml. After reacting for 24 hours at room temperature, the reaction was precipitated in n-nucleic acid as a poor solvent, and the precipitate was separated and washed several times with a poor solvent. The precipitate was dried for 3 days with nitrogen gas (3.190 g, yield: 94.27%).

[실시예 5] 폴리에틸렌글리콜의 아민기 도입 - 1Example 5 Introduction of Amine Group on Polyethylene Glycol-1

실시예 1에서 제조한 활성화된 폴리에틸렌글리콜(분자량: 2,000)을 50 ㎎/㎖의 농도로 용매인 염화메틸렌 20 ㎖에 용해시켰다. 여기에, 에틸렌디아민 240 ㎕을 넣고, 실온에서 24 시간 동안 반응시켰다. 반응액을 빈용매인 n-핵산에 넣어 침전시키고, 침전물을 분리한 후 빈용매로 여러 차례 세척하였다. 침전물(912.7 ㎎, 수율: 73.58%)을 질소가스로 3 일간 건조시켰다. 건조 후 다시 물에 녹여 컷-오프가 1,000 정도인 투석막을 이용하여 2 일간 투석하였다. 투석 후 질소가스로 1 일간 건조시켰다.The activated polyethylene glycol (molecular weight: 2,000) prepared in Example 1 was dissolved in 20 ml of methylene chloride as a solvent at a concentration of 50 mg / ml. 240 µl of ethylenediamine was added thereto and reacted at room temperature for 24 hours. The reaction solution was precipitated in n-nucleic acid as a poor solvent, and the precipitate was separated and washed several times with a poor solvent. A precipitate (912.7 mg, yield: 73.58%) was dried for 3 days with nitrogen gas. After drying, it was dissolved in water and dialyzed for 2 days using a dialysis membrane having a cut-off of about 1,000. After dialysis, it was dried for 1 day with nitrogen gas.

[실시예 6] 폴리에틸렌글리콜의 아민기 도입 - 2Example 6 Introduction of Amine Group on Polyethylene Glycol-2

실시예 2에서 제조한 활성화된 폴리에틸렌글리콜(분자량: 5,000)을 50 ㎎/㎖의 농도로 용매인 염화메틸렌 20 ㎖에 용해시켰다. 여기에, 에틸렌디아민 96.16 ㎕을 넣고, 실온에서 24 시간 동안 반응시켰다. 반응액을 빈용매인 n-핵산에 넣어침전시키고, 침전물을 분리한 후 빈용매로 여러 차례 세척하였다. 침전물(899.9 ㎎, 수율:82.10%)은 질소가스로 3 일간 건조시켰다. 건조 후 다시 물에 녹여 컷-오프가 3,500 정도인 투석막을 이용하여 2 일간 투석하였다. 투석 후 질소가스로 1 일간 건조시켰다.The activated polyethylene glycol (molecular weight: 5,000) prepared in Example 2 was dissolved in 20 ml of methylene chloride as a solvent at a concentration of 50 mg / ml. 96.16 µl of ethylenediamine was added thereto and reacted at room temperature for 24 hours. The reaction solution was precipitated in n-nucleic acid as a poor solvent, and the precipitate was separated and washed several times with a poor solvent. A precipitate (899.9 mg, yield: 82.10%) was dried for 3 days with nitrogen gas. After drying, the resultant was dissolved in water and dialyzed for 2 days using a dialysis membrane having a cut-off of about 3,500. After dialysis, it was dried for 1 day with nitrogen gas.

[실시예 7] 폴리에틸렌글리콜의 아민기 도입 - 3Example 7 Introduction of Amine Group on Polyethylene Glycol-3

실시예 3에서 제조한 활성화된 폴리에틸렌글리콜(분자량: 8,000)을 50 ㎎/㎖의 농도로 용매인 염화메틸렌 20 ㎖에 용해시켰다. 여기에, 에틸렌디아민 60.1 ㎕을 넣고, 실온에서 24 시간 동안 반응시켰다. 반응물을 빈용매인 n-핵산에 넣어 침전시키고, 침전물을 분리한 후 빈용매로 여러 차례 세척하였다. 침전물(906.9 ㎎, 수율: 85.55%)은 질소가스로 3 일간 건조시켰다. 건조 후 다시 물에 녹여 컷-오프가 6,000 정도인 투석막을 이용하여 2 일간 투석하였다. 투석 후 질소가스로 1 일간 건조시켰다.The activated polyethylene glycol (molecular weight: 8,000) prepared in Example 3 was dissolved in 20 ml of methylene chloride as a solvent at a concentration of 50 mg / ml. 60.1 µl of ethylenediamine was added thereto and reacted at room temperature for 24 hours. The reaction was precipitated in n-nucleic acid as a poor solvent, and the precipitate was separated and washed several times with a poor solvent. The precipitate (906.9 mg, yield: 85.55%) was dried for 3 days with nitrogen gas. After drying, it was dissolved in water and dialyzed for 2 days using a dialysis membrane having a cut-off of about 6,000. After dialysis, it was dried for 1 day with nitrogen gas.

[실시예 8] 플루로닉의 아민기 도입Example 8 Introduction of Pluronic Amine Group

실시예 4에서 제조한 활성화된 플루로닉(분자량: 12,600)을 50 ㎎/㎖의 농도로 용매인 염화메틸렌 20 ㎖에 용해시켰다. 여기에, 에틸렌디아민 56.75 ㎕을 넣고, 실온에서 24 시간 동안 반응시켰다. 빈용매인 n-핵산에 넣어 침전시키고, 침전물을 분리한 후 빈용매로 여러 차례 세척하였다. 침전물은 질소가스로 3 일간 건조시켰다. 건조 후 다시 물에 녹여 컷-오프가 12,000∼14,000 정도인 투석막을이용하여 2 일간 투석하였다. 투석 후 질소가스로 1 일간 건조하였다(921.3 ㎎, 수율: 88.74%).The activated pluronic (molecular weight: 12,600) prepared in Example 4 was dissolved in 20 ml of solvent methylene chloride at a concentration of 50 mg / ml. 56.75 µl of ethylenediamine was added thereto and reacted at room temperature for 24 hours. The precipitate was put in a poor solvent n-nucleic acid, and the precipitate was separated and washed several times with a poor solvent. The precipitate was dried for 3 days with nitrogen gas. After drying, it was dissolved in water and dialyzed for 2 days using a dialysis membrane having a cut-off of about 12,000 to 14,000. After dialysis, the mixture was dried for 1 day with nitrogen gas (921.3 mg, yield: 88.74%).

[실시예 9] 폴리에틸렌글리콜이 아미드 결합에 의해 히알루론산에 결합된 히알루론산 유도체 젤의 제조 - 1Example 9 Preparation of Hyaluronic Acid Derivative Gel in which Polyethylene Glycol is Bonded to Hyaluronic Acid by Amide Bond-1

5.0 ㎎/㎖의 농도로 히알루론산 나트륨(분자량: 1,000,000 이상) 수용액 10 ㎖을 제조하였다. 또한, 실시예 6에서 제조한 아민기가 양쪽 말단에 도입된 폴리에틸렌글리콜(분자량: 5,000)을 1.0 ㎎/㎖의 농도로 수용액 5 ㎖을 제조하였다. 상기 히알루론산 나트륨 수용액을 교반시키면서, 상기 아민기가 양쪽 말단에 도입된 폴리에틸렌글리콜 수용액을 첨가하였다. 이를 교반하면서, 0.0588 ㎎/㎖의 농도로 EDC와, 0.0706 ㎎/㎖의 농도로 NHS를 각각 1 ㎖씩 천천히 첨가하였다. 첨가 후 25℃에서 2 시간 동안 반응시켰다. 반응 후 아세톤에 첨가하여, 아민기가 양쪽 말단에 도입된 폴리에틸렌글리콜과 히알루론산이 결합된 히알루론산 유도체를 침전시켰다. 침전물(52 ㎎, 수율: 94.54%)을 용액에서 분리하여 세척 후 건조하였다. 건조된 히알루론산 유도체에 물을 첨가하여 10 ㎎/㎖의 농도로 만들었을 때, 점탄성이 증가된 수용성 젤이 형성되었다.10 ml of an aqueous solution of sodium hyaluronate (molecular weight: 1,000,000 or more) was prepared at a concentration of 5.0 mg / ml. Further, 5 ml of an aqueous solution was prepared at a concentration of 1.0 mg / ml of polyethylene glycol (molecular weight: 5,000) in which the amine groups prepared in Example 6 were introduced at both ends. While stirring the aqueous sodium hyaluronate solution, an aqueous polyethylene glycol solution in which the amine groups were introduced at both ends was added. While stirring, EDC at a concentration of 0.0588 mg / ml and NHS at a concentration of 0.0706 mg / ml were slowly added, respectively. After the addition, the reaction was carried out at 25 ° C. for 2 hours. After the reaction, the mixture was added to acetone to precipitate a hyaluronic acid derivative in which polyethylene glycol and hyaluronic acid, in which an amine group was introduced at both ends, were bonded. A precipitate (52 mg, yield: 94.54%) was separated from the solution, washed and dried. When water was added to the dried hyaluronic acid derivative to a concentration of 10 mg / ml, a water-soluble gel having increased viscoelasticity was formed.

[실시예 10] 폴리에틸렌글리콜이 아미드 결합에 의해 히알루론산에 결합된 히알루론산 유도체 젤의 제조 - 2Example 10 Preparation of Hyaluronic Acid Derivative Gels in which Polyethylene Glycol is Bonded to Hyaluronic Acid by an Amide Bond-2

5.0 ㎎/㎖의 농도로 히알루론산 나트륨(분자량: 1,000,000 이상) 수용액 10㎖을 제조하였다. 또한, 실시예 6에서 제조한 아민기가 양쪽 말단에 도입된 폴리에틸렌글리콜(분자량: 5,000)을 1.0 ㎎/㎖의 농도로 수용액 5 ㎖을 제조하였다. 상기 히알루론산 나트륨 수용액을 교반하면서, 상기 아민기가 양쪽 말단에 도입된 폴리에틸렌글리콜 수용액을 첨가했다. 이를 교반하면서, 0.1471 ㎎/㎖의 농도로 EDC와, 0.1765 ㎎/㎖의 농도로 NHS를 각각 1 ㎖씩 천천히 첨가하였다. 첨가 후 25℃에서 2 시간 동안 반응시켰다. 반응 후 아세톤에 첨가하여, 아민기가 양쪽 말단에 도입된 폴리에틸렌글리콜과 히알루론산이 결합한 히알루론산 유도체를 침전시켰다. 침전물(40.3 ㎎, 수율: 73.27%)을 용액에서 분리하여 세척 후 건조하였다. 건조된 히알루론산 유도체에 물을 첨가하여 10 ㎎/㎖의 농도로 만들었을 때, 점탄성이 크게 증가된 수용성 젤이 형성되었다.10 mL of an aqueous solution of sodium hyaluronate (molecular weight: 1,000,000 or more) was prepared at a concentration of 5.0 mg / mL. Further, 5 ml of an aqueous solution was prepared at a concentration of 1.0 mg / ml of polyethylene glycol (molecular weight: 5,000) in which the amine groups prepared in Example 6 were introduced at both ends. While stirring the aqueous sodium hyaluronate solution, an aqueous polyethylene glycol solution in which the amine group was introduced at both ends was added. While stirring, EDC at a concentration of 0.1471 mg / ml and NHS at a concentration of 0.1765 mg / ml were slowly added. After the addition, the reaction was carried out at 25 ° C. for 2 hours. After the reaction, the mixture was added to acetone to precipitate a hyaluronic acid derivative in which polyethylene glycol and hyaluronic acid, in which an amine group was introduced at both ends, were bonded. A precipitate (40.3 mg, yield: 73.27%) was separated from the solution, washed and dried. When water was added to the dried hyaluronic acid derivative to a concentration of 10 mg / ml, a water-soluble gel having greatly increased viscoelasticity was formed.

[실시예 11] 폴리에틸렌글리콜이 아미드 결합에 의해 히알루론산에 결합된 히알루론산 유도체 젤의 제조 - 3Example 11 Preparation of Hyaluronic Acid Derivative Gel in which Polyethylene Glycol is Bonded to Hyaluronic Acid by Amide Bonding-3

5.0 ㎎/㎖의 농도로 히알루론산 나트륨(분자량: 1,000,000 이상) 수용액 10 ㎖을 제조하였다. 또한, 실시예 6에서 제조한 아민기가 양쪽 말단에 도입된 폴리에틸렌글리콜(분자량: 5,000)을 1.0 ㎎/㎖의 농도로 수용액 5 ㎖을 제조하였다. 상기 히알루론산 나트륨 수용액을 교반시키면서, 상기 아민기가 양쪽 말단에 도입된 폴리에틸렌글리콜 수용액을 첨가하였다. 이를 교반하면서, 0.2941 ㎎/㎖의 농도로 EDC와, 0.3529 ㎎/㎖의 농도로 NHS를 각각 1 ㎖씩 천천히 첨가하였다. 첨가 후 25℃에서 2 시간 동안 반응시켰다. 반응 후 아세톤에 첨가하여, 아민기가 양쪽말단에 도입된 폴리에틸렌글리콜과 히알루론산이 결합한 히알루론산 유도체를 침전시켰다. 침전물(47.2 ㎎, 수율: 85.82%)을 용액에서 분리하여 세척 후 건조하였다. 건조된 히알루론산 유도체에 물을 첨가하여 10 ㎎/㎖의 농도로 만들었을 때, 점탄성이 크게 증가된 수용성 젤이 형성되었다.10 ml of an aqueous solution of sodium hyaluronate (molecular weight: 1,000,000 or more) was prepared at a concentration of 5.0 mg / ml. Further, 5 ml of an aqueous solution was prepared at a concentration of 1.0 mg / ml of polyethylene glycol (molecular weight: 5,000) in which the amine groups prepared in Example 6 were introduced at both ends. While stirring the aqueous sodium hyaluronate solution, an aqueous polyethylene glycol solution in which the amine groups were introduced at both ends was added. While stirring, EDC at a concentration of 0.2941 mg / ml and NHS at a concentration of 0.3529 mg / ml were slowly added 1 ml each. After the addition, the reaction was carried out at 25 ° C. for 2 hours. After the reaction, the mixture was added to acetone to precipitate a hyaluronic acid derivative in which polyethylene glycol and hyaluronic acid, in which an amine group was introduced at both ends, were bonded. A precipitate (47.2 mg, yield: 85.82%) was separated from the solution, washed and dried. When water was added to the dried hyaluronic acid derivative to a concentration of 10 mg / ml, a water-soluble gel having greatly increased viscoelasticity was formed.

[실시예 12] 플루로닉이 아미드 결합에 의해 히알루론산에 결합된 히알루론산 유도체 젤의 제조 - 1Example 12 Preparation of a Hyaluronic Acid Derivative Gel in which Pluronic is Bonded to Hyaluronic Acid by an Amide Bond-1

5.0 ㎎/㎖의 농도로 히알루론산 나트륨(분자량: 1,000,000 이상) 수용액 10 ㎖을 제조하였다. 또한, 실시예 8에서 제조한 아민기가 양쪽 말단에 도입된 플루로닉(분자량: 12,600)을 1.0 ㎎/㎖의 농도로 수용액 5 ㎖을 제조했다. 상기 히알루론산 나트륨 수용액을 교반시키면서, 상기 아민기가 양쪽 말단에 도입된 플루로닉 수용액을 첨가했다. 이를 교반하면서 0.0588 ㎎/㎖의 농도로 EDC와 0.0706 ㎎/㎖의 농도로 NHS를 각각 1 ㎖씩 천천히 첨가하였다. 첨가 후 25℃에서 2 시간 동안 반응시켰다. 반응 후 아세톤에 첨가하여, 아민기가 양쪽 말단에 도입된 플루로닉과 히알루론산이 결합한 히알루론산 유도체를 침전시켰다. 침전물을 용액에서 분리하여 세척 후 건조하였다. 건조된 히알루론산 유도체(17.9 ㎎, 수율: 32.55%)에 물을 첨가하여 10 ㎎/㎖의 농도로 만들었을 때, 점탄성이 증가된 수용성 젤이 형성되었다.10 ml of an aqueous solution of sodium hyaluronate (molecular weight: 1,000,000 or more) was prepared at a concentration of 5.0 mg / ml. Further, 5 ml of an aqueous solution was prepared at a concentration of 1.0 mg / ml of pluronic (molecular weight: 12,600) in which the amine group prepared in Example 8 was introduced at both ends. While stirring the aqueous sodium hyaluronate solution, an aqueous pluronic solution in which the amine groups were introduced at both ends was added. With stirring, 1 mL of NHS was slowly added to each of EDC and 0.0706 mg / mL at a concentration of 0.0588 mg / mL. After the addition, the reaction was carried out at 25 ° C. for 2 hours. After the reaction, the mixture was added to acetone to precipitate a hyaluronic acid derivative in which pluronic and hyaluronic acid in which an amine group was introduced at both ends were bonded. The precipitate was separated from the solution, washed and dried. When water was added to the dried hyaluronic acid derivative (17.9 mg, yield: 32.55%) to a concentration of 10 mg / ml, a water-soluble gel having increased viscoelasticity was formed.

[실시예 13] 플루로닉이 아미드 결합에 의해 히알루론산에 결합된 히알루론산 유도체 젤의 제조 - 2Example 13 Preparation of Hyaluronic Acid Derivative Gel in which Pluronic is Bonded to Hyaluronic Acid by an Amide Bond-2

5.0 ㎎/㎖의 농도로 히알루론산 나트륨(분자량: 1,000,000 이상) 수용액 10 ㎖을 제조하였다. 또한, 실시예 8에서 제조한 아민기가 양쪽 말단에 도입된 플루로닉(분자량: 12,600)을 1.0 ㎎/㎖의 농도로 수용액 5 ㎖을 제조하였다. 상기 히알루론산 나트륨 수용액을 교반하면서, 상기 아민기가 양쪽 말단에 도입된 플루로닉 (분자량: 12,600) 수용액을 첨가하였다. 이를 교반하면서, 0.1471 ㎎/㎖의 농도로 EDC와, 0.1765 ㎎/㎖의 농도로 NHS를 각각 1 ㎖씩 천천히 첨가하였다. 첨가 후 25℃에서 2 시간 동안 반응시켰다. 반응 후 아세톤에 첨가하여 아민기가 양쪽 말단에 도입된 플루로닉과 히알루론산이 결합한 히알루론산 유도체를 침전시켰다. 침전물을 용액에서 분리하여 세척 후 건조하였다. 건조된 히알루론산 유도체(22.7 ㎎, 수율: 41.27%)에 물을 첨가하여 10 ㎎/㎖의 농도로 만들었을 때, 점탄성이 크게 증가된 수용성 젤이 형성되었다.10 ml of an aqueous solution of sodium hyaluronate (molecular weight: 1,000,000 or more) was prepared at a concentration of 5.0 mg / ml. In addition, 5 ml of an aqueous solution was prepared at a concentration of 1.0 mg / ml of pluronic (molecular weight: 12,600) in which the amine group prepared in Example 8 was introduced at both ends. While stirring the aqueous sodium hyaluronate solution, an aqueous solution of Pluronic (molecular weight: 12,600) in which the amine group was introduced at both ends was added. While stirring, EDC at a concentration of 0.1471 mg / ml and NHS at a concentration of 0.1765 mg / ml were slowly added. After the addition, the reaction was carried out at 25 ° C. for 2 hours. After the reaction, it was added to acetone to precipitate a hyaluronic acid derivative in which pluronic and hyaluronic acid in which an amine group was introduced at both ends were bonded. The precipitate was separated from the solution, washed and dried. When water was added to the dried hyaluronic acid derivative (22.7 mg, yield: 41.27%) to a concentration of 10 mg / ml, a water-soluble gel having greatly increased viscoelasticity was formed.

[실시예 14] 플루로닉이 아미드 결합에 의해 히알루론산에 결합된 히알루론산 유도체 젤의 제조 - 3Example 14 Preparation of Hyaluronic Acid Derivative Gel in which Pluronic is Bonded to Hyaluronic Acid by Amide Bonding-3

5.0 ㎎/㎖의 농도로 히알루론산 나트륨(분자량: 1,000,000 이상) 10 ㎖ 수용액을 제조하였다. 또한, 실시예 8에서 제조한 아민기가 양쪽 말단에 도입된 플루로닉(분자량: 12,600)을 1.0 ㎎/㎖의 농도로 수용액 5 ㎖을 제조하였다. 상기 히알루론산 나트륨 수용액을 교반시키면서, 상기 아민기가 양쪽 말단에 도입된 플루로닉 수용액을 첨가하였다. 이를 교반하면서, 0.2941 ㎎/㎖의 농도로 EDC와,0.3529 ㎎/㎖의 농도로 NHS를 각각 1 ㎖씩 천천히 첨가하였다. 첨가 후 25℃에서 2 시간 동안 반응시켰다. 반응 후 아세톤에 첨가하여 아민기가 양쪽 말단에 도입된 플루로닉과 히알루론산이 결합한 히알루론산 유도체를 침전시켰다. 침전물을 용액에서 분리하여 세척 후 건조하였다. 건조된 히알루론산 유도체(28.3 ㎎, 수율: 51.45%)에 물을 첨가하여 10 ㎎/㎖의 농도로 만들었을 때, 점탄성이 증가된 수용성 젤이 형성되었다.A 10 ml aqueous solution of sodium hyaluronate (molecular weight: 1,000,000 or more) was prepared at a concentration of 5.0 mg / ml. In addition, 5 ml of an aqueous solution was prepared at a concentration of 1.0 mg / ml of pluronic (molecular weight: 12,600) in which the amine group prepared in Example 8 was introduced at both ends. While stirring the aqueous sodium hyaluronate solution, an aqueous pluronic solution in which the amine groups were introduced at both ends was added. While stirring, EDC at a concentration of 0.2941 mg / ml and NHS at a concentration of 0.3529 mg / ml were slowly added 1 ml each. After the addition, the reaction was carried out at 25 ° C. for 2 hours. After the reaction, it was added to acetone to precipitate a hyaluronic acid derivative in which pluronic and hyaluronic acid in which an amine group was introduced at both ends were bonded. The precipitate was separated from the solution, washed and dried. When water was added to the dried hyaluronic acid derivative (28.3 mg, yield: 51.45%) to a concentration of 10 mg / ml, a water-soluble gel having increased viscoelasticity was formed.

[실시예 15] 키토산-폴리에틸렌글리콜 결합체의 제조 - 1Example 15 Preparation of Chitosan-Polyethylene Glycol Binder-1

5.0 ㎎/㎖의 농도로 키토산(분자량: 1,600 이하, 유진바이오) 수용액 20 ㎖을 제조하였다. 또한, 실시예 1 에서 제조한 활성화된 폴리에틸렌글리콜(분자량: 2,000)을 2.353 ㎎/㎖, 4.706 ㎎/㎖ 및 7.059 ㎎/㎖의 농도로 상기 키토산 수용액에 첨가하여 서서히 교반하였다. 첨가 후 25℃에서 24 시간 동안 반응시킨 후, 미반응의 키토산과 활성화된 폴리에틸렌글리콜을 제거하기 위하여, 컷-오프(cut-off)가 6,000 정도인 투석막을 이용하여 2 일간 실온에서 투석하였다. 투석 후 질소가스로 건조하여 키토산과 폴리에틸렌글리콜의 결합체(활성화된 폴리에틸렌글리콜의 농도에 따라 각각 125.4 ㎎, 243.5 ㎎ 및 348.1 ㎎, 수율: 57.62%, 72.62% 및 76.85%)를 얻었다.20 ml of an aqueous chitosan (molecular weight: 1600 or less, Eugene Bio) solution was prepared at a concentration of 5.0 mg / ml. In addition, the activated polyethylene glycol (molecular weight: 2,000) prepared in Example 1 was added to the aqueous chitosan solution at a concentration of 2.353 mg / ml, 4.706 mg / ml, and 7.059 mg / ml, and stirred slowly. After the addition, the mixture was reacted at 25 ° C. for 24 hours, and then dialyzed at room temperature for 2 days using a dialysis membrane having a cut-off of about 6,000 to remove unreacted chitosan and activated polyethylene glycol. After dialysis, the mixture was dried with nitrogen gas to obtain a combination of chitosan and polyethylene glycol (125.4 mg, 243.5 mg and 348.1 mg, yield: 57.62%, 72.62% and 76.85%, respectively, depending on the concentration of activated polyethylene glycol).

[실시예 16] 키토산-폴리에틸렌글리콜 결합체의 제조 - 2Example 16 Preparation of Chitosan-Polyethylene Glycol Binder-2

5.0 ㎎/㎖의 농도로 키토산(분자량 : 1,600 이하, 유진바이오) 수용액 20 ㎖을 제조하였다. 또한, 실시예 2에서 제조한 활성화된 폴리에틸렌글리콜(분자량: 5,000)을 각각 5.8825 ㎎/㎖, 11.765 ㎎/㎖ 및 17.6475 ㎎/㎖의 농도로 상기 키토산 수용액에 서서히 첨가하면서 교반하였다. 첨가 후 25℃에서 24 시간 동안 반응시킨 뒤, 미반응의 키토산과 활성화된 폴리에틸렌글리콜을 제거하기 위하여, 컷-오프가 12,000 정도인 투석막을 이용하여 2 일간 실온에서 투석하였다. 투석 후 질소가스로 건조하여, 키토산과 폴리에틸렌글리콜의 결합체(활성화된 폴리에틸렌글리콜의 농도에 따라 각각 118.28 ㎎, 218.5 ㎎ 및 329.4 ㎎, 수율: 54.3%, 62.18% 및 72.72%)를 얻었다.20 ml of an aqueous chitosan (molecular weight: 1,600 or less, Eugene Bio) solution was prepared at a concentration of 5.0 mg / ml. In addition, the activated polyethylene glycol (molecular weight: 5,000) prepared in Example 2 was stirred while slowly adding to the aqueous chitosan solution at concentrations of 5.8825 mg / ml, 11.765 mg / ml and 17.6475 mg / ml, respectively. After the addition, the mixture was reacted at 25 ° C. for 24 hours, and then dialyzed at room temperature for 2 days using a dialysis membrane having a cut-off of about 12,000 to remove unreacted chitosan and activated polyethylene glycol. After dialysis, the mixture was dried with nitrogen gas to obtain a combination of chitosan and polyethylene glycol (118.28 mg, 218.5 mg and 329.4 mg, yield: 54.3%, 62.18%, and 72.72%, respectively, depending on the concentration of activated polyethylene glycol).

[실시예 17] 키토산-폴리에틸렌글리콜 결합체의 제조 - 3Example 17 Preparation of Chitosan-Polyethylene Glycol Binder-3

5.0 ㎎/㎖의 농도로 키토산(분자량: 1,600 이하, 유진바이오) 수용액 20 ㎖을 제조하였다. 또한, 실시예 3에서 제조한 활성화된 폴리에틸렌글리콜(분자량: 8,000)을 각각 9.412 ㎎/㎖, 18.824 ㎎/㎖ 및 28.236 ㎎/㎖의 농도로 상기 키토산 수용에 첨가하여 서서히 교반하였다. 첨가 후 25℃에서 24 시간 동안 반응시킨 뒤, 미반응의 키토산과 활성화된 폴리에틸렌글리콜을 제거하기 위하여, 컷-오프가 12,000∼14,000 정도인 투석막을 이용하여 2 일간 실온에서 투석하였다. 투석 후 질소가스로 건조하여 키토산과 폴리에틸렌글리콜의 결합체(활성화된 폴리에틸렌글리콜의 농도에 따라 각각 110.34 ㎎, 204.12 ㎎ 및 301.2 ㎎, 수율: 50.69%, 60.88% 및 66.50%)를 얻었다.20 ml of an aqueous chitosan (molecular weight: 1600 or less, Eugene Bio) solution was prepared at a concentration of 5.0 mg / ml. In addition, the activated polyethylene glycol (molecular weight: 8,000) prepared in Example 3 was added to the chitosan solution at a concentration of 9.412 mg / ml, 18.824 mg / ml and 28.236 mg / ml, respectively, and stirred slowly. After the addition, the mixture was reacted at 25 ° C. for 24 hours, and then dialyzed at room temperature for 2 days using a dialysis membrane having a cut-off of about 12,000 to 14,000 to remove unreacted chitosan and activated polyethylene glycol. After dialysis, the mixture was dried with nitrogen gas to obtain a combination of chitosan and polyethylene glycol (110.34 mg, 204.12 mg and 301.2 mg, yield: 50.69%, 60.88% and 66.50%, respectively, depending on the concentration of activated polyethylene glycol).

[실시예 18] 키토산-플루로닉 결합체의 제조Example 18 Preparation of Chitosan-Pluronic Conjugates

5.0 ㎎/㎖의 농도로 키토산(분자량: 1,600 이하) 수용액 20 ㎖을 제조하였다. 또한, 실시예 4에서 제조한 활성화된 플루로닉 F127(분자량: 12,600)을 각각 5 ㎎/㎖, 10 ㎎/㎖, 15 ㎎/㎖ 및 20 ㎎/㎖의 농도로 상기 키토산 수용액에 첨가하여 서서히 교반하였다. 첨가 후 25℃에서 24 시간 동안 반응시킨 후, 미반응의 키토산과 활성화된 플루로닉을 제거하기 위하여, 컷-오프가 12,000 ∼ 14,000 정도인 투석막을 이용하여 2 일간 실온에서 투석하였다. 투석 후 질소가스로 건조하여 키토산-플루로닉 결합체(활성화된 플루로닉 F127의 농도에 따라 각각 188.5 ㎎, 136.4 ㎎, 248 ㎎ 및 339 ㎎, 수율: 47.125%, 45.47%, 62% 및 67.8%)를 얻었다.20 ml of an aqueous chitosan (molecular weight: 1,600 or less) solution was prepared at a concentration of 5.0 mg / ml. In addition, the activated Pluronic F127 (molecular weight: 12,600) prepared in Example 4 was slowly added to the aqueous chitosan solution at a concentration of 5 mg / ml, 10 mg / ml, 15 mg / ml and 20 mg / ml, respectively. Stirred. After the addition, the reaction was performed at 25 ° C. for 24 hours, and then dialyzed at room temperature for 2 days using a dialysis membrane having a cut-off of about 12,000 to 14,000 to remove unreacted chitosan and activated pluronic. After dialysis, the mixture was dried with nitrogen gas and subjected to chitosan-pluronic conjugate (188.5 mg, 136.4 mg, 248 mg and 339 mg, respectively, yield: 47.125%, 45.47%, 62% and 67.8% depending on the concentration of activated Pluronic F127). )

[실시예 19] 폴리에틸렌글리콜이 키토산을 경유하여 히알루론산에 결합된 히알루론산 유도체 젤의 제조 - 1Example 19 Preparation of a Hyaluronic Acid Derivative Gel in which Polyethylene Glycol is bound to Hyaluronic Acid via Chitosan-1

5.0 ㎎/㎖의 농도로 히알루론산 나트륨(분자량: 1,000,000 이상, LG Life Sciences Ltd.) 수용액 10 ㎖을 제조하였다. 또한, 실시예 16에서 제조한 키토산(분자량: 1,600 이하)과 폴리에틸렌글리콜(분자량: 5,000)의 결합체(활성화된 폴리에틸렌글리콜의 농도가 5.8825 ㎎/㎖, 11.765 ㎎/㎖ 및 17.6475 ㎎/㎖인 것으로부터 제조된 결합체)를 1.0 ㎎/㎖의 농도로 수용액 5 ㎖을 제조하였다. 상기 히알루론산 나트륨 수용액을 교반시키면서, 상기 키토산-폴리에틸렌글리콜 결합체 수용액을 첨가하였다. 이를 교반하면서, 0.0588 ㎎/㎖의 농도로 EDC와, 0.0706 ㎎/㎖의 농도로 NHS를 각각 1 ㎖씩 천천히 첨가하였다. 첨가 후 25℃에서 2 시간 동안 반응시켰다. 반응 후 아세톤에 첨가하여, 키토산과 폴리에틸렌글리콜의 결합체와 히알루론산이 결합한 히알루론산 유도체를 침전시켰다. 침전물을 용액에서 분리하여 세척 후 건조하였다. 건조된 히알루론산 유도체(사용된 키토산-폴리에틸렌글리콜 결합제 중 활성화된 폴리에틸렌글리콜의 농도에 따라 각각 22.3 ㎎, 32.6 ㎎ 및 14.4 ㎎, 수율: 41.82%, 59.27% 및 26.18%)에 물을 첨가하여 10 ㎎/㎖의 농도로 만들었을 때, 점탄성이 증가된 수용성 젤이 형성되었다.10 mL of an aqueous solution of sodium hyaluronate (molecular weight: 1,000,000, LG Life Sciences Ltd.) was prepared at a concentration of 5.0 mg / mL. In addition, a combination of chitosan (molecular weight: 1,600 or less) and polyethylene glycol (molecular weight: 5,000) prepared in Example 16 (concentrations of activated polyethylene glycol were 5.8825 mg / ml, 11.765 mg / ml, and 17.6475 mg / ml). 5 ml of an aqueous solution was prepared at a concentration of 1.0 mg / ml. The chitosan-polyethylene glycol conjugate aqueous solution was added while stirring the said sodium hyaluronate aqueous solution. While stirring, EDC at a concentration of 0.0588 mg / ml and NHS at a concentration of 0.0706 mg / ml were slowly added, respectively. After the addition, the reaction was carried out at 25 ° C. for 2 hours. After the reaction, the mixture was added to acetone to precipitate a hyaluronic acid derivative in which a combination of chitosan and polyethylene glycol and hyaluronic acid were bonded. The precipitate was separated from the solution, washed and dried. 10 mg of dried hyaluronic acid derivative (22.3 mg, 32.6 mg and 14.4 mg, yield: 41.82%, 59.27% and 26.18%, respectively) depending on the concentration of activated polyethylene glycol in the chitosan-polyethylene glycol binder used When made at a concentration of / ml, water-soluble gels with increased viscoelasticity were formed.

[실시예 20] 폴리에틸렌글리콜이 키토산을 경유하여 히알루론산에 결합된 히알루론산 유도체 젤의 제조 - 2Example 20 Preparation of a Hyaluronic Acid Derivative Gel in which Polyethylene Glycol is bound to Hyaluronic Acid via Chitosan-2

5.0 ㎎/㎖의 농도로 히알루론산 나트륨(분자량: 1,000,000 이상, LG Life Sciences Ltd.) 수용액 10 ㎖을 제조하였다. 또한, 실시예 16에서 제조한 키토산 (분자량: 1,600 이하)과 폴리에틸렌글리콜(분자량: 5,000)의 결합체(활성화된 폴리에틸렌글리콜의 농도가 5.8825 ㎎/㎖, 11.765 ㎎/㎖ 및 17.6475 ㎎/㎖인 것으로부터 제조된 결합체)를 1.0 ㎎/㎖의 농도로 수용액 5 ㎖을 제조하였다. 상기 히알루론산 나트륨 수용액을 교반시키면서, 상기 키토산-폴리에틸렌글리콜 결합체 수용액을 첨가하였다. 이를 교반하면서, 0.1471 ㎎/㎖의 농도로 EDC와, 0.1765 ㎎/㎖의 농도로 NHS를 각각 1 ㎖씩 천천히 첨가하였다. 첨가 후 25℃에서 2 시간 동안 반응시켰다. 반응 후 아세톤에 첨가하여, 키토산-폴리에틸렌글리콜 결합체와 히알루론산이 결합한 히알루론산 유도체를 침전시켰다. 침전물을 용액에서 분리하여 세척 후 건조하였다. 건조된 히알루론산 유도체(사용된 키토산-폴리에틸렌글리콜 결합체 중 활성화된 폴리에틸렌글리콜의 농도에 따라 각각 24.4 ㎎, 33.7 ㎎ 및 30.8 ㎎, 수율: 44.36%, 61.27% 및 56%)에 물을 첨가하여 10 ㎎/㎖의 농도로 만들었을 때, 점탄성이 크게 증가된 수용성 젤이 형성되었다.10 mL of an aqueous solution of sodium hyaluronate (molecular weight: 1,000,000, LG Life Sciences Ltd.) was prepared at a concentration of 5.0 mg / mL. In addition, the combination of chitosan (molecular weight: 1600 or less) and polyethylene glycol (molecular weight: 5,000) prepared in Example 16 (concentrations of activated polyethylene glycol were 5.8825 mg / ml, 11.765 mg / ml, and 17.6475 mg / ml). 5 ml of an aqueous solution was prepared at a concentration of 1.0 mg / ml. The chitosan-polyethylene glycol conjugate aqueous solution was added while stirring the said sodium hyaluronate aqueous solution. While stirring, EDC at a concentration of 0.1471 mg / ml and NHS at a concentration of 0.1765 mg / ml were slowly added. After the addition, the reaction was carried out at 25 ° C. for 2 hours. After the reaction, the mixture was added to acetone to precipitate a hyaluronic acid derivative in which the chitosan-polyethylene glycol conjugate and hyaluronic acid were bonded. The precipitate was separated from the solution, washed and dried. 10 mg of dried hyaluronic acid derivative (24.4 mg, 33.7 mg and 30.8 mg, yield: 44.36%, 61.27% and 56%, respectively) depending on the concentration of activated polyethylene glycol in the chitosan-polyethylene glycol conjugate used When made at a concentration of / ml, a water-soluble gel was formed which greatly increased viscoelasticity.

[실시예 21] 폴리에틸렌글리콜이 키토산을 경유하여 히알루론산에 결합된 히알루론산 유도체 젤의 제조 - 3Example 21 Preparation of a Hyaluronic Acid Derivative Gel in which Polyethylene Glycol is bound to Hyaluronic Acid via Chitosan-3

5.0 ㎎/㎖의 농도로 히알루론산 나트륨(분자량: 1,000,000 이상, LG Life Sciences Ltd.) 수용액 10 ㎖을 제조하였다. 또한, 실시예 16에서 제조한 키토산 (분자량: 1,600 이하)과 폴리에틸렌글리콜(분자량: 5,000)의 결합체(활성화된 폴리에틸렌글리콜의 농도가 5.8825 ㎎/㎖, 11.765 ㎎/㎖ 및 17.6475 ㎎/㎖인 것으로부터 제조된 결합체)를 1.0 ㎎/㎖의 농도로 수용액 5 ㎖을 제조하였다. 상기 히알루론산 나트륨 수용액을 교반시키면서, 상기 키토산-폴리에틸렌글리콜 결합체 수용액을 첨가하였다. 이를 교반하면서, 0.2941 ㎎/㎖의 농도로 EDC와, 0.3529 ㎎/㎖의 농도로 NHS를 각각 1 ㎖씩 천천히 첨가하였다. 첨가 후 25℃에서 2 시간 동안 반응시켰다. 반응 후 아세톤에 첨가하여, 키토산-폴리에틸렌글리콜 결합체와 히알루론산이 결합한 히알루론산 유도체를 침전시켰다. 침전물을 용액에서 분리하여 세척 후 건조하였다. 건조된 히알루론산 유도체(사용된 키토산-폴리에틸렌글리콜 결합체 중 활성화된 폴리에틸렌글리콜의 농도에 따라 각각 26.5 ㎎, 34.1 ㎎ 및 44.8 ㎎, 수율: 48.18%, 62% 및 81.45%)에 물을 첨가하여 10 ㎎/㎖의 농도로 만들었을 때, 점탄성이 크게 증가된 수용성 젤이 형성되었다.10 mL of an aqueous solution of sodium hyaluronate (molecular weight: 1,000,000, LG Life Sciences Ltd.) was prepared at a concentration of 5.0 mg / mL. In addition, the combination of chitosan (molecular weight: 1600 or less) and polyethylene glycol (molecular weight: 5,000) prepared in Example 16 (concentrations of activated polyethylene glycol were 5.8825 mg / ml, 11.765 mg / ml, and 17.6475 mg / ml). 5 ml of an aqueous solution was prepared at a concentration of 1.0 mg / ml. The chitosan-polyethylene glycol conjugate aqueous solution was added while stirring the said sodium hyaluronate aqueous solution. While stirring, EDC at a concentration of 0.2941 mg / ml and NHS at a concentration of 0.3529 mg / ml were slowly added 1 ml each. After the addition, the reaction was carried out at 25 ° C. for 2 hours. After the reaction, the mixture was added to acetone to precipitate a hyaluronic acid derivative in which the chitosan-polyethylene glycol conjugate and hyaluronic acid were bonded. The precipitate was separated from the solution, washed and dried. 10 mg of dried hyaluronic acid derivative (26.5 mg, 34.1 mg and 44.8 mg, respectively, yield: 48.18%, 62% and 81.45%) depending on the concentration of activated polyethylene glycol in the chitosan-polyethylene glycol conjugate used When made at a concentration of / ml, a water-soluble gel was formed which greatly increased viscoelasticity.

[실시예 22] 폴리에틸렌글리콜이 키토산을 경유하여 히알루론산에 결합된 히알루론산 유도체 필름의 제조[Example 22] Preparation of a hyaluronic acid derivative film in which polyethylene glycol is bound to hyaluronic acid via chitosan

5.0 ㎎/㎖의 농도로 키토산(분자량: 10,000 이상)-염산 용액 20 ㎖를 제조하였다. 또한, 실시예 2에서 제조한 활성화된 폴리에틸렌글리콜(분자량: 5,000)을 각각 5.8825 ㎎/㎖, 11.765 ㎎/㎖ 및 17.6475 ㎎/㎖의 농도로 상기 키토산-염산 용액에 첨가하여 서서히 교반하였다. 첨가 후 25℃에서 24 시간 동안 반응시킨 후, 미반응의 키토산과 활성화된 폴리에틸렌글리콜을 제거하기 위하여, 컷-오프가 12,000 정도인 투석막을 이용하여 2 일간 실온에서 투석하였다. 투석 후 질소가스로 건조하여 키토산-폴리에틸렌글리콜 결합체(활성화된 폴리에틸렌글리콜의 농도에 따라 각각 187.3 ㎎, 310.1 ㎎ 및 391.8 ㎎, 수율: 86.06%, 92.48% 및 86.50%)를 얻었다.20 ml of a chitosan (molecular weight: 10,000 or more) -hydrochloric acid solution was prepared at a concentration of 5.0 mg / ml. In addition, the activated polyethylene glycol (molecular weight: 5,000) prepared in Example 2 was added to the chitosan-hydrochloric acid solution at a concentration of 5.8825 mg / ml, 11.765 mg / ml, and 17.6475 mg / ml, respectively, and stirred slowly. After the addition, the mixture was reacted at 25 ° C. for 24 hours, and then dialyzed at room temperature for 2 days using a dialysis membrane having a cut-off of about 12,000 to remove unreacted chitosan and activated polyethylene glycol. After dialysis, the mixture was dried with nitrogen gas to obtain a chitosan-polyethylene glycol conjugate (187.3 mg, 310.1 mg and 391.8 mg, yield: 86.06%, 92.48% and 86.50%, respectively, depending on the concentration of activated polyethylene glycol).

또한, 10.0 ㎎/㎖의 농도로 히알루론산 나트륨(분자량: 200,000, LG Life Sciences Ltd.) 수용액 20 ㎖을 제조하였다. 위에서 제조한 키토산-폴리에틸렌글리콜 결합체를 2.5 ㎎/㎖의 농도로 용액 20 ㎖을 제조하였다. 상기 히알루론산 나트륨 수용액을 교반시키면서, 상기 키토산-폴리에틸렌글리콜 결합체 용액을 첨가하였다. 이를 교반하면서, 1.25 ㎎/㎖의 농도로 EDC와, 1.5 ㎎/㎖의 농도로 NHS를 각각 첨가하였다. 첨가 후 25℃에서 4 시간 동안 반응시켰다. 반응 후 컷-오프 12,000∼14,000의 투석막을 이용하여 2 일간 투석한 후, 동결건조를 하여 생성물(사용된 키토산-폴리에틸렌글리콜 결합체 중 활성화된 폴리에틸렌글리콜의 농도에따라 각각 141.6 ㎎, 137.4 ㎎ 및 138.75 ㎎, 수율: 56.64%, 54.96% 및 55.50%)을 얻었다.In addition, 20 ml of an aqueous solution of sodium hyaluronate (molecular weight: 200,000, LG Life Sciences Ltd.) was prepared at a concentration of 10.0 mg / ml. 20 ml of the chitosan-polyethylene glycol conjugate prepared above at a concentration of 2.5 mg / ml was prepared. The chitosan-polyethylene glycol conjugate solution was added while stirring the aqueous sodium hyaluronate solution. While stirring, EDC at a concentration of 1.25 mg / ml and NHS at a concentration of 1.5 mg / ml were added, respectively. After the addition, the reaction was carried out at 25 ° C. for 4 hours. After the reaction, dialysis was performed using a cut-off 12,000 to 14,000 dialysis membrane for 2 days, followed by lyophilization to obtain the product (141.6 mg, 137.4 mg and 138.75 mg, respectively, depending on the concentration of activated polyethylene glycol in the chitosan-polyethylene glycol conjugate used). , Yield: 56.64%, 54.96% and 55.50%).

얻어진 히알루론산 유도체를 2% 용액으로 제조하여 패트리디쉬에 넣고 5 일간 자연 건조시켜 필름을 제조하였다. 제조된 필름을 다시 에탄올 : 물 비율이 8 : 2인 혼합 용매에 넣고, 2.0 ㎎/㎖의 농도로 EDC와, 2.0 ㎎/㎖의 농도로 NHS를 각각 첨가하여 2차 가교시켰다. 하기 표 1에는 제조된 필름의 용해도과 팽윤도가 개시되어 있다.The obtained hyaluronic acid derivative was prepared in a 2% solution, put in a petri dish and naturally dried for 5 days to prepare a film. The prepared film was put again into a mixed solvent having an ethanol: water ratio of 8: 2, and secondary crosslinked by adding EDC at a concentration of 2.0 mg / ml and NHS at a concentration of 2.0 mg / ml, respectively. In Table 1, the solubility and swelling degree of the produced film are disclosed.

HA(분자량: 20만)-키토산/PEG(MW=5,000)* HA (molecular weight: 200,000) -chitosan / PEG (MW = 5,000) * HA(분자량: 20만)-키토산/PEG(MW=5,000)** HA (molecular weight: 200,000) -chitosan / PEG (MW = 5,000) ** 필름film 2차 가교에탄올:물 = 8:2Secondary crosslinked ethanol: water = 8: 2 필름film 2차 가교에탄올:물 = 8:2Secondary crosslinked ethanol: water = 8: 2 용해도Solubility 1주후 일부분해Partly after a week 2주후 안정Stable after 2 weeks 1주후 일부분해Partly after a week 2주후 안정Stable after 2 weeks 팽윤도Swelling degree 6.536.53 4.1674.167 7.647.64 4.7724.772 수분 함량Moisture content 84.69%84.69% 76%76% 86.92%86.92% 79%79%

* [키토산]:[PEG(MW=5,000)] = 10:1* [Chitosan]: [PEG (MW = 5,000)] = 10: 1

** [키토산]:[PEG(MW=5,000)] = 20:1** [chitosan]: [PEG (MW = 5,000)] = 20: 1

[실시예 23] 폴리에틸렌글리콜이 키토산을 경유하여 히알루론산에 결합된 히알루론산 유도체 실의 제조Example 23 Preparation of a Hyaluronic Acid Derivative Yarn in which Polyethylene Glycol is bound to Hyaluronic Acid via Chitosan

5.0 ㎎/㎖의 농도로 히알루론산 나트륨(분자량: 200,000) 20 ㎖ 수용액을 제조하였다. 또한, 실시예 16에서 제조한 키토산(분자량: 1,600 이하)과 폴리에틸렌글리콜(분자량: 5,000)의 결합체(활성화된 폴리에틸렌글리콜의 농도가 5.8825 ㎎/㎖, 11.765 ㎎/㎖ 및 17.6475 ㎎/㎖인 것으로부터 제조된 결합체)를 5.0 ㎎/㎖의농도로 용액 5 ㎖을 제조하였다. 상기 히알루론산 나트륨 수용액을 교반시키면서, 상기 키토산-폴리에틸렌글리콜 결합체 용액을 첨가하였다. 교반을 하면서, 1.0 ㎎/㎖의 농도로 EDC와, 1.2 ㎎/㎖의 농도로 NHS를 각각 첨가하였다. 첨가 후 25℃에서 4 시간 동안 반응시켰다. 반응 후 컷-오프 12,000 ∼ 14,000의 투석막을 이용하여 2 일간 투석한 뒤, 동결건조하여 생성물(사용된 키토산-폴리에틸렌글리콜 결합체 중 활성화된 폴리에틸렌글리콜의 농도에 따라 각각 121 ㎎, 115.6 ㎎ 및 114.25 ㎎, 수율: 96.8%, 92.48% 및 91.40%)을 얻었다.A 20 ml aqueous solution of sodium hyaluronate (molecular weight: 200,000) was prepared at a concentration of 5.0 mg / ml. Further, the combination of chitosan (molecular weight: 1,600 or less) and polyethylene glycol (molecular weight: 5,000) prepared in Example 16 (concentrations of activated polyethylene glycol were 5.8825 mg / ml, 11.765 mg / ml, and 17.6475 mg / ml). 5 ml of the solution was prepared at a concentration of 5.0 mg / ml. The chitosan-polyethylene glycol conjugate solution was added while stirring the aqueous sodium hyaluronate solution. While stirring, EDC at a concentration of 1.0 mg / ml and NHS at a concentration of 1.2 mg / ml were added, respectively. After the addition, the reaction was carried out at 25 ° C. for 4 hours. After the reaction, dialysis was performed using a cut-off 12,000-14,000 dialysis membrane for 2 days, followed by lyophilization, and the product (121 mg, 115.6 mg and 114.25 mg, respectively, depending on the concentration of activated polyethylene glycol in the chitosan-polyethylene glycol conjugate used, Yield: 96.8%, 92.48% and 91.40%).

얻어진 히알루론산 유도체를 10% 용액으로 제조하여, 에탄올과 아세톤의 혼합 용매에 23G의 바늘이 장착된 주사기로 방사하여 실을 제조하였다. 제조된 실을 1 일 정도 충분히 응고시킨 후, 다시 에탄올 : 물 비율이 8 : 2인 용매에 넣고, 2.0 ㎎/㎖의 농도로 EDC와, 2.0 ㎎/㎖의 농도로 NHS를 각각 첨가하여 2차 가교시켰다. 최종적으로 제조된 실은 미세하고 균일한 굵기와 부드러운 표면을 가지고 있었다.The obtained hyaluronic acid derivative was prepared as a 10% solution, and a yarn was prepared by spinning with a syringe equipped with a 23G needle in a mixed solvent of ethanol and acetone. After the prepared yarn was sufficiently solidified for about 1 day, it was placed in a solvent having an ethanol: water ratio of 8: 2, and EDC was added at a concentration of 2.0 mg / ml, and NHS was added at a concentration of 2.0 mg / ml, respectively. Crosslinked. Finally, the yarn produced had a fine uniform thickness and a smooth surface.

[실시예 24] 플루로닉이 키토산을 경유하여 히알루론산에 결합된 히알루론산 유도체 젤의 제조 - 1Example 24 Preparation of Hyaluronic Acid Derivative Gel Pluronic to Hyaluronic Acid Via Chitosan-1

5.0 ㎎/㎖의 농도로 히알루론산 나트륨(분자량: 1,000,000 이상) 수용액 10 ㎖을 제조하였다. 또한, 실시예 18에서 제조한 키토산(분자량: 1,600 이하)과 플루로닉(분자량: 12,600)의 결합체(활성화된 플루로닉 농도가 5 ㎎/㎖, 10 ㎎/㎖, 15 ㎎/㎖ 및 20 ㎎/㎖인 것으로부터 제조된 결합체)를 1.0 ㎎/㎖의 농도로 수용액5 ㎖을 제조하였다. 상기 히알루론산 나트륨 수용액을 교반시키면서, 상기 키토산-플루로닉 결합체 수용액을 첨가하였다. 이를 교반하면서, 0.0588 ㎎/㎖의 농도로 EDC와, 0.0706 ㎎/㎖의 농도로 NHS를 각각 1 ㎖씩 천천히 첨가하였다. 첨가 후 25℃에서 2 시간 동안 반응시켰다. 반응물을 아세톤에 첨가하여 키토산-플루로닉 결합체와 히알루론산이 결합한 히알루론산 유도체를 침전시켰다. 침전물을 용액에서 분리하여 세척한 후 건조하였다. 건조된 히알루론산 유도체(사용된 키토산-플루로닉 결합체 중 활성화된 플루로닉의 농도에 따라 각각 29.7 ㎎, 25.8 ㎎, 26.8 ㎎ 및 24 ㎎, 수율: 54%, 46.91%, 48.73% 및 41.82%)에 물을 첨가하여 10 ㎎/㎖의 농도로 만들었을 때, 점탄성이 증가된 수용성 젤이 형성되었다.10 ml of an aqueous solution of sodium hyaluronate (molecular weight: 1,000,000 or more) was prepared at a concentration of 5.0 mg / ml. In addition, a combination of chitosan (molecular weight: 1,600 or less) and pluronic (molecular weight: 12,600) prepared in Example 18 (activated pluronic concentrations of 5 mg / ml, 10 mg / ml, 15 mg / ml and 20 5 ml of an aqueous solution was prepared at a concentration of 1.0 mg / ml. While the aqueous sodium hyaluronate solution was stirred, the aqueous chitosan-pluronic binder solution was added. While stirring, EDC at a concentration of 0.0588 mg / ml and NHS at a concentration of 0.0706 mg / ml were slowly added, respectively. After the addition, the reaction was carried out at 25 ° C. for 2 hours. The reaction was added to acetone to precipitate a hyaluronic acid derivative in which the chitosan-pluronic conjugate and hyaluronic acid were bound. The precipitate was separated from the solution, washed and dried. Dried hyaluronic acid derivatives (29.7 mg, 25.8 mg, 26.8 mg and 24 mg, respectively, yield: 54%, 46.91%, 48.73% and 41.82%, depending on the concentration of activated pluronic in the chitosan-pluronic conjugate used) When water was added to) to a concentration of 10 mg / ml, a water-soluble gel with increased viscoelasticity was formed.

[실시예 25] 플루로닉이 키토산을 경유하여 히알루론산에 결합된 히알루론산 유도체 젤의 제조 - 2Example 25 Preparation of Hyaluronic Acid Derivative Gel with Pluronic Acid bound to Hyaluronic Acid Via Chitosan-2

5.0 ㎎/㎖의 농도로 히알루론산 나트륨(분자량: 1,000,000 이상) 수용액 10 ㎖을 제조하였다. 또한, 실시예 18에서 제조한 키토산(분자량: 1,600 이하)과 플루로닉(분자량: 12,600)의 결합체(활성화된 플루로닉 농도가 5 ㎎/㎖, 10 ㎎/㎖, 15 ㎎/㎖ 및 20 ㎎/㎖인 것으로부터 제조된 결합체)를 1.0 ㎎/㎖의 농도로 수용액 5 ㎖을 제조하였다. 상기 히알루론산 나트륨 수용액을 교반시키면서, 상기 키토산-플루로닉 결합체 수용액을 첨가하였다. 이를 교반하면서, 0.1471 ㎎/㎖의 농도로 EDC와, 0.1765 ㎎/㎖의 농도로 NHS를 각각 1 ㎖씩 천천히 첨가하였다. 첨가 후 25℃에서 2 시간 동안 반응시켰다. 반응물을 아세톤에 첨가하여, 키토산-플루로닉 결합체와 히알루론산이 결합한 히알루론산 유도체를 침전시켰다. 침전물을 용액에서 분리하여 세척한 후 건조하였다. 건조된 히알루론산 유도체(사용된 키토산-플루로닉 결합체 중 활성화된 플루로닉의 농도에 따라 각각 32.6 ㎎, 26.2 ㎎, 28.9 ㎎ 및 30 ㎎, 수율: 59.27%, 47.64%, 52.55% 및 54.54%)에 물을 첨가하여 10 ㎎/㎖의 농도로 만들었을 때, 점탄성이 크게 증가된 수용성 젤이 형성되었다.10 ml of an aqueous solution of sodium hyaluronate (molecular weight: 1,000,000 or more) was prepared at a concentration of 5.0 mg / ml. In addition, a combination of chitosan (molecular weight: 1,600 or less) and pluronic (molecular weight: 12,600) prepared in Example 18 (activated pluronic concentrations of 5 mg / ml, 10 mg / ml, 15 mg / ml and 20 5 ml of an aqueous solution was prepared at a concentration of 1.0 mg / ml. While the aqueous sodium hyaluronate solution was stirred, the aqueous chitosan-pluronic binder solution was added. While stirring, EDC at a concentration of 0.1471 mg / ml and NHS at a concentration of 0.1765 mg / ml were slowly added. After the addition, the reaction was carried out at 25 ° C. for 2 hours. The reaction was added to acetone to precipitate a hyaluronic acid derivative in which the chitosan-pluronic conjugate and hyaluronic acid were bound. The precipitate was separated from the solution, washed and dried. Dried hyaluronic acid derivatives (32.6 mg, 26.2 mg, 28.9 mg and 30 mg, respectively, yield: 59.27%, 47.64%, 52.55% and 54.54%, depending on the concentration of activated pluronic in the chitosan-pluronic conjugate used) When water was added to) to make a concentration of 10 mg / ml, a water-soluble gel with a large increase in viscoelasticity was formed.

[실시예 26] 플루로닉이 키토산을 경유하여 히알루론산에 결합된 히알루론산 유도체 젤의 제조 - 3Example 26 Preparation of a Hyaluronic Acid Derivative Gel Pluronic Bound to Hyaluronic Acid Via Chitosan-3

5.0 ㎎/㎖의 농도로 히알루론산 나트륨(분자량: 1,000,000 이상) 수용액 10 ㎖을 제조하였다. 또한, 실시예 18에서 제조한 키토산(분자량: 1,600 이하)과 플루로닉(분자량: 12,600)의 결합체(활성화된 플루로닉 농도가 5 ㎎/㎖, 10 ㎎/㎖, 15 ㎎/㎖ 및 20 ㎎/㎖인 것으로부터 제조된 결합체)를 1.0 ㎎/㎖의 농도로 수용액 5 ㎖을 제조하였다. 상기 히알루론산 나트륨 수용액을 교반시키면서, 상기 키토산-플루로닉 결합체 수용액을 첨가하였다. 이를 교반하면서, 0.2941 ㎎/㎖의 농도로 EDC와, 0.3529 ㎎/㎖의 농도로 NHS를 각각 1 ㎖씩 천천히 첨가하였다. 첨가 후 25℃에서 2 시간 동안 반응시켰다. 반응물을 아세톤에 첨가하여, 키토산-플루로닉 결합체와 히알루론산이 결합한 히알루론산 유도체를 침전시켰다. 침전물을 용액에서 분리하여 세척 후 건조하였다. 건조된 히알루론산 유도체(사용된 키토산-플루로닉 결합체 중 활성화된 플루로닉의 농도에 따라 각각 39.4 ㎎, 30 ㎎, 32.5 ㎎ 및 33.9 ㎎, 수율: 71.64%, 54.55%, 59.10% 및 61.64%)에 물을 첨가하여 10 ㎎/㎖의 농도로 만들었을 때, 점탄성이 크게 증가된 수용성 젤이 형성되었다.10 ml of an aqueous solution of sodium hyaluronate (molecular weight: 1,000,000 or more) was prepared at a concentration of 5.0 mg / ml. In addition, a combination of chitosan (molecular weight: 1,600 or less) and pluronic (molecular weight: 12,600) prepared in Example 18 (activated pluronic concentrations of 5 mg / ml, 10 mg / ml, 15 mg / ml and 20 5 ml of an aqueous solution was prepared at a concentration of 1.0 mg / ml. While the aqueous sodium hyaluronate solution was stirred, the aqueous chitosan-pluronic binder solution was added. While stirring, EDC at a concentration of 0.2941 mg / ml and NHS at a concentration of 0.3529 mg / ml were slowly added 1 ml each. After the addition, the reaction was carried out at 25 ° C. for 2 hours. The reaction was added to acetone to precipitate a hyaluronic acid derivative in which the chitosan-pluronic conjugate and hyaluronic acid were bound. The precipitate was separated from the solution, washed and dried. Dried hyaluronic acid derivatives (39.4 mg, 30 mg, 32.5 mg and 33.9 mg, respectively, yield: 71.64%, 54.55%, 59.10% and 61.64%, depending on the concentration of activated pluronic in the chitosan-pluronic conjugate used) When water was added to) to make a concentration of 10 mg / ml, a water-soluble gel with a large increase in viscoelasticity was formed.

[실험예 1] 히알루론산 유도체의 점탄성 측정Experimental Example 1 Measurement of Viscoelasticity of Hyaluronic Acid Derivatives

실시예 11, 14, 21 및 26에서 제조한 히알루론산 유도체와 히알루론산을 10 ㎎/㎖의 농도로 5 ㎖을 제조한 후, 유변학적 특성을 확인하기 위하여 레오미터(rheometer)로 측정하였다. 0.02 ~ 1 Hz의 진동수에서 측정한 복합 점도(complex viscosity)가 도 1에 개시되어 있다. 히알루론산에 비해, 본 발명에 따른 히알루론산 유도체들의 점도가 향상되고 있음을 확인할 수 있다.Hyaluronic acid derivatives prepared in Examples 11, 14, 21 and 26 and 5 ml of hyaluronic acid were prepared at a concentration of 10 mg / ml, and then measured by a rheometer to check rheological properties. The complex viscosity measured at a frequency of 0.02 to 1 Hz is shown in FIG. 1. Compared with hyaluronic acid, it can be seen that the viscosity of the hyaluronic acid derivatives according to the present invention is improved.

이상 설명한 바와 같이, 본 발명의 히알루론산 유도체는 우수한 생체적합성과 매우 높은 점탄성을 가지므로, 젤, 필름, 실 등의 형태로서 유착방지용 젤, 주름살 치료용 삽입물, 성형보조물, 관절염 치료용 삽입물, 약물 전달체 등 다양한 용도로 사용될 수 있으며, 특히 관절염 치료용 삽입물로서 높은 점탄성을 오랜 기간동안 유지시켜 줄 수 있으므로, 그것의 교환횟수를 현격히 줄이는 등의 효과를 가진다.As described above, the hyaluronic acid derivative of the present invention has excellent biocompatibility and very high viscoelasticity, and thus, gels, films, seals, anti-adhesion gels, wrinkle treatment inserts, cosmetic aids, arthritis treatment inserts, drugs, etc. It can be used for various purposes such as a carrier, and in particular, as an insert for treating arthritis, it can maintain high viscoelasticity for a long time, and thus has an effect of significantly reducing the number of exchanges thereof.

상기에서 본 발명은 기재된 구체예를 중심으로 상세히 설명되었지만, 본 발명의 범주 및 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정은 당연히 첨부된 특허청구범위에 속한다.While the invention has been described in detail above with reference to the described embodiments, it will be apparent to those skilled in the art that various modifications and variations are possible within the scope and spirit of the invention, and such modifications and variations are, of course, to the appended claims. Belongs.

Claims (31)

글리콜 고분자가 아미드 결합에 의해 히알루론산에 결합되어 있는 구조를 가지는 히알루론산 유도체.A hyaluronic acid derivative having a structure in which a glycol polymer is bonded to hyaluronic acid by an amide bond. 제 1 항에 있어서, 상기 히알루론산은 히알루론산 자체 및/또는 히알루론산 염이며, 상기 히알루론산 염은 히알루론산 나트륨, 히알루론산 칼륨, 히알루론산 칼슘, 히알루론산 마그네슘, 히알루론산 아연, 히알루론산 코발트 등의 무기염과, 히알루론산 테트라부틸암모늄 등의 유기염인 것을 특징으로 하는 히알루론산 유도체.2. The hyaluronic acid according to claim 1, wherein the hyaluronic acid is hyaluronic acid itself and / or hyaluronic acid salt, and the hyaluronic acid salt is sodium hyaluronate, potassium hyaluronate, calcium hyaluronate, magnesium hyaluronate, zinc hyaluronate, cobalt hyaluronic acid, and the like. An inorganic salt and organic salts, such as tetrabutylammonium hyaluronic acid, The hyaluronic acid derivative characterized by the above-mentioned. 제 1 항에 있어서, 글리콜 고분자는 폴리에틸렌글리콜 및/또는 플루로닉(폴리에틸렌글리콜과 폴리프로필렌글리콜의 블록 공중합체)인 것을 특징으로 하는 히알루론산 유도체.The hyaluronic acid derivative according to claim 1, wherein the glycol polymer is polyethylene glycol and / or pluronic (block copolymer of polyethylene glycol and polypropylene glycol). 제 1 항에 있어서, 상기 유도체는 글리콜 고분자가 히알루론산에 직접 연결되어 있는 구조의 유도체(Ⅰ)이거나, 또는 글리콜 고분자가 키토산을 경유하여 히알루론산에 연결되어 있는 구조의 유도체(Ⅱ)인 것을 특징으로 하는 히알루론산 유도체.2. The derivative according to claim 1, wherein the derivative is a derivative (I) having a structure in which a glycol polymer is directly connected to hyaluronic acid, or a derivative (II) having a structure in which a glycol polymer is connected to hyaluronic acid via chitosan. Hyaluronic acid derivative to be. 제 4 항에 있어서, 상기 유도체(Ⅰ)는 글리콜 고분자의 양쪽 말단에 히알루론산이 각각 결합되어 있는 것을 특징으로 하는 히알루론산 유도체.The hyaluronic acid derivative according to claim 4, wherein the derivative (I) has hyaluronic acid bonded to both ends of the glycol polymer, respectively. 제 5 항에 있어서, 상기 유도체(Ⅰ)는 하기 화학식 2로 표시되는 것을 특징으로 하는 히알루론산 유도체.The hyaluronic acid derivative according to claim 5, wherein the derivative (I) is represented by the following Chemical Formula 2. (2) (2) (상기 식에서, m, n, x, y 및 z 는 각각 1 또는 그 이상의 정수로서, n>z>y>x 의 조건을 만족한다)(Wherein m, n, x, y and z are integers of 1 or more, respectively, satisfying the condition of n> z> y> x) 제 5 항에 있어서, 상기 유도체(Ⅰ)는 하기 화학식 3으로 표시되는 것을 특징으로 하는 히알루론산 유도체.6. The hyaluronic acid derivative according to claim 5, wherein the derivative (I) is represented by the following formula (3). (3) (3) (상기 식에서, a, b, n, x, y 및 z 는 각각 1 또는 그 이상의 정수로서, n>z>y>x 의 조건을 만족한다)(Wherein a, b, n, x, y, and z are integers of 1 or more, respectively, satisfying the condition of n> z> y> x) 제 4 항에 있어서, 상기 유도체(Ⅱ)는 하기 화학식 4로 표시되는 것을 특징으로 하는 히알루론산 유도체.The hyaluronic acid derivative according to claim 4, wherein the derivative (II) is represented by the following formula (4). (4) (4) (상기 식에서, a, l, m, n, x 및 y 는 각각 1 또는 그 이상의 정수로서, m>l 및 n>x>y 의 조건을 만족한다)(Wherein a, l, m, n, x, and y are integers of 1 or more, respectively, satisfying the conditions of m> l and n> x> y) 제 4 항에 있어서, 상기 유도체(Ⅱ)는 하기 화학식 5로 표시되는 것을 특징으로 하는 히알루론산 유도체.The hyaluronic acid derivative according to claim 4, wherein the derivative (II) is represented by the following Chemical Formula 5. (5) (5) (상기 식에서, a, b, l, m, n, x 및 y 는 각각 1 또는 그 이상의 정수로서, m>l 및n>x>y 의 조건을 만족한다)(Wherein a, b, l, m, n, x, and y are integers of 1 or more, respectively, satisfying the conditions of m> l and n> x> y) 제 1 항에 있어서, 상기 유도체는 생체적합성 소재로 사용되는 것을 특징으로 하는 히알루론산 유도체.The hyaluronic acid derivative according to claim 1, wherein the derivative is used as a biocompatible material. 제 10 항에 있어서, 상기 생체적합성 소재는 관절염 치료용 삽입물인 것을 특징으로 하는 히알루론산 유도체.The hyaluronic acid derivative according to claim 10, wherein the biocompatible material is an insert for treating arthritis. 제 1 항에 있어서, 상기 유도체는 젤, 필름 또는 실의 형태를 갖는 것을 특징으로 하는 히알루론산 유도체.The hyaluronic acid derivative according to claim 1, wherein the derivative has a gel, film or yarn form. (A) 글리콜 고분자의 한쪽 또는 양쪽 말단에 자유아민기를 도입하는 단계; 및(A) introducing a free amine group at one or both ends of the glycol polymer; And (B) 상기 자유아민기가 도입된 글리콜 고분자를 히알루론산과 아미드화 반응을 행하는 단계;(B) amidating a glycol polymer having the free amine group introduced therein with hyaluronic acid; 를 포함하는 것으로 구성되어 있는, 글리콜 고분자가 직접 히알루론산에 연결되어 있는 구조의 제 1 항에 따른 히알루론산 유도체의 제조방법.A method for producing a hyaluronic acid derivative according to claim 1, wherein the glycol polymer is directly linked to hyaluronic acid. (A1) 글리콜 고분자의 한쪽 말단에 자유아민기를 도입하는 단계;(A1) introducing a free amine group to one end of the glycol polymer; (B1) 상기 자유아민기가 도입된 글리콜 고분자를 키토산과 반응시켜 키토산-글리콜 고분자 결합체를 제조하는 단계; 및(B1) preparing a chitosan-glycol polymer conjugate by reacting the glycol polymer into which the free amine group is introduced with chitosan; And (C1) 상기 키토산-글리콜 고분자 결합체를 히알루론산과 아미드화 반응을 행하는 단계;(C1) amidating the chitosan-glycol polymer conjugate with hyaluronic acid; 를 포함하는 것으로 구성되어 있는, 글리콜 고분자가 키토산을 경유하여 히알루론산에 연결되어 있는 구조의 제 1 항에 따른 히알루론산 유도체의 제조방법.A method for producing a hyaluronic acid derivative according to claim 1, wherein the glycol polymer is connected to hyaluronic acid via chitosan. 제 13 항 또는 제 14 항에 있어서, 상기 단계(A) 또는 단계(A1)에서, 글리콜 고분자의 말단(한쪽 또는 양쪽 말단)에 자유아민기의 도입은,15. The method according to claim 13 or 14, wherein in step (A) or step (A1), the introduction of free amine groups at the ends (one or both ends) of the glycol polymer, (a) 글리콜 고분자의 한쪽 또는 양쪽 말단을 활성화시키는 단계; 및(a) activating one or both ends of the glycol polymer; And (b) 활성화된 글리콜 고분자를 디아민 화합물과 반응시키는 단계;(b) reacting the activated glycol polymer with a diamine compound; 를 포함하는 것으로 구성된 방법에 의해 실행되는 것을 특징으로 하는 제조방법.A manufacturing method characterized in that it is carried out by a method comprising a. 제 15 항에 있어서, 상기 단계(a)에서의 활성화는, 단계(b)에서 디아민 화합물과의 반응에 의해 글리콜 고분자의 말단에 자유아민기가 도입될 수 있는 상태로 변화시킨 활성화된 글리콜 고분자를 얻는 것을 특징으로 하는 제조방법.The method of claim 15, wherein the activation in the step (a) is obtained in the step (b) to obtain an activated glycol polymer is changed to a state where the free amine group can be introduced at the end of the glycol polymer by reaction with the diamine compound Manufacturing method characterized in that. 제 16 항에 있어서, 상기 활성화된 글리콜 고분자는 하기 화학식 6 또는 7로 표시되는 구조 또는 그것의 대칭 구조를 가지는 것을 특징으로 하는 제조방법.The method of claim 16, wherein the activated glycol polymer has a structure represented by the following Chemical Formula 6 or 7 or a symmetric structure thereof. (6) (6) (7) (7) (상기 화학식 6과 7에서, R1 과 R2 는 각각, HO-PEG-CH2CH2O-, HO-PEG-CH2CH2CH2O-, HO-PEG-CONH(CH2)5O-, HO-PEG-S-OCH2CH2O-, HO-PEG-S-CH2CH2O-, HO-PEG-NHCOCH2CH2O-, HO-PEG-CO(CH2)3O-, HO-PEG-COCH2CH2O-, HO-PEG-, HO-PEG-CH2O-, MeO-PEG-CH2CH2O-, MeO-PEG-CH2CH2CH2O-, MeO-PEG-CONH(CH2)5O-, MeO-PEG-S-OCH2CH2-, MeO-PEG-S-CH2CH2O-, MeO-PEG-NHCOCH2CH2O-, MeO-PEG-CO(CH2)3O-, MeO-PEG-COCH2CH2O-, MeO-PEG-, MeO-PEG-CH2O-, HO-PLU-CH2CH2O-, HO-PLU-CH2CH2CH2O-, HO-PLU-CONH(CH2)5O-, HO-PLU-S-OCH2CH2-, HO-PLU-S-CH2CH2O-, HO-PLU-NHCOCH2CH2O-, HO-PLU-CO(CH2)3O-, HO-PLU-COCH2CH2O-, HO-PLU-, HO-PLU-CH2O-, MeO-PLU-CH2CH2O-, MeO-PLU-CH2CH2CH2O-, MeO-PLU-CONH(CH2)5O-, MeO-PLU-S-OCH2CH2O-, MeO-PLU-S-CH2CH2O-, MeO-PLU-NHCOCH2CH2O-, MeO-PLU-CO(CH2)3O-, MeO-PLU-COCH2CH2O-, MeO-PLU- 또는 MeO-PLU-CH2O- 이고, 여기서, PEG 는 -(CH2CH2O)n- 이고 (n 은 1 이상의 정수), PLU 는 -(CH2CH2O)a-(CH2CH(CH3)O)b-(CH2CH2O)c- 이며(a, b, c 는 각각 1 이상의 정수), Me 는 메틸이다)(In Chemical Formulas 6 and 7, R1 and R2 are each HO-PEG-CH 2 CH 2 O-, HO-PEG-CH 2 CH 2 CH 2 O-, HO-PEG-CONH (CH 2 ) 5 O- , HO-PEG-S-OCH 2 CH 2 O-, HO-PEG-S-CH 2 CH 2 O-, HO-PEG-NHCOCH 2 CH 2 O-, HO-PEG-CO (CH 2 ) 3 O- , HO-PEG-COCH 2 CH 2 O-, HO-PEG-, HO-PEG-CH 2 O-, MeO-PEG-CH 2 CH 2 O-, MeO-PEG-CH 2 CH 2 CH 2 O-, MeO-PEG-CONH (CH 2 ) 5 O-, MeO-PEG-S-OCH 2 CH 2- , MeO-PEG-S-CH 2 CH 2 O-, MeO-PEG-NHCOCH 2 CH 2 O-, MeO -PEG-CO (CH 2 ) 3 O-, MeO-PEG-COCH 2 CH 2 O-, MeO-PEG-, MeO-PEG-CH 2 O-, HO-PLU-CH 2 CH 2 O-, HO- PLU-CH 2 CH 2 CH 2 O-, HO-PLU-CONH (CH 2 ) 5 O-, HO-PLU-S-OCH 2 CH 2- , HO-PLU-S-CH 2 CH 2 O-, HO -PLU-NHCOCH 2 CH 2 O-, HO-PLU-CO (CH 2 ) 3 O-, HO-PLU-COCH 2 CH 2 O-, HO-PLU-, HO-PLU-CH 2 O-, MeO- PLU-CH 2 CH 2 O-, MeO-PLU-CH 2 CH 2 CH 2 O-, MeO-PLU-CONH (CH 2 ) 5 O-, MeO-PLU-S-OCH 2 CH 2 O-, MeO- PLU-S-CH 2 CH 2 O-, MeO-PLU-NHCOCH 2 CH 2 O-, MeO-PLU-CO (CH 2 ) 3 O-, MeO-PLU-COCH 2 CH 2 O-, MeO-PLU- It is or O- MeO-PLU-CH 2, wherein, PEG is - (CH 2 CH 2 O) n - and (n is 1 Integer) on, PLU is - (CH 2 CH 2 O) a - (CH 2 CH (CH 3) O) b - (CH 2 CH 2 O) c - , and (a, b, c are each an integer of 1 or more) Me is methyl) 제 17 항에 있어서, 상기 활성화된 글리콜 고분자가 하기 화학식 8 내지 10 중의 어느 하나에 의해 표시되는 것을 특징으로 하는 제조방법.18. The method according to claim 17, wherein the activated glycol polymer is represented by one of the following Chemical Formulas 8-10. (8) (8) (9) (9) (10) 10 (상기 화학식 8 내지 10에서 분자쇄의 반복단위인 a, b, n, x 및 y 는 각각 1 또는 그 이상의 정수이다)(A, b, n, x and y are repeating units of the molecular chain in the formula 8 to 10 are each an integer of 1 or more) 제 18 항에 있어서, 화학식 8의 활성화된 폴리에틸렌글리콜의 분자량은 1,000 내지 40,000이고, 화학식 9 또는 10의 활성화된 플루로닉의 분자량은 5,000 내지 50,000인 것을 특징으로 하는 제조방법.19. The method of claim 18, wherein the molecular weight of the activated polyethylene glycol of Formula 8 is 1,000 to 40,000, and the molecular weight of the activated pluronic compound of Formula 9 or 10 is 5,000 to 50,000. 제 13 항 또는 제 14 항에 있어서, 단계(B) 또는 단계(C1)의 아미드화 반응에서 히알루론산의 농도는 0.01 내지 100 ㎎/㎖인 것을 특징으로 하는 제조방법.15. The process according to claim 13 or 14, wherein the concentration of hyaluronic acid in the amidation reaction of step (B) or step (C1) is 0.01 to 100 mg / ml. 제 13 항에 있어서, 단계(B)에서 자유아민기가 도입된 글리콜 고분자와 히알루론산의 반응 혼합비는 1 : 100 내지 100 : 1(히알루론산의 카르복실기 : 글리콜 고분자의 자유아민기)인 것을 특징으로 하는 제조방법.The reaction mixture ratio of the glycol polymer to which the free amine group is introduced and hyaluronic acid in step (B) is 1: 100 to 100: 1 (carboxyl group of hyaluronic acid: free amine group of glycol polymer). Manufacturing method. 제 14 항에 있어서, 상기 단계(B1)에서의 키토산-글리콜 고분자 결합체는 하기 화학식 13 또는 14로 표시되는 것을 특징으로 하는 제조방법.15. The method of claim 14, wherein the chitosan-glycol polymer conjugate in step (B1) is represented by the following formula (13) or (14). (13) (13) (14) (14) (상기 화학식 13과 14에 있어서, a, b, m, n, x 및 y 는 1 또는 그 이상의 정수로서, n>x>y 의 조건을 만족한다)(In the formulas (13) and (14), a, b, m, n, x and y are integers of 1 or more and satisfy the condition n> x> y.) 제 14 항에 있어서, 상기 단계(B1)에서의 키토산-글리콜 고분자 결합체의 제조시, 키토산과 활성화된 글리콜 고분자의 반응 혼합비는 1 : 100 내지 100 : 1(키토산의 아민기 : 글리콜 고분자의 반응기)인 것을 특징으로 하는 제조방법.The method according to claim 14, wherein in the preparation of the chitosan-glycol polymer conjugate in the step (B1), the reaction mixing ratio of the chitosan and the activated glycol polymer is 1: 100 to 100: 1 (amine group of chitosan: reactor of the glycol polymer) Production method characterized in that. 제 13 항 또는 제 14 항에 있어서, 단계(B) 또는 단계(C1)의 아미드화 반응은 카르복실기 활성제의 첨가에 의해 유도되는 것을 특징으로 하는 제조방법.The process according to claim 13 or 14, wherein the amidation reaction of step (B) or step (C1) is induced by the addition of a carboxyl activator. 제 24 항에 있어서, 상기 카르복실기 활성화제는 카르보디이미드(carbodiimide)계 화합물로서, 1-에틸-3-(3-디메틸아미노프로필)카르보디이미드(EDC), 1-에틸-3-(3-(트리메틸암모니오)프로필) 카르보디이미드(ETC), 또는 1-사이클로헥실-3-(2-모르폴리노에틸) 카르보디이미드(CMC)인 것을 특징으로 하는 제조방법.The method of claim 24, wherein the carboxyl activator is a carbodiimide compound, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDC), 1-ethyl-3- (3- (Trimethylammonio) propyl) carbodiimide (ETC) or 1-cyclohexyl-3- (2-morpholinoethyl) carbodiimide (CMC). 제 25 항에 있어서, 상기 카르복실기 활성화제는 EDC인 것을 특징으로 하는 방법.The method of claim 25, wherein the carboxyl activator is EDC. 제 24 항에 있어서, 상기 아미드화 반응에 활성반응 보조제가 더 첨가되는 것을 특징으로 하는 제조방법.25. The process according to claim 24, wherein an activation aid is further added to the amidation reaction. 제 27 항에 있어서, 상기 활성반응 보조제의 바람직한 예로는 N-히드록시석신이미드(NHS), 1-히드록시벤조트리아졸(HOBt), 3,4-디히드로-3-히드록시-4-옥소-1,2,3-벤조트리아진(HOOBt), 1-히드록시-7-아자벤조트리아졸(HOAt), 또는 N-히드록시-설포석신이미드(Sulfo-NHS)인 것을 특징으로 하는 제조방법.28. The method of claim 27, wherein preferred examples of the activity aids are N-hydroxysuccinimide (NHS), 1-hydroxybenzotriazole (HOBt), 3,4-dihydro-3-hydroxy-4- Oxo-1,2,3-benzotriazine (HOOBt), 1-hydroxy-7-azabenzotriazole (HOAt), or N-hydroxy-sulfosuccinimide (Sulfo-NHS), characterized in that Manufacturing method. 제 28 항에 있어서, 상기 활성반응 보조제는 NHS인 것을 특징으로 하는 제조방법.29. The method of claim 28, wherein the activating aid is NHS. 제 24 항 또는 제 27 항에 있어서, 상기 카르복실기 활성화제의 첨가량은 0.0001 내지 100 ㎎/㎖이고, 활성반응 보조제의 첨가량은 0.00001 내지 100 ㎎/㎖인 것을 특징으로 하는 제조방법.28. The method according to claim 24 or 27, wherein the amount of the carboxyl group activator is added in an amount of 0.0001 to 100 mg / ml, and the amount of the active reaction aid is added in an amount of 0.00001 to 100 mg / ml. 제 13 항 또는 제 14 항에 있어서, 상기 단계(B) 또는 (C1)에서 아미드화 반응을 행하여 얻어진 히알루론산 유도체를 젤, 필름, 실 등과 같은 일정한 형태로 만든 다음, 잔류 카르복실기 및 자유아민기에 대해 추가적인 아미드화 반응을 행하는 것을 특징으로 하는 제조방법.15. The hyaluronic acid derivative obtained by the amidation reaction in the step (B) or (C1) is made into a constant form such as gel, film, yarn or the like, and then the residual carboxyl and free amine groups Process for producing a further amidation reaction.
KR10-2003-0057234A 2002-09-03 2003-08-19 Hyaluronic acid derivatives and processes for preparing them KR100507545B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20020052735 2002-09-03
KR1020020052735 2002-09-03

Publications (2)

Publication Number Publication Date
KR20040020789A true KR20040020789A (en) 2004-03-09
KR100507545B1 KR100507545B1 (en) 2005-08-09

Family

ID=31973631

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2003-0057234A KR100507545B1 (en) 2002-09-03 2003-08-19 Hyaluronic acid derivatives and processes for preparing them

Country Status (3)

Country Link
KR (1) KR100507545B1 (en)
AU (1) AU2003258848A1 (en)
WO (1) WO2004022603A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053776A2 (en) * 2010-10-19 2012-04-26 (주)소우영 Hyaluronic acid compounds, method for preparing same, and use thereof
KR20160102722A (en) 2015-02-23 2016-08-31 (주)아모레퍼시픽 Agent for inhibiting decomposition of hyaluronic acid comprising sodium 2-mercaptoethane sulfonate, and the composition comprising the same
KR20160102723A (en) 2015-02-23 2016-08-31 (주)아모레퍼시픽 Biodegradable polymer for administrating to a living body or for cosmetic surgery containing sodium 2-mercaptoethane sulfonate as an osmotic agent
KR20190002861A (en) * 2017-06-30 2019-01-09 한양대학교 산학협력단 Hyaluronate-based materials with high water retention properties
KR20190128549A (en) * 2018-05-08 2019-11-18 아주대학교산학협력단 Injectable composition for using filler or drug carrier via click chemical reaction

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2861734B1 (en) 2003-04-10 2006-04-14 Corneal Ind CROSSLINKING OF LOW AND HIGH MOLECULAR MASS POLYSACCHARIDES; PREPARATION OF INJECTABLE SINGLE PHASE HYDROGELS; POLYSACCHARIDES AND HYDROGELS OBTAINED
WO2005010080A1 (en) * 2003-07-28 2005-02-03 Teijin Limited Temperature-responsive hydrogel
WO2005113608A1 (en) 2004-05-20 2005-12-01 Mentor Corporation Method of covalently linking hyaluronan and chitosan
US20070202084A1 (en) 2005-12-14 2007-08-30 Anika Therapeutics, Inc. Bioabsorbable implant of hyaluronic acid derivative for treatment of osteochondral and chondral defects
WO2007070547A2 (en) * 2005-12-14 2007-06-21 Anika Therapeutics, Inc. Treatment of arthritis and other musculoskeletal disorders with crosslinked hyaluronic acid
US7713637B2 (en) 2006-03-03 2010-05-11 Advanced Cardiovascular Systems, Inc. Coating containing PEGylated hyaluronic acid and a PEGylated non-hyaluronic acid polymer
FR2901696B1 (en) * 2006-06-02 2012-12-21 Genevrier Lab NEW INJECTABLE SOLUTIONS BASED ON HYALURONIC ACID
AU2007280846B2 (en) 2006-08-04 2012-06-14 Novozymes Biopharma Dk A/S Branched hyaluronic acid and method of manufacture
US8318695B2 (en) * 2007-07-30 2012-11-27 Allergan, Inc. Tunably crosslinked polysaccharide compositions
JP5670196B2 (en) 2007-11-16 2015-02-18 バイセプト セラピューティクス、インク. Compositions and methods for treating purpura
US8394782B2 (en) 2007-11-30 2013-03-12 Allergan, Inc. Polysaccharide gel formulation having increased longevity
US8357795B2 (en) 2008-08-04 2013-01-22 Allergan, Inc. Hyaluronic acid-based gels including lidocaine
AU2015201245B2 (en) * 2008-09-02 2016-07-07 Allergan, Inc. Threads of hyaluronic acid and/or derivatives thereof, methods of making thereof and uses thereof
ES2829971T3 (en) * 2008-09-02 2021-06-02 Tautona Group Lp Hyaluronic acid threads and / or derivatives thereof, methods to manufacture them and uses thereof
KR101062068B1 (en) * 2008-12-01 2011-09-02 포항공과대학교 산학협력단 Anti-adhesion Composition
US20110172180A1 (en) 2010-01-13 2011-07-14 Allergan Industrie. Sas Heat stable hyaluronic acid compositions for dermatological use
US9114188B2 (en) 2010-01-13 2015-08-25 Allergan, Industrie, S.A.S. Stable hydrogel compositions including additives
FR2957254B1 (en) 2010-03-12 2016-10-14 Allergan Ind Sas FLUID COMPOSITIONS FOR IMPROVING SKIN CONDITIONS
PL2550027T5 (en) 2010-03-22 2019-07-31 Allergan, Inc. Polysaccharide and protein-polysaccharide cross-linked hydrogels for soft tissue augmentation
US8883139B2 (en) 2010-08-19 2014-11-11 Allergan Inc. Compositions and soft tissue replacement methods
US9005605B2 (en) 2010-08-19 2015-04-14 Allergan, Inc. Compositions and soft tissue replacement methods
US8889123B2 (en) 2010-08-19 2014-11-18 Allergan, Inc. Compositions and soft tissue replacement methods
US9393263B2 (en) 2011-06-03 2016-07-19 Allergan, Inc. Dermal filler compositions including antioxidants
CN107412002A (en) 2011-06-03 2017-12-01 阿勒根公司 Dermal filler composition including antioxidant
US9408797B2 (en) 2011-06-03 2016-08-09 Allergan, Inc. Dermal filler compositions for fine line treatment
US20130096081A1 (en) 2011-06-03 2013-04-18 Allergan, Inc. Dermal filler compositions
US10279079B2 (en) 2011-07-05 2019-05-07 The Research Foundation For The State University Of New York Compositions and methods for spinal disc repair and other surgical and non-surgical indications
US20130244943A1 (en) 2011-09-06 2013-09-19 Allergan, Inc. Hyaluronic acid-collagen matrices for dermal filling and volumizing applications
US9662422B2 (en) 2011-09-06 2017-05-30 Allergan, Inc. Crosslinked hyaluronic acid-collagen gels for improving tissue graft viability and soft tissue augmentation
US20140350518A1 (en) 2013-05-23 2014-11-27 Allergan, Inc. Syringe extrusion accessory
WO2015112912A1 (en) 2014-01-27 2015-07-30 Allergan Holdings France S.A.S. Substance delivery device
US10029048B2 (en) 2014-05-13 2018-07-24 Allergan, Inc. High force injection devices
US10722444B2 (en) 2014-09-30 2020-07-28 Allergan Industrie, Sas Stable hydrogel compositions including additives
US10226585B2 (en) 2014-10-01 2019-03-12 Allergan, Inc. Devices for injection and dosing
WO2016128783A1 (en) 2015-02-09 2016-08-18 Allergan Industrie Sas Compositions and methods for improving skin appearance
US10433928B2 (en) 2015-03-10 2019-10-08 Allergan Pharmaceuticals Holdings (Ireland) Unlimited Company Multiple needle injector
CN105903087A (en) * 2015-12-14 2016-08-31 上海其胜生物制剂有限公司 Preparation method of viscoelastic agent with cohesiveness and dispersivity
KR102288170B1 (en) 2016-04-08 2021-08-09 알레간 인코포레이티드 Aspiration and injection device
US10820900B2 (en) 2017-01-24 2020-11-03 Allergan Industrie Sas Thread insertion devices
US10265151B2 (en) 2017-01-24 2019-04-23 Allergan Industrie Sas Thread insertion devices
US10709444B2 (en) 2017-01-24 2020-07-14 Allergan Industrie Sas Thread insertion devices
US10258447B2 (en) 2017-01-24 2019-04-16 Allergan Industrie Sas Thread insertion devices
US10595977B2 (en) 2017-01-24 2020-03-24 Allergan Industrie, Sas Thread insertion devices
MA49265A (en) 2017-03-22 2020-02-05 Ascendis Pharma As Hydrogel cross-linked hyaluronic acid prodrug compositions and methods
USD867582S1 (en) 2017-03-24 2019-11-19 Allergan, Inc. Syringe device
CN112516075B (en) * 2020-12-11 2022-11-01 华熙生物科技股份有限公司 Prednisone-loaded hyaluronic acid-chitosan temperature-sensitive hydrogel and preparation method thereof
CN112724278B (en) * 2020-12-24 2023-03-28 华熙生物科技股份有限公司 Hyaluronic acid graft copolymer and preparation method and application thereof
KR102600511B1 (en) 2022-03-22 2023-11-09 연세대학교 산학협력단 Gallol-conjugated aldehyde-modified hyaluronic acid and use thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1198449B (en) * 1986-10-13 1988-12-21 F I D I Farmaceutici Italiani ESTERS OF POLYVALENT ALCOHOLS OF HYALURONIC ACID
IT1219587B (en) * 1988-05-13 1990-05-18 Fidia Farmaceutici SELF-CROSS-LINKED CARBOXYLY POLYSACCHARIDES
US6432449B1 (en) * 1998-05-18 2002-08-13 Amgen Inc. Biodegradable sustained-release alginate gels
DE10014557A1 (en) * 2000-03-23 2001-10-04 Lohmann Therapie Syst Lts Wound dressing with reduced tendency to overgrow
KR100375299B1 (en) * 2000-10-10 2003-03-10 주식회사 엘지생명과학 Crosslinked derivatives of hyaluronic acid by amide formation and their preparation methods

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053776A2 (en) * 2010-10-19 2012-04-26 (주)소우영 Hyaluronic acid compounds, method for preparing same, and use thereof
WO2012053776A3 (en) * 2010-10-19 2012-06-21 (주)소우영 Hyaluronic acid compounds, method for preparing same, and use thereof
KR20160102722A (en) 2015-02-23 2016-08-31 (주)아모레퍼시픽 Agent for inhibiting decomposition of hyaluronic acid comprising sodium 2-mercaptoethane sulfonate, and the composition comprising the same
KR20160102723A (en) 2015-02-23 2016-08-31 (주)아모레퍼시픽 Biodegradable polymer for administrating to a living body or for cosmetic surgery containing sodium 2-mercaptoethane sulfonate as an osmotic agent
KR20190002861A (en) * 2017-06-30 2019-01-09 한양대학교 산학협력단 Hyaluronate-based materials with high water retention properties
KR20190128549A (en) * 2018-05-08 2019-11-18 아주대학교산학협력단 Injectable composition for using filler or drug carrier via click chemical reaction

Also Published As

Publication number Publication date
AU2003258848A1 (en) 2004-03-29
WO2004022603A1 (en) 2004-03-18
KR100507545B1 (en) 2005-08-09

Similar Documents

Publication Publication Date Title
KR100507545B1 (en) Hyaluronic acid derivatives and processes for preparing them
US5874417A (en) Functionalized derivatives of hyaluronic acid
EP1773399B1 (en) Hydrogels of hyaluronic acid and alpha, beta-polyaspartylhydrazide and their biomedical and pharmaceutical uses
AU2007296939B2 (en) Hyaluronic acid derivatives obtained via "click chemistry" crosslinking
Jin et al. Enzymatically-crosslinked injectable hydrogels based on biomimetic dextran–hyaluronic acid conjugates for cartilage tissue engineering
US8691793B2 (en) Modified macromolecules and associated methods of synthesis and use
KR101953709B1 (en) Derivates based on hyaluronic acid, capable of forming hydrogels, method of preparation thereof, hydrogels based on said derivatives, method of preparation thereof and use
KR100517643B1 (en) Thermosensitive poly(organophosphazenes), preparation method thereof and injectable thermosensitive polyphosphazene hydrogels using the same
US20040014960A1 (en) Crosslinked amide derivatives of hyaluronic acid and manufacturing method thereof
CZ296842B6 (en) Cross-linked hyaluronic acids
US20060166928A1 (en) Hyaluronic acid derivative gel and method for preparing the same
US7348424B2 (en) Polysaccharide containing phosphorylcholine group and process for producing the same
JPH0388802A (en) N-acylurea and o-acylisourea derivatives of hyaluronic acid
KR20180046378A (en) Biocompatible hydrogel and method for preparing the same
KR101818705B1 (en) Cross-linked hyaluronic acid hydrogel encapsulating therapeutic drugs and uses thereof
EP2529226B1 (en) Silylated biomolecules
KR102108552B1 (en) Method for preparing hyaluronic acid microbead and use of the hyaluronic acid microbead
CN112842929A (en) Sulfhydrylation hyaluronic acid and preparation method and application thereof
BR112017026859B1 (en) method of preparing cross-linked polysaccharide materials
Farhan et al. Synthesis and characterization of cellulose grafted maleic anhydride and substituted it with amoxicillin
WO2024062713A1 (en) Gel-forming material and gel composition
WO2008152475A2 (en) Biocompatible polymers of bisacrylamides and amino acids

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130612

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140630

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150618

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160607

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170628

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20180619

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20190625

Year of fee payment: 15