KR20010011855A - method for manufacturing the TFT- LCD - Google Patents

method for manufacturing the TFT- LCD Download PDF

Info

Publication number
KR20010011855A
KR20010011855A KR1019990031418A KR19990031418A KR20010011855A KR 20010011855 A KR20010011855 A KR 20010011855A KR 1019990031418 A KR1019990031418 A KR 1019990031418A KR 19990031418 A KR19990031418 A KR 19990031418A KR 20010011855 A KR20010011855 A KR 20010011855A
Authority
KR
South Korea
Prior art keywords
resist pattern
source
active
mask
drain
Prior art date
Application number
KR1019990031418A
Other languages
Korean (ko)
Other versions
KR100590925B1 (en
Inventor
오재영
이경하
인태형
Original Assignee
김영환
현대전자산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대전자산업 주식회사 filed Critical 김영환
Priority to KR1019990031418A priority Critical patent/KR100590925B1/en
Publication of KR20010011855A publication Critical patent/KR20010011855A/en
Application granted granted Critical
Publication of KR100590925B1 publication Critical patent/KR100590925B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1288Multistep manufacturing methods employing particular masking sequences or specially adapted masks, e.g. half-tone mask
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66765Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate

Abstract

PURPOSE: A method of fabricating thin film transistor-liquid crystal display device is provided to reduce the number of masks necessary for the process of fabricating a thin film transistor. CONSTITUTION: The first resist pattern is formed by the exposure and the development using a gate defining mask. A gate electrode(12) is formed by the etching of a metal film in the resist pattern. A source and drain metal film(16) is patterned by using the second resist pattern as a mask. The second resist pattern is substituted for the third resist pattern and a channel layer(14a) is defined by the patterning of a doped semiconductor layer(15) and an amorphous silicon layer(14) by using the source and drain metal film(16) as a mask. Therefore, an active region, the source electrode(16a) and the drain electrode(16b) are defined by the active region defining mask and the number of masks necessary for the process of fabricating a thin film transistor is reduced.

Description

박막 트랜지스터-액정 표시 장치의 제조방법{method for manufacturing the TFT- LCD}A method for manufacturing a thin film transistor-liquid crystal display device

본 발명은 박막 트랜지스터-액정 표시 장치의 제조방법에 관한 것으로, 보다 구체적으로는, 4개의 마스크로 박막 트랜지스터를 제조할 수 있는 박막 트랜지스터-액정 표시 장치의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thin film transistor-liquid crystal display device, and more particularly, to a method for manufacturing a thin film transistor-liquid crystal display device capable of manufacturing a thin film transistor with four masks.

일반적으로, 액정 표시 소자중 액티브 매트릭스형 액정 표시 소자는 고속 응답성을 갖고, 많은 화소의 갯수를 갖는다. 이에 따라, 디스플레이 화면의 고 화질화, 대형화, 컬러 화면화등을 실현하는 특성을 지니며, 휴대형 TV, 노트북 PC, 자동차 항법 장치등에 이용된다.In general, the active matrix liquid crystal display device among the liquid crystal display devices has high speed response and has a large number of pixels. As a result, the display screen has high characteristics such as high image quality, large size, and color screen, and is used in portable TVs, notebook PCs, automobile navigation systems, and the like.

이러한 액티브 매트릭스형 액정 표시 소자에서, 화소 전극을 선택적으로 온/ 오프시키기 위하여 게이트 버스 라인과 데이타 버스 라인이 교차하는 점에 다이오드나 박막 트랜지스터와 같은 스위칭 소자가 배치된다.In such an active matrix liquid crystal display device, a switching device such as a diode or a thin film transistor is disposed at the intersection of the gate bus line and the data bus line to selectively turn on / off the pixel electrode.

이러한 박막 트랜지스터를 포함하는 종래의 액정 표시 소자의 제조방법을 도 1a 내지 도 1f를 참조하여 설명한다.A conventional method of manufacturing a liquid crystal display device including the thin film transistor will be described with reference to FIGS. 1A to 1F.

먼저, 도 1a에 도시된 바와 같이, 절연 기판(1) 표면에 게이트 버스 라인용금속막을 소정 두께로 증착한다. 그리고나서, 제 1 사진 식각 공정을 통하여, 금속막을 패터닝하여, 게이트 전극(2)을 형성한다. 이어서, 게이트 전극(2)을 포함하는 절연 기판(1) 상부에 제 1 게이트 절연막(3), 제 2 게이트 절연막(4), 비정질 실리콘층(5) 및 에치 스톱퍼층(6)을 순차적으로 증착한다.First, as shown in FIG. 1A, a metal film for a gate bus line is deposited on a surface of an insulating substrate 1 to a predetermined thickness. Then, the metal film is patterned through the first photolithography process to form the gate electrode 2. Subsequently, the first gate insulating film 3, the second gate insulating film 4, the amorphous silicon layer 5, and the etch stopper layer 6 are sequentially deposited on the insulating substrate 1 including the gate electrode 2. do.

그후, 도 1b에 도시된 바와 같이, 에치 스톱퍼층(6)을 제 2 사진 식각 공정을 통하여, 게이트 전극(1)의 대응 부분에 존재하도록 소정 부분 패터닝하여, 에치 스톱퍼(6a)를 형성한다. 이때, 에치 스톱퍼(6a)는 공지된 바와 같이, 이후 소오스, 드레인 전극 형성시, 채널층이 손상됨을 방지하여, 박막 트랜지스터의 동작 전류를 높이고, 누설 전류를 낮추는 역할을 한다.Thereafter, as shown in FIG. 1B, the etch stopper layer 6 is patterned to be present in the corresponding portion of the gate electrode 1 through the second photolithography process to form the etch stopper 6a. At this time, the etch stopper 6a, as is well known, prevents damage to the channel layer when forming the source and drain electrodes, thereby increasing the operating current of the thin film transistor and reducing the leakage current.

그 다음, 도 1c에서와 같이, 에치 스토퍼(6a)가 형성된 비정질 실리콘층(5) 상부에 도핑된 반도체층(7)을 증착한다.Next, as shown in FIG. 1C, the doped semiconductor layer 7 is deposited on the amorphous silicon layer 5 on which the etch stopper 6a is formed.

그 다음, 도 1d를 참조하여, 도핑된 반도체층(7) 및 비정질 실리콘층(5)을 제 3 사진 식각 공정에 의하여 소정 부분 패터닝하여, 오믹 콘택층(7a,7b) 및 채널층(5')을 형성한다. 이때, 오믹 콘택층(7a,7b)은 에치 스톱퍼(6)의 양측에 존재하도록 패터닝된다.Next, referring to FIG. 1D, the doped semiconductor layer 7 and the amorphous silicon layer 5 are partially patterned by a third photolithography process to form the ohmic contact layers 7a and 7b and the channel layer 5 '. ). At this time, the ohmic contact layers 7a and 7b are patterned to exist on both sides of the etch stopper 6.

이어서, 도 1e에 도시된 바와 같이, 도면에는 도시되지 않았지만, 기판 외곽의 게이트 전극 패드부가 노출될 수 있도록, 제 4 사진 식각 공정에 의하여 제 1 및 제 2 절연막(3,4)을 식각한다.Subsequently, as shown in FIG. 1E, the first and second insulating layers 3 and 4 are etched by the fourth photolithography process so that the gate electrode pad portion outside the substrate may be exposed.

그런다음, 도 1f에서와 같이, 하부 기판(1) 결과물 상부에 데이타 버스 라인용 금속막을 증착하고, 제 5 사진 식각 공정을 통하여, 금속막을 식각하여, 상기 오믹 콘택층(7a,7b) 상부에 소오스, 드레인 전극(8a,8b)을 형성한다.Then, as illustrated in FIG. 1F, a metal film for data bus lines is deposited on the lower substrate 1, and the metal film is etched through a fifth photolithography process to form an upper portion of the ohmic contact layers 7a and 7b. Source and drain electrodes 8a and 8b are formed.

그러나, 상기한 종래의 박막 트랜지스터를 제조하는데는, 게이트 전극 형성 공정, 에치 스톱퍼 형성공정, 채널층 형성 공정, 패드 오픈 공정, 소오스, 드레인 형성 공정등 적어도 5개의 마스크를 가지고, 5번의 사진 식각 공정을 진행하여야 한다.However, in manufacturing the above-described conventional thin film transistor, there are at least five masks such as a gate electrode forming step, an etch stopper forming step, a channel layer forming step, a pad opening step, a source, and a drain forming step. Should proceed.

이때, 패턴을 형성하기 위하여 설계된 마스크는 매우 고가이어서, 공정에 적용되는 마스크의 수가 증대되면, 액정 표시 장치를 제조하는 비용이 이에 비례하여 상승한다. 이에따라, 현 공정에서는 마스크의 수를 줄이는 것이 시급하다.In this case, the mask designed to form the pattern is very expensive, and as the number of masks applied to the process increases, the cost of manufacturing the liquid crystal display device increases proportionally. Accordingly, it is urgent to reduce the number of masks in the current process.

따라서, 본 발명은 상기한 종래의 문제점을 해결하기 위한 것으로, 공정에 사용되는 마스크수를 감축시키어, 제조 비용을 낮출 수 있는 박막 트랜지스터-액정 표시 장치의 제조방법을 제공하는 것을 목적으로 한다.Accordingly, an object of the present invention is to provide a method for manufacturing a thin film transistor-liquid crystal display device which can reduce the number of masks used in the process and lower the manufacturing cost.

도 1a 내지 도 1f는 종래의 박막 트랜지스터-액정 표시 장치의 제조방법을 설명하기 위한 각 공정별 단면도.1A to 1F are cross-sectional views of respective processes for explaining a method of manufacturing a conventional thin film transistor-liquid crystal display device.

도 2a 내지 도 2f는 본 발명에 따른 박막 트랜지스터-액정 표시 장치의 제조방법을 설명하기 위한 각 공정별 단면도.2A to 2F are cross-sectional views of respective processes for explaining a method of manufacturing a thin film transistor-liquid crystal display device according to the present invention.

(도면의 주요 부분에 대한 부호의 설명)(Explanation of symbols for the main parts of the drawing)

11 - 절연 기판 12 - 게이트 전극11-insulated substrate 12-gate electrode

13 - 게이트 절연막 14a - 채널층13-gate insulating film 14a-channel layer

15a - 오믹 콘택층 16 - 소오스, 드레인 전극용 금속막15a-ohmic contact layer 16-metal film for source and drain electrodes

16a,16b - 소오스, 드레인 전극 17 - 제 2 레지스트 패턴16a, 16b-source, drain electrode 17-second resist pattern

17-1 - 제 3 레지스트 패턴 18 - 보호막17-1-Third Resist Pattern 18-Protective Film

19 - 화소 전극19-pixel electrode

상기한 본 발명의 목적을 달성하기 위하여, 본 발명의 일실시예에 의하면, 절연 기판 상부에 게이트 전극을 형성하는 단계; 상기 게이트 전극 상부에 게이트 절연막과 도핑된 반도체층 및 소오스, 드레인용 금속막을 순차적으로 적층하는 단계; 상기 소오스, 드레인용 금속막 상부에 액티브 영역을 한정하기 위하여 액티브용 레지스트 패턴을 형성하는 단계로, 상기 액티브용 레지스트 패턴은 게이트 전극과 대응하는 부분의 두께가 상대적으로 얇게 형성하는 단계; 상기 액티브용 레지스트 패턴을 마스크로 하여, 소오스, 드레인용 금속막, 도핑된 반도체층 및 비정질 실리콘층을 액티브 형태로 식각하여, 상기 비정질 실리콘층으로 채널층을 한정하는 단계; 상기 액티브용 레지스트 패턴의 상대적으로 얇은 두께를 가진 부분을 제거하여, 소오스, 드레인 전극용 레지스트 패턴을 형성하는 단계; 상기 소오스 드레인 전극용 레지스트 패턴을 이용하여, 상기 소오스, 드레인 금속막 및 도핑된 반도체층을 식각하여, 소오스, 드레인 전극을 형성하는 단계; 상기 소오스, 드레인 전극용 레지스트 패턴을 제거하는 단계; 상기 기판 결과물 상부에 보호막을 증착하는 단계; 상기 보호막 상에 드레인 전극이 노출되도록 보호막을 식각하는 단계; 및 상기 보호막 상부에 드레인 전극과 콘택되도록 화소 전극을 형성하는 단계를 포함하는 것을 특징으로 한다.In order to achieve the above object of the present invention, according to an embodiment of the present invention, forming a gate electrode on the insulating substrate; Sequentially depositing a gate insulating film, a doped semiconductor layer, and a source and drain metal film on the gate electrode; Forming an active resist pattern on the source and drain metal film to define an active region, wherein the active resist pattern has a relatively thin thickness of a portion corresponding to the gate electrode; Using the active resist pattern as a mask to etch a source, a drain metal film, a doped semiconductor layer, and an amorphous silicon layer in an active form to define a channel layer with the amorphous silicon layer; Removing a portion having a relatively thin thickness of the active resist pattern to form a resist pattern for a source and a drain electrode; Forming a source and a drain electrode by etching the source, the drain metal layer and the doped semiconductor layer using the resist pattern for the source and drain electrode; Removing the source and drain electrode resist patterns; Depositing a passivation layer on the substrate product; Etching the passivation layer to expose the drain electrode on the passivation layer; And forming a pixel electrode on the passivation layer to be in contact with the drain electrode.

여기서, 상기 액티브용 레지스트 패턴을 형성하는 단계는 포토레지스트막을 도포하는 단계; 상기 게이트 전극과 대응하는 부분에 노광 한계치보다 작은 패턴이 수개 배치되어 있는 액티브용 마스크를 이용하여 포토레지스트막을 노광하는 단계; 상기 노광된 포토레지스트막을 현상하는 단계를 포함하는 것을 특징으로 한다.The forming of the active resist pattern may include applying a photoresist film; Exposing a photoresist film using an active mask having a plurality of patterns smaller than an exposure limit in a portion corresponding to the gate electrode; And developing the exposed photoresist film.

또한, 본 발명은, 상기 소오스, 드레인 전극용 레지스트 패턴을 형성하는 단계는 상기 액티브용 마스크를 이용하여 재노광 및 현상하여 형성한다.In the present invention, the step of forming the source and drain electrode resist patterns is formed by re-exposure and development using the active mask.

본 발명에 의하면, 4개의 마스크 즉, 게이트 한정용 마스크, 액티브 한정용 마스크, 드레인 전극 오픈용 마스크 및 화소 전극 한정용 마스크로, 박막 트랜지스터 및 화소 전극을 형성할 수 있어, 종래 보다 1개의 마스크 수를 줄일 수 있다.According to the present invention, a thin film transistor and a pixel electrode can be formed with four masks, that is, a gate limiting mask, an active limiting mask, a drain electrode opening mask, and a pixel electrode limiting mask, and thus the number of masks can be reduced. have.

이에따라, 마스크 수의 감소됨으로써, 제조 비용이 감축된다.Accordingly, by reducing the number of masks, the manufacturing cost is reduced.

(실시예)(Example)

이하 첨부한 도면에 의거하여 본 발명의 바람직한 실시예를 자세히 설명하도록 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

첨부한 도면 도 2a 내지 도 2f는 본 발명에 따른 박막 트랜지스터 액정 표시 장치의 제조방법을 설명하기 위한 각 제조 공정별 단면도이다.2A to 2F are cross-sectional views of respective manufacturing processes for explaining a method of manufacturing a thin film transistor liquid crystal display according to the present invention.

먼저, 도 2a에 도시된 바와 같이, 절연 기판(11) 예를들어, 투명 유리 기판 상부에 게이트 전극용 금속막을 소정 두께로 증착한다. 이어, 상기 금속막 상부에 포토레지스트막(도시되지 않음)을 도포한다음, 게이트 전극을 한정하기 위한 마스크를 이용하여 노광 및 현상하여 제 1 레지스트 패턴(도시되지 않음)을 형성하고, 이 제 1 레지스트 패턴의 형태로 금속막을 식각하여, 게이트 전극(12)을 형성한다. 그 다음, 제 1 레지스트 패턴을 공지의 방식으로 제거한다.First, as shown in FIG. 2A, a metal film for a gate electrode is deposited to a predetermined thickness on an insulating substrate 11, for example, on a transparent glass substrate. Subsequently, a photoresist film (not shown) is applied over the metal film, and then exposed and developed using a mask for defining a gate electrode to form a first resist pattern (not shown). The metal film is etched in the form of a resist pattern to form the gate electrode 12. The first resist pattern is then removed in a known manner.

이어서, 게이트 전극(12)이 형성된 절연 기판(11) 상부에 실리콘 질산화막 및 실리콘 질화막의 적층막으로 된 게이트 절연막(13)을 형성한다. 게이트 절연막(13) 상부에 비정질 실리콘막(14), 도핑된 비정질 실리콘막(15), 소오스, 드레인용 금속막(16)을 순차적으로 적층한다.Subsequently, a gate insulating film 13 made of a laminated film of a silicon nitride oxide film and a silicon nitride film is formed on the insulating substrate 11 on which the gate electrode 12 is formed. An amorphous silicon film 14, a doped amorphous silicon film 15, a source, and a drain metal film 16 are sequentially stacked on the gate insulating layer 13.

그 다음, 도 2b에 도시된 바와 같이, 소오스, 드레인용 금속막(16) 상부에 포토레지스트막을 도포하고, 박막 트랜지스터 한정용 마스크 즉, 액티브용 마스크를 이용하여 포토레지스트막을 노광 및 현상하여, 제 2 레지스트 패턴(17)을 형성한다. 이때, 제 2 레지스트 패턴(17) 중 게이트 전극(12)과 대응되는 부분은 상대적으로 얇은 두께를 갖도록 형성된다. 여기서, 제 2 레지스트 패턴(17)의 두께를 다르게 형성하기 위하여는, 상대적으로 얇게 형성할 부분에 해당하는 마스크에 분해능 한계치(약 3㎛) 이하의 선폭을 가진 미세 패턴들을 집중적으로 배치시킨다. 그러면, 그 부분이 완전히 노광되어 이후 현상에 의하여 제거되지는 않지만, 완전히 차폐된 부분에 비하여는 광이 더 많이 인가되므로, 현상을 하게 되면, 상대적으로 얇은 두께를 갖게 된다.Next, as shown in FIG. 2B, a photoresist film is coated on the source and drain metal film 16, and the photoresist film is exposed and developed using a thin film transistor limiting mask, that is, an active mask. The resist pattern 17 is formed. In this case, a portion of the second resist pattern 17 corresponding to the gate electrode 12 is formed to have a relatively thin thickness. In order to form different thicknesses of the second resist pattern 17, fine patterns having a line width of less than or equal to a resolution limit (about 3 μm) are concentrated in a mask corresponding to a portion to be formed relatively thinly. Then, although the part is completely exposed and is not removed by the development afterwards, more light is applied as compared to the part completely shielded, so that the development has a relatively thin thickness.

그 다음, 도 2c에 도시된 바와 같이, 제 2 레지스트 패턴(17)을 마스크로 하여, 노출된 소오스, 드레인 금속막(16)을 패터닝한다. 제 2 레지스트 패턴(17) 중 상대적으로 얇은 두께 부분, 즉 게이트 전극(12)과 대응되는 부분을 재노광 및 현상하여, 제 3 레지스트 패턴(17-1)을 형성한다. 즉, 제 2 레지스트 패턴을 상기 액티브용 마스크에 의하여 재노광 및 현상한다.Next, as shown in FIG. 2C, the exposed source and drain metal films 16 are patterned using the second resist pattern 17 as a mask. A relatively thin portion of the second resist pattern 17, that is, a portion corresponding to the gate electrode 12 is reexposed and developed to form the third resist pattern 17-1. That is, the second resist pattern is re-exposed and developed by the active mask.

그러면, 제 3 레지스트 패턴(17-1)은 상기 제 2 레지스트 패턴(17)중 상대적으로 얇은 두께 부분 만큼씩 노광, 현상되었으므로, 제 2 레지스트 패턴(17)보다는 얇은 두께를 가지며, 제 3 레지스트 패턴(17-1)에 의하여, 게이트 전극(12)과 대응하는 소오스, 드레인용 금속막(16) 부분이 노출된다. 이때, 제 3 레지스트 패턴(17-1)은 제 2 레지스트 패턴을 형성하였던 마스크로, 노광 및 현상하여 형성되므로, 별도의 마스크가 요구되지 않는다.Then, since the third resist pattern 17-1 is exposed and developed by a relatively thin portion of the second resist pattern 17, the third resist pattern 17-1 has a thickness smaller than that of the second resist pattern 17, and thus, the third resist pattern 17-3 is formed. By (17-1), a portion of the source and drain metal film 16 corresponding to the gate electrode 12 is exposed. In this case, the third resist pattern 17-1 is a mask on which the second resist pattern is formed, and is formed by exposure and development, so that a separate mask is not required.

그 다음, 도 2d에 도시된 바와 같이, 소정 부분 패터닝된 소오스, 드레인 금속막(16)을 마스크로 하여 즉, 제 2 레지스트 패턴의 형태로, 노출된 도핑된 반도체층(15)과 비정질 실리콘층(14)을 패터닝하여, 채널층(14a)이 한정된다. 이에따라, 액티브 영역이 한정된다.Then, as shown in FIG. 2D, the exposed doped semiconductor layer 15 and the amorphous silicon layer, using the partially patterned source and drain metal film 16 as a mask, that is, in the form of a second resist pattern. Patterning 14, the channel layer 14a is defined. Accordingly, the active area is limited.

그러고 난 다음, 도 2e에 도시된 바와 같이, 제 3 레지스트 패턴(17-1)을 마스크로 하여, 노출된 소오스, 드레인용 금속막(16)과 도핑된 반도체층(15)을 순차적으로 식각하여, 소오스, 드레인 전극(16a,16b)을 형성한다. 이에따라, 박막 트랜지스터가 완성된다. 이때, 제 3 레지스트 패턴(17-1)에 의하여 소오스, 드레인 전극(16a,16b)을 형성하는 공정시, 채널층(14a)이 일부 유실될 수 있으며, 상기 제 도핑된 반도체층(15)은 소오스, 드레인 전극(16a,16b)의 형태로 패터닝되어, 채널층(14a)과 소오스, 드레인 전극(16a,16b) 사이의 오믹 콘택층 역할을 한다.Then, as shown in FIG. 2E, the exposed source and drain metal films 16 and the doped semiconductor layer 15 are sequentially etched using the third resist pattern 17-1 as a mask. Source and drain electrodes 16a and 16b are formed. Accordingly, the thin film transistor is completed. In this case, during the process of forming the source and drain electrodes 16a and 16b by the third resist pattern 17-1, the channel layer 14a may be partially lost, and the doped semiconductor layer 15 may be It is patterned in the form of source and drain electrodes 16a and 16b to serve as an ohmic contact layer between the channel layer 14a and the source and drain electrodes 16a and 16b.

그후, 박막 트랜지스터가 형성된 기판(11) 상부에 보호막(18)을 증착한다. 이어서, 드레인 전극(16b)이 노출될 수 있도록, 보호막(18) 상부에 제 4 레지스트 패턴(도시되지 않음)을 형성한다음, 이 제 4 레지스트 패턴을 이용하여 보호막(18)을 식각하여, 드레인 전극(16b)을 오픈시킨다.Thereafter, the protective film 18 is deposited on the substrate 11 on which the thin film transistor is formed. Subsequently, a fourth resist pattern (not shown) is formed on the passivation layer 18 so that the drain electrode 16b can be exposed, and then the passivation layer 18 is etched using the fourth resist pattern to drain. The electrode 16b is opened.

그런다음, 도 2f에 도시된 바와 같이, 결과물 상부에 노출된 드레인 전극(16b)과 콘택되도록 ITO막을 증착한다음, 소정 부분 패터닝하여, 화소 전극(19)을 형성한다.Then, as shown in FIG. 2F, an ITO film is deposited to contact the drain electrode 16b exposed on the resultant, and then patterned by a predetermined portion to form the pixel electrode 19.

이와같이 하면, 액티브 한정용 마스크를 이용하여, 액티브 영역을 한정함은 물론, 소오스, 드레인 전극까지 형성할 수 있어서, 하나의 마스크를 절감할 수 있다.In this way, the active limiting mask can be used to limit the active region, and to form the source and drain electrodes, thereby reducing one mask.

이상에서 자세히 설명된 바와 같이, 본 발명에 의하면, 4개의 마스크 즉, 게이트 한정용 마스크, 액티브 한정용 마스크, 드레인 전극 오픈용 마스크 및 화소 전극 한정용 마스크로, 박막 트랜지스터 및 화소 전극을 형성할 수 있어, 종래 보다 1개의 마스크 수를 줄일 수 있다.As described in detail above, according to the present invention, a thin film transistor and a pixel electrode can be formed of four masks, that is, a gate limiting mask, an active limiting mask, a drain electrode opening mask, and a pixel electrode limiting mask. The number of masks can be reduced more.

이에따라, 마스크 수의 감소됨으로써, 제조 비용이 감축된다.Accordingly, by reducing the number of masks, the manufacturing cost is reduced.

기타, 본 발명은 그 요지를 일탈하지 않는 범위에서 다양하게 변경하여 실시할 수 있다.In addition, this invention can be implemented in various changes within the range which does not deviate from the summary.

Claims (3)

절연 기판 상부에 게이트 전극을 형성하는 단계;Forming a gate electrode on the insulating substrate; 상기 게이트 전극 상부에 게이트 절연막과 도핑된 반도체층 및 소오스, 드레인용 금속막을 순차적으로 적층하는 단계;Sequentially depositing a gate insulating film, a doped semiconductor layer, and a source and drain metal film on the gate electrode; 상기 소오스, 드레인용 금속막 상부에 액티브 영역을 한정하기 위하여 액티브용 레지스트 패턴을 형성하는 단계로, 상기 액티브용 레지스트 패턴은 게이트 전극과 대응하는 부분의 두께가 상대적으로 얇게 형성하는 단계;Forming an active resist pattern on the source and drain metal film to define an active region, wherein the active resist pattern has a relatively thin thickness of a portion corresponding to the gate electrode; 상기 액티브용 레지스트 패턴을 마스크로 하여, 소오스, 드레인용 금속막, 도핑된 반도체층 및 비정질 실리콘층을 액티브 형태로 식각하여, 상기 비정질 실리콘층으로 채널층을 한정하는 단계;Using the active resist pattern as a mask to etch a source, a drain metal film, a doped semiconductor layer, and an amorphous silicon layer in an active form to define a channel layer with the amorphous silicon layer; 상기 액티브용 레지스트 패턴의 상대적으로 얇은 두께를 가진 부분을 제거하여, 소오스, 드레인 전극용 레지스트 패턴을 형성하는 단계;Removing a portion having a relatively thin thickness of the active resist pattern to form a resist pattern for a source and a drain electrode; 상기 소오스 드레인 전극용 레지스트 패턴을 이용하여, 상기 소오스, 드레인 금속막 및 도핑된 반도체층을 식각하여, 소오스, 드레인 전극을 형성하는 단계;Forming a source and a drain electrode by etching the source, the drain metal layer and the doped semiconductor layer using the resist pattern for the source and drain electrode; 상기 소오스, 드레인 전극용 레지스트 패턴을 제거하는 단계;Removing the source and drain electrode resist patterns; 상기 기판 결과물 상부에 보호막을 증착하는 단계;Depositing a passivation layer on the substrate product; 상기 보호막 상에 드레인 전극이 노출되도록 보호막을 식각하는 단계; 및Etching the passivation layer to expose the drain electrode on the passivation layer; And 상기 보호막 상부에 드레인 전극과 콘택되도록 화소 전극을 형성하는 단계를 포함하는 것을 특징으로 하는 박막 트랜지스터-액정 표시 장치의 제조방법.And forming a pixel electrode on the passivation layer to be in contact with the drain electrode. 제 1 항에 있어서, 상기 액티브용 레지스트 패턴을 형성하는 단계는 포토레지스트막을 도포하는 단계; 상기 게이트 전극과 대응하는 부분에 노광 한계치보다 작은 패턴이 수개 배치되어 있는 액티브용 마스크를 이용하여 포토레지스트막을 노광하는 단계; 상기 노광된 포토레지스트막을 현상하는 단계를 포함하는 것을 특징으로 하는 박막 트랜지스터-액정 표시 장치의 제조방법.The method of claim 1, wherein the forming of the active resist pattern comprises: applying a photoresist film; Exposing a photoresist film using an active mask having a plurality of patterns smaller than an exposure limit in a portion corresponding to the gate electrode; And developing the exposed photoresist film. 제 1 항 또는 제 2 항에 있어서, 상기 소오스, 드레인 전극용 레지스트 패턴을 형성하는 단계는 상기 액티브용 마스크를 이용하여 재노광 및 현상하여 형성하로 하는 박막 트랜지스터-액정 표시 장치의 제조방법.The method of claim 1, wherein the forming of the source and drain electrode resist patterns is performed by re-exposure and development using the active mask.
KR1019990031418A 1999-07-30 1999-07-30 method for manufacturing the TFT- LCD KR100590925B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990031418A KR100590925B1 (en) 1999-07-30 1999-07-30 method for manufacturing the TFT- LCD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990031418A KR100590925B1 (en) 1999-07-30 1999-07-30 method for manufacturing the TFT- LCD

Publications (2)

Publication Number Publication Date
KR20010011855A true KR20010011855A (en) 2001-02-15
KR100590925B1 KR100590925B1 (en) 2006-06-19

Family

ID=19605835

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990031418A KR100590925B1 (en) 1999-07-30 1999-07-30 method for manufacturing the TFT- LCD

Country Status (1)

Country Link
KR (1) KR100590925B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100646779B1 (en) * 1999-08-12 2006-11-17 삼성전자주식회사 Methods for manufacturing thin film transistor array panels
WO2010002608A2 (en) * 2008-07-02 2010-01-07 Applied Materials, Inc. Thin film transistors using multiple active channel layers
US7988470B2 (en) 2009-09-24 2011-08-02 Applied Materials, Inc. Methods of fabricating metal oxide or metal oxynitride TFTs using wet process for source-drain metal etch
US7994508B2 (en) 2007-08-02 2011-08-09 Applied Materials, Inc. Thin film transistors using thin film semiconductor materials
US8143093B2 (en) 2008-03-20 2012-03-27 Applied Materials, Inc. Process to make metal oxide thin film transistor array with etch stopping layer
US8840763B2 (en) 2009-09-28 2014-09-23 Applied Materials, Inc. Methods for stable process in a reactive sputtering process using zinc or doped zinc target
US8980066B2 (en) 2008-03-14 2015-03-17 Applied Materials, Inc. Thin film metal oxynitride semiconductors

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283429A (en) * 1992-03-30 1993-10-29 Nec Corp Manufacture of thin film transistor device
JPH06236893A (en) * 1992-12-15 1994-08-23 Matsushita Electric Ind Co Ltd Manufacture of tft liquid crystal display
JPH0728077A (en) * 1993-07-15 1995-01-31 Matsushita Electric Ind Co Ltd Display element and its production
JP3865818B2 (en) * 1996-04-16 2007-01-10 三菱電機株式会社 Manufacturing method of active matrix substrate

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100646779B1 (en) * 1999-08-12 2006-11-17 삼성전자주식회사 Methods for manufacturing thin film transistor array panels
US8294148B2 (en) 2007-08-02 2012-10-23 Applied Materials, Inc. Thin film transistors using thin film semiconductor materials
US7994508B2 (en) 2007-08-02 2011-08-09 Applied Materials, Inc. Thin film transistors using thin film semiconductor materials
US8980066B2 (en) 2008-03-14 2015-03-17 Applied Materials, Inc. Thin film metal oxynitride semiconductors
US8143093B2 (en) 2008-03-20 2012-03-27 Applied Materials, Inc. Process to make metal oxide thin film transistor array with etch stopping layer
US8258511B2 (en) 2008-07-02 2012-09-04 Applied Materials, Inc. Thin film transistors using multiple active channel layers
US8101949B2 (en) 2008-07-02 2012-01-24 Applied Materials, Inc. Treatment of gate dielectric for making high performance metal oxide and metal oxynitride thin film transistors
US8012794B2 (en) 2008-07-02 2011-09-06 Applied Materials, Inc. Capping layers for metal oxynitride TFTS
WO2010002608A3 (en) * 2008-07-02 2011-03-03 Applied Materials, Inc. Thin film transistors using multiple active channel layers
US8349669B2 (en) 2008-07-02 2013-01-08 Applied Materials, Inc. Thin film transistors using multiple active channel layers
US8435843B2 (en) 2008-07-02 2013-05-07 Applied Materials, Inc. Treatment of gate dielectric for making high performance metal oxide and metal oxynitride thin film transistors
US8809132B2 (en) 2008-07-02 2014-08-19 Applied Materials, Inc. Capping layers for metal oxynitride TFTs
WO2010002608A2 (en) * 2008-07-02 2010-01-07 Applied Materials, Inc. Thin film transistors using multiple active channel layers
US7988470B2 (en) 2009-09-24 2011-08-02 Applied Materials, Inc. Methods of fabricating metal oxide or metal oxynitride TFTs using wet process for source-drain metal etch
US8298879B2 (en) 2009-09-24 2012-10-30 Applied Materials, Inc. Methods of fabricating metal oxide or metal oxynitride TFTS using wet process for source-drain metal etch
US8840763B2 (en) 2009-09-28 2014-09-23 Applied Materials, Inc. Methods for stable process in a reactive sputtering process using zinc or doped zinc target

Also Published As

Publication number Publication date
KR100590925B1 (en) 2006-06-19

Similar Documents

Publication Publication Date Title
KR100759627B1 (en) Method of patterning thin film and TFT array substrate using it and production method therefor
KR100333274B1 (en) Liquid Crystal Display and Method Thereof
JP4594292B2 (en) Photomask and method for manufacturing array substrate for liquid crystal display device using the same
JPH10163174A (en) Patterning method of thin film
KR20030079683A (en) Thin film transistor array, fabrication method thereof, and liquid crystal display device employing the same
US20060154397A1 (en) Method for manufacturing a display device and method for forming a pattern
KR100653467B1 (en) Method for manufacturing tft-lcd
KR20020036023A (en) manufacturing method of array panel for liquid crystal display
KR100464204B1 (en) Gray tone mask and manufacturing method for liquid crystal display using it
US7179697B2 (en) Method of fabricating an electronic device
CN111446264B (en) Array substrate and manufacturing method thereof
KR100590925B1 (en) method for manufacturing the TFT- LCD
KR20060123810A (en) Method of manufacturing metal pattern and manufacturing method of liquid crystal display device using the same
KR20010109681A (en) Method for manufacturing fringe field switchinge lcd
KR100705616B1 (en) Method for manufacturing thin film transistor liquid crystal display device
KR20020037417A (en) Method for manufacturing vertical tft lcd device
KR100663294B1 (en) Method for manufacturing thin film transistor liquid crystal display
KR100341129B1 (en) method for manufacturing TFT- LCD
KR20020002051A (en) Method of manufacturing tft-lcd
KR100219500B1 (en) Manufacturing method of thin-film transistor liquid crystal display device
JP3071964B2 (en) Manufacturing method of liquid crystal display device
KR100653466B1 (en) Manufacturing method of liquid crystal display device
KR100619160B1 (en) Method of manufacturing tft-lcd
KR19980066784A (en) Thin film transistor substrate and its manufacturing method
KR100200350B1 (en) Method of fabricating an entirely selfaligned thin film transistor using a laser

Legal Events

Date Code Title Description
N231 Notification of change of applicant
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130514

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140519

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150518

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160518

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170523

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180517

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190527

Year of fee payment: 14

EXPY Expiration of term