KR20010011638A - Structure of semiconductor device and method of manufacturing the same - Google Patents

Structure of semiconductor device and method of manufacturing the same Download PDF

Info

Publication number
KR20010011638A
KR20010011638A KR1019990031110A KR19990031110A KR20010011638A KR 20010011638 A KR20010011638 A KR 20010011638A KR 1019990031110 A KR1019990031110 A KR 1019990031110A KR 19990031110 A KR19990031110 A KR 19990031110A KR 20010011638 A KR20010011638 A KR 20010011638A
Authority
KR
South Korea
Prior art keywords
gate electrode
spacer
gate
plug poly
semiconductor device
Prior art date
Application number
KR1019990031110A
Other languages
Korean (ko)
Inventor
이병철
안광호
Original Assignee
김영환
현대전자산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대전자산업 주식회사 filed Critical 김영환
Priority to KR1019990031110A priority Critical patent/KR20010011638A/en
Publication of KR20010011638A publication Critical patent/KR20010011638A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4983Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET with a lateral structure, e.g. a Polysilicon gate with a lateral doping variation or with a lateral composition variation or characterised by the sidewalls being composed of conductive, resistive or dielectric material
    • H01L29/4991Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET with a lateral structure, e.g. a Polysilicon gate with a lateral doping variation or with a lateral composition variation or characterised by the sidewalls being composed of conductive, resistive or dielectric material comprising an air gap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6653Unipolar field-effect transistors with an insulated gate, i.e. MISFET using the removal of at least part of spacer, e.g. disposable spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6656Unipolar field-effect transistors with an insulated gate, i.e. MISFET using multiple spacer layers, e.g. multiple sidewall spacers

Abstract

PURPOSE: A method for manufacturing a semiconductor device is provided to remarkably reduce parasitic capacitance between a bit line and a gate, by forming an air gap between a space of a gate electrode and a plug poly. CONSTITUTION: A gate insulating layer is formed in an active region of a semiconductor substrate(10) and a conductive material and a hard mask nitride layer(18) are stacked and patterned to form a gate electrode. The first/the second insulating layers are stacked and etched to form the first and second spacer on a sidewall of the gate electrode. Impurity ions are implanted to form a source/drain region(28) by using the spacers and the gate electrode as a mask. A plug poly(30) connected to the source/drain region between the gate electrodes is formed. After the resultant structure is polished until the second spacer is exposed, the second spacer only is selectively eliminated to form an air gap(31) between a space of the gate electrode and the plug poly.

Description

반도체장치의 구조 및 그 제조방법 {Structure of semiconductor device and method of manufacturing the same}Structure of semiconductor device and its manufacturing method {Structure of semiconductor device and method of manufacturing the same}

본 발명은 반도체 장치에 관한 것으로서, 특히 고집적 반도체장치의 소자의 동작 속도를 증가시킬 수 있도록 게이트전극 및 비트라인 사이의 기생커패시턴스를 줄이는 반도체장치의 구조 및 그 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly, to a structure of a semiconductor device that reduces parasitic capacitance between a gate electrode and a bit line so as to increase the operation speed of a device of a highly integrated semiconductor device, and a method of manufacturing the same.

반도체 장치의 고집적화를 위해서는 리소그라피(lithography), 셀구조, 배선과 관련된 새로운 물질 및 절연막과 관련된 물성한계 연구등이 필요하다. 그리고, 반도체 장치의 고집적화에 의해 셀 면적또한 축소됨에 따라서 콘택 홀(contact hole) 면적의 축소도 필수적이다.Higher integration of semiconductor devices requires research on lithography, cell structure, new materials related to wiring, and physical property limits related to insulating films. In addition, as the cell area is also reduced due to the high integration of semiconductor devices, the reduction of the contact hole area is also essential.

디자인룰이 0.3??m - 0.4??m정도인 64M DRAM 장치에서는, 콘택홀을 통상적으로 0.5??m정도의 피쳐사이즈(feature size)로 형성하더라도 마스크의 미스얼라인(misalign)등에 의해 주변구조물, 즉 게이트전극이나 비트라인의 노출이 빈번하게 발생하게 되는데, 이는 게이트전극과 스토리지 전극 및 비트라인과 스토리지전극의 접촉을 유발하기 때문에 메모리 장치의 신뢰성 저하에 커다란 요인으로 작용하였다.In 64M DRAM devices with a design rule of about 0.3 ?? m to 0.4 ?? m, even if the contact hole is formed to a feature size of about 0.5 ?? m, it is caused by misalignment of the mask or the like. The structure, that is, the exposure of the gate electrode or the bit line is frequently generated, which causes a contact between the gate electrode and the storage electrode and the bit line and the storage electrode, which is a significant factor in the reliability of the memory device.

이에, 마스크의 미스얼라인등에 의한 주변구조물의 노출이 없으면서도 콘택홀의 미세화를 신뢰성있게 달성하기 위한 많은 방법들이 연구/개발되고 있는데, 그 중 한가지가 셀프 얼라인 콘택(Self-aligned contact) 형성 방법이다. 즉, 이 셀프 얼라인 콘택 방법은 주변 구조물의 높이, 콘택이 형성될 절연물질의 두께 및 식각 방법에 의해 다양한 크기의 콘택을 얻을 수 있기 때문에, 고집적화에 의해 미세화되는 반도체 장치의 실현에 적합하다.Accordingly, many methods for reliably achieving miniaturization of contact holes without exposure of peripheral structures due to misalignment of masks, etc. have been researched and developed, and one of them is a method of forming a self-aligned contact. to be. That is, the self-aligned contact method is suitable for realizing a semiconductor device which is miniaturized by high integration because a contact of various sizes can be obtained by the height of the surrounding structure, the thickness of the insulating material on which the contact is to be formed, and the etching method.

최근에는, 비트라인 및 커패시터의 콘택을 형성할 때 셀프 얼라인 콘택방식을 적용하고 있다. 이는, 게이트전극 상부면에 있는 하드 마스크막과 그 측벽에 있는 스페이서를 이용하는데, 특히 게이트전극의 스페이서 절연막에 의해 셀프 얼라인되면서 기판의 활성 영역이 노출되는 콘택홀에 도프트 폴리실리콘을 매립하여 플러그폴리를 형성한다. 그러면, 좁은 게이트전극 사이에 콘택홀 제조 공정을 실시하지 않고 이후 층간절연막에 플러그폴리와 연결되는 콘택홀 공정을 실시하여 비트라인 및 스토리지 전극의 수직 배선 공정을 실시하여 미세 콘택홀의 애스펙트 비를 줄일 수 있다.Recently, a self-aligned contact method has been applied to form contact between bit lines and capacitors. This uses a hard mask layer on the top surface of the gate electrode and a spacer on the sidewall thereof. In particular, the doped polysilicon is embedded in a contact hole in which the active region of the substrate is exposed while self-aligning by the spacer insulating layer of the gate electrode. The plug poly is formed. Then, the aspect ratio of the fine contact hole can be reduced by performing the vertical hole process of the bit line and the storage electrode by performing the contact hole process connected to the plug poly to the interlayer insulating layer without performing the contact hole manufacturing process between the narrow gate electrodes. have.

그러나, 반도체 장치의 고집적화에 따라 소오스/드레인 면적이 계속 축소될 경우 상기 플러그폴리의 영역을 확보하는데 어려움이 있기 때문에 이를 극복하고자 스페이서막의 두께를 줄이게 된다. 그러면, 스페이서막으로 주로 사용되는 질화막 내지 산화막의 두께가 얇아지게 되어 게이트전극과 플러그폴리의 사이가 가까워져서 상기 스페이서가 유전체 역할을 하게 되어 기생 커패시턴스가 증가하게 된다.However, when the source / drain area is continuously reduced due to the high integration of the semiconductor device, it is difficult to secure the area of the plug poly, thereby reducing the thickness of the spacer film. Then, the thickness of the nitride film or the oxide film, which is mainly used as the spacer film, becomes thin and the gap between the gate electrode and the plug poly is close, so that the spacer serves as a dielectric and the parasitic capacitance increases.

이에 따라, 비트라인과 게이트 사이에 걸리는 커패시턴스가 증가하여 결국 셀 동작이 느려지게 될 뿐만 아니라 기생 커패시턴스만큼 셀 커패시터의 용량을 크게 증가시켜야만 했다.As a result, the capacitance between the bit line and the gate increases, resulting in a slower cell operation and a large increase in the capacity of the cell capacitor by the parasitic capacitance.

본 발명의 목적은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 게이트전극의 스페이서와 플러그폴리 사이에 에어 갭을 두어 비트라인과 게이트 사이에 걸리는 기생 커패시턴스를 크게 줄일 수 있는 반도체장치의 구조를 제공하는데 있다.An object of the present invention is to provide a structure of a semiconductor device that can greatly reduce the parasitic capacitance between the bit line and the gate by placing an air gap between the spacer of the gate electrode and the plug poly in order to solve the above problems of the prior art. have.

