KR20030096140A - The multi-layer type sheet for shielding from electromagnetic waves and the method for making it - Google Patents

The multi-layer type sheet for shielding from electromagnetic waves and the method for making it Download PDF

Info

Publication number
KR20030096140A
KR20030096140A KR1020030081177A KR20030081177A KR20030096140A KR 20030096140 A KR20030096140 A KR 20030096140A KR 1020030081177 A KR1020030081177 A KR 1020030081177A KR 20030081177 A KR20030081177 A KR 20030081177A KR 20030096140 A KR20030096140 A KR 20030096140A
Authority
KR
South Korea
Prior art keywords
layer
multi
sheet
method
type
Prior art date
Application number
KR1020030081177A
Other languages
Korean (ko)
Other versions
KR100550808B1 (en
Inventor
박종주
이찬우
조재위
Original Assignee
주식회사 에스테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에스테크 filed Critical 주식회사 에스테크
Priority to KR20030081177A priority Critical patent/KR100550808B1/en
Publication of KR20030096140A publication Critical patent/KR20030096140A/en
Application granted granted Critical
Publication of KR100550808B1 publication Critical patent/KR100550808B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/02Layered products comprising a layer of natural or synthetic rubber with fibres or particles being present as additives in the layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/10Layered products comprising a layer of natural or synthetic rubber next to a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JAdhesives; non-mechanical aspects of adhesive processes in general; adhesive processes not provided for elsewhere; use of material as adhesives
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0086Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single discontinuous metallic layer on an electrically insulating supporting structure, e.g. metal grid, perforated metal foil, film, aggregated flakes, sintering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0088Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/009Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive fibres, e.g. metal fibres, carbon fibres, metallised textile fibres, electro-conductive mesh, woven, non-woven mat, fleece, cross-linked
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/212Electromagnetic interference shielding

Abstract

PURPOSE: A multi-layered conductive rubber sheet and a preparation method thereof are provided to shield the electromagnetic wave effectively and maintain the flexibility and tensile strength of the sheet well. CONSTITUTION: The multi-layered conductive rubber sheet comprises a conductive paste layer(1) to add 15 to 85 wt.% of the dendrite type, granule type and amorphous metal or metal components, the carbon black and the graphite to a resin selected from the group consisting of urethane, acrylics, PVC, polyesters, EPDM and silicone; a conductive rubber sheet layer(2) to add 15 to 85 wt.% of the dendrite type, granule type and amorphous metal or metal components, the carbon black and the graphite to a resin selected from the group consisting of urethane, acrylic, PVC, polyester, EPDM and silicone; and a conductive material layer(3) in a type of polyester fabrics, non-woven fabrics or mesh with a metal applied on.

Description

전자파 차폐 성능이 우수한 다층 구조의 시트 및 그 제조 방법{The multi-layer type sheet for shielding from electromagnetic waves and the method for making it} Sheet and a method of manufacturing the multilayer structure has excellent electromagnetic shielding performance {The multi-layer type sheet for shielding from electromagnetic waves and the method for making it}

본 발명은 우수한 전자파 차폐 특성을 가지는 다층 전도성 고무시트 및 그 제조 방법에 관한 것으로, 프레이크 및 수지상 결정형(樹枝狀 結晶形, dendrite type), 미립자형(Granule type), 무정형(동, 니켈, 은, 은이 코팅된 동 등)의 금속 또는 금속합금, 카본 블랙(Carbon black), 흑연(graphite)을 포함하는 전도성 페이스트 층과, 전도성 고무시트층과, 전도성 직물, 부직포 또는 메쉬 중의 어느 한 개로 이루어진 전도성 소재층이 상, 중 하층을 형성하는 전자파 차폐 성능이 우수한 다층 구조의 시트 및 그 제조 방법에 관한 것이다. The present invention relates to a multi-layer conductive rubber sheet and a method of manufacturing the same having excellent electromagnetic wave shielding property, and the dendritic crystalline flakes (樹枝狀 結晶 形, dendrite type), fine particle type (Granule type), amorphous (copper, nickel, silver, conductive material consisting of silver-coated copper or the like), metal or metal alloy, carbon black (carbon black), and a conductive paste layer comprising a graphite (graphite), conductive rubber sheet layer, and a conductive fabric, on either of the non-woven fabric or the mesh pieces of the the layer is, in the electromagnetic wave shielding performance to form the lower layer relates to a sheet and a method of manufacturing the multi-layer structure excellent.

즉, 전도성 페이스트층과, 전도성 고무시트층과, 전도성 직물, 부직포 또는 메쉬 중의 어느 한 개로 이루어진 전도성 소재층이 각각 상하방향으로 접합되어진 다층구조의 시트를 형성함으로써 전자파를 효과적으로 차폐할 수 있도록 하고, 시트의 유연성 및 인장강도를 우수하게 유지할 수 있도록 한다. That is, the paste layer, and a conductive rubber sheet layer, and a conductive woven fabric, a nonwoven fabric or by forming a sheet of a multi-layer structure on which a respective joint in the vertical direction, the conductive material layer made of any one of pieces of the mesh to effectively shield electromagnetic waves, It allows to maintain excellent flexibility and tensile strength of the sheet.

최근 과학문명의 발달은 인류의 생활에 많은 편의를 제공하고 있다. Recent development of science and culture is providing a lot of convenience to human life. 특히 전기, 전자 및 통신관련기기의 발달은 우리생활을 보다 더 편리하고 윤택하게 해주는데 일익을 담당하고 있다. In particular, the development of electrical, electronic and communication devices are playing a role haejuneunde more convenient and more abundant our lives. 이렇게 인간에게 편리함을 제공하고 있는 과학문명도 어떻게 어디에 사용하느냐에 따라 좋을 수도 있고 나쁠 수도 있는 양면성을 가지고 있다. This has two sides, which may also do scientific civilization that provides the convenience of humans may want to use depending on where and bad.

최신 과학문물중 인간에게 해를 주는 것 중의 하나가 전자기파이다. One of the latest science and civilization that would harm human beings is the electromagnetic wave. 전력의생산과 송전, 라디오와 TV, 전화등의 각종 통신, 전자레인지와 오븐, 비행기 또는 선박의 항해 우주탐사에 이르기까지 그 어느것 하나 전자기파가 아니면 상상할 수 없는 것들이다. Is a power generation and transmission, radio and TV, various communications, microwave and oven, a plane, or things ranging from space exploration to sail the ship can not imagine not one electromagnetic wave that would be one of the phones. 기술이 발달할수록 전자제품은 쏟아지고 그만큼 전자기파도 늘어날 것이다. As technology develops electronic products are being dumped it will also increase much electromagnetic waves.

지금도 전자기파는 우리가 호흡하는 공기와 같이 무색무취의 상태로 우리 주변을 떠돌고 있다. Now the electromagnetic wave is wafting around us as a colorless, odorless state, such as the air we breathe. 그러나 인간들에게 없어서는 안될 이들 전자기파도 전파방해(EMI: Electro Magnetic Interference)라 하여 다른 전자기파를 교란시켜 각종기계의 오작동 원인이 되어 산업재해를 일으키기도 하고 인체에 직·간접적으로 작용, 치명적인 영향을 주기도 한다. However, these waves also jamming integral to humans vital: it jugido a (EMI Electro Magnetic Interference) referred to by disturbing other electromagnetic radiation is a malfunction causes of various machinery and also produce industrial accidents act directly or indirectly on the human body, harmful effects .

또한 자동차 고전압 발생장치에 의한 내부 전자제품의 효율 저하 및 수명단축, 전자장비들 사이의 상호교란, 인체의 마이크로파에 대한 장기노출의 경우 야기될 수 있는 녹내장, 생식능력의 저하 등을 예로 들수 있다. Also deulsu the like decrease in glaucoma, fertility, which may be caused in the case of a long exposure to the mutual disturbance, the body microwaves between the decreased efficiency and reduced life of the internal electronics of the vehicle high voltage generator, the electronic equipment as an example. 현대인들이 사는 공간은 전자기파로부터 더 이상 안전지대가 아니며 과학문명이 발달할수록 그 심각성은 더해갈 것이다. Not a modern living space that is no longer safe zone from electromagnetic As scientific civilization develops its severity is more haegal.

인체에는 미세한 전자 신호체계가 있어 감정의 조절, 기억, 행동의 메카니즘이 가능하게 한다. There is a human body, the fine electronic signal system enables the mechanism of the regulation of emotion, memory, behavior. 인간사에 있어 임신과 출산, 질병, 스트레스 등은 전자파와 절대 무관하지 않다면 충격적이겠으나 그것은 사실이다. In human affairs, pregnancy and maternity, illness, stress, etc. It is a shocking fact yigeteuna if not absolutely nothing to do with electromagnetic waves. 이런 현실에서 미국, 일본, 러시아등 과학 선진국에서는 전자파의 안전노출 기준을 마련해 외부노출을 강력하게 규제하고 있으며 전자파의 유해성에 대한 연구를 꾸준히 진행하고 있다. In this reality, science and advanced countries such as the US, Japan, Russia and strongly regulated the outside provided a safe exposure limits for electromagnetic research has progressed steadily on the harmful effects of electromagnetic waves.

특히 21세기 고도의 정보통신시대를 앞두고 급증하는 정보통신량에 비례해파생되어지는 전자파 장해(EMI)에 대한 대책과 고질의 정보량을 유지시키며 인체에 대한 영향을 최소화시키기 위하여 선진 각국에서는 이미 20여전부터 EMI를 규제해왔으며, 최근에는 전자파 내성유지를 강제화 하여 전자파 환경보호에 매우 적극적으로 대처하고 있다. Especially sikimyeo proportion of information traffic to surge ahead of the elevation of the 21st century, information and communication era maintain the measures and chronic amount of information about the electromagnetic interference (EMI) which is derived from the advanced countries already have 20 still in order to minimize the impact on the human body has to regulate EMI, in recent years has been very active in responding to the electromagnetic environment protection enforced to maintain immunity.

통상적으로 기존의 EMI 소재중 금속을 기재로 하고 있는 경우에 주로 고분자 재료를 바인더 개념으로 사용하고 있는데 실리콘 고무나 클로리네이티드 폴리에틸렌 클로로 술폰화 폴리에틸렌 에틸렌 프로필렌 디엔의 삼원 공중합체 에틸렌 프로필렌 코폴리머 등의 고무계를 사용하여 비가교 타입 또는 가교 타입으로 사용하고 있으나, EMI 소재는 금속의 함량이 70wt%이상인 경우가 많아서 단순히 기계적으로 믹싱 또는 브렌딩 되어 있는 복합체의 경우(특히 열가소성의 경우)거의 물성이 없고(신장율 100%∼0%) 내열성 또한 매우 떨어지는 현상을 보여주고 있다. Typically there is mainly used a polymeric material as binder concept in the case that the metal of the conventional EMI material as a base material of silicone rubber or the claw rineyi suited polyethylene chlorosulfonated polyethylene terpolymer of ethylene propylene diene ethylene-propylene rubber of the copolymer, such as use Although the ratio is used as a T-type or cross-linking type, EMI material in the case of composites that are Ding many simply mixing or Brandel mechanically when the content of metal not less than 70wt% (especially in the case of a thermoplastic) is free from almost physical properties ( 100-0% elongation), heat resistance also showed a very falling phenomenon.

가교 타입의 경우에도 내열성은 개선이 되지만 근본적으로 금속과 고분자가 기계적으로 믹싱되어 있는 상태이기 때문에 소재의 물성이 좋지 못하여 전자파를 차폐하는 기본 물성을 지속적으로 유지시키지 못하고 경화되거나 분해되는 문제점이 있다. The improved heat resistance even in the case of cross-linked type, but there is essentially metal and the problem that the polymer is because the state in which the mixing mechanically does not consistently maintain the basic physical properties of shielding electromagnetic waves mothayeo the physical properties of the material, good cured or decomposed.

또한, 금속 페이스를 단독으로 사용한 전자파 차폐 소재의 경우 다양한 물성 및 전기적 특성을 만족시키지 못하여 실제 전자파 차폐 기구물로서적용시 몇가지 단점을 갖고 있다. In the case of an electromagnetic wave shielding material with a metal face alone mothayeo not satisfy various physical properties and electrical properties has several drawbacks when applied in practice Electromagnetic Wave Shielding Enclosures.

즉, 금속(니켈, 동, 니켈-동)이 코팅된 직물, 부직포 메쉬 등을 소재로한 전자파 차폐 소재의 경우 우수한 전자파 차폐 효율을 보여주고 있으나 가공시버(Burr) 발생 및 표면 산화피막 형성에 따른 상용성의 문제점을 갖고 있다. That is, the metal (nickel, copper, nickel-copper) shows excellent electromagnetic shielding effectiveness for the electromagnetic wave shielding material by the coated fabric, non-woven mesh or the like as a material, but in accordance with the processing transceiver (Burr) occurs, and the surface oxide film-forming It has the commercial sexual problems.

본 발명의 목적은 상기의 문제점을 보완하여 전도성, 표면의 내산화성, 인장강도가 우수하며, 시트의 유연성, 직물 및 메쉬 원단의 버(Burr) 이탈 방지 등의 물리적 성질을 갖는 동시에, 우수한 전자파 차폐 특성 및 높은 신뢰성을 갖도록 하는 다중 층 전도성 고무 시트의 제조 방법을 제공하는데 있다. At the same time an object of the present invention having the physical properties, such as to compensate the above problems conductivity, oxidation resistance of the surface, is excellent in tensile strength, server (Burr) preventing separation of the flexible, fabric and mesh fabrics of the sheet, excellent electromagnetic shielding to provide the properties and methods of making a multi-layer conductive rubber sheet to have a high reliability.

우수한 전자파 차폐 효율을 갖는 다층 전도성 고무 시트의 구조는 프레이크 및 수지상 결정형(樹枝狀 結晶形, dendrite type), 미립자형(Granule type), 무정형(동, 니켈, 은, 은이 코팅된 동 등)으로된 금속 혹은 금속 합금체, 카본 블랙(Carbon black) 또는 흑연(Graphite)을 소재로 한 전도성 페이스트층과; The structure of the multi-layer conductive rubber sheet having an excellent electromagnetic shielding effectiveness is of the flakes and the dendritic crystalline (樹枝狀 結晶 形, dendrite type), fine particle type (Granule type), amorphous (copper, nickel, silver, silver coated copper etc.) a conductive paste layer with a metal or metal alloy material, carbon black (carbon black) or graphite (graphite) of a material and; 전도성 고무시트층과; Conductive rubber sheet layer; 전도성 직물, 부직포 또는 메쉬 중의 어느 한 개로 이루어진 전도성 소재층을 각각 상하방향으로 접합하여진 다층 구조로 이루어지고, 이와 같이 구성함으로써 인장강도, 유연성 등의 물리적 성질과 함께 전자파 차폐 특성 및 높은 신뢰성을 모두 만족할 수 있도록 한다. Conductive fabric, non-woven or made of a conductive material layer made of any one of pieces of the mesh in each of the multi-layer structure Yeo-jin Ha joined in the vertical direction, this configuration by satisfied all of the tensile strength, electromagnetic wave shielding property with the physical properties, such as flexibility and high reliability be so.

도 1a는 본 발명에 의해 제조된 다층 구조의 시트 단면도, Figure 1a is a cross-sectional view of the multi-layer sheet structure produced by the present invention,

도 1b는 본 발명에 의해 제조된 다층 구조의 시트 단면도, Figure 1b is a cross-sectional view of the multi-layer sheet structure produced by the present invention,

도 2는 Far-field영역에서의 전자파 차폐효율을 비교한 도표로서, 2 is a chart comparing the electromagnetic wave shielding efficiency in the Far-field region,

(a)는 단층 은이 코팅된 동의 고무시트에서의 전자파 차폐효율, (A) is an electromagnetic wave shielding efficiency in a single layer of silver-coated accept a rubber sheet,

(b)는 본발명에 의해 제조된 다층 구조의 시트 전자파 차폐효율을 나타낸 도표. (B) is a diagram showing the sheet electromagnetic interference shielding efficiency of the multi-layer structure made by the present invention.

* 도면의 주요부분에 대한 부호의 설명 * Description of the Related Art

1 : 전도성 페이스트(Paste)층2 : 전도성 고무시트층 1: conductive paste (Paste) layer 2: conductive rubber sheet layer

3 : 전도성 섬유 소재층 4 : 접착층 3: conductive textile material layer 4: adhesive

첨부도면에 의해 본 발명의 구성을 상세하게 설명하기로 한다. Details of the configuration of the present invention by the accompanying drawings will be described.

도 1은 본 발명에 의해 제조된 다층 구조의 시트 단면도이며, 도 2는 Far-field영역에서의 전자파 차폐효율을 비교한 도표로서, (a)는 단층 은이 코팅된 동의 고무시트에서의 전자파 차폐효율, (b)는 본발명에 의해 제조된 다층 구조의 시트 전자파 차폐효율을 나타낸 도표이다. 1 is a sheet cross-sectional view of the multilayer structure manufactured according to the invention, Figure 2 is a chart comparing the electromagnetic wave shielding efficiency in the Far-field region, (a) shows electromagnetic wave shielding efficiency in a single layer of silver-coated consent rubber sheet , (b) is a diagram showing the sheet electromagnetic interference shielding efficiency of the multi-layer structure made by the present invention.

본 발명에 따른 다층(多層) 구조의 시트는 도 1에 도시된 바와 같이, As it is shown in the multi-layer (多層) sheet structure of Figure 1 according to the invention,

프레이크 및 수지상 결정형(樹枝狀 結晶形, dendrite type), 미립자형 Flakes and dendritic crystalline (樹枝狀 結晶 形, dendrite type), fine particle type

(Granule type), 무정형(동, 니켈, 은, 은이 코팅된 동 등)의 금속 또는 금속합금, 카본 블랙(Carbon black), 흑연(graphite)을 포함하는 전도성 페이스트층(1)과, 전도성 고무시트층(2)과, 전도성 직물, 부직포 또는 메쉬 중의 어느 한 개로 이루어진 전도성 소재층(3)이 각각 상하방향으로 접합되어진 다층 구조로 이루어진 것을 특징으로 한다. (Granule type), an amorphous metal or a metal alloy (copper, nickel, silver, silver-coated copper or the like), carbon black (Carbon black), a conductive paste layer (1) and a conductive rubber sheet including a graphite (graphite) and that the layer (2), a conductive fabric, nonwoven fabric, or a conductive material layer 3 is made of any one of the mesh pieces, each consisting of a multi-layer structure in the vertical direction it joined has been characterized.

바람직하기로는, 상기 전도성 페이스트층(1)이 상층에, 전도성 고무시트층 Preferably, in the paste layer (1) is the upper layer, the conductive rubber sheet layer

(2)이 중층에, 전도성 직물, 부직포 또는 메쉬 중의 어느 한 개로 이루어진 전도성 소재층(3)이 하층에 위치하도록 구성하고, (2) In this configuration, the middle layer, conductive fabric, or conductive non-woven material layer 3 is made of any one of the mesh pieces are positioned on the lower layer, and

상기 전도성 소재층(3)의 하면에는 양면 테이프 등에 의한 접착층(4)을 형성하여 핸드폰, 노트북 모니터 등 전자제품의 표면에 접합하기 용이하도록 한다. When the conductive material layer 3 is formed in the adhesive layer 4 due to the double-sided tape to be to facilitate bonding to the surface of the electronics, such as cellular phones, notebook monitor.

이와 같이 구성되어진 본 발명에 따른 다층 구조의 시트는 전도성 및 전자파차폐 효율, 표면의 내 산화성, 인장강도가 우수하며, 시트의 유연성, 직물 및 메쉬 원단의 버플이탈 방지 등이 우수하므로, 핸드폰, 노트북, PC, LCD 모니터, PDA 등의 이동통신 및 전기 전자제품에 대한 전자파차폐재 및 정전기 방지재의 용도로서, 도전성 고무시트, 도전성 쿠션고무 가스켓 등의 다양한 형태로서 사용될 수 있다. Sheet of a multi-layer structure according to the present invention that is constructed in this manner is conductive, electromagnetic wave shielding efficiency, oxidation resistance of the surface, is excellent in tensile strength, so excellent in buffle departure prevention of flexible, fabric and mesh fabric of the seat, mobile phones, notebook , PC, as the electromagnetic wave shielding material and an antistatic material usage for the mobile, and electrical and electronic equipment of the LCD monitor, PDA, etc., can be used as various forms such as a conductive rubber sheet or conductive cushion rubber gasket.

한편, 전도성 페이스트층(1)에서 사용되는 금속 합금체(동, 니켈, 은, 은이코팅된 동 등)는 프레이크 또는 수지상 결정형(樹枝狀 結晶形, dendrite type), 미립자형(Granule type) 또는 무정형 형태를 갖는 금속들이다. On the other hand, the metal alloy material used in the conductive paste layer (1) (copper, nickel, silver, silver coated copper etc.) or dendritic crystalline flakes (樹枝狀 結晶 形, dendrite type), fine particle type (Granule type) or amorphous It is the metal in the form.

상기 금속을 우레탄, 아크릴, 폴리에스테르 계통의 수지(Resin)에 60wt% 이하 첨가하여 페이스트를 제조하고, 이를 롤 코팅(Roll coating) 또는 캐스팅 Addition of more than 60wt% of the metal to the resin (Resin) of urethane, acrylic, polyester system to prepare a paste, and this coating roll (Roll coating) or casting

(Casting), 스크린 프린팅(Screen printing) 또는 스프레이(Spray) 방법에 의해 코팅해준다. (Casting), it allows coating by screen printing (Screen printing) or spraying (Spray) method.

중층으로서 전도성 고무시트층(2)은 프레이크 또는 수지상 결정형(樹枝狀 結晶形, dendrite type), 미립자형(Granule type), 무정형(동, 니켈, 은, 은이 코팅된 동 등)의 금속 또는 금속합금을 우레탄, 아크릴, 에틸렌 공중합체로는 에틸렌과 카르복실그룹을 가진 모노머 또는 그 유도체와의 공중합체로서, 바람직하기로는 에틸렌 에틸 아크릴레이트, 에틸렌 메틸 아크릴레이트 또는 에틸렌 비닐 아세테이트 등에 80wt% 이하 첨가하여 터빈 임펠러 타입의 디졸버, 니더, 벤버리믹서, 부스니더 또는 오픈롤밀에서 컴파운딩 하거나, 헨셀믹서, 리본 블렌더, 브이 블랜더 등에서 상기혼합물을 먼저 충분히 믹싱한 후 니더, 벤버리믹서, 부스니더, 싱글압출기, 트윈압출기 등에서 컴파운딩 할 수 있다. An intermediate conductive rubber sheet layer (2) or dendritic crystalline flakes (樹枝狀 結晶 形, dendrite type), fine particle type (Granule type), an amorphous metal or alloys of metal (copper, nickel, silver, silver coated copper etc.) a urethane, acrylic, ethylene copolymer is ethylene and the carboxylic monomer with a group or a copolymer of a derivative thereof, preferably ethylene ethyl acrylate, ethylene methyl acrylate, or by addition of less than 80wt% turbine impeller or the like ethylene-vinyl acetate type dissolver, a kneader, a Banbury mixer, booth kneader or compounding in an open roll mill or a Henschel mixer, ribbon blender, V and then the mixture was sufficiently mixed, first, etc. blender kneader, a Banbury mixer, booth kneader, single-screw extruder, compounding, etc. can be a twin-screw extruder. 상기 컴파운드를 전도성 직물위에 시트로 라미네이팅 하는 방법은 닥터 블레이드법(Docter brade)으로 캐스팅(Casting)하거나 나이프 코팅하는 방법으로 성형하였으며, 단일 층의 전도성 고무시트로 제조시 또한 컴파운딩된 전도성 페이스트를 닥터 블레이드법(Docter brade)으로 캐스팅(Casting)하거나 나이프 코팅하는 방법, 카렌더 법 혹은 티다이 압출 및 카렌더링을 하여 유연성 및 연신성을 갖는 전도성 고무시트를 제조한다. Method of laminating the above compounds onto the sheet on the conductive fabric is a doctor blade (Docter brade) by casting (Casting), or were formed into a method of coating knife, in the manufacture of a conductive rubber sheet of a single layer and doctor the compounding of paste casting (casting) by blade method (Docter brade), or a method for coating knife, calendering or T-die extrusion method, and a car rendered to prepare a conductive rubber sheet having flexibility and stretchability.

전술한 바와 같은 본 발명을 실시 예를 들어 설명하면 다음과 같다. When describing the present invention, as described above with reference to examples as follows.

(실시예 1) (Example 1)

본 발명의 조성물은 하층(下層)으로서 전도성 소재층(3)은 금속(동, 니켈, 니켈-동 등)이 코팅된 폴리에스테르의 직물, 부직포, 메쉬 형태 중에서 구리와 니켈이 코팅된 폴리에스테르[두께: 0.1mm (혹은 0.05~2mm)]전도성 직물을 사용하였으며, 그 위에 중층(中層)으로 프레이크 또는 수지상 결정형(樹枝狀 結晶形, dendrite type), 미립자형(Granule type), 무정형 형태의 은이 코팅된 동파우더(혹은 니켈, 동, 은등의 금속)를 우레탄(혹은 아크릴, PVC, 폴리에스테르, EPDM, 실리콘 등) 수지에 50wt% (혹은 15~85Wt%) 첨가하여 전도성 고무시트를 코팅하여 제조 The compositions of the present invention the lower layer (下層) as a conductive material layer 3 is a metal (copper, nickel, nickel-copper, etc.) is a copper and nickel coating from the woven fabric, a nonwoven fabric, a mesh shape of the coated polyester polyester [ thickness: 0.1mm (or 0.05 ~ 2mm)] was used as the conductive fabric, above the flakes or the dendritic crystalline intermediate (中層) (樹枝狀 結晶 形, dendrite type), fine particle type (Granule type), the silver coating of the amorphous form of a copper powder (or nickel, copper, silver and so on of the metal) of the urethane 50wt% for (or acrylic, PVC, polyester, EPDM, silicon or the like) resin (or 15 ~ 85Wt%) is added to prepare the coating the conductive rubber sheet

[두께: 0.3mm (혹은 0.03~5mm)] 하였다. It was: 0.3mm thickness (or 0.03 ~ 5mm)]. 하층의 전도성 소재층(3)과 중층의 전도성 고무시트층(2)를 개별적으로 접착할 시에는 전도성 점착제를 칠한 후 롤 프레스로 눌러 접착하였다.(혹은 양면테이프 사용하거나, 고온상태에서 프레스 사용할 수도 있다) When separately adhered to the lower layer conductive material layer 3 and the middle layer of the conductive rubber sheet layer (2) was laminated by pressing with a roll press and then painted with a conductive adhesive (or a double-sided tape to use, or can use a press at high temperature have)

상층(上層)으로 은 (혹은 니켈, 동, 은이 코팅된 동 등의 금속)을 우레탄(혹은 아크릴, PVC, 폴리에스테르, EPDM, 실리콘 등) 수지에 50wt% (혹은 15~85Wt%) 첨가하여 전도성 페이스트[두께: 0.01mm (혹은 0.005~0.05mm)]를 제조한 후 상기 전도성 고무시트층(2)의 표면에 롤코팅(Roll coating), 캐스팅(Casting) 또는 프린팅(Printing) 방법을 통해 전도성 페이스트층(1)을 형성해줌으로써 다층 구조의 시트가 만들어진다. An upper layer (上層) as is (or nickel, copper, silver coated copper or the like of metal), a urethane (or acrylic, PVC, polyester, EPDM, silicon or the like), 50wt% of resin (or 15 ~ 85Wt%) is added to conductive paste [thickness: 0.01mm (or 0.005 ~ 0.05mm)] was prepared the roll coating to the surface of the conductive rubber sheet layer (2) (roll coating), casting (casting) or printing (printing) paste by a method by giving to form a layer (1) is made of a multilayer sheet structure.

또한, 상품성 및 적용성을 고려하여 상기 전도성 소재층(3)의 하부면에는 양면테이프 또는 전도성 점착제에 의한 접착층(4)을 형성하여 유연성 및 연신성을 갖는 다층 전자파차폐 고무시트를 제조할 수 있었다. In addition, it was possible to produce a flexible and multi-layer electromagnetic shielding rubber sheet having a stretchability by taking into account the marketability and applicability form an adhesive layer 4 by, the double-sided tape or a conductive adhesive lower surface of the conductive material layer 3 .

한편, 본 발명에 의해 제조된 다층 전자파 차폐 전도성 고무시트의 전자파 차폐 효율을 측정해본 결과, 도 2에서 확인되는 바와 같이 본 발명에 따른 다층 구조의 시트가 동일 두께의 단층 은이 코팅된 동의 고무시트보다 전 주파수 영역에 걸쳐 우수한 차폐효율을 나타내었다. On the other hand, as a result ever measure the multi-layer electromagnetic shielding electromagnetic shielding effectiveness of the conductive rubber sheet produced by the present invention, Fig than the agreed rubber sheet of a multi-layer structure according to the invention the sheet is of the same thickness of a single layer of silver-coated, as seen on 2 It exhibited excellent shielding efficiency over the entire frequency domain.

(실시예 2) (Example 2)

본 발명의 조성물은 하층으로서 동-니켈이 코팅된 폴리에스테르 부직포[두께 : 0.1mm (혹은 0.05~2mm)]에 의한 전도성 소재층(3)을 사용하였으며, 중층으로 수지상 결정형(樹枝狀 結晶形, dendrite type) 형태의 은이 코팅된 동 파우더를 우레탄(혹은 아크릴, PVC, 폴리에스테르, EPDM, 실리콘 등) 수지에 60wt% (혹은 15~85 Wt%) 첨가하여 전도성 고무시트(2)를 제조[두께: 0.3mm (혹은 0.03~5mm)] 사용하였다. The compositions of the present invention the lower layer as a copper-nickel coated polyester non-woven fabric: was used as a conductive material layer (3) by [0.1mm thick (or 0.05 ~ 2mm)], dendritic crystalline by-layer (樹枝狀 結晶 形, dendrite type) form of the silver is added to the coated copper powder on urethane (or acrylic, PVC, polyester, EPDM, silicon or the like) resin 60wt% (or 15 ~ 85 Wt%) to prepare a conductive rubber sheet (2) thickness : 0.3mm was used (or 0.03 ~ 5mm)]. 하층과 중층은 점착제 처리 후 고온상태에서 롤 프레스를 사용하여 부착하였다. Lower layer and the middle layer was attached using the roll press at high temperature after the adhesive treatment. 상층으로 카본블랙(Carbon black) 또는 흑연(Graphite)을 우레탄(혹은 아크릴, PVC, 폴리에스테르, EPDM, 실리콘 등) 수지에 50wt% (혹은 15~85Wt%) 첨가하여 전도성 페이스트[두께: 0.01mm (혹은 0.005~0.05mm)](1)를 제조한 후 중층의 전도성 고무시트(2) 표면에 롤 코팅(Roll coating) 또는 캐스팅(Casting), 프린팅 A urethane top layer and carbon black (Carbon black) or graphite (Graphite) (or acrylic, PVC, polyester, EPDM, silicon or the like) 50wt% in the resin (or 15 ~ 85Wt%) is added to the conductive paste [thickness: 0.01mm ( or 0.005 ~ 0.05mm)] roll coating to a conductive rubber sheet (2) surface of the middle layer and then to prepare a (1) (roll coating) or casting (casting), printing

(Printing)등을 통하여 다층을 형성하였다. (Printing) to form a multi-layer through the like.

또한, 상품성 및 적용성을 고려하여 상기 전도성 소재층(3)의 하부면에 양면테이프 또는 전도성 점착제에 의한 접착층(4)를 형성해줌으로써 유연성 및 연신성을 갖는 다중 층 전자파차폐 고무시트를 제조할 수 있었다. Further, to manufacture the marketability and applicability of the conductive material, a multi-layer to the lower surface of layer 3 by giving to form the adhesive layer 4 by the double-sided tape or a conductive adhesive with flexibility and stretchability electromagnetic shielding rubber sheet in consideration of the there was.

(실시예 3) (Example 3)

본 발명의 조성물은 하층으로서 동-니켈이 코팅된 폴리에스테르 메쉬[두께: 0.08mm(혹은 0.05~2mm)]에 의한 전도성 소재층(3)을 사용하였으며, 중층으로 극성 폴리올레핀 수지 100중량부를 니더(kneader), 벤버리(banbury)믹서 또는 롤(roll)에서 먼저 시트 형태로 가공하고, 수지상 결정형(樹枝狀 結晶形, dendrite type) 형태의 은이 코팅된 동파우더를 300에서 1000중량부 혼합하고 무기 난연제로 수산화알루미늄(혹은 수산화마그네슘) 60에서 150 중량부, 난연조제로 적인 0.5∼5중량부를 투입하여 니더, 벤버리믹서, 부스니더 또는 오픈롤밀에서 컴파운딩 하거나, 헨셀믹서, 리본 블렌더, 브이 블랜더 등에서 상기혼합물을 먼저 충분히 믹싱한 후 니더, 벤버리믹서, 부스니더, 싱글압출기, 트윈압출기 등에서 컴파운딩 하였다. The compositions of the present invention as the lower layer copper-nickel-coated polyester mesh: a kneader was used as a conductive material layer (3) by [0.08mm thick (or 0.05 ~ 2mm)], the polarity-layer polyolefin resin to 100 parts by weight of ( kneader), a Banbury (banbury) mixer or roll (and processed in a roll) first, the form of a sheet, the dendritic crystalline (樹枝狀 結晶 形, dendrite type) form of silver is mixed 1000 parts by weight of the coated copper powder, and inorganic flame retardant at 300 etc. as aluminum hydroxide (or magnesium hydroxide) introduced at 60 to 150 parts by weight of a flame-retardant aid of from 0.5 to 5 parts by weight Com compounding in a kneader, a Banbury mixer, a kneader or an open roll mill, or booth, a Henschel mixer, ribbon blender, V blender after the mixture was thoroughly mixed before compounding was Com etc. kneader, a Banbury mixer, a kneader booth, single screw extruder, twin-screw extruder. 상기 컴파운드를 시트로 라미네이팅 하는 방법은 시트와 평행한 방향으로 금속 프레이크를 배향하고 적층하기 위하여 카렌더는 물론 티다이 압출을 한 후에도 4본롤로 카렌더링을 하여 유연성 및 연신성을 갖는 전자기파 차폐용 시트를 제조[두께: 0.3mm (혹은 0.1~2mm)] 사용하였다. How to laminate the compounds in the sheet after the calender, as well as T-die extrusion in order in a direction parallel with the sheet to aligning and stacking the metal flakes to the four the roll car render the sheet for electromagnetic shielding having the flexibility and stretchability Preparation thickness: 0.3mm (or 0.1 ~ 2mm)] was used. 하층과 중층은 양면테이프를 사용하여 부착하였다. Lower layer and the middle layer was attached using a double-faced tape. 상층은 은이 코팅된 동파우더를 우레탄 수지에 60wt% (혹은 15~85Wt%) 첨가하여 전도성 페이스트를[두께: 0.01mm (혹은 0.005~0.05mm)] 제조한 후 중층의 전도성 고무시트층(2) 표면에 롤 코팅(Roll coating) 또는 캐스팅(Casting), 프린팅(Printing)을 통하여 다층 구조의 시트를 형성하였다. [: 0.01mm (or 0.005 ~ 0.05mm) thickness; manufactured after the conductive rubber layer of the intermediate sheet (2) the top layer of silver 60wt% (or 15 ~ 85Wt%) is added to the paste-coated copper powder, a urethane resin through a roll coating (roll coating) or casting (casting), print (printing) the surface to form a sheet of a multi-layer structure.

또한 상품성 및 적용성을 고려하여 상기 전도성 고무시트층(2)의 하부면에 양면테이프 또는 전도성 점착제에 의한 접착층(4)을 형성해줌으로써 유연성 및 연신성을 갖는 다층 전자파 차폐 고무시트를 제조할 수 있었다. In addition, it was possible to produce a multi-layer electromagnetic shielding rubber sheet having flexibility and stretchability by giving consideration to marketability and applicability to form an adhesive layer 4 by the double-sided tape or a conductive adhesive on the lower surface of the conductive rubber sheet layer (2) .

이상 설명한 바와 같이, 본 발명에 따른 다층구조의 시트는 전도성, 표면의 내산화성, 인장강도가 우수하며, 시트의 유연성, 직물 및 메쉬 원단의 버(Bruu) 이탈 방지 등의 물리적 성질을 갖는 동시에, 우수한 전자파 차폐 특성 및 높은 신뢰성을 갖게된다. As described above, at the same time having the physical properties such as a sheet of a multi-layer structure according to the present invention, conductivity, oxidation resistance of the surface, is excellent in tensile strength, server (Bruu) preventing separation of the flexible, fabric and mesh fabric of the seat, It will have excellent electromagnetic shielding characteristics and high reliability.

즉, 우수한 전자파 차폐 효율을 갖는 다층 전도성 고무 시트의 구조는 프레이크 및 수지상 결정형(樹枝狀 結晶形, dendrite type), 미립자형(Granule type), 무정형(동, 니켈, 은, 은이 코팅된 동 등)으로된 금속 혹은 금속 합금체, 카본 블랙(Carbon black) 또는 흑연(Graphite)을 소재로 한 전도성 페이스트층(1)과; That is, the multi-layer structure of the conductive rubber sheet having an excellent electromagnetic wave shielding efficiency and the dendritic crystalline flakes (樹枝狀 結晶 形, dendrite type), fine particle type (Granule type), amorphous (copper, nickel, silver, silver coated copper etc.) by a metal or metal alloy material, carbon black (carbon black) or graphite (graphite) of a material paste layer (1) and; 전도성 고무시트층(2)과; Conductive rubber sheet layer (2) and; 전도성 직물, 부직포 또는 메쉬 중의 어느 한 개로 이루어진 전도성 소재층(3)을 각각 상하방향으로 접합하여진 다층 구조로 이루어지고, 이와 같이 구성함으로써 인장강도, 유연성 등의 물리적 성질과 함께 전자파 차폐 특성 및 높은 신뢰성을 모두 만족할 수 있도록 한다. Conductive fabric, non-woven or made of a conductive material layer (3) consisting of any of the pieces of mesh with each multi-layer structure Yeo-jin Ha joined in the vertical direction, this arrangement the tensile strength, electromagnetic wave shielding property with the physical properties, such as flexibility and high reliability by a must to satisfy everyone.

본 발명에 따른 다층 구조의 시트는 핸드폰, 노트북, PC, LCD 모니터, PDA등의 이동통신 및 전기 전자 제품에 도전성 고무시트, 도전성 쿠션고무 가스켓 등의 다양한 형태로 전자파차폐재 및 정전기 방지재로 응용할 수 있다. Sheet of a multi-layer structure according to the present invention can be applied to a mobile phone, laptop, PC, LCD monitor, PDA and mobile communication, and electrical and electronic conductive rubber sheet or conductive cushion electromagnetic wave shielding material and an antistatic material in various forms such as a rubber gasket on the have.

Claims (13)

  1. 프레이크 및 수지상 결정형(樹枝狀 結晶形, dendrite type), 미립자형 Flakes and dendritic crystalline (樹枝狀 結晶 形, dendrite type), fine particle type
    (Granule type), 무정형(동, 니켈, 은, 은이 코팅된 동 등)의 금속 또는 금속합금, 카본 블랙(Carbon black), 흑연(graphite)이 우레탄, 아크릴, PVC, 폴리에스테르, EPDM, 실리콘 중 어느 한 종류의 수지에 15~85Wt% 첨가되어진 전도성 페이스트층 (Granule type), an amorphous metal or a metal alloy (copper, nickel, silver, silver-coated copper or the like), carbon black (Carbon black), graphite (graphite), a urethane, acrylic, PVC, polyester, EPDM, silicon of the paste layer been added 15 ~ 85Wt% to any one type of resin
    (1)과, 프레이크 및 수지상 결정형(樹枝狀 結晶形, dendrite type), 미립자형 (1), and the dendritic crystalline flakes (樹枝狀 結晶 形, dendrite type), fine particle type
    (Granule type), 무정형(동, 니켈, 은, 은이 코팅된 동 등)의 금속 또는 금속합금, 카본 블랙(Carbon black), 흑연(graphite)이 우레탄, 아크릴, PVC, 폴리에스테르, EPDM, 실리콘 중 어느 한 종류의 수지에 15~85Wt% 첨가되어진 전도성 고무시트층 (Granule type), an amorphous metal or a metal alloy (copper, nickel, silver, silver-coated copper or the like), carbon black (Carbon black), graphite (graphite), a urethane, acrylic, PVC, polyester, EPDM, silicon of the 15 ~ 85Wt% been added to the conductive rubber sheet layer to any one type of resin
    (2)과, 금속(동, 니켈, 니켈-동 등)이 코팅된 폴리에스테르의 직물, 부직포 또는 메쉬 형태로 이루어진 전도성 소재층(3)이 각각 상하방향으로 접합되어 다층 구조로 이루어진 것을 특징으로 하는 전자파 차폐 성능이 우수한 다층 구조의 시트. (2), a metal (copper, nickel, nickel-copper or the like), characterized in that the fabric of the coated polyester, non-woven fabric or a conductive material layer 3 is made of a mesh that are respectively joined in the vertical direction consisting of a multi-layer structure sheet of the electromagnetic wave shielding performance excellent multilayer structure.
  2. 제 1항에 있어서, 상기 전도성 소재층(3)의 하부면에는 접착제층(4)이 형성되어있는 것을 특징으로 하는 전자파 차폐 성능이 우수한 다층 구조의 시트. According to claim 1, wherein the conductive material layer 3, the lower surface sheet of the electromagnetic wave shielding performance of the multi-layer structure excellent in such a manner that forming the adhesive layer 4 of the.
  3. 제 2항에 있어서, 상기 접착제층(4)은 양면 테이프 또는 전도성 점착제로 이루어진 것을 특징으로 하는 전자파 차폐 성능이 우수한 다층 구조의 시트. The method of claim 2, wherein the adhesive layer 4 of the sheet is excellent in electromagnetic wave shielding performance, characterized in that the double-sided tape made of a conductive adhesive or a multi-layer structure.
  4. 제 1항에 있어서, 상기 전도성 페이스트층(1)은 두께가 0.005~0.05mm이고 상기 전도성 고무시트층(2)은 두께가 0.03~5mm 인 것을 특징으로 하는 전자파 차폐 성능이 우수한 다층 구조의 시트. The method of claim 1, wherein the paste layer 1 is a sheet of a thickness of 0.005 ~ 0.05mm the conductive rubber sheet layer (2) is excellent in electromagnetic wave shielding performance, characterized in that a thickness of 0.03 ~ 5mm multi-layer structure.
  5. 제 1항 또는 제 4항에 있어서, 상기 전도성 소재층(3)은 두께가 0.05~2mm 인 것을 특징으로 하는 전자파 차폐 성능이 우수한 다층 구조의 시트. According to claim 1 or 4, wherein the conductive material layer 3 of the multi-layered sheet excellent in electromagnetic wave shielding performance, characterized in that a thickness of 0.05 ~ 2mm.
  6. 금속(동, 니켈, 니켈-동 등)이 코팅된 폴리에스테르의 직물, 부직포 또는 메쉬로 이루어진 전도성 소재층(3)을 준비하고, 프레이크 또는 수지상 결정형(樹枝狀 結晶形, dendrite type), 미립자형(Granule type), 무정형 형태의 금속 또는 금속합금, 카본 블랙(Carbon black), 흑연(graphite)이 우레탄, 아크릴, PVC, 폴리에스테르, EPDM, 실리콘 중 어느 한 종류의 수지에 15 ~ 85 Wt% 첨가되어진 전도성 고무시트(2)를 상기 전도성 소재층(3)의 상부에 코팅하거나 접합하고, 프레이크 또는 수지상 결정형(樹枝狀 結晶形, dendrite type), 미립자형(Granule type), 무정형 형태의 금속 또는 금속합금, 카본 블랙(Carbon black), 흑연(graphite)을 우레탄, 아크릴, PVC, 폴리에스테르, EPDM, 실리콘 중 어느 한 종류의 수지에 15 ~ 85 Wt% 첨가하여 전도성 페이스트를 제조한 후 상기 전도성 고무시트층(2)의 표면 Metals (copper, nickel, nickel-copper or the like) to prepare a conductive material layer 3 is made of a woven fabric, a nonwoven fabric or a mesh of coated polyester, or dendritic crystalline flakes (樹枝狀 結晶 形, dendrite type), fine particle type (Granule type), an amorphous form of the metal or metal alloy, carbon black (carbon black), graphite (graphite) was added 15 ~ 85 Wt% on polyurethane, acrylic, PVC, polyester, EPDM, any one kind of the resin of silicon been coated with a conductive rubber sheet (2) on top of said conductive material layer (3) or bonded to, or dendritic crystalline flakes (樹枝狀 結晶 形, dendrite type), fine particle type (Granule type), the amorphous form of the metal or metal after the alloy, carbon black (carbon black), and graphite (graphite) a urethane, acrylic, PVC, polyester, EPDM, Wt% 15 ~ 85 to any one of the kind of resin of the silicone was added producing a conductive paste and the conductive rubber sheet the surface of the layer (2) 롤코팅(Roll coating), 캐스팅(Casting) 또는 프린팅(Printing) 방법을 통해 전도성 페이스트층(1)을 형성해주는 것을 특징으로 하는 전자파 차폐 성능이 우수한 다층 구조의 시트의 제조방법. Roll coating (Roll coating), casting (Casting) or printing (Printing) method a process for producing a multi-layer structure of the electromagnetic wave shielding performance is excellent, characterized in that that forms a conductive paste layer (1) through the sheet.
  7. 제 6항에 있어서, 상기 전도성 소재층(3)과 전도성 고무시트층(2)를 접착할시에는 전도성 점착제를 칠한 후 롤 프레스로 눌러 접착한 것을 특징으로 하는 전자파 차폐 성능이 우수한 다층 구조의 시트의 제조방법. 7. The method of claim 6, wherein the conductive material layer 3 and the conductive rubber sheet layer (2) in the city to be bonded is then painted with a conductive adhesive by pressing a roll press is excellent in electromagnetic wave shielding performance, characterized in that the bonded multi-layered sheets the method of manufacture.
  8. 제 6항에 있어서, 상기 전도성 소재층(3)과 전도성 고무시트층(2)를 양면테이프를 사용하여 접착한 것을 특징으로 하는 전자파 차폐 성능이 우수한 다층 구조의 시트의 제조방법. 7. The method of claim 6, wherein the conductive material layer 3 and the conductive rubber sheet layer (2) a method of producing a multi-layer structure of the electromagnetic wave shielding performance is excellent, characterized in that the adhesive using double-sided tape sheet.
  9. 제 6항에 있어서, 전도성 고무시트층(2)을 만들기위해 금속 또는 금속합금, 카본 블랙(Carbon black), 흑연(graphite)을 우레탄, 아크릴, PVC, 폴리에스테르, EPDM, 실리콘 중 어느 한 종류의 수지에 첨가하여 만든 혼합물을 터빈 임펠러 타입의 디졸버, 니더, 벤버리믹서, 부스니더 또는 오픈롤밀에서 컴파운딩 하거나, 헨셀믹서, 리본 블렌더 또는 브이 블랜더에서 먼저 충분히 믹싱한 후 니더, 벤버리믹서, 부스니더, 싱글압출기 또는 트윈압출기에서 컴파운딩한 다음, 상기 컴파운드를 상기 전도성 소재층(4)위에 라미네이팅해줌으로써 전도성 고무시트층(3)을 형성하는 것을 특징으로 하는 전자파 차폐 성능이 우수한 다층 구조의 시트의 제조방법. Claim 6, conducting either one kind of the rubber sheet layer (2) to make the metal or metal alloy, carbon black (Carbon black), graphite (graphite), a urethane, acrylic, PVC, polyester order, EPDM, silicon in the after compounding the mixture is made by adding the resin in the dissolver, a kneader, a Banbury mixer, booth kneader or an open roll mill of the turbine impeller type or sufficiently mixed first in a Henschel mixer, ribbon blender or V blender kneader, a Banbury mixer, booth kneader, single-screw extruder or twin one compounding in an extruder, and then, the electromagnetic wave shielding multi-layered structure, high-performance as to form a conductive rubber sheet layer 3 by giving to laminating the compound on the conductive material layer 4 the method of the sheet.
  10. 제 9항에 있어서, 상기 전도성 소재층(4)위에 전도성 고무시트층(3)을 라미네이팅 할 시에 닥터 블레이드법(Docter brade)으로 캐스팅(Casting)하거나 나이프 코팅하는 방법으로 성형한 것을 특징으로 하는 전자파 차폐 성능이 우수한 다층 구조의 시트의 제조방법. 10. The method of claim 9, wherein the conductive material layer (4) on the casting (Casting) by a doctor blade method (Docter brade) at the time to laminate the conductive rubber sheet layer 3 or, characterized in that formed in a method for coating knife method of producing a multi-layer structure of a high electromagnetic wave shielding performance of the sheet.
  11. 제 6항에 있어서, 상기 전도성 고무시트층(2)을 형성할 시에 수지 100중량부에 대해 수산화알루미늄, 수산화마그네슘 등에 의한 무기 난연제를 60에서 150 중량부 포함한 것을 특징으로 하는 전자파 차폐 성능이 우수한 다층 구조의 시트의 제조방법. 7. The method of claim 6, wherein the conductive rubber sheet layer (2) When the electromagnetic wave shielding performance, characterized in that contains from 60 to 150 parts by weight of an inorganic flame-retardant due to aluminum hydroxide, magnesium hydroxide based on 100 parts by weight of a resin excellent in form the method of the multi-layered sheet.
  12. 제 6항 또는 제 11항에 있어서, 상기 전도성 고무시트층(2)을 형성할 시에 수지 100중량부에 대해 적인에 의한 난연조제를 0.5∼5중량부 포함한 것을 특징으로 하는 전자파 차폐 성능이 우수한 다층 구조의 시트의 제조방법. Claim 6 or according to claim 11, wherein the conductive rubber sheet layer (2) When the electromagnetic wave shielding performance, characterized in that the weight of the flame-retardant aid includes from 0.5 to 5 parts by per 100 parts by weight of the resin superior in can forming the method of the multi-layered sheet.
  13. 제 6항에 있어서, 상기 전도성 소재층(3)의 하부면에 접착제층(4)을 접합하는 것을 특징으로 하는 전자파 차폐 성능이 우수한 다층 구조의 시트의 제조방법. The method of claim 6, wherein the production method of the conductive material layer of the electromagnetic wave shielding performance is a multi-layer structure excellent characterized in that the bonding of the adhesive layer 4 to the lower surface of the 3 sheets.
KR20030081177A 2003-11-17 2003-11-17 The multi-layer type sheet for shielding from electromagnetic waves and the method for making it KR100550808B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20030081177A KR100550808B1 (en) 2003-11-17 2003-11-17 The multi-layer type sheet for shielding from electromagnetic waves and the method for making it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20030081177A KR100550808B1 (en) 2003-11-17 2003-11-17 The multi-layer type sheet for shielding from electromagnetic waves and the method for making it

Publications (2)

Publication Number Publication Date
KR20030096140A true KR20030096140A (en) 2003-12-24
KR100550808B1 KR100550808B1 (en) 2006-02-09

Family

ID=32389443

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20030081177A KR100550808B1 (en) 2003-11-17 2003-11-17 The multi-layer type sheet for shielding from electromagnetic waves and the method for making it

Country Status (1)

Country Link
KR (1) KR100550808B1 (en)

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022463A1 (en) * 2004-08-24 2006-03-02 Joinset Co., Ltd. Multi-purpose adhesive tape capable of adhering on both sides
KR100593869B1 (en) * 2004-09-24 2006-07-05 주식회사 엠피코 Dispensing gasket and manufacturing method for EMI shielding
KR100803782B1 (en) * 2006-09-28 2008-02-15 율촌화학 주식회사 Surface protective film
KR100888048B1 (en) * 2007-05-31 2009-03-10 두성산업 주식회사 Electromagnetic wave shielding and absorbing sheet and preparation method thereof
KR100903434B1 (en) * 2007-07-20 2009-06-18 (주)동원인텍 Method for manufacturing ultra-thin conductive single-coated tape using nonwoven fabric and the conductive single-coated tape by the same
US7592687B2 (en) 2005-02-11 2009-09-22 Samsung Electronics Co., Ltd. Device and method for preventing an integrated circuit from malfunctioning due to surge voltage
KR100936535B1 (en) * 2007-09-14 2010-01-15 주식회사 오산 An electroconductive elastic composite sheet and a method and for preparation of the same
US8921234B2 (en) 2012-12-21 2014-12-30 Applied Materials, Inc. Selective titanium nitride etching
US8968861B2 (en) 2013-03-14 2015-03-03 Laird Technologies, Inc. Flame retardant, electrically conductive adhesive materials and related methods
US8975152B2 (en) 2011-11-08 2015-03-10 Applied Materials, Inc. Methods of reducing substrate dislocation during gapfill processing
US8980763B2 (en) 2012-11-30 2015-03-17 Applied Materials, Inc. Dry-etch for selective tungsten removal
US8999856B2 (en) 2011-03-14 2015-04-07 Applied Materials, Inc. Methods for etch of sin films
US9012302B2 (en) 2011-09-26 2015-04-21 Applied Materials, Inc. Intrench profile
US9017570B2 (en) 2012-05-08 2015-04-28 Hyundai Motor Company Hybrid filler for electromagnetic shielding composite material and method of manufacturing the hybrid filler
US9064816B2 (en) 2012-11-30 2015-06-23 Applied Materials, Inc. Dry-etch for selective oxidation removal
US9093390B2 (en) 2013-03-07 2015-07-28 Applied Materials, Inc. Conformal oxide dry etch
US9117855B2 (en) 2013-12-04 2015-08-25 Applied Materials, Inc. Polarity control for remote plasma
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US9136273B1 (en) 2014-03-21 2015-09-15 Applied Materials, Inc. Flash gate air gap
US9153442B2 (en) 2013-03-15 2015-10-06 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9159606B1 (en) 2014-07-31 2015-10-13 Applied Materials, Inc. Metal air gap
US9165786B1 (en) 2014-08-05 2015-10-20 Applied Materials, Inc. Integrated oxide and nitride recess for better channel contact in 3D architectures
US9190293B2 (en) 2013-12-18 2015-11-17 Applied Materials, Inc. Even tungsten etch for high aspect ratio trenches
KR20150129994A (en) * 2014-05-13 2015-11-23 가드넥(주) Electronic tape having buffering, heat radiating, and emi shielding function, electronic tape having buffering and emi shielding function, and electronic tape having buffering, emi shielding, and waterproof function
US9209012B2 (en) 2013-09-16 2015-12-08 Applied Materials, Inc. Selective etch of silicon nitride
US9236266B2 (en) 2011-08-01 2016-01-12 Applied Materials, Inc. Dry-etch for silicon-and-carbon-containing films
US9236265B2 (en) 2013-11-04 2016-01-12 Applied Materials, Inc. Silicon germanium processing
US9245762B2 (en) 2013-12-02 2016-01-26 Applied Materials, Inc. Procedure for etch rate consistency
US9263278B2 (en) 2013-12-17 2016-02-16 Applied Materials, Inc. Dopant etch selectivity control
US9287095B2 (en) 2013-12-17 2016-03-15 Applied Materials, Inc. Semiconductor system assemblies and methods of operation
US9293568B2 (en) 2014-01-27 2016-03-22 Applied Materials, Inc. Method of fin patterning
US9299538B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9299582B2 (en) 2013-11-12 2016-03-29 Applied Materials, Inc. Selective etch for metal-containing materials
US9299575B2 (en) 2014-03-17 2016-03-29 Applied Materials, Inc. Gas-phase tungsten etch
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9355856B2 (en) 2014-09-12 2016-05-31 Applied Materials, Inc. V trench dry etch
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9378969B2 (en) 2014-06-19 2016-06-28 Applied Materials, Inc. Low temperature gas-phase carbon removal
US9378978B2 (en) 2014-07-31 2016-06-28 Applied Materials, Inc. Integrated oxide recess and floating gate fin trimming
US9385028B2 (en) 2014-02-03 2016-07-05 Applied Materials, Inc. Air gap process
US9390937B2 (en) 2012-09-20 2016-07-12 Applied Materials, Inc. Silicon-carbon-nitride selective etch
US9396989B2 (en) 2014-01-27 2016-07-19 Applied Materials, Inc. Air gaps between copper lines
US9406523B2 (en) 2014-06-19 2016-08-02 Applied Materials, Inc. Highly selective doped oxide removal method
US9425058B2 (en) 2014-07-24 2016-08-23 Applied Materials, Inc. Simplified litho-etch-litho-etch process
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US9847289B2 (en) 2014-05-30 2017-12-19 Applied Materials, Inc. Protective via cap for improved interconnect performance
US9887096B2 (en) 2012-09-17 2018-02-06 Applied Materials, Inc. Differential silicon oxide etch
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US10170282B2 (en) 2013-03-08 2019-01-01 Applied Materials, Inc. Insulated semiconductor faceplate designs
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100841042B1 (en) 2007-07-20 2008-06-24 (주)동원인텍 Method for manufacturing ultra-thin conductive double-coated tape using nonwoven fabric and the conductive double-coated tape by the same
KR100894280B1 (en) 2007-09-22 2009-04-21 임정희 Functional textile and manufacture method of it
KR100920766B1 (en) * 2009-04-22 2009-10-07 두성산업 주식회사 Thin film type cushion adhesive tape and method of producing the same
KR100958891B1 (en) 2009-06-18 2010-05-20 두성산업 주식회사 Thin film type gasket usign for a display, having excellent conductivity and elastic property and method of producing the same
KR20110079466A (en) 2009-12-31 2011-07-07 제일모직주식회사 Thermoplastic resin composition and molded product using the same
KR200469743Y1 (en) 2012-03-20 2013-11-05 이준갑 A technical textile
KR101399024B1 (en) 2012-12-14 2014-05-27 주식회사 아모센스 Magnetic shielding sheet, manufacturing method thereof, and portable terminal using the same

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022463A1 (en) * 2004-08-24 2006-03-02 Joinset Co., Ltd. Multi-purpose adhesive tape capable of adhering on both sides
KR100593869B1 (en) * 2004-09-24 2006-07-05 주식회사 엠피코 Dispensing gasket and manufacturing method for EMI shielding
US7592687B2 (en) 2005-02-11 2009-09-22 Samsung Electronics Co., Ltd. Device and method for preventing an integrated circuit from malfunctioning due to surge voltage
KR100803782B1 (en) * 2006-09-28 2008-02-15 율촌화학 주식회사 Surface protective film
KR100888048B1 (en) * 2007-05-31 2009-03-10 두성산업 주식회사 Electromagnetic wave shielding and absorbing sheet and preparation method thereof
KR100903434B1 (en) * 2007-07-20 2009-06-18 (주)동원인텍 Method for manufacturing ultra-thin conductive single-coated tape using nonwoven fabric and the conductive single-coated tape by the same
KR100936535B1 (en) * 2007-09-14 2010-01-15 주식회사 오산 An electroconductive elastic composite sheet and a method and for preparation of the same
US8999856B2 (en) 2011-03-14 2015-04-07 Applied Materials, Inc. Methods for etch of sin films
US9236266B2 (en) 2011-08-01 2016-01-12 Applied Materials, Inc. Dry-etch for silicon-and-carbon-containing films
US9012302B2 (en) 2011-09-26 2015-04-21 Applied Materials, Inc. Intrench profile
US8975152B2 (en) 2011-11-08 2015-03-10 Applied Materials, Inc. Methods of reducing substrate dislocation during gapfill processing
US9017570B2 (en) 2012-05-08 2015-04-28 Hyundai Motor Company Hybrid filler for electromagnetic shielding composite material and method of manufacturing the hybrid filler
US9887096B2 (en) 2012-09-17 2018-02-06 Applied Materials, Inc. Differential silicon oxide etch
US9390937B2 (en) 2012-09-20 2016-07-12 Applied Materials, Inc. Silicon-carbon-nitride selective etch
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US8980763B2 (en) 2012-11-30 2015-03-17 Applied Materials, Inc. Dry-etch for selective tungsten removal
US9064816B2 (en) 2012-11-30 2015-06-23 Applied Materials, Inc. Dry-etch for selective oxidation removal
US8921234B2 (en) 2012-12-21 2014-12-30 Applied Materials, Inc. Selective titanium nitride etching
US9449845B2 (en) 2012-12-21 2016-09-20 Applied Materials, Inc. Selective titanium nitride etching
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9093390B2 (en) 2013-03-07 2015-07-28 Applied Materials, Inc. Conformal oxide dry etch
US10170282B2 (en) 2013-03-08 2019-01-01 Applied Materials, Inc. Insulated semiconductor faceplate designs
US8968861B2 (en) 2013-03-14 2015-03-03 Laird Technologies, Inc. Flame retardant, electrically conductive adhesive materials and related methods
US9674993B2 (en) 2013-03-14 2017-06-06 Laird Technologies, Inc. Flame retardant, electrically conductive adhesive materials and related methods
US9153442B2 (en) 2013-03-15 2015-10-06 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US9209012B2 (en) 2013-09-16 2015-12-08 Applied Materials, Inc. Selective etch of silicon nitride
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9236265B2 (en) 2013-11-04 2016-01-12 Applied Materials, Inc. Silicon germanium processing
US9520303B2 (en) 2013-11-12 2016-12-13 Applied Materials, Inc. Aluminum selective etch
US9711366B2 (en) 2013-11-12 2017-07-18 Applied Materials, Inc. Selective etch for metal-containing materials
US9299582B2 (en) 2013-11-12 2016-03-29 Applied Materials, Inc. Selective etch for metal-containing materials
US9245762B2 (en) 2013-12-02 2016-01-26 Applied Materials, Inc. Procedure for etch rate consistency
US9117855B2 (en) 2013-12-04 2015-08-25 Applied Materials, Inc. Polarity control for remote plasma
US9287095B2 (en) 2013-12-17 2016-03-15 Applied Materials, Inc. Semiconductor system assemblies and methods of operation
US9263278B2 (en) 2013-12-17 2016-02-16 Applied Materials, Inc. Dopant etch selectivity control
US9190293B2 (en) 2013-12-18 2015-11-17 Applied Materials, Inc. Even tungsten etch for high aspect ratio trenches
US9396989B2 (en) 2014-01-27 2016-07-19 Applied Materials, Inc. Air gaps between copper lines
US9293568B2 (en) 2014-01-27 2016-03-22 Applied Materials, Inc. Method of fin patterning
US9385028B2 (en) 2014-02-03 2016-07-05 Applied Materials, Inc. Air gap process
US9299575B2 (en) 2014-03-17 2016-03-29 Applied Materials, Inc. Gas-phase tungsten etch
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9299538B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9136273B1 (en) 2014-03-21 2015-09-15 Applied Materials, Inc. Flash gate air gap
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
KR20150129994A (en) * 2014-05-13 2015-11-23 가드넥(주) Electronic tape having buffering, heat radiating, and emi shielding function, electronic tape having buffering and emi shielding function, and electronic tape having buffering, emi shielding, and waterproof function
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9847289B2 (en) 2014-05-30 2017-12-19 Applied Materials, Inc. Protective via cap for improved interconnect performance
US9406523B2 (en) 2014-06-19 2016-08-02 Applied Materials, Inc. Highly selective doped oxide removal method
US9378969B2 (en) 2014-06-19 2016-06-28 Applied Materials, Inc. Low temperature gas-phase carbon removal
US9425058B2 (en) 2014-07-24 2016-08-23 Applied Materials, Inc. Simplified litho-etch-litho-etch process
US9159606B1 (en) 2014-07-31 2015-10-13 Applied Materials, Inc. Metal air gap
US9378978B2 (en) 2014-07-31 2016-06-28 Applied Materials, Inc. Integrated oxide recess and floating gate fin trimming
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9165786B1 (en) 2014-08-05 2015-10-20 Applied Materials, Inc. Integrated oxide and nitride recess for better channel contact in 3D architectures
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9355856B2 (en) 2014-09-12 2016-05-31 Applied Materials, Inc. V trench dry etch

Also Published As

Publication number Publication date
KR100550808B1 (en) 2006-02-09

Similar Documents

Publication Publication Date Title
JP4249227B2 (en) Electromagnetic interference suppressing body, an antenna device, and an electronic information transmitting device
US6717485B2 (en) Interference signal decoupling using a board-level EMI shield that adheres to and conforms with printed circuit board component and board surfaces
US7815820B2 (en) Electromagnetic interference shielding polymer composites and methods of manufacture
US20020125026A1 (en) Flame retardant EMI shielding gasket
US4980223A (en) Sheet for forming article having electromagnetic wave shieldability
US7887911B2 (en) Electromagnetic noise suppressor, article with electromagnetic noise suppressing function and their manufacturing methods
US6809254B2 (en) Electronics enclosure having an interior EMI shielding and cosmetic coating
CN100360001C (en) Composite magnetic element, electromagnetic wave absorbing sheet, production method for sheet-form article, production method for electromagnetic wave absorbing sheet
Pomposo et al. Polypyrrole-based conducting hot melt adhesives for EMI shielding applications
US7258819B2 (en) Voltage variable substrate material
EP0512662A2 (en) Conductive polymer shielded wire
US4943477A (en) Conductive sheet having electromagnetic interference shielding function
US20040020674A1 (en) Composite EMI shield
KR101244022B1 (en) Electromagnetic interference suppressing hybrid sheet
JP2005522881A (en) Voltage variable material for direct application, and devices using voltage variable material
JP2005339833A (en) Flexible flat cable
KR0185681B1 (en) Heat resistant flame resistant conducting sheet having an electrical insulation layer and process for manufacture thereof
JPWO2008126690A1 (en) Electromagnetic wave shielding sheet and rfid plate
US20080283290A1 (en) Article including sheet-like electromagnetic shielding structure
WO2010093598A3 (en) Conductive surfacing films for lightning strike and electromagnetic interference shielding of thermoset composite materials
KR101100056B1 (en) Flat cable
CN1751365A (en) Conductive thermoplastic compositions and antennas thereof
JPH05205536A (en) Shielding material and shielded electric wire-cable product
US20100311866A1 (en) Heirarchial polymer-based nanocomposites for emi shielding
JP2002329995A (en) Electromagnetic wave absorbing body

Legal Events

Date Code Title Description
A201 Request for examination
G15R Request for early opening
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee
R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20130201

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140129

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20141127

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170120

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190131

Year of fee payment: 14