KR20030096140A - The multi-layer type sheet for shielding from electromagnetic waves and the method for making it - Google Patents

The multi-layer type sheet for shielding from electromagnetic waves and the method for making it Download PDF

Info

Publication number
KR20030096140A
KR20030096140A KR1020030081177A KR20030081177A KR20030096140A KR 20030096140 A KR20030096140 A KR 20030096140A KR 1020030081177 A KR1020030081177 A KR 1020030081177A KR 20030081177 A KR20030081177 A KR 20030081177A KR 20030096140 A KR20030096140 A KR 20030096140A
Authority
KR
South Korea
Prior art keywords
layer
conductive
sheet
rubber sheet
metal
Prior art date
Application number
KR1020030081177A
Other languages
Korean (ko)
Other versions
KR100550808B1 (en
Inventor
박종주
이찬우
조재위
Original Assignee
주식회사 에스테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에스테크 filed Critical 주식회사 에스테크
Priority to KR1020030081177A priority Critical patent/KR100550808B1/en
Publication of KR20030096140A publication Critical patent/KR20030096140A/en
Application granted granted Critical
Publication of KR100550808B1 publication Critical patent/KR100550808B1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/009Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive fibres, e.g. metal fibres, carbon fibres, metallised textile fibres, electro-conductive mesh, woven, non-woven mat, fleece, cross-linked
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/02Layered products comprising a layer of natural or synthetic rubber with fibres or particles being present as additives in the layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/10Layered products comprising a layer of natural or synthetic rubber next to a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0086Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single discontinuous metallic layer on an electrically insulating supporting structure, e.g. metal grid, perforated metal foil, film, aggregated flakes, sintering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0088Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/212Electromagnetic interference shielding

Abstract

PURPOSE: A multi-layered conductive rubber sheet and a preparation method thereof are provided to shield the electromagnetic wave effectively and maintain the flexibility and tensile strength of the sheet well. CONSTITUTION: The multi-layered conductive rubber sheet comprises a conductive paste layer(1) to add 15 to 85 wt.% of the dendrite type, granule type and amorphous metal or metal components, the carbon black and the graphite to a resin selected from the group consisting of urethane, acrylics, PVC, polyesters, EPDM and silicone; a conductive rubber sheet layer(2) to add 15 to 85 wt.% of the dendrite type, granule type and amorphous metal or metal components, the carbon black and the graphite to a resin selected from the group consisting of urethane, acrylic, PVC, polyester, EPDM and silicone; and a conductive material layer(3) in a type of polyester fabrics, non-woven fabrics or mesh with a metal applied on.

Description

전자파 차폐 성능이 우수한 다층 구조의 시트 및 그 제조 방법{The multi-layer type sheet for shielding from electromagnetic waves and the method for making it}The multi-layer type sheet for shielding from electromagnetic waves and the method for making it}

본 발명은 우수한 전자파 차폐 특성을 가지는 다층 전도성 고무시트 및 그 제조 방법에 관한 것으로, 프레이크 및 수지상 결정형(樹枝狀 結晶形, dendrite type), 미립자형(Granule type), 무정형(동, 니켈, 은, 은이 코팅된 동 등)의 금속 또는 금속합금, 카본 블랙(Carbon black), 흑연(graphite)을 포함하는 전도성 페이스트 층과, 전도성 고무시트층과, 전도성 직물, 부직포 또는 메쉬 중의 어느 한 개로 이루어진 전도성 소재층이 상, 중 하층을 형성하는 전자파 차폐 성능이 우수한 다층 구조의 시트 및 그 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer conductive rubber sheet having excellent electromagnetic wave shielding properties and a method of manufacturing the same, wherein the flake and dendrite type, the granule type, and the amorphous type (copper, nickel, silver, Conductive material consisting of a conductive paste layer comprising a metal or metal alloy of silver coated copper, carbon black, graphite, a conductive rubber sheet layer, and a conductive fabric, nonwoven fabric or mesh The present invention relates to a multi-layered sheet having excellent electromagnetic shielding performance in which layers form upper and lower layers, and a method of manufacturing the same.

즉, 전도성 페이스트층과, 전도성 고무시트층과, 전도성 직물, 부직포 또는 메쉬 중의 어느 한 개로 이루어진 전도성 소재층이 각각 상하방향으로 접합되어진 다층구조의 시트를 형성함으로써 전자파를 효과적으로 차폐할 수 있도록 하고, 시트의 유연성 및 인장강도를 우수하게 유지할 수 있도록 한다.That is, the conductive paste layer, the conductive rubber sheet layer, and a conductive material layer made of any one of a conductive fabric, a nonwoven fabric, or a mesh are formed to form a multi-layered sheet in which the upper and lower sides are joined, respectively, to effectively shield electromagnetic waves. It ensures excellent flexibility and tensile strength of the sheet.

최근 과학문명의 발달은 인류의 생활에 많은 편의를 제공하고 있다. 특히 전기, 전자 및 통신관련기기의 발달은 우리생활을 보다 더 편리하고 윤택하게 해주는데 일익을 담당하고 있다. 이렇게 인간에게 편리함을 제공하고 있는 과학문명도 어떻게 어디에 사용하느냐에 따라 좋을 수도 있고 나쁠 수도 있는 양면성을 가지고 있다.The recent development of scientific civilization has provided many conveniences to human life. In particular, the development of electrical, electronic and communication-related equipment is playing a part in making our lives more convenient and profitable. The scientific civilization, which provides convenience to humans, has both sides which may be good or bad depending on how and where it is used.

최신 과학문물중 인간에게 해를 주는 것 중의 하나가 전자기파이다. 전력의생산과 송전, 라디오와 TV, 전화등의 각종 통신, 전자레인지와 오븐, 비행기 또는 선박의 항해 우주탐사에 이르기까지 그 어느것 하나 전자기파가 아니면 상상할 수 없는 것들이다. 기술이 발달할수록 전자제품은 쏟아지고 그만큼 전자기파도 늘어날 것이다.One of the latest scientific literature that harms humans is electromagnetic waves. From the production and transmission of electricity, the communication of radios and TVs, telephones, to microwaves and ovens, to the space navigation of airplanes and ships, everything is unimaginable. As technology develops, electronics will pour and electromagnetic waves will increase.

지금도 전자기파는 우리가 호흡하는 공기와 같이 무색무취의 상태로 우리 주변을 떠돌고 있다. 그러나 인간들에게 없어서는 안될 이들 전자기파도 전파방해(EMI: Electro Magnetic Interference)라 하여 다른 전자기파를 교란시켜 각종기계의 오작동 원인이 되어 산업재해를 일으키기도 하고 인체에 직·간접적으로 작용, 치명적인 영향을 주기도 한다.Even now, electromagnetic waves wander around us as colorless and odorless, like the air we breathe. However, these electromagnetic waves, which are indispensable to humans, are also called electromagnetic interference (EMI), which disturbs other electromagnetic waves, causing malfunction of various machines, causing industrial accidents, and directly or indirectly affecting the human body. .

또한 자동차 고전압 발생장치에 의한 내부 전자제품의 효율 저하 및 수명단축, 전자장비들 사이의 상호교란, 인체의 마이크로파에 대한 장기노출의 경우 야기될 수 있는 녹내장, 생식능력의 저하 등을 예로 들수 있다. 현대인들이 사는 공간은 전자기파로부터 더 이상 안전지대가 아니며 과학문명이 발달할수록 그 심각성은 더해갈 것이다.In addition, for example, the efficiency and lifespan of internal electronic products may be reduced due to the high voltage generator of the automobile, the disturbance between electronic equipments, glaucoma, which may occur in the case of long-term exposure to microwaves, and the reproductive ability may be reduced. The space inhabited by modern people is no longer a safe zone from electromagnetic waves, and as scientific civilization develops, its seriousness will increase.

인체에는 미세한 전자 신호체계가 있어 감정의 조절, 기억, 행동의 메카니즘이 가능하게 한다. 인간사에 있어 임신과 출산, 질병, 스트레스 등은 전자파와 절대 무관하지 않다면 충격적이겠으나 그것은 사실이다. 이런 현실에서 미국, 일본, 러시아등 과학 선진국에서는 전자파의 안전노출 기준을 마련해 외부노출을 강력하게 규제하고 있으며 전자파의 유해성에 대한 연구를 꾸준히 진행하고 있다.The human body has a microscopic electronic signaling system that enables mechanisms of emotion regulation, memory, and behavior. Pregnancy, childbirth, illness and stress in human history would be shocking if they were never related to electromagnetic waves, but that is true. Under these circumstances, advanced countries such as the United States, Japan, and Russia have established safety exposure standards for electromagnetic waves to strongly regulate external exposure, and continue to study the harmfulness of electromagnetic waves.

특히 21세기 고도의 정보통신시대를 앞두고 급증하는 정보통신량에 비례해파생되어지는 전자파 장해(EMI)에 대한 대책과 고질의 정보량을 유지시키며 인체에 대한 영향을 최소화시키기 위하여 선진 각국에서는 이미 20여전부터 EMI를 규제해왔으며, 최근에는 전자파 내성유지를 강제화 하여 전자파 환경보호에 매우 적극적으로 대처하고 있다.In particular, in the advanced countries, more than 20 years have already been developed in the advanced countries to maintain the high-quality information and minimize the impact on the electromagnetic interference (EMI), which is generated in proportion to the rapidly increasing information and communication age in the 21st century. EMI has been regulated and in recent years, it has been very active in protecting the electromagnetic environment by forcing electromagnetic wave immunity.

통상적으로 기존의 EMI 소재중 금속을 기재로 하고 있는 경우에 주로 고분자 재료를 바인더 개념으로 사용하고 있는데 실리콘 고무나 클로리네이티드 폴리에틸렌 클로로 술폰화 폴리에틸렌 에틸렌 프로필렌 디엔의 삼원 공중합체 에틸렌 프로필렌 코폴리머 등의 고무계를 사용하여 비가교 타입 또는 가교 타입으로 사용하고 있으나, EMI 소재는 금속의 함량이 70wt%이상인 경우가 많아서 단순히 기계적으로 믹싱 또는 브렌딩 되어 있는 복합체의 경우(특히 열가소성의 경우)거의 물성이 없고(신장율 100%∼0%) 내열성 또한 매우 떨어지는 현상을 보여주고 있다.In general, when a metal is used as a base material of a conventional EMI material, a polymer material is mainly used as a binder concept. A rubber system such as a silicone copolymer or a terpolymer of chlorinated polyethylene, chloro sulfonated polyethylene, ethylene propylene diene, and ethylene propylene copolymer Although it is used as a non-crosslinking type or a crosslinking type, the EMI material has a metal content of more than 70wt%, so that the composite which is simply mechanically mixed or blended (particularly in the case of thermoplastic) has almost no physical property ( Elongation 100% ~ 0%) The heat resistance is also very poor.

가교 타입의 경우에도 내열성은 개선이 되지만 근본적으로 금속과 고분자가 기계적으로 믹싱되어 있는 상태이기 때문에 소재의 물성이 좋지 못하여 전자파를 차폐하는 기본 물성을 지속적으로 유지시키지 못하고 경화되거나 분해되는 문제점이 있다.In the case of the crosslinking type, the heat resistance is improved, but since the metal and the polymer are basically in a state of mechanically mixing, there is a problem in that the physical properties of the material are not good, so that the basic physical properties of shielding the electromagnetic waves cannot be continuously maintained, but are cured or decomposed.

또한, 금속 페이스를 단독으로 사용한 전자파 차폐 소재의 경우 다양한 물성 및 전기적 특성을 만족시키지 못하여 실제 전자파 차폐 기구물로서적용시 몇가지 단점을 갖고 있다.In addition, the electromagnetic shielding material using a metal face alone does not satisfy various physical and electrical properties, and has some disadvantages when applied as an actual electromagnetic shielding device.

즉, 금속(니켈, 동, 니켈-동)이 코팅된 직물, 부직포 메쉬 등을 소재로한 전자파 차폐 소재의 경우 우수한 전자파 차폐 효율을 보여주고 있으나 가공시버(Burr) 발생 및 표면 산화피막 형성에 따른 상용성의 문제점을 갖고 있다.In other words, the electromagnetic wave shielding material made of metal (nickel, copper, nickel-copper) coated fabric, non-woven mesh, etc. shows excellent electromagnetic shielding efficiency, but due to the generation of processed burr and surface oxide film formation. There is a problem of compatibility.

본 발명의 목적은 상기의 문제점을 보완하여 전도성, 표면의 내산화성, 인장강도가 우수하며, 시트의 유연성, 직물 및 메쉬 원단의 버(Burr) 이탈 방지 등의 물리적 성질을 갖는 동시에, 우수한 전자파 차폐 특성 및 높은 신뢰성을 갖도록 하는 다중 층 전도성 고무 시트의 제조 방법을 제공하는데 있다.The object of the present invention is to compensate for the above problems, excellent conductivity, oxidation resistance of the surface, tensile strength, having the physical properties such as sheet flexibility, prevention of burr separation of fabric and mesh fabric, and excellent electromagnetic shielding It is to provide a method for producing a multilayer conductive rubber sheet that has properties and high reliability.

우수한 전자파 차폐 효율을 갖는 다층 전도성 고무 시트의 구조는 프레이크 및 수지상 결정형(樹枝狀 結晶形, dendrite type), 미립자형(Granule type), 무정형(동, 니켈, 은, 은이 코팅된 동 등)으로된 금속 혹은 금속 합금체, 카본 블랙(Carbon black) 또는 흑연(Graphite)을 소재로 한 전도성 페이스트층과; 전도성 고무시트층과; 전도성 직물, 부직포 또는 메쉬 중의 어느 한 개로 이루어진 전도성 소재층을 각각 상하방향으로 접합하여진 다층 구조로 이루어지고, 이와 같이 구성함으로써 인장강도, 유연성 등의 물리적 성질과 함께 전자파 차폐 특성 및 높은 신뢰성을 모두 만족할 수 있도록 한다.The structure of the multilayer conductive rubber sheet with excellent electromagnetic shielding efficiency is made of flake and dendrite type, granule type, amorphous (copper, nickel, silver, copper coated with silver, etc.). A conductive paste layer made of a metal or a metal alloy, carbon black, or graphite; A conductive rubber sheet layer; The conductive material layer made of any one of a conductive fabric, a nonwoven fabric, or a mesh is formed in a multilayered structure in which the conductive material layers are bonded to each other in the up and down direction. To help.

도 1a는 본 발명에 의해 제조된 다층 구조의 시트 단면도,Figure 1a is a cross-sectional view of the sheet of the multilayer structure produced by the present invention,

도 1b는 본 발명에 의해 제조된 다층 구조의 시트 단면도,Figure 1b is a cross-sectional view of the sheet of the multilayer structure produced by the present invention,

도 2는 Far-field영역에서의 전자파 차폐효율을 비교한 도표로서,2 is a chart comparing electromagnetic shielding efficiency in a far-field region.

(a)는 단층 은이 코팅된 동의 고무시트에서의 전자파 차폐효율,(a) is the electromagnetic shielding efficiency of the single-layer silver-coated copper rubber sheet,

(b)는 본발명에 의해 제조된 다층 구조의 시트 전자파 차폐효율을 나타낸 도표.(b) is a table showing the sheet electromagnetic shielding efficiency of the multilayer structure produced by the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 전도성 페이스트(Paste)층2 : 전도성 고무시트층1: conductive paste layer 2: conductive rubber sheet layer

3 : 전도성 섬유 소재층 4 : 접착층3: conductive fiber material layer 4: adhesive layer

첨부도면에 의해 본 발명의 구성을 상세하게 설명하기로 한다.The configuration of the present invention will be described in detail with the accompanying drawings.

도 1은 본 발명에 의해 제조된 다층 구조의 시트 단면도이며, 도 2는 Far-field영역에서의 전자파 차폐효율을 비교한 도표로서, (a)는 단층 은이 코팅된 동의 고무시트에서의 전자파 차폐효율, (b)는 본발명에 의해 제조된 다층 구조의 시트 전자파 차폐효율을 나타낸 도표이다.1 is a cross-sectional view of a sheet of a multilayer structure manufactured by the present invention, Figure 2 is a diagram comparing the electromagnetic shielding efficiency in the far-field region, (a) is the electromagnetic shielding efficiency in a single-layer silver coated copper rubber sheet , (b) is a chart showing the sheet electromagnetic shielding efficiency of the multilayer structure produced by the present invention.

본 발명에 따른 다층(多層) 구조의 시트는 도 1에 도시된 바와 같이,As shown in Fig. 1, the sheet of the multilayer structure according to the present invention,

프레이크 및 수지상 결정형(樹枝狀 結晶形, dendrite type), 미립자형Flake and dendrite type, fine particle type

(Granule type), 무정형(동, 니켈, 은, 은이 코팅된 동 등)의 금속 또는 금속합금, 카본 블랙(Carbon black), 흑연(graphite)을 포함하는 전도성 페이스트층(1)과, 전도성 고무시트층(2)과, 전도성 직물, 부직포 또는 메쉬 중의 어느 한 개로 이루어진 전도성 소재층(3)이 각각 상하방향으로 접합되어진 다층 구조로 이루어진 것을 특징으로 한다.(Granule type), a conductive paste layer (1) containing an amorphous (copper, nickel, silver, silver coated copper, etc.) metal or metal alloy, carbon black, graphite, and a conductive rubber sheet The layer 2 and the conductive material layer 3 made of any one of a conductive fabric, a nonwoven fabric or a mesh are each made of a multi-layered structure joined together in a vertical direction.

바람직하기로는, 상기 전도성 페이스트층(1)이 상층에, 전도성 고무시트층Preferably, the conductive paste layer 1 is an upper layer, a conductive rubber sheet layer

(2)이 중층에, 전도성 직물, 부직포 또는 메쉬 중의 어느 한 개로 이루어진 전도성 소재층(3)이 하층에 위치하도록 구성하고,(2) In this middle layer, the conductive material layer 3 which consists of any one of a conductive fabric, a nonwoven fabric, or a mesh is comprised in the lower layer,

상기 전도성 소재층(3)의 하면에는 양면 테이프 등에 의한 접착층(4)을 형성하여 핸드폰, 노트북 모니터 등 전자제품의 표면에 접합하기 용이하도록 한다.An adhesive layer 4 made of a double-sided tape or the like is formed on the bottom surface of the conductive material layer 3 to facilitate bonding to the surface of electronic products such as mobile phones and laptop monitors.

이와 같이 구성되어진 본 발명에 따른 다층 구조의 시트는 전도성 및 전자파차폐 효율, 표면의 내 산화성, 인장강도가 우수하며, 시트의 유연성, 직물 및 메쉬 원단의 버플이탈 방지 등이 우수하므로, 핸드폰, 노트북, PC, LCD 모니터, PDA 등의 이동통신 및 전기 전자제품에 대한 전자파차폐재 및 정전기 방지재의 용도로서, 도전성 고무시트, 도전성 쿠션고무 가스켓 등의 다양한 형태로서 사용될 수 있다.The multi-layered sheet according to the present invention configured as described above has excellent conductivity and electromagnetic shielding efficiency, surface oxidation resistance, and tensile strength, and excellent sheet flexibility and prevention of baffle release of fabrics and mesh fabrics. As a use of electromagnetic shielding materials and antistatic materials for mobile communication and electrical and electronic products such as PCs, LCD monitors, PDAs, and the like, they may be used in various forms such as conductive rubber sheets and conductive cushion rubber gaskets.

한편, 전도성 페이스트층(1)에서 사용되는 금속 합금체(동, 니켈, 은, 은이코팅된 동 등)는 프레이크 또는 수지상 결정형(樹枝狀 結晶形, dendrite type), 미립자형(Granule type) 또는 무정형 형태를 갖는 금속들이다.On the other hand, the metal alloy (copper, nickel, silver, silver coated copper, etc.) used in the conductive paste layer 1 may be a flake or dendrite type, a granule type or an amorphous type. Metals in the form.

상기 금속을 우레탄, 아크릴, 폴리에스테르 계통의 수지(Resin)에 60wt% 이하 첨가하여 페이스트를 제조하고, 이를 롤 코팅(Roll coating) 또는 캐스팅60 wt% or less of the metal is added to the resin (Resin) of the urethane, acrylic, polyester system to prepare a paste, and roll coating or casting

(Casting), 스크린 프린팅(Screen printing) 또는 스프레이(Spray) 방법에 의해 코팅해준다.It is coated by (Casting), Screen printing or Spray (Spray) method.

중층으로서 전도성 고무시트층(2)은 프레이크 또는 수지상 결정형(樹枝狀 結晶形, dendrite type), 미립자형(Granule type), 무정형(동, 니켈, 은, 은이 코팅된 동 등)의 금속 또는 금속합금을 우레탄, 아크릴, 에틸렌 공중합체로는 에틸렌과 카르복실그룹을 가진 모노머 또는 그 유도체와의 공중합체로서, 바람직하기로는 에틸렌 에틸 아크릴레이트, 에틸렌 메틸 아크릴레이트 또는 에틸렌 비닐 아세테이트 등에 80wt% 이하 첨가하여 터빈 임펠러 타입의 디졸버, 니더, 벤버리믹서, 부스니더 또는 오픈롤밀에서 컴파운딩 하거나, 헨셀믹서, 리본 블렌더, 브이 블랜더 등에서 상기혼합물을 먼저 충분히 믹싱한 후 니더, 벤버리믹서, 부스니더, 싱글압출기, 트윈압출기 등에서 컴파운딩 할 수 있다. 상기 컴파운드를 전도성 직물위에 시트로 라미네이팅 하는 방법은 닥터 블레이드법(Docter brade)으로 캐스팅(Casting)하거나 나이프 코팅하는 방법으로 성형하였으며, 단일 층의 전도성 고무시트로 제조시 또한 컴파운딩된 전도성 페이스트를 닥터 블레이드법(Docter brade)으로 캐스팅(Casting)하거나 나이프 코팅하는 방법, 카렌더 법 혹은 티다이 압출 및 카렌더링을 하여 유연성 및 연신성을 갖는 전도성 고무시트를 제조한다.As the intermediate layer, the conductive rubber sheet layer 2 may be a flake or dendrite type, a granule type, an amorphous metal (copper, nickel, silver, copper coated with silver, etc.) or a metal alloy. The urethane, acryl, ethylene copolymer is a copolymer of ethylene and a monomer having a carboxyl group or a derivative thereof, and preferably, 80 wt% or less of ethylene ethyl acrylate, ethylene methyl acrylate or ethylene vinyl acetate is added to the turbine impeller. Compound in the type of dissolver, kneader, benbury mixer, boothneader or open roll mill, or mix the mixture first in a Henschel mixer, ribbon blender, V blender, etc. It can be compounded in a twin extruder. The method of laminating the compound into a sheet on the conductive fabric is formed by casting or knife coating by a doctor blade method, and when manufacturing a single layer of conductive rubber sheet, also by using a compounding conductive paste A conductive rubber sheet having flexibility and elongation is produced by casting or knife coating by a blade method, a calendering method, or a T-die extrusion and calendering.

전술한 바와 같은 본 발명을 실시 예를 들어 설명하면 다음과 같다.The present invention as described above will be described with reference to Examples.

(실시예 1)(Example 1)

본 발명의 조성물은 하층(下層)으로서 전도성 소재층(3)은 금속(동, 니켈, 니켈-동 등)이 코팅된 폴리에스테르의 직물, 부직포, 메쉬 형태 중에서 구리와 니켈이 코팅된 폴리에스테르[두께: 0.1mm (혹은 0.05~2mm)]전도성 직물을 사용하였으며, 그 위에 중층(中層)으로 프레이크 또는 수지상 결정형(樹枝狀 結晶形, dendrite type), 미립자형(Granule type), 무정형 형태의 은이 코팅된 동파우더(혹은 니켈, 동, 은등의 금속)를 우레탄(혹은 아크릴, PVC, 폴리에스테르, EPDM, 실리콘 등) 수지에 50wt% (혹은 15~85Wt%) 첨가하여 전도성 고무시트를 코팅하여 제조The composition of the present invention is a lower layer, the conductive material layer (3) is a copper and nickel-coated polyester in the fabric, non-woven fabric, mesh of polyester coated with metal (copper, nickel, nickel-copper, etc.) [ Thickness: 0.1mm (or 0.05 ~ 2mm)] Conductive fabric is used, and the middle layer is coated with flake or dendrite type, granule type, and amorphous type silver. Manufactured copper powder (or metal such as nickel, copper, silver) to 50wt% (or 15 ~ 85Wt%) of urethane (or acrylic, PVC, polyester, EPDM, silicone, etc.) resin to coat conductive rubber sheet

[두께: 0.3mm (혹은 0.03~5mm)] 하였다. 하층의 전도성 소재층(3)과 중층의 전도성 고무시트층(2)를 개별적으로 접착할 시에는 전도성 점착제를 칠한 후 롤 프레스로 눌러 접착하였다.(혹은 양면테이프 사용하거나, 고온상태에서 프레스 사용할 수도 있다)[Thickness: 0.3 mm (or 0.03 to 5 mm)]. When the lower conductive material layer (3) and the middle conductive rubber sheet layer (2) are individually bonded, they are coated with a conductive adhesive and then pressed by a roll press (or by using double-sided tape or pressing at a high temperature). have)

상층(上層)으로 은 (혹은 니켈, 동, 은이 코팅된 동 등의 금속)을 우레탄(혹은 아크릴, PVC, 폴리에스테르, EPDM, 실리콘 등) 수지에 50wt% (혹은 15~85Wt%) 첨가하여 전도성 페이스트[두께: 0.01mm (혹은 0.005~0.05mm)]를 제조한 후 상기 전도성 고무시트층(2)의 표면에 롤코팅(Roll coating), 캐스팅(Casting) 또는 프린팅(Printing) 방법을 통해 전도성 페이스트층(1)을 형성해줌으로써 다층 구조의 시트가 만들어진다.Conductive by adding 50wt% (or 15 ~ 85Wt%) of silver (or metal such as nickel, copper, silver coated copper, etc.) to urethane (or acrylic, PVC, polyester, EPDM, silicone, etc.) resin as upper layer After preparing a paste [thickness: 0.01mm (or 0.005 ~ 0.05mm)] to the surface of the conductive rubber sheet layer 2, the conductive paste through a roll coating, casting or printing method By forming the layer 1, a sheet having a multilayer structure is produced.

또한, 상품성 및 적용성을 고려하여 상기 전도성 소재층(3)의 하부면에는 양면테이프 또는 전도성 점착제에 의한 접착층(4)을 형성하여 유연성 및 연신성을 갖는 다층 전자파차폐 고무시트를 제조할 수 있었다.In addition, considering the marketability and applicability, a multilayer electromagnetic shielding rubber sheet having flexibility and stretchability could be manufactured by forming an adhesive layer 4 by double-sided tape or a conductive adhesive on the lower surface of the conductive material layer 3. .

한편, 본 발명에 의해 제조된 다층 전자파 차폐 전도성 고무시트의 전자파 차폐 효율을 측정해본 결과, 도 2에서 확인되는 바와 같이 본 발명에 따른 다층 구조의 시트가 동일 두께의 단층 은이 코팅된 동의 고무시트보다 전 주파수 영역에 걸쳐 우수한 차폐효율을 나타내었다.On the other hand, as a result of measuring the electromagnetic wave shielding efficiency of the multilayer electromagnetic shielding conductive rubber sheet manufactured by the present invention, as shown in Figure 2, the multilayer structure sheet according to the present invention than the single-layered silver-coated copper rubber sheet of the same thickness Excellent shielding efficiency was shown over the entire frequency range.

(실시예 2)(Example 2)

본 발명의 조성물은 하층으로서 동-니켈이 코팅된 폴리에스테르 부직포[두께 : 0.1mm (혹은 0.05~2mm)]에 의한 전도성 소재층(3)을 사용하였으며, 중층으로 수지상 결정형(樹枝狀 結晶形, dendrite type) 형태의 은이 코팅된 동 파우더를 우레탄(혹은 아크릴, PVC, 폴리에스테르, EPDM, 실리콘 등) 수지에 60wt% (혹은 15~85 Wt%) 첨가하여 전도성 고무시트(2)를 제조[두께: 0.3mm (혹은 0.03~5mm)] 사용하였다. 하층과 중층은 점착제 처리 후 고온상태에서 롤 프레스를 사용하여 부착하였다. 상층으로 카본블랙(Carbon black) 또는 흑연(Graphite)을 우레탄(혹은 아크릴, PVC, 폴리에스테르, EPDM, 실리콘 등) 수지에 50wt% (혹은 15~85Wt%) 첨가하여 전도성 페이스트[두께: 0.01mm (혹은 0.005~0.05mm)](1)를 제조한 후 중층의 전도성 고무시트(2) 표면에 롤 코팅(Roll coating) 또는 캐스팅(Casting), 프린팅The composition of the present invention used a conductive material layer (3) made of copper-nickel-coated polyester nonwoven fabric (thickness: 0.1 mm (or 0.05-2 mm)) as a lower layer, and a dendritic crystalline form as a middle layer. A conductive rubber sheet 2 was manufactured by adding 60 wt% (or 15 to 85 Wt%) of silver coated copper powder in the form of dendrite type to urethane (or acrylic, PVC, polyester, EPDM, silicone, etc.) resin. : 0.3 mm (or 0.03-5 mm)]. The lower layer and the middle layer were attached using a roll press in a high temperature state after the adhesive treatment. 50 wt% (or 15 ~ 85Wt%) of carbon black or graphite is added to urethane (or acrylic, PVC, polyester, EPDM, silicone, etc.) resin as the upper layer to make conductive paste [thickness: 0.01mm ( Or 0.005 ~ 0.05mm)] (1), and then roll coating, casting or printing on the surface of the conductive rubber sheet 2 in the middle layer.

(Printing)등을 통하여 다층을 형성하였다.Multilayers were formed through printing.

또한, 상품성 및 적용성을 고려하여 상기 전도성 소재층(3)의 하부면에 양면테이프 또는 전도성 점착제에 의한 접착층(4)를 형성해줌으로써 유연성 및 연신성을 갖는 다중 층 전자파차폐 고무시트를 제조할 수 있었다.In addition, by forming an adhesive layer 4 by double-sided tape or a conductive adhesive on the lower surface of the conductive material layer 3 in consideration of the commerciality and applicability, it is possible to manufacture a multilayer electromagnetic shielding rubber sheet having flexibility and stretchability. there was.

(실시예 3)(Example 3)

본 발명의 조성물은 하층으로서 동-니켈이 코팅된 폴리에스테르 메쉬[두께: 0.08mm(혹은 0.05~2mm)]에 의한 전도성 소재층(3)을 사용하였으며, 중층으로 극성 폴리올레핀 수지 100중량부를 니더(kneader), 벤버리(banbury)믹서 또는 롤(roll)에서 먼저 시트 형태로 가공하고, 수지상 결정형(樹枝狀 結晶形, dendrite type) 형태의 은이 코팅된 동파우더를 300에서 1000중량부 혼합하고 무기 난연제로 수산화알루미늄(혹은 수산화마그네슘) 60에서 150 중량부, 난연조제로 적인 0.5∼5중량부를 투입하여 니더, 벤버리믹서, 부스니더 또는 오픈롤밀에서 컴파운딩 하거나, 헨셀믹서, 리본 블렌더, 브이 블랜더 등에서 상기혼합물을 먼저 충분히 믹싱한 후 니더, 벤버리믹서, 부스니더, 싱글압출기, 트윈압출기 등에서 컴파운딩 하였다. 상기 컴파운드를 시트로 라미네이팅 하는 방법은 시트와 평행한 방향으로 금속 프레이크를 배향하고 적층하기 위하여 카렌더는 물론 티다이 압출을 한 후에도 4본롤로 카렌더링을 하여 유연성 및 연신성을 갖는 전자기파 차폐용 시트를 제조[두께: 0.3mm (혹은 0.1~2mm)] 사용하였다. 하층과 중층은 양면테이프를 사용하여 부착하였다. 상층은 은이 코팅된 동파우더를 우레탄 수지에 60wt% (혹은 15~85Wt%) 첨가하여 전도성 페이스트를[두께: 0.01mm (혹은 0.005~0.05mm)] 제조한 후 중층의 전도성 고무시트층(2) 표면에 롤 코팅(Roll coating) 또는 캐스팅(Casting), 프린팅(Printing)을 통하여 다층 구조의 시트를 형성하였다.The composition of the present invention used a conductive material layer (3) by copper-nickel coated polyester mesh [thickness: 0.08mm (or 0.05-2mm)] as a lower layer, 100 parts by weight of a polar polyolefin resin as a middle layer kneader, banbury mixer or roll first processed into sheet form, mixed with 300 to 1000 parts by weight of silver coated copper powder in the form of dendrite type and inorganic flame retardant 60 to 150 parts by weight of aluminum hydroxide (or magnesium hydroxide) and 0.5 to 5 parts by weight of a flame retardant aid are compounded in a kneader, a Benbury mixer, a bus kneader or an open roll mill, or in a Henschel mixer, ribbon blender or V blender. The mixture was first thoroughly mixed and then compounded in a kneader, a Benbury mixer, a booth kneader, a single extruder, a twin extruder, and the like. The method of laminating the compound into a sheet is to provide a sheet for shielding electromagnetic waves having flexibility and elongation by calendering with four bone rolls after the die die extrusion as well as a calender in order to orient and laminate metal flakes in a direction parallel to the sheet. Preparation [thickness: 0.3 mm (or 0.1-2 mm)] was used. The lower and middle layers were attached using double sided tape. The upper layer is 60wt% (or 15 ~ 85Wt%) of silver coated copper powder to the urethane resin to prepare a conductive paste [thickness: 0.01mm (or 0.005 ~ 0.05mm)], and then the conductive rubber sheet layer of the middle layer (2) The sheet having a multilayer structure was formed on the surface by roll coating, casting, or printing.

또한 상품성 및 적용성을 고려하여 상기 전도성 고무시트층(2)의 하부면에 양면테이프 또는 전도성 점착제에 의한 접착층(4)을 형성해줌으로써 유연성 및 연신성을 갖는 다층 전자파 차폐 고무시트를 제조할 수 있었다.In addition, by forming the adhesive layer 4 by the double-sided tape or the conductive adhesive on the lower surface of the conductive rubber sheet layer 2 in consideration of the marketability and applicability, a multilayer electromagnetic shielding rubber sheet having flexibility and stretchability could be manufactured. .

이상 설명한 바와 같이, 본 발명에 따른 다층구조의 시트는 전도성, 표면의 내산화성, 인장강도가 우수하며, 시트의 유연성, 직물 및 메쉬 원단의 버(Bruu) 이탈 방지 등의 물리적 성질을 갖는 동시에, 우수한 전자파 차폐 특성 및 높은 신뢰성을 갖게된다.As described above, the multi-layered sheet according to the present invention has excellent physical properties such as conductivity, surface oxidation resistance, and tensile strength, flexibility of the sheet, and prevention of burr detachment of fabrics and mesh fabrics, It will have excellent electromagnetic shielding characteristics and high reliability.

즉, 우수한 전자파 차폐 효율을 갖는 다층 전도성 고무 시트의 구조는 프레이크 및 수지상 결정형(樹枝狀 結晶形, dendrite type), 미립자형(Granule type), 무정형(동, 니켈, 은, 은이 코팅된 동 등)으로된 금속 혹은 금속 합금체, 카본 블랙(Carbon black) 또는 흑연(Graphite)을 소재로 한 전도성 페이스트층(1)과; 전도성 고무시트층(2)과; 전도성 직물, 부직포 또는 메쉬 중의 어느 한 개로 이루어진 전도성 소재층(3)을 각각 상하방향으로 접합하여진 다층 구조로 이루어지고, 이와 같이 구성함으로써 인장강도, 유연성 등의 물리적 성질과 함께 전자파 차폐 특성 및 높은 신뢰성을 모두 만족할 수 있도록 한다.That is, the structure of the multilayer conductive rubber sheet having excellent electromagnetic shielding efficiency is flake and dendrite type, granule type, amorphous (copper, nickel, silver, copper coated with silver, etc.) A conductive paste layer 1 made of a metal or metal alloy, carbon black or graphite; A conductive rubber sheet layer 2; The conductive material layer 3 made of any one of a conductive fabric, a nonwoven fabric, or a mesh is formed in a multi-layered structure in which the conductive material layers 3 are joined in the vertical direction, and the electromagnetic wave shielding properties and high reliability together with the physical properties such as tensile strength and flexibility To satisfy all of them.

본 발명에 따른 다층 구조의 시트는 핸드폰, 노트북, PC, LCD 모니터, PDA등의 이동통신 및 전기 전자 제품에 도전성 고무시트, 도전성 쿠션고무 가스켓 등의 다양한 형태로 전자파차폐재 및 정전기 방지재로 응용할 수 있다.The multi-layered sheet according to the present invention can be applied to electromagnetic shielding and antistatic materials in various forms such as conductive rubber sheets and conductive cushion rubber gaskets in mobile communication and electrical and electronic products such as mobile phones, laptops, PCs, LCD monitors, PDAs, and the like. have.

Claims (13)

프레이크 및 수지상 결정형(樹枝狀 結晶形, dendrite type), 미립자형Flake and dendrite type, fine particle type (Granule type), 무정형(동, 니켈, 은, 은이 코팅된 동 등)의 금속 또는 금속합금, 카본 블랙(Carbon black), 흑연(graphite)이 우레탄, 아크릴, PVC, 폴리에스테르, EPDM, 실리콘 중 어느 한 종류의 수지에 15~85Wt% 첨가되어진 전도성 페이스트층Granule type, amorphous (copper, nickel, silver, silver coated copper, etc.) metals or metal alloys, carbon black, graphite are among urethane, acrylic, PVC, polyester, EPDM, and silicon Conductive paste layer added 15 ~ 85Wt% to any kind of resin (1)과, 프레이크 및 수지상 결정형(樹枝狀 結晶形, dendrite type), 미립자형(1), flakes, dendrite and fine particles (Granule type), 무정형(동, 니켈, 은, 은이 코팅된 동 등)의 금속 또는 금속합금, 카본 블랙(Carbon black), 흑연(graphite)이 우레탄, 아크릴, PVC, 폴리에스테르, EPDM, 실리콘 중 어느 한 종류의 수지에 15~85Wt% 첨가되어진 전도성 고무시트층Granule type, amorphous (copper, nickel, silver, silver coated copper, etc.) metals or metal alloys, carbon black, graphite are among urethane, acrylic, PVC, polyester, EPDM, and silicon Conductive rubber sheet layer added 15 ~ 85Wt% to any kind of resin (2)과, 금속(동, 니켈, 니켈-동 등)이 코팅된 폴리에스테르의 직물, 부직포 또는 메쉬 형태로 이루어진 전도성 소재층(3)이 각각 상하방향으로 접합되어 다층 구조로 이루어진 것을 특징으로 하는 전자파 차폐 성능이 우수한 다층 구조의 시트.(2) and the conductive material layer (3) made of polyester, coated with a metal (copper, nickel, nickel-copper, etc.), nonwoven fabric, or mesh form each joined in a vertical direction to form a multilayer structure. Multi-layered sheet with excellent electromagnetic shielding performance. 제 1항에 있어서, 상기 전도성 소재층(3)의 하부면에는 접착제층(4)이 형성되어있는 것을 특징으로 하는 전자파 차폐 성능이 우수한 다층 구조의 시트.The multi-layered sheet having excellent electromagnetic shielding performance according to claim 1, wherein an adhesive layer (4) is formed on the lower surface of the conductive material layer (3). 제 2항에 있어서, 상기 접착제층(4)은 양면 테이프 또는 전도성 점착제로 이루어진 것을 특징으로 하는 전자파 차폐 성능이 우수한 다층 구조의 시트.The multi-layered sheet having excellent electromagnetic shielding performance according to claim 2, wherein the adhesive layer (4) is made of a double-sided tape or a conductive adhesive. 제 1항에 있어서, 상기 전도성 페이스트층(1)은 두께가 0.005~0.05mm이고 상기 전도성 고무시트층(2)은 두께가 0.03~5mm 인 것을 특징으로 하는 전자파 차폐 성능이 우수한 다층 구조의 시트.The multi-layered sheet having excellent electromagnetic shielding performance according to claim 1, wherein the conductive paste layer (1) has a thickness of 0.005 to 0.05 mm and the conductive rubber sheet layer (2) has a thickness of 0.03 to 5 mm. 제 1항 또는 제 4항에 있어서, 상기 전도성 소재층(3)은 두께가 0.05~2mm 인 것을 특징으로 하는 전자파 차폐 성능이 우수한 다층 구조의 시트.The multi-layered sheet according to claim 1 or 4, wherein the conductive material layer (3) has a thickness of 0.05 to 2 mm. 금속(동, 니켈, 니켈-동 등)이 코팅된 폴리에스테르의 직물, 부직포 또는 메쉬로 이루어진 전도성 소재층(3)을 준비하고, 프레이크 또는 수지상 결정형(樹枝狀 結晶形, dendrite type), 미립자형(Granule type), 무정형 형태의 금속 또는 금속합금, 카본 블랙(Carbon black), 흑연(graphite)이 우레탄, 아크릴, PVC, 폴리에스테르, EPDM, 실리콘 중 어느 한 종류의 수지에 15 ~ 85 Wt% 첨가되어진 전도성 고무시트(2)를 상기 전도성 소재층(3)의 상부에 코팅하거나 접합하고, 프레이크 또는 수지상 결정형(樹枝狀 結晶形, dendrite type), 미립자형(Granule type), 무정형 형태의 금속 또는 금속합금, 카본 블랙(Carbon black), 흑연(graphite)을 우레탄, 아크릴, PVC, 폴리에스테르, EPDM, 실리콘 중 어느 한 종류의 수지에 15 ~ 85 Wt% 첨가하여 전도성 페이스트를 제조한 후 상기 전도성 고무시트층(2)의 표면에 롤코팅(Roll coating), 캐스팅(Casting) 또는 프린팅(Printing) 방법을 통해 전도성 페이스트층(1)을 형성해주는 것을 특징으로 하는 전자파 차폐 성능이 우수한 다층 구조의 시트의 제조방법.A conductive material layer 3 composed of a woven fabric, a nonwoven fabric, or a mesh coated with a metal (copper, nickel, nickel-copper, etc.) is prepared, and a flake or dendrite type, particulate type Granule type, amorphous metal or metal alloy, carbon black, graphite added 15 to 85 Wt% to any one of urethane, acrylic, PVC, polyester, EPDM, and silicone resins The conductive rubber sheet 2 is coated or bonded to the upper portion of the conductive material layer 3, flake or dendrite type, granule type, amorphous metal or metal 15 to 85 Wt% of an alloy, carbon black, and graphite to urethane, acrylic, PVC, polyester, EPDM, and silicone resins are added to prepare a conductive paste, and then the conductive rubber sheet. Of layer (2) Roll coating (Roll coating), casting (Casting) or printing (Printing) method a process for producing a multi-layer structure of the electromagnetic wave shielding performance is excellent, characterized in that that forms a conductive paste layer (1) over the sheet surface. 제 6항에 있어서, 상기 전도성 소재층(3)과 전도성 고무시트층(2)를 접착할시에는 전도성 점착제를 칠한 후 롤 프레스로 눌러 접착한 것을 특징으로 하는 전자파 차폐 성능이 우수한 다층 구조의 시트의 제조방법.The method according to claim 6, wherein the conductive material layer (3) and the conductive rubber sheet layer (2) are bonded by pressing a roll press after applying a conductive adhesive. Manufacturing method. 제 6항에 있어서, 상기 전도성 소재층(3)과 전도성 고무시트층(2)를 양면테이프를 사용하여 접착한 것을 특징으로 하는 전자파 차폐 성능이 우수한 다층 구조의 시트의 제조방법.The method of manufacturing a sheet having a multilayer structure with excellent electromagnetic shielding performance according to claim 6, wherein the conductive material layer (3) and the conductive rubber sheet layer (2) are bonded using double-sided tape. 제 6항에 있어서, 전도성 고무시트층(2)을 만들기위해 금속 또는 금속합금, 카본 블랙(Carbon black), 흑연(graphite)을 우레탄, 아크릴, PVC, 폴리에스테르, EPDM, 실리콘 중 어느 한 종류의 수지에 첨가하여 만든 혼합물을 터빈 임펠러 타입의 디졸버, 니더, 벤버리믹서, 부스니더 또는 오픈롤밀에서 컴파운딩 하거나, 헨셀믹서, 리본 블렌더 또는 브이 블랜더에서 먼저 충분히 믹싱한 후 니더, 벤버리믹서, 부스니더, 싱글압출기 또는 트윈압출기에서 컴파운딩한 다음, 상기 컴파운드를 상기 전도성 소재층(4)위에 라미네이팅해줌으로써 전도성 고무시트층(3)을 형성하는 것을 특징으로 하는 전자파 차폐 성능이 우수한 다층 구조의 시트의 제조방법.7. The method of claim 6, wherein the metal or metal alloy, carbon black, graphite is selected from the group consisting of urethane, acrylic, PVC, polyester, EPDM, and silicone in order to make the conductive rubber sheet layer (2). The mixture made by adding the resin is compounded in a turbine impeller type dissolver, kneader, benbury mixer, booth kneader or open roll mill, or thoroughly mixed in a Henschel mixer, ribbon blender or v blender first, and then kneader, benbury mixer, After compounding in a booth kneader, a single extruder, or a twin extruder, the compound rubber sheet layer (3) is formed by laminating the compound on the conductive material layer (4) of the multilayer structure with excellent electromagnetic shielding performance Manufacturing method of the sheet. 제 9항에 있어서, 상기 전도성 소재층(4)위에 전도성 고무시트층(3)을 라미네이팅 할 시에 닥터 블레이드법(Docter brade)으로 캐스팅(Casting)하거나 나이프 코팅하는 방법으로 성형한 것을 특징으로 하는 전자파 차폐 성능이 우수한 다층 구조의 시트의 제조방법.10. The method according to claim 9, wherein the laminating the conductive rubber sheet layer 3 on the conductive material layer 4 is formed by casting or knife coating by a doctor blade method. The manufacturing method of the sheet | seat of the multilayered structure which was excellent in the electromagnetic shielding performance. 제 6항에 있어서, 상기 전도성 고무시트층(2)을 형성할 시에 수지 100중량부에 대해 수산화알루미늄, 수산화마그네슘 등에 의한 무기 난연제를 60에서 150 중량부 포함한 것을 특징으로 하는 전자파 차폐 성능이 우수한 다층 구조의 시트의 제조방법.7. The electromagnetic shielding performance of claim 6, wherein the inorganic rubber flame retardant comprises 60 to 150 parts by weight of an inorganic flame retardant made of aluminum hydroxide, magnesium hydroxide, or the like based on 100 parts by weight of the resin when forming the conductive rubber sheet layer 2 Method for producing a sheet having a multilayer structure. 제 6항 또는 제 11항에 있어서, 상기 전도성 고무시트층(2)을 형성할 시에 수지 100중량부에 대해 적인에 의한 난연조제를 0.5∼5중량부 포함한 것을 특징으로 하는 전자파 차폐 성능이 우수한 다층 구조의 시트의 제조방법.12. The electromagnetic wave shielding performance as claimed in claim 6 or 11, wherein 0.5 to 5 parts by weight of a flame retardant aid is added to 100 parts by weight of the resin when the conductive rubber sheet layer 2 is formed. Method for producing a sheet having a multilayer structure. 제 6항에 있어서, 상기 전도성 소재층(3)의 하부면에 접착제층(4)을 접합하는 것을 특징으로 하는 전자파 차폐 성능이 우수한 다층 구조의 시트의 제조방법.7. A method according to claim 6, wherein the adhesive layer (4) is bonded to the lower surface of the conductive material layer (3).
KR1020030081177A 2003-11-17 2003-11-17 The multi-layer type sheet for shielding from electromagnetic waves and the method for making it KR100550808B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030081177A KR100550808B1 (en) 2003-11-17 2003-11-17 The multi-layer type sheet for shielding from electromagnetic waves and the method for making it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030081177A KR100550808B1 (en) 2003-11-17 2003-11-17 The multi-layer type sheet for shielding from electromagnetic waves and the method for making it

Publications (2)

Publication Number Publication Date
KR20030096140A true KR20030096140A (en) 2003-12-24
KR100550808B1 KR100550808B1 (en) 2006-02-09

Family

ID=32389443

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030081177A KR100550808B1 (en) 2003-11-17 2003-11-17 The multi-layer type sheet for shielding from electromagnetic waves and the method for making it

Country Status (1)

Country Link
KR (1) KR100550808B1 (en)

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022463A1 (en) * 2004-08-24 2006-03-02 Joinset Co., Ltd. Multi-purpose adhesive tape capable of adhering on both sides
KR100593869B1 (en) * 2004-09-24 2006-07-05 주식회사 엠피코 Dispensing gasket and manufacturing method for EMI shielding
KR100803782B1 (en) * 2006-09-28 2008-02-15 율촌화학 주식회사 Surface protective film
KR100888048B1 (en) * 2007-05-31 2009-03-10 두성산업 주식회사 Electromagnetic wave shielding and absorbing sheet and preparation method thereof
KR100903434B1 (en) * 2007-07-20 2009-06-18 (주)메인일렉콤 Method for manufacturing ultra-thin conductive single-coated tape using nonwoven fabric and the conductive single-coated tape by the same
US7592687B2 (en) 2005-02-11 2009-09-22 Samsung Electronics Co., Ltd. Device and method for preventing an integrated circuit from malfunctioning due to surge voltage
KR100936535B1 (en) * 2007-09-14 2010-01-15 주식회사 오산 An electroconductive elastic composite sheet and a method and for preparation of the same
US8921234B2 (en) 2012-12-21 2014-12-30 Applied Materials, Inc. Selective titanium nitride etching
US8968861B2 (en) 2013-03-14 2015-03-03 Laird Technologies, Inc. Flame retardant, electrically conductive adhesive materials and related methods
US8975152B2 (en) 2011-11-08 2015-03-10 Applied Materials, Inc. Methods of reducing substrate dislocation during gapfill processing
US8980763B2 (en) 2012-11-30 2015-03-17 Applied Materials, Inc. Dry-etch for selective tungsten removal
US8999856B2 (en) 2011-03-14 2015-04-07 Applied Materials, Inc. Methods for etch of sin films
US9012302B2 (en) 2011-09-26 2015-04-21 Applied Materials, Inc. Intrench profile
US9017570B2 (en) 2012-05-08 2015-04-28 Hyundai Motor Company Hybrid filler for electromagnetic shielding composite material and method of manufacturing the hybrid filler
US9064816B2 (en) 2012-11-30 2015-06-23 Applied Materials, Inc. Dry-etch for selective oxidation removal
US9093390B2 (en) 2013-03-07 2015-07-28 Applied Materials, Inc. Conformal oxide dry etch
US9117855B2 (en) 2013-12-04 2015-08-25 Applied Materials, Inc. Polarity control for remote plasma
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US9136273B1 (en) 2014-03-21 2015-09-15 Applied Materials, Inc. Flash gate air gap
US9153442B2 (en) 2013-03-15 2015-10-06 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9159606B1 (en) 2014-07-31 2015-10-13 Applied Materials, Inc. Metal air gap
US9165786B1 (en) 2014-08-05 2015-10-20 Applied Materials, Inc. Integrated oxide and nitride recess for better channel contact in 3D architectures
US9190293B2 (en) 2013-12-18 2015-11-17 Applied Materials, Inc. Even tungsten etch for high aspect ratio trenches
KR20150129994A (en) * 2014-05-13 2015-11-23 가드넥(주) Electronic tape having buffering, heat radiating, and emi shielding function, electronic tape having buffering and emi shielding function, and electronic tape having buffering, emi shielding, and waterproof function
US9209012B2 (en) 2013-09-16 2015-12-08 Applied Materials, Inc. Selective etch of silicon nitride
US9236265B2 (en) 2013-11-04 2016-01-12 Applied Materials, Inc. Silicon germanium processing
US9236266B2 (en) 2011-08-01 2016-01-12 Applied Materials, Inc. Dry-etch for silicon-and-carbon-containing films
US9245762B2 (en) 2013-12-02 2016-01-26 Applied Materials, Inc. Procedure for etch rate consistency
US9263278B2 (en) 2013-12-17 2016-02-16 Applied Materials, Inc. Dopant etch selectivity control
US9287095B2 (en) 2013-12-17 2016-03-15 Applied Materials, Inc. Semiconductor system assemblies and methods of operation
US9293568B2 (en) 2014-01-27 2016-03-22 Applied Materials, Inc. Method of fin patterning
US9299575B2 (en) 2014-03-17 2016-03-29 Applied Materials, Inc. Gas-phase tungsten etch
US9299538B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9299582B2 (en) 2013-11-12 2016-03-29 Applied Materials, Inc. Selective etch for metal-containing materials
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9355856B2 (en) 2014-09-12 2016-05-31 Applied Materials, Inc. V trench dry etch
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9378969B2 (en) 2014-06-19 2016-06-28 Applied Materials, Inc. Low temperature gas-phase carbon removal
US9378978B2 (en) 2014-07-31 2016-06-28 Applied Materials, Inc. Integrated oxide recess and floating gate fin trimming
US9385028B2 (en) 2014-02-03 2016-07-05 Applied Materials, Inc. Air gap process
US9390937B2 (en) 2012-09-20 2016-07-12 Applied Materials, Inc. Silicon-carbon-nitride selective etch
US9396989B2 (en) 2014-01-27 2016-07-19 Applied Materials, Inc. Air gaps between copper lines
US9406523B2 (en) 2014-06-19 2016-08-02 Applied Materials, Inc. Highly selective doped oxide removal method
US9425058B2 (en) 2014-07-24 2016-08-23 Applied Materials, Inc. Simplified litho-etch-litho-etch process
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US9847289B2 (en) 2014-05-30 2017-12-19 Applied Materials, Inc. Protective via cap for improved interconnect performance
US9887096B2 (en) 2012-09-17 2018-02-06 Applied Materials, Inc. Differential silicon oxide etch
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US10170282B2 (en) 2013-03-08 2019-01-01 Applied Materials, Inc. Insulated semiconductor faceplate designs
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
CN112492865A (en) * 2020-11-26 2021-03-12 深圳先进技术研究院 Electromagnetic shielding foam and preparation method and application thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100841042B1 (en) 2007-07-20 2008-06-24 (주)메인일렉콤 Method for manufacturing ultra-thin conductive double-coated tape using nonwoven fabric and the conductive double-coated tape by the same
KR100894280B1 (en) 2007-09-22 2009-04-21 임정희 Functional textile and manufacture method of it
KR100920766B1 (en) * 2009-04-22 2009-10-07 두성산업 주식회사 Thin film type cushion adhesive tape and method of producing the same
KR100958891B1 (en) 2009-06-18 2010-05-20 두성산업 주식회사 Thin film type gasket usign for a display, having excellent conductivity and elastic property and method of producing the same
KR20110079466A (en) 2009-12-31 2011-07-07 제일모직주식회사 Thermoplastic resin composition and molded product using the same
KR200469743Y1 (en) 2012-03-20 2013-11-05 이준갑 A technical textile
KR101399024B1 (en) 2012-12-14 2014-05-27 주식회사 아모센스 Magnetic shielding sheet, manufacturing method thereof, and portable terminal using the same

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022463A1 (en) * 2004-08-24 2006-03-02 Joinset Co., Ltd. Multi-purpose adhesive tape capable of adhering on both sides
KR100593869B1 (en) * 2004-09-24 2006-07-05 주식회사 엠피코 Dispensing gasket and manufacturing method for EMI shielding
US7592687B2 (en) 2005-02-11 2009-09-22 Samsung Electronics Co., Ltd. Device and method for preventing an integrated circuit from malfunctioning due to surge voltage
KR100803782B1 (en) * 2006-09-28 2008-02-15 율촌화학 주식회사 Surface protective film
KR100888048B1 (en) * 2007-05-31 2009-03-10 두성산업 주식회사 Electromagnetic wave shielding and absorbing sheet and preparation method thereof
KR100903434B1 (en) * 2007-07-20 2009-06-18 (주)메인일렉콤 Method for manufacturing ultra-thin conductive single-coated tape using nonwoven fabric and the conductive single-coated tape by the same
KR100936535B1 (en) * 2007-09-14 2010-01-15 주식회사 오산 An electroconductive elastic composite sheet and a method and for preparation of the same
US8999856B2 (en) 2011-03-14 2015-04-07 Applied Materials, Inc. Methods for etch of sin films
US9236266B2 (en) 2011-08-01 2016-01-12 Applied Materials, Inc. Dry-etch for silicon-and-carbon-containing films
US9012302B2 (en) 2011-09-26 2015-04-21 Applied Materials, Inc. Intrench profile
US8975152B2 (en) 2011-11-08 2015-03-10 Applied Materials, Inc. Methods of reducing substrate dislocation during gapfill processing
US9017570B2 (en) 2012-05-08 2015-04-28 Hyundai Motor Company Hybrid filler for electromagnetic shielding composite material and method of manufacturing the hybrid filler
US9887096B2 (en) 2012-09-17 2018-02-06 Applied Materials, Inc. Differential silicon oxide etch
US9390937B2 (en) 2012-09-20 2016-07-12 Applied Materials, Inc. Silicon-carbon-nitride selective etch
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US8980763B2 (en) 2012-11-30 2015-03-17 Applied Materials, Inc. Dry-etch for selective tungsten removal
US9064816B2 (en) 2012-11-30 2015-06-23 Applied Materials, Inc. Dry-etch for selective oxidation removal
US9449845B2 (en) 2012-12-21 2016-09-20 Applied Materials, Inc. Selective titanium nitride etching
US8921234B2 (en) 2012-12-21 2014-12-30 Applied Materials, Inc. Selective titanium nitride etching
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9093390B2 (en) 2013-03-07 2015-07-28 Applied Materials, Inc. Conformal oxide dry etch
US10170282B2 (en) 2013-03-08 2019-01-01 Applied Materials, Inc. Insulated semiconductor faceplate designs
US8968861B2 (en) 2013-03-14 2015-03-03 Laird Technologies, Inc. Flame retardant, electrically conductive adhesive materials and related methods
US9674993B2 (en) 2013-03-14 2017-06-06 Laird Technologies, Inc. Flame retardant, electrically conductive adhesive materials and related methods
US9153442B2 (en) 2013-03-15 2015-10-06 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US9209012B2 (en) 2013-09-16 2015-12-08 Applied Materials, Inc. Selective etch of silicon nitride
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9236265B2 (en) 2013-11-04 2016-01-12 Applied Materials, Inc. Silicon germanium processing
US9711366B2 (en) 2013-11-12 2017-07-18 Applied Materials, Inc. Selective etch for metal-containing materials
US9299582B2 (en) 2013-11-12 2016-03-29 Applied Materials, Inc. Selective etch for metal-containing materials
US9520303B2 (en) 2013-11-12 2016-12-13 Applied Materials, Inc. Aluminum selective etch
US9245762B2 (en) 2013-12-02 2016-01-26 Applied Materials, Inc. Procedure for etch rate consistency
US9117855B2 (en) 2013-12-04 2015-08-25 Applied Materials, Inc. Polarity control for remote plasma
US9287095B2 (en) 2013-12-17 2016-03-15 Applied Materials, Inc. Semiconductor system assemblies and methods of operation
US9263278B2 (en) 2013-12-17 2016-02-16 Applied Materials, Inc. Dopant etch selectivity control
US9190293B2 (en) 2013-12-18 2015-11-17 Applied Materials, Inc. Even tungsten etch for high aspect ratio trenches
US9293568B2 (en) 2014-01-27 2016-03-22 Applied Materials, Inc. Method of fin patterning
US9396989B2 (en) 2014-01-27 2016-07-19 Applied Materials, Inc. Air gaps between copper lines
US9385028B2 (en) 2014-02-03 2016-07-05 Applied Materials, Inc. Air gap process
US9299575B2 (en) 2014-03-17 2016-03-29 Applied Materials, Inc. Gas-phase tungsten etch
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9299538B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9136273B1 (en) 2014-03-21 2015-09-15 Applied Materials, Inc. Flash gate air gap
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
KR20150129994A (en) * 2014-05-13 2015-11-23 가드넥(주) Electronic tape having buffering, heat radiating, and emi shielding function, electronic tape having buffering and emi shielding function, and electronic tape having buffering, emi shielding, and waterproof function
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9847289B2 (en) 2014-05-30 2017-12-19 Applied Materials, Inc. Protective via cap for improved interconnect performance
US9378969B2 (en) 2014-06-19 2016-06-28 Applied Materials, Inc. Low temperature gas-phase carbon removal
US9406523B2 (en) 2014-06-19 2016-08-02 Applied Materials, Inc. Highly selective doped oxide removal method
US9425058B2 (en) 2014-07-24 2016-08-23 Applied Materials, Inc. Simplified litho-etch-litho-etch process
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9159606B1 (en) 2014-07-31 2015-10-13 Applied Materials, Inc. Metal air gap
US9378978B2 (en) 2014-07-31 2016-06-28 Applied Materials, Inc. Integrated oxide recess and floating gate fin trimming
US9165786B1 (en) 2014-08-05 2015-10-20 Applied Materials, Inc. Integrated oxide and nitride recess for better channel contact in 3D architectures
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9355856B2 (en) 2014-09-12 2016-05-31 Applied Materials, Inc. V trench dry etch
CN112492865A (en) * 2020-11-26 2021-03-12 深圳先进技术研究院 Electromagnetic shielding foam and preparation method and application thereof
CN112492865B (en) * 2020-11-26 2024-03-01 深圳先进技术研究院 Electromagnetic shielding foam and preparation method and application thereof

Also Published As

Publication number Publication date
KR100550808B1 (en) 2006-02-09

Similar Documents

Publication Publication Date Title
KR100550808B1 (en) The multi-layer type sheet for shielding from electromagnetic waves and the method for making it
JP6410064B2 (en) Conductive fine particles and conductive sheet
JP2010514916A (en) Flame-retardant conductive pressure-sensitive adhesive material and method for producing the same
JP2002505528A (en) Flame retardant EMI shielding material and manufacturing method
KR101544587B1 (en) A electromagnetic wave shielding film using conductive adhesion layers and method of fabricating the same.
CN104412337A (en) Compositions, methods, and devices providing shielding in communications cables
US20110278058A1 (en) Nanomaterial composites and methods of making
JPWO2011043129A1 (en) Flame retardant resin sheet and flat cable using the same
US11647618B2 (en) Electromagnetic wave shielding film and shielding printed wiring board
KR101610701B1 (en) Conductive sheet for shielding electromagnetic wave and methods for manufacturing the same
JP2005159337A (en) Electromagnetic interference suppressor and electromagnetic suppressing method using the same
JP2005011878A (en) Electromagnetic wave absorber
JP5205748B2 (en) Flexible flat cable
TWM487313U (en) Flame retardant, electrically conductive adhesive devices
CN103666312B (en) Conductive flame-retardant adhesive tape
JP3243919U (en) Electrically and thermally conductive gasket
WO2014204204A1 (en) Conductive heat-dissipating sheet, and electrical parts and electronic devices comprising same
KR20030013831A (en) Metal compound resin composition and a sheet for intercepting electromagnetic waves and a method for fabricating the same
KR100525667B1 (en) EMI Shielding conductive rubber and the method for making it
CN213694723U (en) Electromagnetic shielding film and circuit board containing same
WO2022104933A1 (en) Shielding film, method for preparing shielding film, and cable
CN115197577A (en) Antistatic silicone rubber composite material, flexible electrostatic shielding bag and preparation method thereof
JP2009125974A (en) Flame retardant laminated sheet
JP2018074168A (en) Electromagnetic wave shield sheet and printed wiring board
JP2006156561A (en) Electromagnetic wave shielding member and its manufacturing method

Legal Events

Date Code Title Description
A201 Request for examination
G15R Request for early opening
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee
R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20130201

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140129

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20141127

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170120

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190131

Year of fee payment: 14