KR20020028971A - Apparatus for sterilization of nosocomial airborne infectious bacteria/fungus by non-thermal plasma combined electro-oxidation catalysis. - Google Patents

Apparatus for sterilization of nosocomial airborne infectious bacteria/fungus by non-thermal plasma combined electro-oxidation catalysis. Download PDF

Info

Publication number
KR20020028971A
KR20020028971A KR1020020012030A KR20020012030A KR20020028971A KR 20020028971 A KR20020028971 A KR 20020028971A KR 1020020012030 A KR1020020012030 A KR 1020020012030A KR 20020012030 A KR20020012030 A KR 20020012030A KR 20020028971 A KR20020028971 A KR 20020028971A
Authority
KR
South Korea
Prior art keywords
bacteria
sterilization
semiconductor catalyst
catalyst electrode
oxidative
Prior art date
Application number
KR1020020012030A
Other languages
Korean (ko)
Inventor
임창규
안덕호
안덕
김기훈
Original Assignee
(주)유니에코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)유니에코 filed Critical (주)유니에코
Priority to KR1020020012030A priority Critical patent/KR20020028971A/en
Publication of KR20020028971A publication Critical patent/KR20020028971A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultra-violet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/0405Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising semiconducting carbon, e.g. diamond, diamond-like carbon
    • H01L21/0425Making electrodes

Abstract

PURPOSE: Provided is an apparatus for sterilizing air-mediated infectious bacteria in hospitals by non-heating plasma using an oxidizing semiconductor catalyst electrode, whereby it is possible to safely and rapidly treat bacteria in the hospitals without secondary air contamination. CONSTITUTION: The apparatus comprises a dust collecting part as a pretreatment filter for filtering dusts in the rooms and a non-heating plasma part for generating plasma. The non-heating plasma part is provided with a UV lamp having a wavelength of 260 to 280 nm to excite bacteria. The bacteria excited by the UV lamp are attached to surfaces of the oxidizing semiconductor catalyst. On the catalyst surface, the bacteria are killed by high voltage impact. Also, electrons or pores separated from the catalyst surface by electric energy generate hydroxy radicals, which penetrate into bacteria to destroy them. The oxidizing semiconductor catalyst electrode has a composition of T-M-MO, in which T is titanium dioxide, M is a metal such as titanium, silver, vanadium, cobalt, copper, platinum, and MO is an oxide of a metal such as silver, vanadium, cobalt, and copper.

Description

산화촉매보조 비가열 플라즈마에 의한 병원내 공기매개 감염균의 살균장치 {Apparatus for sterilization of nosocomial airborne infectious bacteria/fungus by non-thermal plasma combined electro-oxidation catalysis.}Apparatus for sterilization of nosocomial airborne infectious bacteria / fungus by non-thermal plasma combined electro-oxidation catalysis.}

본 발명은 산화성 반도체 촉매전극에 의하여 제조된, 병원내 공기매개 감염균인 그람음성간균 및 황색포도상균을 살균하는 비가열 플라즈마 장치에 관한 것으로써, 병원감염을 일으키는 박테리아를 전기 충격 분해 방법을 적용함으로써 신속하게 살균을 하면서도 2차 오염물질의 발생이 없는 장치를 제공하기 위한 것이다.The present invention relates to a non-heated plasma apparatus for sterilizing Gram-negative bacillus and Staphylococcus aureus, which are airborne infectious bacteria in a hospital, manufactured by an oxidative semiconductor catalyst electrode. It is intended to provide a device that sterilizes quickly and is free of secondary pollutants.

병원내 공기매개 감염균을 살균하기 위하여 화학적인 살균법과 물리적인 살균법을 적용하여 오고 있다. 여기서 화학적인 살균법은 주로 포르마린 가스 살균과 에틸렌 옥사이드(Ethylene Oxide) 가스 살균을 적용하고 있으나 포르마린은 잔류독성 성분으로 피부, 눈에 자극성이 있으며 대기로 방출될 시 2차 대기 오염을 일으킬 수 있다. 또한 에틸렌 옥사이드 가스 역시 피부손상, 점막자극 작용, 용혈 작용을 일으키며 2차 대기 오염을 일으킨다. 이러한 모든 화학적인 살균방법은 잔류독성으로 가스 살균시 환자를 안전한 장소로 이송 격리하여야 하며, 살균 구역을 철저히 밀폐하여야 하는 문제점들이 있어서 실제 병원에서 적용하기에는 어려운 실정이다.Chemical sterilization and physical sterilization have been applied to sterilize airborne infectious agents in hospitals. The chemical sterilization method mainly uses formarin gas sterilization and ethylene oxide gas sterilization, but formarin is a residual toxic substance that is irritating to skin and eyes and may cause secondary air pollution when released to the atmosphere. Ethylene oxide gas also causes skin damage, mucous membrane irritation, hemolysis, and secondary air pollution. All of these chemical sterilization methods have to be isolated and transported to a safe place for gas sterilization due to residual toxicity, and it is difficult to apply them in a hospital because there are problems to close the sterilization area thoroughly.

그리고 물리적인 살균법에는 전자선 조사에 의한 살균방법이 있으나 살균부위가 극히 한정이 되며, 장비의 가격이 고가이므로 현실적용에는 부적합하다.In addition, there is a sterilization method by electron beam irradiation in the physical sterilization method, but the sterilization part is extremely limited, and the price of equipment is expensive, so it is not suitable for practical application.

본 발명은 이와 같은 제결점을 해결하기 위하여 안출된 것으로서, 산화성 반도체 촉매전극과 이에 고전압 펄스 전원을 플라즈마 생성의 에너지원으로 사용하고, 이에 병행하여 260∼280nm의 파장을 가지는 자외선 램프를 사용함으로써 병원내 공기매개 감염균을 살균함에 그 목적을 두고 있다.SUMMARY OF THE INVENTION The present invention has been made to solve such drawbacks, by using an oxidative semiconductor catalyst electrode and a high voltage pulse power source as an energy source for plasma generation, and by using an ultraviolet lamp having a wavelength of 260 to 280 nm in parallel. Its purpose is to sterilize my airborne infectious organisms.

〈과제를 해결하기 위한 수단〉〈Means for solving the problem〉

본 발명의 기본구조는 실내의 미세 먼지를 걸러주는 전처리 필터로써의 집진부와 자외선 램프부, 플라즈마를 생성시키는 비가열 플라즈마부로 구성된다.The basic structure of the present invention is composed of a dust collecting unit as a pre-treatment filter for filtering out fine dust in the room, an ultraviolet lamp unit, and a non-heating plasma unit for generating plasma.

박테리아는 기본적인 구조로써 세균 포자막으로 둘러 싸여있는 원형질로서 이루어져 있다(도1). 이러한 박테리아는 수분과 밀접한 관계가 있어서 수분이 있는 환경에서 대수증식작용을 하며,원형질에는 65∼90%의 수분을 함유하고 있다. 본 발명의 기본원리는 이러한 수분을 이용하여 박테리아를 살균하는 것에 기초를 두고 있다.The bacterium is composed of a protoplast surrounded by a bacterial spore membrane as a basic structure (Fig. 1). These bacteria are closely related to water, so they multiply in a watery environment, and the protoplasm contains 65 to 90% water. The basic principle of the present invention is based on sterilizing bacteria using this water.

산화성 반도체 촉매의 기본 작용은 전기에너지에 의한 전자 및 정공의 생성, 전자 및 정공의 표면에로의 이동 및 전하분리, 전자 및 정공에 포착된 표면 활성종의 생성, 이러한 활성종에 의한 반응이 일어나는 중간 생성물 및 최종 생성물로 이루어진다.The basic action of oxidative semiconductor catalysts is the generation of electrons and holes by electrical energy, the transfer and charge separation of electrons and holes to the surface, the generation of surface active species trapped in electrons and holes, and the reaction by these active species Consisting of intermediate and final products.

또한 병원균은 산화성 반도체 촉매 표면에서 흡착 →분해 →탈착의 과정을 거치게 된다.In addition, pathogens undergo adsorption, decomposition, and desorption on the surface of the oxidative semiconductor catalyst.

따라서 전기화학적인 측면에서 살펴보면So from an electrochemical perspective

첫째,자외선 램프의 전자선에 의하여 여기된 박테리아가 산화성 반도체 촉매 표면에 흡착되고,First, bacteria excited by the electron beam of the ultraviolet lamp are adsorbed on the surface of the oxidative semiconductor catalyst,

둘째, 흡착된 박테리아는 교류 15∼30kV와 펄스전원 10∼20kV에 의하여 세균포자막이 파괴된다Second, the adsorbed bacteria are destroyed by bacterial spore membranes by alternating 15-30kV and pulsed power 10-20kV.

셋째, 포자막 파괴에 의하여 내부 원형질 내의 수분이 고전압의 전자 및 펄스 충격파에 의하여 파괴된다.Third, moisture in the inner plasma is destroyed by high voltage electrons and pulse shock waves due to spore film destruction.

그리고 촉매 작용 측면에서 살펴보면 대기중 수분에 대한 작용으로 나누어 볼 수 있는데 대기중 수분에 대하여는In terms of catalysis, it can be divided into the action on the moisture in the air.

촉매 표면 + 전기에너지 → e-+ h+ The catalyst surface electric energy + → e - + h +

h++ H2O →·OH + H+ h + + H 2 O → · OH + H +

(e-, h+: 전기에너지에 의하여 촉매 표면에 분리된 전자 및 정공)(e -, h +: The electrons and holes are separated on the surface of the catalyst by electric energy)

여기에서 OH라디칼은 강력한 살균력을 가진 활성종으로써 박테리아의 포자막을 침투하여 살균하는 작용을 가지고 있다.Here, OH radical is an active species with strong bactericidal power and has a function of penetrating and sterilizing the spore membrane of bacteria.

다음으로 원형질내의 수분에 대하여 살펴보면 앞서의 고전압 전기 충격에 의하여 파괴된 포자막을 통하여Next, look at the water in the plasma through the spore film destroyed by the high-voltage electric shock

h++ H2O →·OH + H+ h + + H 2 O → · OH + H +

로써 동일한 작용을 일으킨다.As to cause the same action.

이상의 모든 과정을 살펴보면Looking at all of the above

박테리아 + 자외선 램프 → 여기된 박테리아 (1)Bacteria + Ultraviolet Lamp → Excited Bacteria (1)

여기된 박테리아 + 고전압 충격 →세포막 파괴 및 원형질 살균 (2)Excited Bacteria + High Voltage Shock → Cellular Destruction and Plasma Sterilization (2)

h+- H2O(대기중 수분) →·OH + H+(3)h + -H 2 O (moisture in air) → OH + H + (3)

h++ H2O(원형질내 수분) → ·OH + H+(4)h + + H 2 O (moisture in the protoplasm) → OH + H + (4)

박테리아의 원형질 + ·OH →박테리아의 살균 (5)Bacterial Protoplasts + OH → Bacterial Sterilization (5)

와 같은 과정을 거쳐 신속한 살균이 이루어진다.Fast sterilization is performed through the same process.

《실시 예》<< Example >>

〈산화성 반도체 촉매전극 제조><Production of Oxidative Semiconductor Catalyst Electrode>

티타늄 알콕사이드를 5wt% 황산수용액/알콕사이드 몰비를 50으로 하여 두 용액을 혼합한 후 2∼3시간 교반하여 가수분해 반응을 일으킨다. 이에서 얻어진 올소티탄산(orthotitanic acid) 100g을 기준으로 하여 4wt% 수산화리듐수용액 20∼30g, 메타놀 1.5∼3.0g과 1wt% 염화백금산 5∼15g을 혼합하여 고압수은 등 조사하에서 1∼5시간 교반한다. 그 후 산화비스무스 5∼10g을 혼합하여 1∼5시간 교반한 후 10% 암모니아수에 20∼25wt%로 용해시킨 요오드화은 또는 요오드화 칼륨을 5∼40g을 투입하고 오산화바나듐, 삼산화 텅그스텐, 삼산화 모리브덴을 각각 1∼5g, 이산화망간을 5∼25g, 산화구리를 10∼40g, 산화코발트를 1∼2g 투입하여 2∼8시간 최종 교반한다.Titanium alkoxide is mixed with two solutions with a 5 wt% aqueous sulfuric acid solution / alkoxide molar ratio of 50, followed by stirring for 2-3 hours to cause a hydrolysis reaction. Based on 100 g of the obtained orthotitanic acid, 20-30 g of 4 wt% aqueous lithium hydroxide solution, 1.5-3.0 g of methanol, and 5-15 g of 1 wt% chloroplatinic acid were mixed and stirred for 1 to 5 hours under high pressure mercury lamp irradiation. . Then, 5 to 10 g of bismuth oxide was mixed and stirred for 1 to 5 hours, and then 5 to 40 g of silver iodide or potassium iodide dissolved in 20% to 25 wt% in 10% aqueous ammonia was added, and vanadium pentoxide, tungsten trioxide, and molybdenum trioxide were added thereto. 1 to 5 g of each, 5 to 25 g of manganese dioxide, 10 to 40 g of copper oxide, and 1 to 2 g of cobalt oxide were added, followed by final stirring for 2 to 8 hours.

분산이 완료된 반도체 조성물을 스테인레스 메쉬 또는 스테인레스 매트 또는 니켈 소결매트에 코팅한 후 350∼500℃에서 6∼12시간 소성하여 최종 산화성 반도체 촉매전극을 얻는다.The dispersion-finished semiconductor composition is coated on a stainless mesh or stainless mat or nickel sintered mat and then calcined at 350 to 500 ° C. for 6 to 12 hours to obtain a final oxidative semiconductor catalyst electrode.

도1은 영양물질, 살균제 등의 박테리아 세포 포자막 투과성1 is a bacterial cell spore permeability of nutrients, fungicides, etc.

도2는 살균장치의 기본 배치도(이동식)Figure 2 is a basic layout of the sterilization device (mobile type)

도3은 실시예에 의한 실험결과3 is a test result according to the embodiment

〈도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for main parts of the drawings>

(1) 전처리 집진 필터(1) pretreatment dust collecting filter

(2) 자외선 램프(2) UV lamp

(3) 산화성 반도체 촉매전극(3) Oxidative Semiconductor Catalyst Electrode

(4) 배출팬(4) exhaust fan

..

상기한 바와 같이 본 발명은 전기에너지에 의하여 산화성 반도체 표면에 전자-정공을 형성시킴과 동시에 고전장에 의하여 박테리아를 살균처리함으로써 병원실내에 있는 세균을 2차 대기오염 없이 안전하게 또한 신속하게 처리할 수 있는 장치로써 병원내 공기매개 감염균을 살균하여 2차 감염을 최소화할 수 있다.As described above, the present invention forms electron-holes on the surface of an oxidative semiconductor by electric energy and sterilizes bacteria by high field, thereby safely and quickly treating bacteria in a hospital room without secondary air pollution. As a device, the secondary infection can be minimized by sterilizing airborne infectious agents in the hospital.

Claims (3)

박테리아를 여기시키기 위하여 260∼280nm의 파장을 가진 자외선 램프를 설치하는 구조.A structure that installs an ultraviolet lamp with a wavelength of 260-280nm to excite bacteria. 산화성 반도체 촉매전극의 제조 방법에 있어서 다음의 구성식을 가진 것으로써In the method for producing an oxidative semiconductor catalyst electrode, having the following structural formula T-M-MOT-M-MO 여기에서 T는 이산화 티타늄, M은 금속으로써 티타늄, 은, 바나듐, 코발트, 구리, 백금에 해당하며, MO는 금속산화물로써 산화은, 오산화바나듐, 산화코발트, 산화구리에 해당하며, 이를 바탕으로 제조한 산화성 반도체 촉매전극.Here, T is titanium dioxide and M is a metal, which corresponds to titanium, silver, vanadium, cobalt, copper, and platinum, and MO is a metal oxide, which corresponds to silver oxide, vanadium pentoxide, cobalt oxide, and copper oxide. Oxidative semiconductor catalyst electrode. 산화성 반도체 촉매전극과 비가열 플라즈마부에 교류 15∼30kV와 펄스 전원 10∼20kV를 인가하여 병원내 공기매개 감염균을 살균하는 장치.An apparatus for sterilizing airborne infectious bacteria in a hospital by applying an alternating current 15-30 kV and a pulse power supply 10-20 kV to an oxidative semiconductor catalyst electrode and an unheated plasma part.
KR1020020012030A 2002-03-06 2002-03-06 Apparatus for sterilization of nosocomial airborne infectious bacteria/fungus by non-thermal plasma combined electro-oxidation catalysis. KR20020028971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020012030A KR20020028971A (en) 2002-03-06 2002-03-06 Apparatus for sterilization of nosocomial airborne infectious bacteria/fungus by non-thermal plasma combined electro-oxidation catalysis.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020012030A KR20020028971A (en) 2002-03-06 2002-03-06 Apparatus for sterilization of nosocomial airborne infectious bacteria/fungus by non-thermal plasma combined electro-oxidation catalysis.

Publications (1)

Publication Number Publication Date
KR20020028971A true KR20020028971A (en) 2002-04-17

Family

ID=19719644

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020012030A KR20020028971A (en) 2002-03-06 2002-03-06 Apparatus for sterilization of nosocomial airborne infectious bacteria/fungus by non-thermal plasma combined electro-oxidation catalysis.

Country Status (1)

Country Link
KR (1) KR20020028971A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7771672B2 (en) 2005-12-17 2010-08-10 Airinspace B.V. Air purification device
US8003058B2 (en) 2006-08-09 2011-08-23 Airinspace B.V. Air purification devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7771672B2 (en) 2005-12-17 2010-08-10 Airinspace B.V. Air purification device
US8003058B2 (en) 2006-08-09 2011-08-23 Airinspace B.V. Air purification devices

Similar Documents

Publication Publication Date Title
Montie et al. An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials
US6810288B2 (en) Device and method for wound healing and infection control
JP4408957B2 (en) Sterilization method and apparatus
Moreau et al. Non-thermal plasma technologies: new tools for bio-decontamination
CN108452362B (en) Sterilization module and sterilization equipment
US6969487B1 (en) Denaturing of a biochemical agent using an activated cleaning fluid mist
KR100625771B1 (en) High speed space sterilization system and method
CN102357256A (en) Two-waveband photocatalyst titanium oxide catalytic purifying module
CN211716745U (en) Tower type air purifier with sterilization system
EP1458450B1 (en) Method for denaturing biochemical agent and decontamination apparatus
US20100135850A1 (en) Air disinfection device
CN213237848U (en) Man-machine coexistence air purification device
CN201616891U (en) Self-cleaning speaker
CN112169582A (en) High-voltage electric-assisted photocatalytic purification device with sterilization and odor purification functions
CN109125769A (en) A kind of plasma mist disinfection method
JP2004335411A (en) Ion generation element and sterilization method
KR20020028971A (en) Apparatus for sterilization of nosocomial airborne infectious bacteria/fungus by non-thermal plasma combined electro-oxidation catalysis.
CN105126611A (en) Organic waste gas microwave deodorization purifier
JP2003116973A (en) Method and system for cleaning air
CN202136609U (en) Dual waveband titanium oxide photocatalyst purification module
CN205095645U (en) Organic waste gas microwave deodorization clarifier
CN111940143A (en) Sterilizing, disinfecting and ozone-removing electrostatic adsorption electrode and preparation method thereof
CN103386300A (en) Processing method of ceramic honeycomb plate air purifying agent
CN112344507A (en) Air disinfection purifier based on plasma normal position coupling nanometer catalysis
WO2018149980A1 (en) System for disinfecting and sanitizing environments

Legal Events

Date Code Title Description
A201 Request for examination
SUBM Submission of document of abandonment before or after decision of registration