KR20010001812A - Cyanic wastewater treatment by waste Brown Seaweed. - Google Patents

Cyanic wastewater treatment by waste Brown Seaweed. Download PDF

Info

Publication number
KR20010001812A
KR20010001812A KR1019990021266A KR19990021266A KR20010001812A KR 20010001812 A KR20010001812 A KR 20010001812A KR 1019990021266 A KR1019990021266 A KR 1019990021266A KR 19990021266 A KR19990021266 A KR 19990021266A KR 20010001812 A KR20010001812 A KR 20010001812A
Authority
KR
South Korea
Prior art keywords
wastewater
cyan
brown seaweed
seaweed
waste
Prior art date
Application number
KR1019990021266A
Other languages
Korean (ko)
Inventor
우명우
신동수
박권필
Original Assignee
우명우
신동수
박권필
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 우명우, 신동수, 박권필 filed Critical 우명우
Priority to KR1019990021266A priority Critical patent/KR20010001812A/en
Publication of KR20010001812A publication Critical patent/KR20010001812A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/286Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/16Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Sorption (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE: Provided is a treatment method of wastewater containing cyanogen using brown seaweed, in which high viscous alginic acid of brown seaweed adsorbs heavy metals such as Pb, Cd. CONSTITUTION: To prove the adsorption rate of cyanogen onto brown seaweed, first prepare standard cyanogen wastewater of 10 ppm, and add thereto phosphate buffer solution (pH6.8), followed by shaking it. And then, add thereto pyridine-pyrizolone. The prepared standard solution is analyzed by atomic absorption spectrometry.

Description

미역 폐기물을 이용한 시안 폐수 처리{Cyanic wastewater treatment by waste Brown Seaweed.}Cyanic wastewater treatment by waste Brown Seaweed.

미역은 갈조 식물인 비포목에 속하고 큰 잎과, 굵은 줄기 및 뿌리를 갖고 있으며 요오드와 칼슘 및 철분 등의 여러 미네랄을 함유하고 있다. 또한 다당류의 일종으로 납, 카드늄 등이 중금속을 다량 흡착시키는 높은 점성의 알긴산도 많이 포함되어 있다.Seaweed belongs to the brown algae, the rhizome, which has large leaves, thick stems and roots, and contains various minerals such as iodine, calcium and iron. In addition, as a kind of polysaccharides, a high viscosity of alginic acid, in which lead and cadmium adsorb heavy metals, is also included.

일반적으로 시안화물 폐 액은 도금 조, 시안 용액 침전지 등의 폐 액이며, 비교적 농도가 높다. 이들 액은 가끔 일시적으로 배출되는 것이기 때문에 그 액량을 완전히 수용할 수 있는 용량의 저류 조를 비치하여 일단 여기에 저류한 다음 다른 묽은 폐수와 혼합하거나 또는 서서히 배출하면서 다른 폐수와 혼합하여 처리한다.Generally, the cyanide waste liquid is a waste liquid such as a plating bath and a cyanide solution settling basin, and has a relatively high concentration. Because these liquids are only temporarily discharged, they have a storage tank with a capacity that can fully accommodate the liquid, which is once stored therein and then mixed with other dilute wastewater or mixed with other wastewater while being slowly discharged.

시안은 통상적인 정수 방법(끓임, 활성탄, 한외여과)으로는 정수할 수 없다. 시안 함유 폐수 처리는 여러 가지 방법이 있는 것으로 알려져 있다. 첫째로 산성으로 폭기하는 방법으로서 이 과정을 거치게 되면 1ppm정도까지 저하된다. 폭기 시간은 6시간에서 16시간이 보통이다. 이 공정에서는 유독한 시안 가스가 배출되므로 폭기 조는 완전 밀폐하고 , 높은 배기 통을 설치하여야 한다. 다음으로는 시안 화합물을 과량의 황산 제1철을 시안 폐수에 넣고 다시, 제 2철 이온과 반응시키는 방법인 착 화합물로 변화시키는 방법이 알려져 있다. 그리고 가장 일반적인 방법으로 알칼리 염소 법이 알려져 있다. 산화에 의하여 분해되어 비 독성의 화합물몰 되는 것이며 반응 속도도 빠르고 조정하기도 쉽다. 가장 안전하고 확실한 방법으로 알려져 있으며, 소규모 공정에서는 염소대신 차아 염소산을 사용하기도 한다. 기타 오존에 의한 산화법, 전해 산화법, 이온 교환법이 알려져 있는데 경제성에서 문제가 있다고 알려져 있다.Cyan can not be purified by conventional water purification methods (boiling, activated carbon, ultrafiltration). Cyanate-containing wastewater treatment is known to have various methods. First of all, the acidic aeration method reduces this to about 1 ppm. Aeration times are usually six to sixteen hours. Toxic cyan gas is emitted during this process, so the aeration tank must be completely enclosed and a high exhaust duct installed. Next, a method is known in which a cyan compound is converted into a complex compound which is a method in which an excess of ferrous sulfate is added to cyan wastewater and reacted with ferric ions again. Alkaline chlorine method is known as the most common method. It is decomposed by oxidation to become a nontoxic compound mole, and the reaction rate is fast and easy to adjust. It is known to be the safest and most reliable method, and smaller scale processes may use hypochlorite instead of chlorine. Other ozone oxidation methods, electrolytic oxidation methods, and ion exchange methods are known and are known to have problems in economics.

참고로 음료수로서의 국내 기준은 불검출인데 (영국 0.05mg/l, 일본 0.01mg/l), 여기에서 불검출이라 함은 폐놀프탈레인에 의한 검출 한계가 0.01mg/l 이므로 이 이하이면 불검출로 보고 있다.For reference, the domestic standard for drinking water is not detected (UK 0.05mg / l, Japan 0.01mg / l). Here, the non-detection is not detected because the detection limit by pulmonary phthalate is 0.01mg / l.

본 발명은 표준 시안 폐수를 제조하여 사용되는 폐 미역의 양과 반응시간에 따라 어떤 효과가 있는 지를 연구 수행하였다.The present invention was conducted to investigate the effects of the standard cyan wastewater according to the amount and the reaction time of the waste wakame used.

미역 폐기물에 의한 시안 폐수 흡착 처리Cyan Wastewater Adsorption Treatment by Seaweed Waste

본 발명은 상기와 같은 목적에 달하기 위하여 폐기 미역의 폐수 중 시안 중금속 제거 및 시안 중금속 흡착에 관한 몇 가지 확인 방법을 제공하면 다음과 같다.The present invention provides the following several confirmation methods for the removal of cyan heavy metals and adsorption of cyan heavy metals in the wastewater of waste wakame in order to reach the above object.

본 발명의 실험 과정은 다음과 같다.The experimental procedure of the present invention is as follows.

표준 시안 폐수 KCN(95%) 1.0gr을 증류수에 녹여 1,000ml로 만들었다. 실험은 먼저 표준 시안 폐수를 10.0ppm으로 희석하여 만든 용액 20ml을 정확히 취하여 50ml공전 삼각플라스크에 넣고 인산염 완충액(pH6.8)10ml, 클로라민T용액 (1W/V%) 0.25ml를 넣고 마개를 막고 조용히 섞는다. 3-5분간을 방치한 다음 피리딘-피라졸론 혼합액 15ml를 넣어 상온에서 30분간 방치한 후 물을 넣어 일정량까지 채운 다음 이 용액의 일부를 10mm 흡수 셀에 옮겨 분석하고 증류수 20ml를 따로 취하여 공 시험액(대조액)으로 하였다. 시료는 전 처리하여 UV 분광 광도계를 사용하여 파장 620nm에서 흡광도를 측정하였다. 시료의 시안량은 미리 실험에 의하여 작성된 검량선으로부터 시안의 양을 구하였다.1.0 gr of standard cyan wastewater KCN (95%) was dissolved in distilled water to make 1,000 ml. First of all, 20 ml of the solution prepared by diluting the standard cyan waste water to 10.0 ppm was accurately taken and placed in a 50 ml erlenmeyer flask. Mix After 3-5 minutes, add 15 ml of pyridine-pyrazolone mixture, and leave it at room temperature for 30 minutes, add water to a certain amount, and then transfer a portion of this solution to a 10 mm absorption cell for analysis. Control solution). The samples were pretreated and the absorbance was measured at a wavelength of 620 nm using a UV spectrophotometer. The amount of cyan was determined from the calibration curve prepared by the experiment in advance.

UV를 위한 전처리 방법Pretreatment method for UV

폐수 원액을 사용하여 실험할 경우에는 다음과 같은 시료의 전처리 과정이 필요하다. 먼저 시료 적당량(시안으로서 0.005-0.05mg 해당)을 취해 지시약으로 페놀프탈레인ㆍ에틸알코올 용액 (0.5W/V%) 2-3방울을 넣고 황산(1+49) 혹은 2% 수산화나트륨용액을 사용하여 중화한 다음 시안 증류장치에 옮기고 물을 넣어 약 500ml로 만든다. 여기에 에틸렌티아민테트라 초산 나트륨 용액10ml, 인산 10ml를 넣고 증류 플라스크를 시안 증류장치에 연결하여 매분 2∼3ml의 유출속도로 증류를 행한다. 2% 수산화나트륨 용액 20ml를 넣어 둔 마개가 있는 100ml메스실린더를 사용하여 액이 90ml가 되었을 때 증류를 끝내고 냉각기를 떼어낸 후 냉각기의 안팎을 소량의 물로 씻어 주고 초산(1+1)으로 pH를 약 7로 조절한 후 물을 넣어 정확히 100ml로 한다. 전처리가 끝난시료는 피리딘-피라졸론 법에 의하여 UV 분석을 한다. 피리딘-피라졸론 법은 피라졸린 0.25gr을 증류수 100ml에 넣고 60-70℃로 가열하여 용해 시킨 다음 실온까지 냉각한 후 피라졸린 0.02gr을 피리딘 20ml에 용해한 액을 가하여 혼합하여 제조하였다. 상온에서 방치하면 색이 변하므로 실험할 때마다 제조하여 사용한다.When experimenting with the wastewater stock solution, the following sample pretreatment process is required. First, take an appropriate amount of sample (corresponding to 0.005-0.05mg as cyan), add 2-3 drops of phenolphthalein / ethyl alcohol solution (0.5W / V%) as indicator, and neutralize with sulfuric acid (1 + 49) or 2% sodium hydroxide solution. Then transfer to cyan distillation apparatus and add water to make 500 ml. 10 ml of ethylene thiamine tetra sodium acetate solution and 10 ml of phosphoric acid were added thereto, and a distillation flask was connected to a cyan distillation apparatus to distill at a flow rate of 2 to 3 ml per minute. Using a 100 ml measuring cylinder with a stopper containing 20 ml of 2% sodium hydroxide solution, when the liquid reaches 90 ml, complete the distillation, remove the cooler, wash the inside and outside of the cooler with a small amount of water, and adjust the pH with acetic acid (1 + 1). After adjusting to about 7, add water to make exactly 100ml. The pretreated sample is subjected to UV analysis by pyridine-pyrazolone method. The pyridine-pyrazolone method was prepared by adding 0.25gr of pyrazoline in 100ml of distilled water, heating to 60-70 ° C to dissolve it, cooling to room temperature, and adding and mixing 0.02gr of pyrazoline in 20ml of pyridine. If left at room temperature, the color changes, so use it every time you experiment.

표준 용액의 흡광도를 측정할 때에는 표준 시안 폐수를 5ppm,10ppm으로 단계적으로 희석하여 위의 실험 방법에 따라 흡광도를 측정해 본 결과를 바탕으로 실제 분석에서는 직선성이 보장되는 3ppm이하가 되도록 농도를 조정하여 분석하였다.When measuring the absorbance of the standard solution, dilute the standard cyan wastewater to 5ppm and 10ppm in steps, and measure the absorbance according to the above experimental method.The concentration is adjusted to be 3ppm or less to ensure linearity in the actual analysis. And analyzed.

폐기물인 미역의 부위에 따른 시안 폐수의 제거 효율에 미치는 영향을 위의 실험방법에 따라 흡광도를 측정해 본 결과 미역 줄기에 의한 시안 폐수의 제거 효과 보다는 미역 잎에 의한 제거 효과가 매우 우수함을 확인 할 수 있다.As a result of measuring absorbance according to the above experimental method on the effect of removal of cyan wastewater according to the part of seaweed, which is a waste, it was confirmed that the removal effect by seaweed leaves was much better than that of cyan wastewater by seaweed stem. Can be.

위 실험을 바탕으로 미역 잎을 사용하였을 때 사용하는 미역 양에 따른 시안폐수의 제거 효율은, 시안 폐수 기준 양에 대하여 미역 잎의 양이 0.5gr 정도가 적정한 양이라는 것을 알 수 있다.Based on the above experiment, the removal efficiency of cyan wastewater according to the amount of seaweed used when seaweed leaves are used, it can be seen that the amount of seaweed leaves is about 0.5gr relative to the cyan wastewater reference amount.

앞의 조건에서 반응 시간에 따른 시안 폐수의 제거율을 실험한 결과 반응 시간이 2시간 정도에서 최대 값을 보임을 확인할 수 있다.As a result of experimenting the removal rate of cyan wastewater according to the reaction time under the above conditions, it can be seen that the reaction time shows the maximum value in about 2 hours.

이상에서 살펴 본 바와 같이, 현재까지 시안이 특정 폐기물로 알려져 있지만, 미역 폐기물을 이용함으로써 시안의 농도가 매우 낮아져서 일반 폐기물로 처리할 수 있음을 보여준다.As described above, although cyan is known as a specific waste to date, by using seaweed waste, the concentration of cyan is very low, which shows that it can be treated as general waste.

Claims (1)

특정 폐기물인 시안 폐수가 폐기되는 미역 잎에 흡착되어 폐수 중의 시안 농도가 낮아진다. 이렇게 되면 처리된 시안 폐수는 일반 폐수로 간주되어 기존의 시안 함유 폐수를 처리하는데 드는 비용보다 더 절감하여 처리할 수 있다.Cyanide wastewater, a specific waste, is adsorbed by the seaweed leaves that are discarded, thereby lowering the concentration of cyanide in the wastewater. The treated cyan wastewater is then considered a general wastewater, which can be treated at a lower cost than the cost of treating existing cyanide-containing wastewater.
KR1019990021266A 1999-06-08 1999-06-08 Cyanic wastewater treatment by waste Brown Seaweed. KR20010001812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990021266A KR20010001812A (en) 1999-06-08 1999-06-08 Cyanic wastewater treatment by waste Brown Seaweed.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990021266A KR20010001812A (en) 1999-06-08 1999-06-08 Cyanic wastewater treatment by waste Brown Seaweed.

Publications (1)

Publication Number Publication Date
KR20010001812A true KR20010001812A (en) 2001-01-05

Family

ID=19590944

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990021266A KR20010001812A (en) 1999-06-08 1999-06-08 Cyanic wastewater treatment by waste Brown Seaweed.

Country Status (1)

Country Link
KR (1) KR20010001812A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05228366A (en) * 1992-02-17 1993-09-07 Takao Kuwabara Algae improved in metal ion adsorptivity and filterability
KR960009380A (en) * 1994-08-02 1996-03-22 모리시타 요이찌 Microwave Oscillator and Manufacturing Method
KR100205173B1 (en) * 1997-07-01 1999-07-01 유현식 Alginic acid gel water treatment agent for removing heavy maetal and process for preparing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05228366A (en) * 1992-02-17 1993-09-07 Takao Kuwabara Algae improved in metal ion adsorptivity and filterability
KR960009380A (en) * 1994-08-02 1996-03-22 모리시타 요이찌 Microwave Oscillator and Manufacturing Method
KR100205173B1 (en) * 1997-07-01 1999-07-01 유현식 Alginic acid gel water treatment agent for removing heavy maetal and process for preparing same

Similar Documents

Publication Publication Date Title
US10723644B2 (en) Method for controlling chlorinated nitrogen-containing disinfection by-product in water
Li et al. Transformation pathway and toxicity assessment of malathion in aqueous solution during UV photolysis and photocatalysis
Wang et al. Impact of DOM source and character on the degradation of primidone by UV/chlorine: Reaction kinetics and disinfection by-product formation
Schechter et al. Formation of aldehydes during ozonation
Farré et al. Occurrence of N-nitrosodimethylamine precursors in wastewater treatment plant effluent and their fate during ultrafiltration-reverse osmosis membrane treatment
CN110697934B (en) Method for reducing disinfection by-products of drinking water
Okamura et al. Photodegradation of Irgarol 1051 in water
Scully et al. Small molecular weight organic amino nitrogen compounds in treated municipal wastewater
RU2338698C2 (en) Method of removal of ammonia and ammonium nitrogen from waters of slurry facilities of metallurgical production
Singer Impacts of Ozonation on the Formation of Chlorination and Chloramination By-products
KR20010001812A (en) Cyanic wastewater treatment by waste Brown Seaweed.
Yoon et al. Chlorine transfer from inorganic monochloramine in chlorinated wastewater
Wang et al. Factors controlling N-nitrosodimethylamine (NDMA) formation from dissolved organic matter
TWI646057B (en) Method of treating nitrate nitrogen solution
Hübner et al. Tertiary treatment of Berlin WWTP effluents with ferrate (Fe (VI))
Liang et al. Comparative study on the removal technologies of 2-methylisoborneol (MIB) in drinking water
TWI685470B (en) Cyanide-containing wastewater treatment method and equipment therefor
Kalibbala et al. Characteristics of natural organic matter and formation of chlorination by-products at Masaka waterworks
Resnick et al. Behavior of cyanates in polluted water
CN214004376U (en) Coating wastewater treatment recycling device
CN111170439B (en) Preparation method of citric acid/iron ethylenediamine tetraacetate modified cotton fabric for removing chromium ions in water
Pandit et al. Factors affecting cyanide generation in chlorinated wastewater effluent matrix
Pocurull et al. Simultaneous determination of disinfection by-products in water samples from advanced membrane treatments by headspace solid phase microextraction and gas chromatography-mass spectrometry
Wang et al. Evaluation of disinfection by-products (DBPs) formation potential in ANAMMOX effluents
CN115128025A (en) Test method for measuring reaction rate of chlorine and organic compound

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
E601 Decision to refuse application