본 발명의 다른 목적은 게이트전극의 측벽에 2층의 스페이서를 형성하고 게이트전극 스페이서 사이에 플러그폴리를 형성한 후에 상기 바깥측의 스페이서만을 선택적으로 제거함으로써 다른 절연막에 비해 유전상수가 낮은 에어 갭에 의해 비트라인 및 게이트의 커패시턴스를 줄이는 반도체장치의 제조방법을 제공하는데 있다.Another object of the present invention is to form a spacer of two layers on the sidewalls of the gate electrode and to form a plug poly between the gate electrode spacers to selectively remove only the outer spacers in the air gap with a lower dielectric constant than other insulating films. The present invention provides a method of manufacturing a semiconductor device which reduces capacitance of bit lines and gates.

도 1 내지 도 7은 본 발명에 따른 게이트 및 비트라인 사이의 기생커패시턴스를 줄인 반도체장치의 제조방법을 설명하기 위한 공정 순서도.1 to 7 are process flowcharts illustrating a method of manufacturing a semiconductor device with reduced parasitic capacitance between the gate and the bit line according to the present invention.

*도면의 주요 부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

10: 실리콘 기판 12: 게이트산화막10 silicon substrate 12 gate oxide film

14: 도프트 폴리실리콘막 16: 텅스텐실리사이드막14: doped polysilicon film 16: tungsten silicide film

18: 하드 마스크 질화막막 20: LDD용 산화막18: hard mask nitride film 20: LDD oxide film

22: LDD 영역 24: 제 1절연막22: LDD region 24: first insulating film

26: 제 2절연막 24': 제 1스페이서26: second insulating film 24 ': first spacer

26': 제 2스페이서 28: 소오스/드레인 영역26 ': second spacer 28: source / drain regions

30: 플러그폴리 31: 에어 갭30: plug pulley 31: air gap

32: 층간절연막32: interlayer insulating film

상기 목적을 달성하기 위하여 본 발명은 반도체소자의 게이트전극을 둘러싼 절연막 사이에 드러난 기판의 영역과 상부 배선 및 커패시터의 하부전극을 수직으로 연결하기 위한 도전성의 플러그폴리를 갖는 반도체장치에 있어서, 반도체기판의 활성 영역에 형성된 게이트 절연막과, 게이트 절연막 상부면에 도전체가 형성되어 있고 상부면에 하드 마스크 질화막과 측벽에 절연성의 스페이서가 형성된 게이트전극과, 게이트전극 에지 하부에 드러난 기판내에 도전형 불순물이 주입된 소오스/드레인 영역과, 게이트전극 사이의 소오스/드레인 영역과 연결되는 플러그폴리와, 플러그폴리와 게이트전극의 스페이서 사이에 에어로 채워진 갭을 포함하여 이루어진 것을 특징으로 한다.In order to achieve the above object, the present invention provides a semiconductor device comprising: a semiconductor substrate having a conductive plug poly for vertically connecting a region of a substrate exposed between an insulating film surrounding a gate electrode of a semiconductor device and an upper wiring and a lower electrode of a capacitor; A gate insulating film formed in the active region of the gate insulating film, a conductor formed on the upper surface of the gate insulating film, a gate electrode having a hard mask nitride film formed thereon, and an insulating spacer formed on the sidewall, and a conductive impurity formed in the substrate exposed under the gate electrode edge. And a gap filled with air between the plug source and the drain region, the plug poly connected to the source / drain region between the gate electrode, and the spacer of the plug poly and the gate electrode.

상기 다른 목적을 달성하기 위하여 본 발명은 플러그폴리와 게이트전극 측벽의 스페이서 사이에 에어 갭을 갖는 반도체장치를 형성함에 있어서, 반도체기판의 활성 영역에 게이트 절연막을 형성하고, 그 위에 도전체와 하드 마스크 질화막을 적층해서 이를 패터닝하여 게이트전극을 형성하는 단계와, 기판 상부에 제 1 및 제 2절연막을 적층하고 이를 식각해서 게이트전극 측벽에 제 1 및 제 2스페이서를 형성하는 단계와, 상기 스페이서들과 게이트전극을 마스크로 삼아 기판 내에 불순물 이온 주입 공정을 실시하여 소오스/드레인 영역을 형성하는 단계와, 게이트전극 사이의 소오스/드레인 영역과 연결되는 플러그폴리를 형성하는 단계와, 결과물을 제 2스페이서가 드러날 때까지 연마한 후에 제 2스페이서만을 선택적으로 제거하여 게이트전극의 스페이서와 플러그폴리사이에 에어 갭을 형성하는 단계를 포함한다.In order to achieve the above another object, the present invention is to form a semiconductor device having an air gap between the plug poly and the spacer of the side wall of the gate electrode, forming a gate insulating film in the active region of the semiconductor substrate, the conductor and the hard mask thereon Stacking and patterning a nitride film to form a gate electrode, stacking and etching first and second insulating films on the substrate, and forming first and second spacers on sidewalls of the gate electrode, Forming a source / drain region by performing an impurity ion implantation process in the substrate using the gate electrode as a mask; forming a plug poly connected to the source / drain region between the gate electrodes; After polishing until exposed, selectively remove only the second spacer to remove the gate electrode And forming an air gap between the stand and the plug polyester.

이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대해 상세하게 설명하고자 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1 내지 도 7은 본 발명에 따른 게이트 및 비트라인 사이의 기생커패시턴스를 줄인 반도체장치의 제조방법을 설명하기 위한 공정 순서도이다. 여기서, 본 실시예는 NMOS 트랜지스터를 예로 든다.1 to 7 are process flowcharts illustrating a method of manufacturing a semiconductor device having reduced parasitic capacitance between a gate and a bit line according to the present invention. Here, the present embodiment takes an NMOS transistor as an example.

우선, 도 1을 참조하면, 본 발명의 제조 공정은 반도체기판으로서 실리콘기판(10)의 활성 영역에 게이트 절연막(12)을 형성하고, 그 위에 도전체로서 도프트 폴리실리콘(14)과 텅스텐 실리사이드(16)와 하드 마스크 질화막(18)을 적층한 후에 게이트 마스크를 이용한 사진 및 식각 공정을 진행하여 이들 막들(18,16,14)을 패터닝하여 게이트전극을 형성한다. 그리고, LDD 이온주입시 기판의 스크린 역할을 하도록 기판 전면에 산화박막(20)을 형성한 후에 n- 불순물 이온 주입 공정을 실시하여 게이트전극 에지 사이에 드러난 기판 근방에 LDD 영역(22)을 형성한다.First, referring to FIG. 1, in the manufacturing process of the present invention, a gate insulating film 12 is formed in an active region of a silicon substrate 10 as a semiconductor substrate, on which doped polysilicon 14 and tungsten silicide are formed. After stacking the 16 and the hard mask nitride film 18, a photomask and an etching process using a gate mask are performed to pattern the films 18, 16, and 14 to form gate electrodes. After the oxide thin film 20 is formed on the entire surface of the substrate to serve as a screen of the substrate during LDD ion implantation, an n-impurity ion implantation process is performed to form the LDD region 22 near the substrate exposed between the gate electrode edges. .

이어서, 도 2 및 도 3에 도시된 바와 같이, 기판 전면에 제 1절연막(24)으로서, 질화막을 증착하고, 그 위에 제 2절연막(26)으로서 산화막을 적층한다.2 and 3, a nitride film is deposited as the first insulating film 24 on the entire surface of the substrate, and an oxide film is laminated as the second insulating film 26 thereon.

그 다음, 도 3에 도시된 바와 같이, 전면 식각(etch back) 공정을 실시하여 상기 제 1 및 제 2절연막(24,26)을 식각해서 게이트전극 측벽에 제 1 및 제 2스페이서(24',26')를 형성한다. 이때, 제 2스페이서(26')는 후속 공정에서 제거되어 에어 갭이 형성될 공간이기 때문에 이후 층간절연막 증착시 에어 갭에 절연막이 매립되지 않도록 100Å이하의 두께를 갖도록 한다.Next, as illustrated in FIG. 3, the first and second insulating layers 24 and 26 are etched by performing an etch back process, so that the first and second spacers 24 ′, 26 '). In this case, since the second spacer 26 ′ is a space in which the air gap is to be removed in a subsequent process, the second spacer 26 ′ has a thickness of 100 μm or less so that the insulating film is not buried in the air gap during the deposition of the interlayer insulating film.

그리고, 스페이서들(24',26')과 게이트전극을 마스크로 삼아 기판 내에 n+ 불순물 이온 주입 공정을 실시하여 소오스/드레인 영역(28)을 형성한다.The source / drain region 28 is formed by performing an n + impurity ion implantation process in the substrate using the spacers 24 'and 26' and the gate electrode as masks.

그 다음, 도 4에 도시된 바와 같이, 게이트전극의 스페이서들(24',26') 사이에 드러난 소오스/드레인 영역(28)과 연결되는 플러그폴리(30)를 형성한다. 이때, 플러그폴리(30)는 선택적 폴리실리콘 형성(selective epi growth) 공정을 이용한다. 여기서, 소오스/드레인 영역(28) 상부에 있는 게이트산화막(12) 및 LDD용 산화막(20)은 스페이서 형성시 이미 제거된 상태이다.Next, as shown in FIG. 4, a plug poly 30 is formed to be connected to the source / drain regions 28 exposed between the spacers 24 'and 26' of the gate electrode. In this case, the plug poly 30 uses a selective polysilicon process. Here, the gate oxide film 12 and the LDD oxide film 20 on the source / drain region 28 are already removed when the spacer is formed.

그 다음, 도 5에 도시된 바와 같이 CMP(Chmeical Mechanical Polishing) 공정을 실시하여 결과물을 연마한다. 이때, 식각 높이(h)는 제 2스페이서(26')가 어느정도 드러날 때까지의 높이로 정한다.Next, the resultant is polished by performing a mechanical mechanical polishing (CMP) process as shown in FIG. 5. In this case, the etching height h is determined as the height until the second spacer 26 'is exposed to some extent.

이어서, 도 6에 도시된 바와 같이, 상기 결과물에서 폴리실리콘 및 질화막과의 습식 식각 선택비가 우수한 특성을 이용하여 HF계 용액(NH4+HF, HF+H2O)으로 제 2스페이서(26')만을 선택적으로 제거한다. 그러면, 게이트전극의 제 1스페이서(24')와 플러그폴리(30')사이에 에어로 채워진 에어 갭(31)이 형성된다. 여기서, 에어 갭(31)은 질화막 및 산화막에 비해 낮은 유전상수(약 1정도)를 갖고 있어 게이트전극과 플러그폴리 사이의 커패시턴스를 크게 줄인다.Then, as shown in FIG. 6, the second spacer 26 'with the HF-based solution (NH 4 + HF, HF + H 2 O) using the excellent wet etching selectivity with the polysilicon and the nitride film in the resultant. ) Is optional. Then, an air gap 31 filled with air is formed between the first spacer 24 'of the gate electrode and the plug poly 30'. Here, the air gap 31 has a lower dielectric constant (about 1) than that of the nitride film and the oxide film, thereby greatly reducing the capacitance between the gate electrode and the plug poly.

계속해서, 도 7에 도시된 바와 같이, 결과물 상부에 층간절연막(32)으로서 TEOS(Tetra-Etly-Ortho-Silicate)를 증착하는데 이때 에어 갭(31)의 두께가 100Å이하이기 때문에 에어 갭(31)에는 절연막이 채워지지 않는다.Subsequently, as shown in FIG. 7, TEOS (Tetra-Etly-Ortho-Silicate) is deposited as the interlayer insulating film 32 on the resultant, in which case the air gap 31 is 100 μm or less in thickness. ) Is not filled with an insulating film.

그러면, 상기한 본 발명의 제조 공정에 따라 본 발명의 반도체 장치는 게이트전극의 측벽 스페이서(24')와 비트라인용 플러그폴리(30) 사이에 에어로 채워진 에어 갭(31)을 구비하고 있어 비트라인 및 게이트의 커패시턴스를 크게 줄일 수 있다.Then, according to the above-described manufacturing process of the present invention, the semiconductor device of the present invention includes an air gap 31 filled with air between the sidewall spacer 24 'of the gate electrode and the plug poly 30 for the bit line. And the capacitance of the gate can be greatly reduced.

따라서, 상술한 바와 같이 본 발명은 게이트전극의 스페이서와 플러그폴리 사이에 에어 갭을 두어 비트라인과 게이트 사이에 걸리는 기생 커패시턴스를 크게 줄여서 고집적 반도체 메모리장치의 셀 동작을 빠르게 하면서 비트라인과 게이트 사이에 존재하는 기생 커패시턴스로 인해 셀 커패시터의 용량 증가를 막을 수 있다.Therefore, as described above, the present invention provides an air gap between the spacer and the plug poly of the gate electrode to greatly reduce the parasitic capacitance between the bit line and the gate, thereby speeding up the cell operation of the highly integrated semiconductor memory device, and thereby between the bit line and the gate. The parasitic capacitances present prevent the cell capacitors from increasing in capacity.

한편, 본 발명은 상술한 실시예에 국한되는 것이 아리라 후술되는 청구범위에 기재된 본 발명의 기술적 사상과 범주내에서 당업자에 의해 여러 가지 변형이 가능하다.On the other hand, the present invention is not limited to the above-described embodiment, various modifications are possible by those skilled in the art within the spirit and scope of the present invention described in the claims below.

Claims (5)

반도체소자의 게이트전극을 둘러싼 절연막 사이에 드러난 기판의 영역과 상부 배선 및 커패시터의 하부전극을 수직으로 연결하기 위한 도전성의 플러그폴리를 갖는 반도체장치에 있어서,A semiconductor device having a conductive plug poly for vertically connecting a region of a substrate exposed between an insulating film surrounding a gate electrode of a semiconductor device, and an upper wiring and a lower electrode of a capacitor. 반도체기판의 활성 영역에 형성된 게이트 절연막;A gate insulating film formed in the active region of the semiconductor substrate; 상기 게이트 절연막 상부면에 도전체가 형성되어 있고 상부면에 하드 마스크 질화막과 측벽에 절연성의 스페이서가 형성된 게이트전극;A gate electrode having a conductor formed on an upper surface of the gate insulating layer and an insulating spacer formed on a sidewall of the hard mask nitride film; 상기 게이트전극 에지 하부에 드러난 기판내에 도전형 불순물이 주입된 소오스/드레인 영역;Source / drain regions in which conductive impurities are implanted into the substrate exposed under the gate electrode edges; 상기 게이트전극 사이의 소오스/드레인 영역과 연결되는 플러그폴리; 및A plug poly connected to the source / drain regions between the gate electrodes; And 상기 플러그폴리와 게이트전극의 스페이서 사이에 에어로 채워진 갭을 포함하여 이루어진 것을 특징으로 하는 반도체장치의 구조.And a gap filled with air between the plug poly and the spacer of the gate electrode. 제 1항에 있어서, 상기 에어 갭의 두께는 100Å이하로 하는 것을 특징으로 하는 반도체장치의 구조.The structure of a semiconductor device according to claim 1, wherein the thickness of said air gap is 100 kPa or less. 플러그폴리와 게이트전극 측벽의 스페이서 사이에 에어 갭을 갖는 반도체장치를 형성함에 있어서,In forming a semiconductor device having an air gap between a plug poly and a spacer of a sidewall of a gate electrode, 반도체기판의 활성 영역에 게이트 절연막을 형성하고, 그 위에 도전체와 하드 마스크 질화막을 적층해서 이를 패터닝하여 게이트전극을 형성하는 단계;Forming a gate insulating film in an active region of the semiconductor substrate, stacking and patterning a conductor and a hard mask nitride film thereon to form a gate electrode; 상기 기판 상부에 제 1 및 제 2절연막을 적층하고 이를 식각해서 게이트전극 측벽에 제 1 및 제 2스페이서를 형성하는 단계;Stacking first and second insulating layers on the substrate and etching the first and second insulating layers to form first and second spacers on sidewalls of the gate electrodes; 상기 스페이서들과 게이트전극을 마스크로 삼아 기판 내에 불순물 이온 주입 공정을 실시하여 소오스/드레인 영역을 형성하는 단계;Forming a source / drain region by performing an impurity ion implantation process in the substrate using the spacers and the gate electrode as masks; 상기 게이트전극 사이의 소오스/드레인 영역과 연결되는 플러그폴리를 형성하는 단계; 및Forming a plug poly connected to the source / drain regions between the gate electrodes; And 상기 결과물을 제 2스페이서가 드러날 때까지 연마한 후에 상기 제 2스페이서만을 선택적으로 제거하여 게이트전극의 스페이서와 플러그폴리사이에 에어 갭을 형성하는 단계를 포함하여 이루어진 것을 특징으로 하는 반도체장치의 제조방법.Polishing the resultant until the second spacer is exposed and selectively removing only the second spacer to form an air gap between the spacer of the gate electrode and the plug poly. . 제 3항에 있어서, 상기 제 1절연막은 질화막이며 제 2절연막은 산화막으로 형성하는 것을 특징으로 하는 반도체장치의 제조방법.4. A method according to claim 3, wherein the first insulating film is a nitride film and the second insulating film is formed of an oxide film. 제 3항에 있어서, 상기 제 2스페이서의 제거는 습식 식각 공정을 이용하는 것을 특징으로 하는 반도체장치의 제조방법.4. The method of claim 3, wherein the removal of the second spacer uses a wet etching process.
KR1019990031110A 1999-07-29 1999-07-29 Structure of semiconductor device and method of manufacturing the same KR20010011638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990031110A KR20010011638A (en) 1999-07-29 1999-07-29 Structure of semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990031110A KR20010011638A (en) 1999-07-29 1999-07-29 Structure of semiconductor device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
KR20010011638A true KR20010011638A (en) 2001-02-15

Family

ID=19605607

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990031110A KR20010011638A (en) 1999-07-29 1999-07-29 Structure of semiconductor device and method of manufacturing the same

Country Status (1)

Country Link
KR (1) KR20010011638A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100672823B1 (en) * 2005-07-18 2007-01-22 삼성전자주식회사 Method of forming conductive pattern in a semiconductor device
US8198189B2 (en) 2009-05-11 2012-06-12 Samsung Electronics Co., Ltd. Methods of fabricating integrated circuit devices including air spacers separating conductive structures and contact plugs
CN102543944A (en) * 2010-12-31 2012-07-04 海力士半导体有限公司 Semiconductor device and method for fabricating the same
KR20130123687A (en) * 2012-05-03 2013-11-13 삼성전자주식회사 Semiconductor devices and methods of manufacturing the same
WO2013166632A1 (en) * 2012-05-08 2013-11-14 中国科学院微电子研究所 Semiconductor component and manufacturing method therefor
US20130320549A1 (en) * 2012-05-31 2013-12-05 Hyo-Seok Lee Semiconductor device with air gap and method for fabricating the same
CN103456694A (en) * 2012-05-31 2013-12-18 爱思开海力士有限公司 Semiconductor device with air gap and method for fabricating the same
KR101356695B1 (en) * 2007-08-06 2014-01-29 삼성전자주식회사 Method of fabricating semiconductor device
KR20140049849A (en) * 2012-10-18 2014-04-28 삼성전자주식회사 Semiconductor device and method of fabricating the same
US8916936B2 (en) 2012-08-22 2014-12-23 Samsung Electronics Co., Ltd. Transistor structure of a semiconductor device
US9184091B2 (en) 2013-02-19 2015-11-10 Samsung Electronics Co., Ltd. Semiconductor device and method of forming the same
US9214381B2 (en) 2013-03-12 2015-12-15 Samsung Electronics Co., Ltd. Semiconductor device and method of fabricating the same
US9331072B2 (en) 2014-01-28 2016-05-03 Samsung Electronics Co., Ltd. Integrated circuit devices having air-gap spacers defined by conductive patterns and methods of manufacturing the same
US9601420B2 (en) 2012-09-06 2017-03-21 Samsung Electronics Co., Ltd. Semiconductor device and method of manufacturing the same
US9627514B1 (en) 2015-12-28 2017-04-18 Samsung Electronics Co., Ltd. Semiconductor device and method of fabricating the same
KR20180068846A (en) * 2016-12-14 2018-06-22 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Semiconductor device with air-spacer
CN108231764A (en) * 2016-12-13 2018-06-29 格芯公司 The air gap clearance wall of field-effect transistor
CN111900163A (en) * 2020-06-19 2020-11-06 中国科学院微电子研究所 Transistor and preparation method thereof
KR20210122627A (en) * 2020-03-31 2021-10-12 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Mosfet device structure with air-gaps in spacer and methods for forming the same
US11183578B2 (en) * 2018-04-10 2021-11-23 International Business Machines Corporation Contact over active gate employing a stacked spacer
US11201228B2 (en) 2016-12-14 2021-12-14 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device with air-spacer

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100672823B1 (en) * 2005-07-18 2007-01-22 삼성전자주식회사 Method of forming conductive pattern in a semiconductor device
KR101356695B1 (en) * 2007-08-06 2014-01-29 삼성전자주식회사 Method of fabricating semiconductor device
US8198189B2 (en) 2009-05-11 2012-06-12 Samsung Electronics Co., Ltd. Methods of fabricating integrated circuit devices including air spacers separating conductive structures and contact plugs
US8344517B2 (en) 2009-05-11 2013-01-01 Samsung Electronics Co., Ltd. Integrated circuit devices including air spacers separating conductive structures and contact plugs and methods of fabricating the same
CN102543944A (en) * 2010-12-31 2012-07-04 海力士半导体有限公司 Semiconductor device and method for fabricating the same
US8697525B2 (en) 2010-12-31 2014-04-15 SK Hynix Inc. Semiconductor device and method for fabricating the same
US10490444B2 (en) 2012-05-03 2019-11-26 Samsung Electronics Co., Ltd. Semiconductor devices having an air gap
KR20130123687A (en) * 2012-05-03 2013-11-13 삼성전자주식회사 Semiconductor devices and methods of manufacturing the same
US10910261B2 (en) 2012-05-03 2021-02-02 Samsung Electronics Co., Ltd. Semiconductor devices and methods of manufacturing the same
US11764107B2 (en) 2012-05-03 2023-09-19 Samsung Electronics Co., Ltd. Methods of manufacturing semiconductor devices
WO2013166632A1 (en) * 2012-05-08 2013-11-14 中国科学院微电子研究所 Semiconductor component and manufacturing method therefor
US9312210B2 (en) * 2012-05-31 2016-04-12 SK Hynix Inc. Semiconductor device with air gap and method for fabricating the same
CN103456694A (en) * 2012-05-31 2013-12-18 爱思开海力士有限公司 Semiconductor device with air gap and method for fabricating the same
US20130320549A1 (en) * 2012-05-31 2013-12-05 Hyo-Seok Lee Semiconductor device with air gap and method for fabricating the same
US9305921B2 (en) 2012-08-22 2016-04-05 Samsung Electronics Co., Ltd. Semiconductor device
US8916936B2 (en) 2012-08-22 2014-12-23 Samsung Electronics Co., Ltd. Transistor structure of a semiconductor device
US9601420B2 (en) 2012-09-06 2017-03-21 Samsung Electronics Co., Ltd. Semiconductor device and method of manufacturing the same
KR20140049849A (en) * 2012-10-18 2014-04-28 삼성전자주식회사 Semiconductor device and method of fabricating the same
US9184091B2 (en) 2013-02-19 2015-11-10 Samsung Electronics Co., Ltd. Semiconductor device and method of forming the same
US9214381B2 (en) 2013-03-12 2015-12-15 Samsung Electronics Co., Ltd. Semiconductor device and method of fabricating the same
US9793347B2 (en) 2013-03-12 2017-10-17 Samsung Electronics Co., Ltd. Semiconductor device and method of fabricating the same
US9331072B2 (en) 2014-01-28 2016-05-03 Samsung Electronics Co., Ltd. Integrated circuit devices having air-gap spacers defined by conductive patterns and methods of manufacturing the same
US9911851B2 (en) 2014-01-28 2018-03-06 Samsung Electronics Co., Ltd. Integrated circuit devices having air-gap spacers above gate electrodes
US9627514B1 (en) 2015-12-28 2017-04-18 Samsung Electronics Co., Ltd. Semiconductor device and method of fabricating the same
CN108231764A (en) * 2016-12-13 2018-06-29 格芯公司 The air gap clearance wall of field-effect transistor
CN108231764B (en) * 2016-12-13 2021-11-26 格芯(美国)集成电路科技有限公司 Air gap spacer for field effect transistor
KR20180068846A (en) * 2016-12-14 2018-06-22 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Semiconductor device with air-spacer
US11830922B2 (en) 2016-12-14 2023-11-28 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device with air-spacer
US10522642B2 (en) 2016-12-14 2019-12-31 Taiwan Semiconductor Manufacturing Co. Ltd. Semiconductor device with air-spacer
US11201228B2 (en) 2016-12-14 2021-12-14 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device with air-spacer
US11183578B2 (en) * 2018-04-10 2021-11-23 International Business Machines Corporation Contact over active gate employing a stacked spacer
US11309397B2 (en) 2018-04-10 2022-04-19 International Business Machines Corporation Contact over active gate employing a stacked spacer
KR20210122627A (en) * 2020-03-31 2021-10-12 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Mosfet device structure with air-gaps in spacer and methods for forming the same
US11367778B2 (en) 2020-03-31 2022-06-21 Taiwan Semiconductor Manufacturing Company Limited MOSFET device structure with air-gaps in spacer and methods for forming the same
US11855170B2 (en) 2020-03-31 2023-12-26 Taiwan Semiconductor Manufacturing Company Limited MOSFET device structure with air-gaps in spacer and methods for forming the same
CN111900163B (en) * 2020-06-19 2023-04-18 中国科学院微电子研究所 Transistor and preparation method thereof
CN111900163A (en) * 2020-06-19 2020-11-06 中国科学院微电子研究所 Transistor and preparation method thereof

Similar Documents

Publication Publication Date Title
KR20010011638A (en) Structure of semiconductor device and method of manufacturing the same
KR100209212B1 (en) Semiconductor device and manufacture thereof
US20140042548A1 (en) Dram structure with buried word lines and fabrication thereof, and ic structure and fabrication thereof
KR0151385B1 (en) Semiconductor memory device and its manufacturing method
US7358575B2 (en) Method of fabricating SRAM device
KR20020045028A (en) Method for fabricating pad without void using self-aligned contact etch process in semiconductor device
US5763304A (en) Method for manufacturing a capacitor with chemical mechanical polishing
US11205651B2 (en) Memory structure and method for manufacturing the same
US6159789A (en) Method for fabricating capacitor
KR100764336B1 (en) storage node of semiconductor device and manufacturing method using the same
KR100449251B1 (en) Method for forming of semiconductor device
KR100400285B1 (en) Method for manufacturing semiconductor device
KR100541154B1 (en) Method of manufacturing capacitor in semiconductor device
KR100541155B1 (en) Method of manufacturing capacitor in semiconductor device
KR0166491B1 (en) Capacitor fabrication method of semiconductor device
KR0164080B1 (en) Storage electrode manufacturing method
TWI309082B (en) Dynamic random access memory structure
KR0159018B1 (en) Capacitor fabrication method of semiconductor device
KR100390846B1 (en) Method for fabricating semiconductor device
KR960013644B1 (en) Capacitor manufacture method
KR20000042489A (en) Method for making storage electrode of semiconductor device
KR19990003042A (en) Capacitor Formation Method of Semiconductor Device
KR20020058311A (en) Method of forming a storage node electrode in semiconductor device
KR20040002277A (en) Manufacturing method storage node of semiconductor device
KR20000045458A (en) Method for fabricating storage electrode

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid