KR20030001743A - method for deposition of W thin film - Google Patents

method for deposition of W thin film Download PDF

Info

Publication number
KR20030001743A
KR20030001743A KR1020010037095A KR20010037095A KR20030001743A KR 20030001743 A KR20030001743 A KR 20030001743A KR 1020010037095 A KR1020010037095 A KR 1020010037095A KR 20010037095 A KR20010037095 A KR 20010037095A KR 20030001743 A KR20030001743 A KR 20030001743A
Authority
KR
South Korea
Prior art keywords
chamber
tungsten
wafer
deposition
film
Prior art date
Application number
KR1020010037095A
Other languages
Korean (ko)
Other versions
KR100668728B1 (en
Inventor
김영수
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR20010037095A priority Critical patent/KR100668728B1/en
Publication of KR20030001743A publication Critical patent/KR20030001743A/en
Application granted granted Critical
Publication of KR100668728B1 publication Critical patent/KR100668728B1/en

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD

Abstract

PURPOSE: A method for depositing a tungsten thin film is provided to easily obtain a tungsten film having a thin and uniform thickness and a good reproducibility by using NF3 preflow processing. CONSTITUTION: A CVD(Chemical Vapor Deposition) chamber is cleaned by performing a periodic cleaning. NF3 preflow processing is then performed to change the atmosphere of the chamber. After loading a wafer in the chamber, a polysilicon layer is formed on the wafer by injecting SiH4 gas. By injecting WF6 gas into the chamber, a tungsten film is formed on the polysilicon layer.

Description

텅스텐 박막의 증착 방법{method for deposition of W thin film} Deposition of a tungsten thin film method for deposition of W thin film {}

본 발명은 반도체 소자의 박막 증착 방법에 관한 것으로, 특히 재현성 및 균일성을 향상시키는데 적당한 텅스텐(W) 박막의 증착 방법에 관한 것이다. The present invention relates to that, in particular, reproducibility and improve the uniformity of a suitable method for depositing tungsten (W) thin film according to a film deposition method of the semiconductor device.

DRAM 디바이스의 고집적화 추세에 의해 필연적으로 스케일링다운(scaling down)이 요구되면서 디바이스의 스피드 또한 중요한 문제로 부각되고 있는데 이러한 추세에 발맞추어 게이트 또는 비트 라인에 적용되는 물질 또한 WSix계열에서 W계로 변화되고 있는 실정이다. There as required (scaling down) down inevitably scaled by the high integration trends in DRAM devices the speed of the device also has emerged as a major problem in this trend material is applied to the gate or the bit line to keep pace with the addition WSix series being changed to step W is the actual circumstances.

일반적으로 텅스텐(W) 박막을 적용하는 공정은 콘택홀(Contact hole)을 채우는 공정으로 보통의 경우 증착 두께가 3000 ~ 10000Å으로 정도로 매우 두껍게 증착한다. Process of generally applying the tungsten (W) thin film is deposited thick enough so a contact hole (Contact hole) process is typically deposited to a thickness of 3000 ~ 10000Å when filling the.

이러한 텅스텐 박막의 증착 공정은 디파인(define)된 콘택홀을 채우기 위하여 필요한 두께로 갭 필(gap fill) 능력을 우선시하며, 두꺼운 두께로 증착할 경우에는 웨이퍼내의 균일 문제는 거의 발생하지 않는다. The deposition process of such a tungsten thin film, and a priority field gap (gap fill) capabilities to the required thickness to fill the contact holes dipain (define), if deposited to a uniform thickness, the problem in the wafer are hardly generated.

그러나 차세대 디바이스(device)에서는 기존의 물질 예를 들면, WSix로서는 디바이스 반응 시간(device response time), 디바이스 스피드(device speed) 등의 문제를 극복하기 어렵기 때문에 이에 대한 해결책으로 전도성 물질인 W, TiN, Al 등의 물질로 많이 대체되어 지고 있는 상황이다. However, the next generation of device (device) in conductive material with this solution it is difficult to overcome the problem of such a conventional material for example, WSix as the device response time (device response time), the device speed (device speed) W, TiN a situation that is becoming, to replace a lot of material such as Al.

이러한 추세에 비추어볼 때 게이트 또는 비트 라인의 경우 기존의 WSix 대신에 W막으로 전환하는 추세에 있으며, W 물질을 이런 공정에 적용하기 위해서 필요한 요구조건으로는 얇고, 균일하며, 웨이퍼와 웨이퍼간 변화(variation)가 적으며, 로트(lot)간 재현성을 갖아야 한다. In the light of the trend for the gate or bit line, and a tendency to switch to the W film instead of the conventional WSix, required thin, uniform and the requirement to apply the W material in this process, the wafer and between wafers change It was (variation) is small, and Aya have the reproducibility between lots (lot).

한편, 종래의 텅스텐 박막을 증착하기 위한 CVD 증착법의 경우 보통 수천 Å으로 증착하는데 게이트 또는 비트 라인 공정 등에 적용하기 위해서 필요한 두께는 보통 1000Å미만으로 텅스텐(W) 그레인(grain)이 보통 100 ~ 300Å인 것을 감안하면 1000미만의 텅스텐 박막의 두께 제어는 웨이퍼와 웨이퍼의 균일 측면이나 웨이퍼내 균일 측면에서 결코 쉽지 않은 두께임을 알 수 있다. On the other hand, in the case of CVD deposition method for depositing a conventional tungsten films typically required thickness is usually a tungsten (W) to less than 1000Å to applied to several thousand Å in to the gate or bit line deposition process grain (grain) is usually 100 ~ 300Å that can be seen that when the thickness control of the tungsten thin film of less than 1000 is not an easy means thickness within a uniform lateral uniformity and wafer side of the wafer and the wafer in view.

종래의 텅스텐 박막의 증착 방법의 경우 정해진 장수를 진행하고 난 후 진행하는 주기 크리닝(cleaning)을 하고 나면, 도 1(이 데이터는 12장마다 주기 크리닝을 실시한 데이터)에서와 같이, 웨이퍼 첫 장과 주기 크리닝 전에 슬로트넘버(slot number) 12번과의 텅스텐 박막의 두께 자체가 약 110Å정도 차이가 나며 주기 크리닝을 하고 난 후에는 약 150Å정도로 다시 급격하게 증착 두께의 차이가 발생한다. As in the case of the evaporation method of the conventional tungsten films After a predetermined period cleaning (cleaning) to proceed a long life and proceeds after FIG. 1 (subjected to cleaning the data cycle for each sheet 12 material), or the wafer front page and after the cleaning before the slotted number (slot number) own thickness of the tungsten thin film 12 and the number I and the cleaning period of about 110Å hear a varying degrees occurs a difference in thickness of the deposition sharply again to approximately 150Å.

이런 문제점이 발생하는 원인은 주기 크리닝을 하고 난 후 완전히 크리닝이 완료된 챔버내에서 새로운 WF 6 과 Si, 또는 H 2 의 핵반응을 위한 잠복 시간(incubation time)이 존재하기 때문이다. Cause of this problem occurs is due to the latency time (incubation time) for the new WF 6 and Si, or nuclear reaction of H 2 in the chamber completely cleaning is completed, and there after the cleaning cycle.

한편, 주기 크리닝 때 사용하는 NF 3 가스의 반응 메커니즘은 챔버내에서 플라즈마 발생시 N과 F기로 분해된 후 챔버내에 잔류하는 또는 히터(heater) 또는 챔버 웰(wall) 등에 증착되어 있는 W와 반응하여 WF 6 화합물을 형성하여 잔류하거나 증착된 텅스텐 박막을 크리닝하게 되는데 주기 크리닝 후에는 후속 메인 텅스텐 공정시 사용하는 WF 6 과 SiH 4 의 반응시 필요한 반응물이 없는 상태이기 때문에 잠복 시간이 증가하여 웨이퍼 첫 장에서는 증착 비(deposition rate)가 서서히 증가하면서 포화(saturation)되는 것이다. On the other hand, the periodic cleaning when the event of the plasma in the reaction mechanism of the NF 3 gas chamber using N and F groups is deposited or the like, or a heater (heater) or a chamber well (wall) which remain in after the decomposition chamber to react with the W WF in then there is the cleaning of the residue to form a 6 compound, or the deposition of tungsten films cycle cleaning is subsequent main tungsten process when WF 6 and by the latency time increases since SiH is no reagent required for the reaction 4-state wafer the first page using the deposition rate (deposition rate) will be saturated (saturation) while gradually increasing.

그러나 상기와 같은 종래의 텅스텐 박막의 증착 방법에 있어서 다음과 같은 문제점이 있었다. However, according to a deposition method of a conventional tungsten films as described above it has the following problems.

즉, 1000Å미만의 CVD W 박막을 증착할 경우 주기 크리닝(cleaning)후 첫 장부터 다음주기 크리닝 전 마지막장까지의 증착 두께 차이가 약 100Å이상 차이가 나며, 챔버 별로도 주기 크리닝 후에 W 증착에 대한 재현성이 매우 떨어져 원하는두께를 기준으로 적게는 약 400Å정도 얇게, 두껍게는 700Å정도까지 더 증착됨으로서 후속공정뿐만 아니라 전체 디바이스 공정에 큰 데미지(damage)를 주고 있다. That is, the deposition thickness difference between the case to deposit CVD W thin film of less than 1000Å from the first page after cycle cleaning (cleaning) to the next cycle cleaning before the last chapter tastes about 100Å or more difference, after Fig cycle cleaning by each chamber to the W deposition reproducibility is very thin away approximately 400Å is less relative to the desired thickness, thickening as well as the subsequent process by being further deposited to about 700Å giving a big damage (damage) on the entire device process.

본 발명은 상기와 같은 종래의 문제점을 해결하기 위해 안출한 것으로 주기 크리닝 후에 NF 3 프리플로우(preflow) 스텝을 추가하여 얇으면서 균일한 두께를 갖으며 재현성이 우수한 텅스텐 박막의 증착 방법을 제공하는데 그 목적이 있다. The invention provides a NF 3 free flow (preflow) deposition of high-tungsten thin film reproducibility was has a uniform thickness while thin, by adding the step conventional after-cleaning cycle that made in view the above problems that there is a purpose.

도 1은 종래의 웨이퍼 12장마다 주기 크리닝을 실시한 후 텅스텐 박막을 증착했을 때 각 웨이퍼마다 두께의 변화를 나타낸 그래프 1 is then subjected to cleaning cycles for each section 12 a conventional wafer, when depositing a tungsten thin film showing a change of the thickness in each wafer graph

도 2a 및 도 2b는 본 발명에 의한 NF 3 프리플로우를 실시한 후 웨이퍼 12장마다 텅스텐 박막을 증착할 때 각 웨이퍼마다 두께의 변화를 나타낸 그래프 Figures 2a and 2b is a graph showing the change in the thickness of each wafer when depositing tungsten films each wafer sheet 12. After being subjected to NF 3 free flow according to the present invention

상기와 같은 목적을 달성하기 위한 본 발명에 의한 텅스텐 박막의 증착 방법은 CVD 텅스텐 챔버에서 텅스텐 박막을 증착하는 방법에 있어서, 상기 텅스텐 챔버에 주기 크리닝을 실시하여 세정을 실시하는 단계와, 상기 세정이 완료된 챔버 내부에 NF 3 가스를 프리플로우하여 챔버 분위기를 변화시키는 단계와, 상기 챔버의 내부에 웨이퍼를 삽입하고 SiH 4 가스를 주입하여 웨이퍼의 표면에 다결정 실리콘막을 형성하는 단계와, 상기 챔버 내부에 WF 6 가스를 주입하여 상기 다결정 실리콘막상에 텅스텐 박막을 형성하는 단계를 포함하여 형성함을 특징으로 한다. Deposition of a tungsten film by the present invention for achieving the above object is a method for depositing a tungsten film on the CVD tungsten chamber, comprising the steps of: performing washing by carrying out periodic cleaning the tungsten chamber, the cleaning is and inserting steps and wafer inside the chamber to vary the chamber atmosphere and free flow of NF 3 gas into complete chamber, comprising: injecting the SiH 4 gas to form a polycrystalline silicon film on the surface of the wafer, within the chamber and it characterized in that it is formed by injecting the WF 6 gas and forming a tungsten film on the polycrystalline silicon film.

이하, 첨부된 도면을 참고하여 본 발명에 의한 텅스텐 박막의 증착 방법을 상세히 설명하면 다음과 같다. More specifically the deposition of the tungsten film by the present invention with reference to the accompanying drawings as follows.

도 2a 및 도 2b는 본 발명에 의한 NF 3 프리플로우를 실시한 후 웨이퍼 12장마다 텅스텐 박막을 증착할 때 각 웨이퍼마다 두께의 변화를 나타낸 그래프이다. Figure 2a and Figure 2b is a graph showing changes in thickness of each wafer to deposit a tungsten thin film NF 3 every 12 pages after the wafer subjected to the free flow according to the present invention.

도 1의 실험 조건과 동일하게 진행한 시험결과로서 도 2에서와 같이,CVD(Chemical Vapor Deposition) 텅스텐 챔버 별로 주기 크리닝 후에 NF 3 프리플로우 공정 스텝을 추가함으로서 웨이퍼 첫 장과 12장 사이의 텅스텐 박막의 두께 차이가 35Å정도로 매우 작은 범위에서 변화하고 있는 것을 볼 수 있다. As shown in Figure 2 also a test by proceeding in the same manner as the experimental conditions of the first result, CVD (Chemical Vapor Deposition) after periodic cleaning by tungsten chamber NF 3 by adding a pre-flow process step the wafer front page and the tungsten film of between 12: the thickness difference is can be seen that a very small change in the range of about 35Å.

그리고 웨이퍼 위치를 살펴보더라도(중앙, 오른쪽, 상부, 왼쪽, 하부) 매우 균일하게 증착되었음을 알 수 있다. And it can be seen that the skater at the wafer location (center, right, top, left, bottom) is very uniform deposition.

이것은 챔버 내부에 주기 크리닝을 실시하여 세정 공정을 실시하고, 이후에 챔버의 내부에 NF 3 가스를 프리플로우해 줌으로서 챔버 내부를 플라즈마가 없는 상태로 만들어 N과 F기로 분해가 되지 않은 채로 잔류하도록 한다. This is to remain while subjected to the cleaning step by carrying out the cleaning cycle in the chamber, and that is made inside the chamber as a zoom to flow free of NF 3 gas to the interior of the chamber after a state without a plasma being a decomposition group N and F do.

어어, 상기 NF 3 가스에 의한 프리플로우 공정 후에 챔버내로 웨이퍼를 삽입하고, 상기 챔버내로 SiH 4 가스를 주입하여 웨이퍼의 표면에 다결정 실리콘막을 형성하고, 계속해서 챔버내부로 WF 6 가스를 주입함으로서 다결정 실리콘막상에 균일한 두께를 갖는 텅스텐 박막을 증착한다. Eoeo, the NF by inserting a pre-flow process after the wafer into the chamber by the third gas, and injecting the SiH 4 gas to form a polycrystalline silicon film on the surface of the wafer, and continuously injecting WF 6 gas into the chamber into the chamber polycrystalline and depositing a tungsten thin film having a uniform thickness to the silicon film.

여기서 상기 텅스텐 박막을 증착할 때 WF 6 과 반응시 빨리 F기를 이탈시켜줌으로서 텅스텐 박막이 균일하게 증착될 수 있도록 도와준다. Here, as the leaving group WF fast F: 6 and the reaction sikyeojum when depositing the tungsten film helps the tungsten thin film can be uniformly deposited.

이는 곧 잠복 시간을 줄이면서 웨이퍼 첫 장에서 발생할 수 있는 증착 비가 급격하게 저하되는 1장 웨이퍼 효과의 부작용을 미연에 방지할 수 있기 때문에 웨이퍼와 웨이퍼가 변화를 감소시키면서 웨이퍼내 균일성을 향상시킨다. This results soon improved while reducing the wafer to the side effects of one wafer effect deposition ratio is sharply decreased, which may result in the first page because it can be prevented in even while the wafer and the wafer reduces the change in wafer St. latency time.

한편, 상기 NF 3 가스에 의한 프리플로우 공정 조건은 다음과 같다. On the other hand, pre-flow process conditions according to the NF 3 gas is as follows.

즉, 공정 시간은 5 ~ 60sec, 압력은 0.1mTorr, 히터 온도는 350 ~ 500℃, 히터 스페이싱(spacing)은 300 ~ 1500mil, NF 3 유량은 10 ~ 200sccm, Ar 유량은 10 ~ 500sccm, H 2 유량은 10 ~ 500sccm이다. In other words, the processing time is 5 ~ 60sec, pressure 0.1mTorr, the heater temperature is 350 ~ 500 ℃, heater spacing (spacing) is 300 ~ 1500mil, NF 3 flow rate is 10 ~ 200sccm, Ar flow rate is 10 ~ 500sccm, H 2 flow rate It is 10 ~ 500sccm.

이상에서 설명한 바와 같이 본 발명에 의한 텅스텐 박막의 증착 방법은 다음과 같은 효과가 있다. Deposition of a tungsten film by the present invention as described above has the following advantages.

첫째, 게이트 또는 비트 라인 구조에 CVD 텅스텐 박막을 적용하는 차세대 디바이스에 요구되는 1000Å이하의 재현성이 매우 중요시되는 공정에서 웨이퍼와 웨이퍼의 변화를 최소화하면서 웨이퍼내 균일성을 향상시키는 얇은 박막을 증착할 수 있다. First, the gate or the bit line structure to deposit a thin film of improving uniformity while minimizing the change of the wafer and the wafer in a process that is very important is the reproducibility of less than 1000Å wafer required for the next-generation device for applying the CVD tungsten films have.

둘째, 얇으면서 웨이퍼간 변화가 균일한 텅스텐 박막의 성장은 후속의 게이트 식각이나 비트 라인 식각 공정에서도 균일한 텅스텐 박막의 장점에 의해 향상된 식각 프로파일을 얻을 수 있다. Second, while thin wafers change the growth of a uniform thin film of tungsten it can be obtained an improved etch profile by the advantages of a tungsten thin film uniform in gate etching or bit line of a subsequent etching process.

Claims (2)

  1. CVD 텅스텐 챔버에서 텅스텐 박막을 증착하는 방법에 있어서, A method for depositing a thin film of tungsten in the tungsten CVD chamber,
    상기 텅스텐 챔버에 주기 크리닝을 실시하여 세정을 실시하는 단계; Step for applying a cleaning cycle by implementing the cleaning chamber to the tungsten;
    상기 세정이 완료된 챔버 내부에 NF 3 가스를 프리플로우하여 챔버 분위기를 변화시키는 단계; Varying the chamber atmosphere by free flow the NF 3 gas to the chamber that the cleaning is complete;
    상기 챔버의 내부에 웨이퍼를 삽입하고 SiH 4 가스를 주입하여 웨이퍼의 표면에 다결정 실리콘막을 형성하는 단계; Inserting a wafer in the interior of the chamber and injected to form a polycrystalline silicon film on the surface of the wafer the SiH 4 gas;
    상기 챔버 내부에 WF 6 가스를 주입하여 상기 다결정 실리콘막상에 텅스텐 박막을 형성하는 단계를 포함하여 형성함을 특징으로 하는 텅스텐 박막의 증착 방법. Deposition of a tungsten thin film, characterized in that formed by injecting WF 6 gas within the chamber and forming a tungsten film on the polycrystalline silicon film.
  2. 제 1 항에 있어서, 상기 NF 3 가스를 프리플로우하여 챔버 분위기를 변화시키는 단계는 공정 시간은 5 ~ 60sec, 압력은 0.1mTorr, 히터 온도는 350 ~ 500℃, 히터 스페이싱(spacing)은 300 ~ 1500mil, NF 3 유량은 10 ~ 200sccm, Ar 유량은 10 ~ 500sccm, H 2 유량은 10 ~ 500sccm의 조건으로 실시하는 것을 특징으로 하는 텅스텐 박막의 증착 방법. The method of claim 1, wherein the step of changing the pre-chamber atmosphere to flow the NF 3 gas is the process time is 5 ~ 60sec, pressure 0.1mTorr, the heater temperature is 350 ~ 500 ℃, heater spacing (spacing) is 300 ~ 1500mil , NF 3 flow rate is 10 ~ 200sccm, Ar flow rate of deposition of the tungsten film, characterized in that to perform under the condition of 10 ~ 500sccm, H 2 flow rate was 10 ~ 500sccm.
KR20010037095A 2001-06-27 2001-06-27 Method for deposition of W thin film KR100668728B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20010037095A KR100668728B1 (en) 2001-06-27 2001-06-27 Method for deposition of W thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20010037095A KR100668728B1 (en) 2001-06-27 2001-06-27 Method for deposition of W thin film

Publications (2)

Publication Number Publication Date
KR20030001743A true KR20030001743A (en) 2003-01-08
KR100668728B1 KR100668728B1 (en) 2007-01-26

Family

ID=27711513

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20010037095A KR100668728B1 (en) 2001-06-27 2001-06-27 Method for deposition of W thin film

Country Status (1)

Country Link
KR (1) KR100668728B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100689826B1 (en) * 2005-03-29 2007-03-08 삼성전자주식회사 High density plasma chemical vapor deposition methods using a fluorine-based chemical etching gas and methods of fabricating a semiconductor device employing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100689826B1 (en) * 2005-03-29 2007-03-08 삼성전자주식회사 High density plasma chemical vapor deposition methods using a fluorine-based chemical etching gas and methods of fabricating a semiconductor device employing the same

Also Published As

Publication number Publication date
KR100668728B1 (en) 2007-01-26

Similar Documents

Publication Publication Date Title
KR100546943B1 (en) The method for forming a semiconductor device
US6573182B2 (en) Chemical vapor deposition using organometallic precursors
US7670469B2 (en) Methods and apparatus for making integrated-circuit wiring from copper, silver, gold, and other metals
US6960537B2 (en) Incorporation of nitrogen into high k dielectric film
US6958277B2 (en) Surface preparation prior to deposition
KR100214910B1 (en) Utilization of sih4 soak and purge in deposition processes
US7462376B2 (en) CVD method for forming silicon nitride film
US8101521B1 (en) Methods for improving uniformity and resistivity of thin tungsten films
US8409985B2 (en) Methods for growing low-resistivity tungsten for high aspect ratio and small features
KR960012299B1 (en) Method of forming boron doped silicon layer and semiconductor
JP5318562B2 (en) System and method for plasma accelerated atomic layer deposition
US5975912A (en) Low temperature plasma-enhanced formation of integrated circuits
US7087535B2 (en) Deposition methods
JP5253149B2 (en) System and method for plasma accelerated atomic layer deposition
US4969415A (en) PECVD (plasma enhanced chemical vapor deposition) method for depositing of tungsten or layers containing tungsten by in situ formation of tungsten fluorides
US8329576B2 (en) Method for improving uniformity and adhesion of low resistivity tungsten film
JP5048602B2 (en) Method for depositing a refractory metal layer using a series of deposition techniques
US20020173130A1 (en) Integration of High K Gate Dielectric
US5306666A (en) Process for forming a thin metal film by chemical vapor deposition
KR101191222B1 (en) Transient enhanced atomic layer deposition
KR100652427B1 (en) Method of forming conductive polysilicon thin film using ald and method of manufacturing semiconductor device using the same
US5751050A (en) Semiconductor device having a polysilicon resistor element with increased stability and method of fabricating same
US20080268176A1 (en) Method of improving the uniformity of PECVD-deposited thin films
KR100601821B1 (en) Thin film forming method and thin film forming device
US7695563B2 (en) Pulsed deposition process for tungsten nucleation

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20101224

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee