KR20000027652A - Photoelectric devices and method for manufacturing photoelectric devices - Google Patents

Photoelectric devices and method for manufacturing photoelectric devices Download PDF

Info

Publication number
KR20000027652A
KR20000027652A KR1019980045609A KR19980045609A KR20000027652A KR 20000027652 A KR20000027652 A KR 20000027652A KR 1019980045609 A KR1019980045609 A KR 1019980045609A KR 19980045609 A KR19980045609 A KR 19980045609A KR 20000027652 A KR20000027652 A KR 20000027652A
Authority
KR
South Korea
Prior art keywords
silicon layer
light receiving
light emitting
sige
oxide film
Prior art date
Application number
KR1019980045609A
Other languages
Korean (ko)
Inventor
조규석
오민록
Original Assignee
김영환
현대전자산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대전자산업 주식회사 filed Critical 김영환
Priority to KR1019980045609A priority Critical patent/KR20000027652A/en
Publication of KR20000027652A publication Critical patent/KR20000027652A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/125Composite devices with photosensitive elements and electroluminescent elements within one single body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0008Devices characterised by their operation having p-n or hi-lo junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier

Abstract

PURPOSE: Photoelectric devices are provided to improve degrees of integration by composing a light receiving element, a luminous element, and a wave guide unit, and by using SiGe/SiGeC SUPERLATTICE technique to utilize integration of the photoelectric devices. CONSTITUTION: SiGe Photoelectric devices comprises a silicon substrate(1), a wave guide unit, a light receiving element, a luminous element, an N-silicon layer(4), a SiGe/SiGeC thin film(5), a P-silicon layer(6), many Ge implant regions(7), element separating oxide layers(20,22), P type electrodes(11), and N type electrodes. Oxide layers(2,13) are stacked on the silicon substrate. A N+ silicon layer(3) with thick thickness is formed on the wave guide in upper parts of the oxide layers, and the N+ silicon layer(3) with thin thickness is formed on the light receiving element and the luminous element. The N-silicon layer and the SiGe/SiGeC thin film are stacked on an upper part of the N+silicon layer in the light receiving element and the luminous element in order. The P-silicon layer is stacked on an upper part of the SiGeC thin film. The Ge implant regions are formed on the N-silicon layer of the light receiving element and the SiGe/SiGeC thin film. A N+ region is formed on a boundary of the light receiving element and the luminous element. The element separating oxide layers are formed on a boundary of an upper side of the wave guide and the light receiving element/the luminous element. The P type electrodes are formed on upper sides of the light receiving/the luminous element. The light receiving/the luminous element and the wave guide have regular width, and are etched up to regular thickness of the N+ silicon layer. The N type electrodes are formed on lower sides of the light receiving/the luminous element.

Description

광전소자 및 그 제조방법Optoelectronic device and its manufacturing method

본 발명은 실리콘 기판상에 SiGe 양자우물구조를 이용한 적외선용 광전소자 및 그 제조방법에 관한 것이다.The present invention relates to an infrared photoelectric device using a SiGe quantum well structure on a silicon substrate and a method of manufacturing the same.

SiGe 이형구조는 기존의 실리콘 기술을 이용한 고집적화, 고속화의 기술이 발달함에 따라 그 한계점을 돌파하고자 새로이 개발되는 분야이다. SiGe 기술은 크게 두가지 기술로 나뉘는데 그 하나는 SiGe 이형접합에서 스트레인을 이용한 높은 이동도 특성을 사용하여 FET의 특성 향상에 사용하거나 HBT특성을 이용한 고속, 고이득특성 등의 전자소자의 특성 향상에 사용된다. 또다른 한가지 사용처는 SiGe 소자의 낮은 밴드 갭을 이용한 적외선 광 센서, 높은 굴절율 특성을 이용한 웨이브가이드(WAVEGUIDE) 구조 등의 광학 소자용으로 사용되는 분야이다. 이와같은 SiGe 특성은 구조 MBE와 같은 박막성장장치를 이용하는 방법, 임플란트(Implant) 방식을 이용하여 Ge를 Si 기판내에 투입하는 고상 성장(Solid Phase Epitaxy) 방법이 사용되고 있다. 그러나 Si과 Ge은 그 격자상수가 약 3%가량으로 차이를 보이며 이로 인해 심한 스트레인이 발생하게 되는데 스트레인의 양을 조절함으로써 밴드갭의 구조 조절이 가능해 지게 되었다. 최근에는 1.3㎛대역의 일렉트로 루미니센스(ELECTRO LUMINESCENCE) 특성이 발표되고 있으며 박막성장 기술의 발전에 따라 소자의 발광효율이 증가하는 추세에 있다.SiGe release structure is a newly developed field to overcome the limitations as the technology of high integration and high speed using existing silicon technology is developed. SiGe technology is largely divided into two technologies, one of which is used to improve the characteristics of FET using high mobility characteristics using strain in SiGe heterojunction, or to improve the characteristics of electronic devices such as high speed and high gain using HBT characteristics. do. Another use is in the field of use for optical devices such as infrared light sensors using the low band gap of SiGe devices, and waveguide structures using the high refractive index. Such SiGe characteristics include a method using a thin film growth apparatus such as a structural MBE, and a solid phase epitaxy method in which Ge is introduced into a Si substrate using an implant method. However, Si and Ge have a lattice constant of about 3%, which causes severe strain, and by adjusting the amount of strain, the band gap structure can be controlled. Recently, the ELECTRO LUMINESCENCE characteristic of 1.3 mu m band has been announced and the luminous efficiency of the device is increasing with the development of thin film growth technology.

그러나 현재까지 사용되는 구조는 이러한 소자의 발달에 미치지 못하고 있다. 도1a, 도1b는 기존의 방법에 의해 제조된 웨이브가이드 구조를 도시한 것이다.However, the structure used to date has not reached the development of these devices. 1A and 1B show a waveguide structure manufactured by a conventional method.

도1a는 실리콘 기판상에 굴절율이 높은 SiGe 합금층을 도입하여 평면 도파로 구조를 형성하는 것을 도시하는 것으로, 실리콘 기판(31), SiGe 합금층(32) 및 실리콘층(33)으로 적층된 것을 알수가 있다.FIG. 1A illustrates the formation of a planar waveguide structure by introducing a SiGe alloy layer having a high refractive index on a silicon substrate, and it can be seen that the silicon substrate 31 is stacked with the SiGe alloy layer 32 and the silicon layer 33. There is.

또한 더욱 발전된 구조로서 도1b는 실리콘 기판(31), SiGe 합금층(32) 및 실리콘층(33)으로 적층된 구조에서 LOCOS 공정 등으로 굴절율이 낮은 실리콘 산화막(34)을 국부적으로 형성하여 횡방향으로의 광도파특성도 함께 얻을 수 있는 구조이다.In addition, as a more advanced structure, FIG. 1B shows a silicon oxide film 34 having a low refractive index locally formed by a LOCOS process or the like in a structure in which a silicon substrate 31, a SiGe alloy layer 32, and a silicon layer 33 are stacked in the transverse direction. The optical waveguide characteristic can also be obtained.

그러나 지금까지는 단일소자의 구조수준을 벗어나지 못하고 있으며 여러 가지 소자들을 한 기판내에 제작하는 기술이 발달되지 못하고 있다. 본 특허에서는 효율적으로 광전소자의 집적을 구현하기 위한 구조를 제안하였다.However, until now, the structure of a single device has not escaped, and technology for manufacturing various devices in one substrate has not been developed. In this patent, a structure for efficiently integrating an optoelectronic device has been proposed.

따라서 본 발명은 앞에서 설명한 바와 같이 광전소자의 집적화를 구현하기 위하여 SiGe/SiGeC 수퍼래티스(SUPERLATTICE) 기술을 이용한 광전 소자 및 그 제조방법을 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide an optoelectronic device using the SiGe / SiGeC superlattice (SUPERLATTICE) technology and a method of manufacturing the same to implement the integration of the optoelectronic device as described above.

도1a, 도1b는 기존의 방법에 의한 웨이브가이드 구조를 각각 도시한 것이다.1A and 1B show a waveguide structure according to a conventional method, respectively.

도2는 본 발명의 실시예에 의해 제조된 광전소자를 도시한 단면도이다.2 is a cross-sectional view showing an optoelectronic device manufactured by an embodiment of the present invention.

도3a 내지 도3e는 본 발명의 실시예에 의해 광전소자를 제조하는 단계를 도시한 단면도이다.3A to 3E are cross-sectional views illustrating steps of manufacturing an optoelectronic device according to an embodiment of the present invention.

도4a와 도4b는 상기한 본 발명의 실시예에 의해 광전소자를 제조하고, 도3e의 세로 방향으로 도시하되 웨이브가이드부와 발광부의 단면 구조를 도시한 것이다.4A and 4B illustrate a cross-sectional structure of a waveguide part and a light emitting part, which are manufactured in the photoelectric device according to the embodiment of the present invention described above and shown in the vertical direction of FIG. 3E.

※ 도면부호의 간단한 설명※ Brief Description of Drawings

1 : 실리콘 기판 2 : 제1 산화막1 silicon substrate 2 first oxide film

3 : N+ 실리콘층 4 : N- 실리콘층3: N + silicon layer 4: N- silicon layer

5 : SiGe/SiGeC 박막 6 : P- 실리콘층5: SiGe / SiGeC thin film 6: P- silicon layer

7 : Ge 임플란트 영역 9 : 제2 산화막7 Ge implant region 9 Second oxide film

11 : P형전극 13 : 제3 산화막11: P-type electrode 13: Third oxide film

12 : N형전극 15 : 빔12 N-type electrode 15 Beam

17 : 발광부 18 : 웨이브가이드부17: light emitting portion 18: wave guide portion

19 : 수광부 20 22 : 소자분리막19: light receiver 20 22: device isolation film

25 : 트렌치25: trench

상기한 목적을 잘성하기 위한 본 발명은 SiGe 광전소자에 있어서,The present invention for achieving the above object in the SiGe optoelectronic device,

실리콘 기판 상부에 산화막이 적층되고,An oxide film is laminated on the silicon substrate,

상기 산화막 상부에 웨이브가이드부에는 두꺼운 두께의 N+ 실리콘층이 구비되고, 수광부와 발광부는 얇은 두께의 N+ 실리콘층이 구비되고,A thick N + silicon layer is provided on the waveguide part on the oxide film, and the light receiving part and the light emitting part are provided with a thin N + silicon layer.

상기 수광부와 발광부에서 상기 N+ 실리콘층 상부에 순차적으로 적층된 N-실리콘층, SiGe/SiGeC 박막이 적층되고,N-silicon layers and SiGe / SiGeC thin films sequentially stacked on the N + silicon layer in the light receiving unit and the light emitting unit are stacked,

상기 SiGeC 박막 상부에 적층된 P- 실리콘층이 구비되고,P-silicon layer is stacked on the SiGeC thin film,

상기 수광부의 N- 실리콘층과 SiGe/SiGeC 박막에 다수의 Ge 임플란트영역이 구비되고,A plurality of Ge implant regions are provided in the N-silicon layer and the SiGe / SiGeC thin film of the light receiving unit,

상기 수광부와 발광부의 경계면에 N+ 영역이 구비되고,N + region is provided on the interface between the light receiving portion and the light emitting portion,

상기 웨이브가이드부의 상부면과 상기 수광부와 발광부의 경계면에 소자분리산화막이 구비되고,A device isolation oxide film is provided on an upper surface of the wave guide part and an interface between the light receiving part and the light emitting part.

상기 수광부와 발광부의 상부면에 P형 전극이 구비되고,P-type electrode is provided on the light receiving portion and the upper surface of the light emitting portion,

상기 수광부와 발광부 및 웨이브가이드부는 일정폭을 가지고, 상기 제1 산화막 상부의 N+ 실리콘층의 일정 두께까지 식각되고,The light receiving portion, the light emitting portion, and the waveguide portion have a predetermined width, and are etched to a predetermined thickness of the N + silicon layer on the first oxide film,

상기 수광부와 발광부의 측면 하부면에 N형 전극이 구비되는 것을 포함한다.It includes an N-type electrode is provided on the lower surface side of the light receiving portion and the light emitting portion.

상기 웨이브가이드부에 있는 N+ 실리콘층과 P- 실리콘층의 계면에 국부적으로 N- 영역이 구비되되, 하부의 N- 실리콘층까지 구비되며, 상기 수광부의 Ge은 디펙트를 최소화시키기 위하여 약 5㎛×5㎛ 정도의 극소면적으로 여러군데에 걸쳐 임플란트 영역이 구비된다.The N- region is provided locally at the interface between the N + silicon layer and the P- silicon layer in the waveguide part, and the lower N-silicon layer is provided, and the Ge of the light receiving part is about 5 μm to minimize the defect. The implant area is provided in several places with a very small area of about 5 μm.

상기 발광부에 해당되는 영역은 디펙트를 최소화시키기 위하여 10㎛ 이내로 하며, 상기 P- 실리콘층의 두께는 SiGe계열의 활성층을 통하여 가이드되는 빔의 직경보다 훨씬 크게 되도록 1-2㎛ 정도로 형성한다.The area corresponding to the light emitting part is within 10 μm to minimize defects, and the thickness of the P-silicon layer is formed to be about 1-2 μm so as to be much larger than the diameter of the beam guided through the active layer of the SiGe series.

상기 수광부와 발광부에 성장되는 N- 실리콘층은 수광소자에서 역바이서스를 걸었을 때 충분히 디플리션 되도록 낮은 농도를 갖도록 한다.The N-silicon layer grown on the light receiving unit and the light emitting unit has a low concentration so as to be sufficiently depleted when the reverse light is applied to the light receiving element.

상기한 목적을 달성하기 위한 본 발명은 SiGe 광전소자 제조방법에 있어서,In the present invention for achieving the above object in the SiGe photoelectric device manufacturing method,

실리콘 기판, 제1 산화막 및 N+ 실리콘층을 적층하는 단계와,Stacking a silicon substrate, a first oxide film and an N + silicon layer;

상기 N+ 실리콘층 상부에 제2 산화막을 증착한후, 패턴닝 공정으로 웨이브가이드 영역에만 상기 제2 산화막을 남기는 단계와,Depositing a second oxide film over the N + silicon layer, and leaving the second oxide film only in a waveguide region by a patterning process;

상기 제2 산화막을 마스크로 상기 수광부과 발광부에 있는 N+ 실리콘층을 식각하여 얇은 두께가 남도록 하는 단계와,Etching the N + silicon layer in the light receiving portion and the light emitting portion by using the second oxide film as a mask to leave a thin thickness;

상기 수광부와 발광부에 N- 실리콘층과 SiGe/SiGeC 박막을 성장시키고, 그 표면에 P-실리콘층을 성장시키는 단계와,Growing an N-silicon layer and a SiGe / SiGeC thin film on the light receiving portion and the light emitting portion, and growing a P-silicon layer on the surface thereof;

상기 수광부에 국부적으로 Ge을 임플란트하여 N- 실리콘층과 SiGe/SiGeC 박막에 Ge 임플란트 영역을 다수개 형성하고, 열공정으로 활성화시키는 단계와,Locally implanting Ge into the light-receiving portion to form a plurality of Ge implant regions on an N-silicon layer and a SiGe / SiGeC thin film, and activating by thermal process;

상기 제2 산화막을 제거하고, 웨이브가이드층과 수광부와 발광부의 경계부에 일정깊이의 트렌치를 형성한다음, 수광부와 발광부의 경계면으로 N+ 불순물을 임플란트 시키는 단계와,Removing the second oxide layer, forming a trench having a predetermined depth at the boundary between the waveguide layer, the light receiving portion, and the light emitting portion, and implanting N + impurities into the interface between the light receiving portion and the light emitting portion;

상기 트렌치에 소자분리막을 형성하는 단계와,Forming an isolation layer in the trench;

수광부와 발광부 및 웨이브가이드부의 일정 폭을 남기고 제1 산화막 상부의 N+ 실리콘층의 일정 두께까지 식각하는 단계와,Etching to a predetermined thickness of the N + silicon layer on the first oxide layer, leaving a predetermined width of the light receiving part, the light emitting part, and the waveguide part;

제3 산화막을 증착하고, 전극이 형성될 부분의 제3 산화막은 제거하는 단계와,Depositing a third oxide film and removing the third oxide film of the portion where the electrode is to be formed;

상기 수광부와 발광부의 상부에 P형전극을 형성하고, 상기 수광부와 발광부의 측면 하부에 N형전극을 형성하는 단계를 포함한다.Forming a P-type electrode on the light receiving portion and the light emitting portion, and forming an N-type electrode on the lower side of the light receiving portion and the light emitting portion.

상기 실리콘 기판의 제1 산화막 상부에 N+ 실리콘층을 성장시키는 온도는 500-600℃ 이며,상기 SiGeC/SiGe 계열의 양자우물구조는 인장력(Tensile Strain)을 받는 조건으로 형성한다.The temperature at which the N + silicon layer is grown on the first oxide layer of the silicon substrate is 500-600 ° C., and the SiGeC / SiGe-based quantum well structure is formed under a condition of being subjected to tensile strain.

상기 수광부와 발광부에 성장되는 N- 실리콘층은 도핑농도를 낮추어서 소광소자에서 역바이서스를 걸었을 때 충분히 디플리션 되도록 하며, 상기 수광부의 Ge 임플란트 영역은 디펙트를 최소화시키기 위하여 약 5㎛×5㎛ 정도의 극소면적으로 여러군데에 걸쳐 임플란트 한다. 그리고, 상기 Ge영역을 활성화시키기 위하여 700-900C에서 열처리를 하며, 상기 웨이브가이드부의 폭은 1-3㎛ 으로 설정한다.The N-silicon layer grown on the light-receiving part and the light-emitting part lowers the doping concentration so that it is sufficiently depleted when the reverse quenching device is placed on the quenching device. It is implanted in several places with a very small area of about 5 µm. Then, heat treatment is performed at 700-900C to activate the Ge region, and the width of the wave guide portion is set to 1-3 μm.

발광다이오드의 높이와 웨이브가이드층의 높이를 맞추어 주기 위하여 발광다이오드부위는 선택적으로 식각한 후에 제작한다. 이 발광다이오드는 SiGe 양자우물구조 발광영역을 통해 웨이브가이드층을 통해 전파되는 빛은 수광소자(DETECTOR) 영역에 도달하여 흡수되게 된다. 이때 낮은 흡수율을 보상하기 위해 SiGe층 근방에 국부적으로 Ge 임플란트 하여서 디텍터 근방의 밴드갭을 더욱 낮추에 주어 수광소자의 효율을 증대시킨다.In order to match the height of the light emitting diodes with the height of the waveguide layer, the light emitting diodes are selectively etched and manufactured. The light emitting diodes, which propagate through the waveguide layer through the SiGe quantum well structure light emitting region, reach and absorb the DETECTOR region. At this time, in order to compensate for the low absorption rate, the Ge implant is locally placed near the SiGe layer to further lower the band gap near the detector, thereby increasing the efficiency of the light receiving device.

스트레인을 이용한 박막의 이점은 이미 Ⅲ-Ⅴ족/Ⅱ-Ⅳ족 화합물반도체에서 널리 연구되었듯이 밴드갭의 특성변화, 흡수율/발광천이율의 변화, 이동도의 증가 등의 많은 이점을 가지고 있다. Ge은 주기율표상에서 Si보다 아래쪽에 있고 동일 족에 해당하기 때문에 격자상수가 더 크고 유사한 원자구조를 가진다. 반면 C(Carbon)은 주기율표상에서 Si보다 위쪽에 있기 때문에 격자상수가 작고 동일한 원자구조를 가진다. 따라서 적층한 수퍼레티스의 경우 SiGe층은 압축 스트레인(COMPRESSIVE STRAIN)을 받게 되며 SiGeC계열의 삼원화합물을 이용하면 C의 농도를 조절하여 압축/인장 스트레인(COMPRESSIVE/TENSILE STRAIN)을 조절할 수 있게 된다. 이 특성을 이용하여 SiGe/SiGeC 수퍼래티스를 적층하여 발광천이가 가능한 타입 Ⅰ 형태의 밴드구조를 형성한다.The advantages of thin films using strains have many advantages, such as changes in bandgap characteristics, changes in absorption / luminescence transition rates, and mobility, as are widely studied in III-V / II-IV compound semiconductors. Ge is lower than Si in the periodic table and is of the same family, so the lattice constant is larger and has a similar atomic structure. On the other hand, since C (Carbon) is above Si in the periodic table, the lattice constant is small and has the same atomic structure. Therefore, in the case of stacked superretires, the SiGe layer receives a compressive strain, and when using a tertiary compound of the SiGeC series, it is possible to control the compressive / tensile strain by adjusting the concentration of C. By using this property, SiGe / SiGeC superlattices are laminated to form a band structure of type I type which can emit light emission.

이하, 첨부된 도면을 참조하여 본 발명의 실시예를 설명하기로 한다.Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

도3a 내지 도3e는 본 발명의 실시예에 의해 광전소자를 제조하는 단계를 도시한 단면도이다.3A to 3E are cross-sectional views illustrating steps of manufacturing an optoelectronic device according to an embodiment of the present invention.

도3a는 실리콘 기판(1)에 제1 산화막(2)과 N+ 실리콘층(3)을 적층하고, 상기 N+ 실리콘층(3) 상부에 제2 산화막(9)를 증착한 후 웨이브가이드부에 제2 산화막(9)을 남긴다음, 이것을 마스크로 이용한 식각공정으로 수광부(19)와 발광부(17)의 N+ 실리콘층(3)을 식각하여 상기 제1 산화막(2) 상부에 얇은 두께의 N+ 실리콘층(3)만 남긴 것을 도시한 것이다.FIG. 3A shows a first oxide film 2 and an N + silicon layer 3 stacked on a silicon substrate 1, a second oxide film 9 deposited on the N + silicon layer 3, and then a wave guide portion. After leaving the oxide film 9, the N + silicon layer 3 of the light receiving portion 19 and the light emitting portion 17 is etched using an etching process using the same as a mask to form a thin N + silicon layer on the first oxide film 2. Only the layer 3 is shown.

도3b는 N+ 실리콘층(3)이 식각된 위치에 N- 실리콘층(4)을 에피텍셜 성장시킨다음, 그 상부에 MBE를 이용하여 SiGe/SiGeC 박막(5)을 성장시킨다. 그리고, 그상부에 P- 실리콘층(6)을 에피텍셜 성장으로 상기 제2 산화막(9) 까지 형성시킨 것을 도시한다.3B epitaxially grows the N− silicon layer 4 at the position where the N + silicon layer 3 is etched, and then grows a SiGe / SiGeC thin film 5 using MBE on top thereof. The P-silicon layer 6 is formed thereon up to the second oxide film 9 by epitaxial growth.

여기서, 상기 SiGe/SiGeC 박막(5)은 500-600℃에서 성장시키고, 양자우물구조는 인장 스트레인(Tensile Strain)을 받는 조건으로 한다. 발광부(17)에 해당되는 영역은 10㎛ 이내로 하여 생성되는 디펙트를 최소화 시키고 소자의 전류밀도를 높여 소자의 효율을 증대시킨다. P- 실리콘층(6)의 두께는 활성층으로 작용하는 SiGe/SiGeC 박막(5)을 통하여 가이드되는 빔의 직경보다 훨씬 크게 되도록 1-2㎛ 정도로 하여 표면으로 방출되는 빔을 최소화한다. 상기 N- 실리콘층(4)은 도핑을 낮추어 주어서 수광소자에서 역바이어스를 걸었을 때 충분히 디플리트(DEPLETE) 되도록 한다.Herein, the SiGe / SiGeC thin film 5 is grown at 500-600 ° C., and the quantum well structure is subjected to a tensile strain. The area corresponding to the light emitting unit 17 is within 10 μm to minimize the defects generated and increase the current density of the device to increase the efficiency of the device. The thickness of the P-silicon layer 6 is about 1-2 탆 so as to be much larger than the diameter of the beam guided through the SiGe / SiGeC thin film 5 serving as the active layer, thereby minimizing the beam emitted to the surface. The N-silicon layer 4 lowers the doping so that it sufficiently depletes when the reverse bias is applied to the light receiving device.

도3c는 표준 공정을 거쳐 수광부(19) 부위에만 Ge을 임프란트하여 상기 SiGe/SiGeC 박막(5)의 양자우물층으로 주입되는 Ge 임플란트 영역(7)을 형성하는데 이때 넓은 면적에 높은 Ge 농도로 임플란트할 경우 많은 디펙트가 생성되어 수광소자의 암전류가 증가하게 된다. 따라서 디펙트 생성을 최소화시키기 위하여 약 5㎛×5㎛ 정도의 국소면적으로 여러군데에 걸쳐 임플란트를 시행한다. 그후 700-900℃에서 열처리를 하여 주입된 Ge 임플란트 영역(7)을 활성화시킨다. 이때 발광부의 양자우물층도 적절한 열처리를 받아서 SiGe 양자우물층의 계면이 향상되어 발광효율이 증대되게 된다.3C shows Ge implant regions 7 implanted into the quantum well layer of the SiGe / SiGeC thin film 5 by implanting Ge only in the light-receiving portion 19 through a standard process, with a high Ge concentration in a large area. In this case, many defects are generated, which increases the dark current of the light receiving device. Therefore, in order to minimize defect generation, implants are applied in several places with a local area of about 5 μm × 5 μm. Thereafter, heat treatment is performed at 700-900 ° C. to activate the implanted Ge implant region 7. At this time, the quantum well layer of the light emitting part is also subjected to appropriate heat treatment, so that the interface of the SiGe quantum well layer is improved, thereby increasing the luminous efficiency.

도3d는 상기 제2 산화막(9)을 제거한다음, 상기 발광부(17) 및 수광부(19)의 경계부 하부의 P- 실리콘층(6)와 N+ 실리콘층(3)의 일정 두께와 웨이브가이드부(18) 하부의 N+ 실리콘층(3)의 일정 두께를 식각하여 트렌치(25)를 형성하고, 상기 발광부(17) 및 수광부(19)의 경계부에 있는 P- 실리콘층(6)와 N+ 실리콘층(3)으로 N+ 농도의 불순물을 임플란트하여 N+ 임플란트 영역(14)을 형성하되, SiGe/SiGeC 박막(5)과 N- 실리콘층(4) 까지 형성한다.그리고, 상기 트렌치(25)에 산화막을 채워서 소자분리막(20,22)을 각각 형성한다.3D shows that after removing the second oxide film 9, the P-silicon layer 6 and the N + silicon layer 3 have a predetermined thickness and waveguide portion under the boundary between the light emitting portion 17 and the light receiving portion 19. (18) The trench 25 is formed by etching a predetermined thickness of the lower N + silicon layer 3, and the P-silicon layer 6 and the N + silicon at the boundary between the light emitting portion 17 and the light receiving portion 19 are formed. Impurities of N + concentration are implanted into the layer 3 to form the N + implant region 14, but the SiGe / SiGeC thin film 5 and the N-silicon layer 4 are formed. An oxide film is formed in the trench 25. To form the device isolation layers 20 and 22, respectively.

상기 N+ 영역(14)은 실리콘 에피텍셜 성장시 발생되는 계면에서의 불안한 영역과 상단부의 P- 실리콘층(6)을 분리시켜 주며, SiGe층의 낮은 밴드갭으로 인하여 P- 실리콘층(6)과 N+ 실리콘층(14, 3) 사이에서 이루어지는 PN 다이오드를 턴온시키는 전압이 P- 실리콘층(6)에서 SiGe층(5)사이의 다이오드 턴온 전압 보다 높기 때문에 먼저 SiGe 다이오드 쪽으로 흐르게 된다. 따라서 웨이브가이드부(18)로의 누설전류를 감소시켜주는 역할을 한다.The N + region 14 separates the unstable region at the interface generated during silicon epitaxial growth and the P-silicon layer 6 at the upper end, and the P-silicon layer 6 and the lower band gap due to the SiGe layer. Since the voltage for turning on the PN diode formed between the N + silicon layers 14, 3 is higher than the diode turn-on voltage between the P− silicon layer 6 and the SiGe layer 5, it first flows toward the SiGe diode. Therefore, it serves to reduce the leakage current to the wave guide portion 18.

그리고, 상기 공정후에 웨이브가이드부(18)의 폭(도4a의 16)을 조절하기 위하여 웨이브가이드부(18)와 발광부(17) 및 수광부(19)에 일정 폭을 남겨 두고 N+ 실리콘층(3) 까지 식각 공정을 진행하여 사각형의 평면 형상을 가지게 된다. 한편, 상기 웨이브가이드부(18)의 형상은 평면이 사각형 뿐아니라 굴곡을 갖는 형상으로도 제조가 가능하다.After the process, in order to adjust the width of the wave guide part 18 (16 in FIG. 4A), the N + silicon layer (with a predetermined width left in the wave guide part 18, the light emitting part 17 and the light receiving part 19) The etching process is performed until 3) to have a rectangular planar shape. On the other hand, the shape of the wave guide portion 18 can be manufactured in a shape having a curvature as well as a square plane.

도3e는 전체적으로 제3 산화막(13)을 증착하고, 수광부(19)와 발광부(17)의 전극영역에 위치하는 제3 산화막(13)을 제거한다음, 수광부(19)와 발광부(17)의 상부전극에는 P형전극(12)을 형성하고, 수광부(19)와 발광부(17)의 하부전극영역에는 N형전극(11)을 형성한다.3E deposits the third oxide film 13 as a whole, removes the third oxide film 13 positioned in the electrode region of the light receiving portion 19 and the light emitting portion 17, and then receives the light receiving portion 19 and the light emitting portion 17. FIG. The P-type electrode 12 is formed on the upper electrode of the N-type electrode 11 in the lower electrode region of the light receiving portion 19 and the light emitting portion 17.

참고로, 도2는 상기 도3e와 동일한 구조를 가지므로 별도의 설명을 생략한다.For reference, since FIG. 2 has the same structure as that of FIG. 3E, a separate description thereof will be omitted.

도4a와 도4b는 상기한 본 발명의 실시예에 광전소자를 제조할 때 도3e의 세로 방향으로 도시하되 웨이브가이드부(18)와 발광부(17)에의 단면 구조를 도시한 것이다. 도4a에서 굴절율이 낮은 소자분리막(22)과 제1산화막(2) 사이에 N+ 실리콘층(3)이 위치하고, 측변에는 제3 산화막(13)이 구비되어 빔(15)이 상하방향 및 좌우방향으로 가이드된다.4A and 4B illustrate the cross-sectional structure of the waveguide portion 18 and the light emitting portion 17 in the longitudinal direction of FIG. 3E when the photoelectric device is manufactured in the above-described embodiment of the present invention. In FIG. 4A, the N + silicon layer 3 is positioned between the device isolation film 22 and the first oxide film 2 having a low refractive index, and a third oxide film 13 is provided at the side, so that the beam 15 is vertically and horizontally disposed. Guided by.

이때 웨이브가이드부(18)의 폭은 1-3㎛ 으로 설정하여 웨이브가이드를 효율적으로 할 수 있게 한다.At this time, the width of the wave guide portion 18 is set to 1-3㎛ to enable the wave guide efficiently.

도4b는 상기한 본 발명의 실시예의 광전소자의 발광소자 또는 수광소자의 단면으로, 도3e의 세로 방향으로 도시한 것으로, 상부전극에는 P형전극(12)이 구비되고, 수광부(19)와 발광부(17)의 하부전극으로 N형전극(11)이 구비됨을 알수가 있고, 측면으로는 제3 산화막(13)이 구비됨을 도시한다.4B is a cross-sectional view of the light emitting device or the light receiving device of the photoelectric device according to the embodiment of the present invention, which is illustrated in the vertical direction of FIG. 3E. The upper electrode is provided with a P-type electrode 12, It can be seen that the N-type electrode 11 is provided as the lower electrode of the light emitting part 17, and the third oxide film 13 is provided on the side.

본 발명에 의한 광전소자는 차후 고속화에 따른 실리콘 칩 내에서의 정보전달방법에 사용된다. 또한 광 화이버(FIBER)를 이용하여 칩간의 정보전달매체로서 사용될 수 있다. SiGe층은 500℃정도의 낮은 온도에서 이루어지는 공정으로서 기존의 실리콘 공정의 대부분을 그대로 적용할 수 있으므로 생산비용이 절감된다.The optoelectronic device according to the present invention is used in a method of transferring information in a silicon chip at a later speed. In addition, it may be used as an information transfer medium between chips using an optical fiber (FIBER). The SiGe layer is a process performed at a low temperature of about 500 ° C., and thus, most of the existing silicon processes can be applied as it is, thereby reducing production costs.

그리고, 수광소자와 발광소자가 하나의 실리콘 기판에 형성됨으로 인하여 빔의 전달이 빠르고 손실이 적어서 효율이 높다.In addition, since the light receiving element and the light emitting element are formed on one silicon substrate, the beam is transmitted quickly and the loss is high, so the efficiency is high.

Claims (15)

SiGe 광전소자에 있어서,In SiGe photoelectric device, 실리콘 기판 상부에 산화막이 적층되고,An oxide film is laminated on the silicon substrate, 상기 산화막 상부에 웨이브가이드부에는 두꺼운 두께의 N+ 실리콘층이 구비되고, 수광부와 발광부는 얇은 두께의 N+ 실리콘층이 구비되고,A thick N + silicon layer is provided on the waveguide part on the oxide film, and the light receiving part and the light emitting part are provided with a thin N + silicon layer. 상기 수광부와 발광부에서 상기 N+ 실리콘층 상부에 순차적으로 적층된 N-실리콘층, SiGe/SiGeC 박막이 적층되고,N-silicon layers and SiGe / SiGeC thin films sequentially stacked on the N + silicon layer in the light receiving unit and the light emitting unit are stacked, 상기 SiGeC 박막 상부에 적층된 P- 실리콘층이 구비되고,P-silicon layer is stacked on the SiGeC thin film, 상기 수광부의 N- 실리콘층과 SiGe/SiGeC 박막에 다수의 Ge 임플란트 영역이 구비되고,A plurality of Ge implant regions are provided in the N-silicon layer and the SiGe / SiGeC thin film of the light receiving unit, 상기 수광부와 발광부의 경계면에 N+ 영역이 구비되고,N + region is provided on the interface between the light receiving portion and the light emitting portion, 상기 웨이브가이드부의 상부면과 상기 수광부와 발광부의 경계면에 소자분리산화막이 구비되고,A device isolation oxide film is provided on an upper surface of the wave guide part and an interface between the light receiving part and the light emitting part. 상기 수광부와 발광부의 상부면에 P형 전극이 구비되고,P-type electrode is provided on the light receiving portion and the upper surface of the light emitting portion, 상기 수광부와 발광부 및 웨이브가이드부는 일정폭을 가지고, 상기 제1 산화막 상부의 N+ 실리콘층의 일정 두께까지 식각되고,The light receiving portion, the light emitting portion, and the waveguide portion have a predetermined width, and are etched to a predetermined thickness of the N + silicon layer on the first oxide film, 상기 수광부와 발광부의 측면 하부면에 N형 전극이 구비되는 것을 포함하는 광전소자.Optoelectronic device comprising an N-type electrode on the lower surface side of the light receiving portion and the light emitting portion. 제1항에 있어서,The method of claim 1, 상기 웨이브가이드부에 있는 N+ 실리콘층과 P- 실리콘층의 계면에 국부적으로 N- 영역이 구비되되, 하부의 N- 실리콘층까지 구비되는 것을 특징으로 하는 광전소자.An N-region is provided locally at an interface between the N + silicon layer and the P- silicon layer in the waveguide part, and the lower N-silicon layer is provided. 제1항에 있어서,The method of claim 1, 상기 수광부의 Ge은 디펙트를 최소화시키기 위하여 약 5㎛×5㎛ 정도의 극소면적으로 여러군데에 걸쳐 임플란트 영역이 구비된 것을 특징으로 하는 광전소자.Ge of the light-receiving unit is an optoelectronic device, characterized in that the implant region is provided in several places with a very small area of about 5㎛ 5㎛ in order to minimize the defect. 제1항에 있어서,The method of claim 1, 상기 발광부에 해당되는 영역은 디펙트를 최소화시키기 위하여 10㎛ 이내로 하는 것을 특징으로 하는 광전소자.The region corresponding to the light emitting portion is within 10㎛ in order to minimize the defect. 제1항에 있어서,The method of claim 1, 상기 P- 실리콘층의 두께는 SiGe계열의 활성층을 통하여 가이드되는 빔의 직경보다 훨씬 크게 되도록 1-2㎛ 정도로 하는 것을 특징으로 하는 광전소자.The thickness of the P-silicon layer is about 1-2㎛ so as to be much larger than the diameter of the beam guided through the active layer of SiGe series. 제1항에 있어서,The method of claim 1, 상기 수광부와 발광부에 성장되는 N- 실리콘층은 수광소자에서 역바이어스를 걸었을 때 충분히 디플리션 되도록 낮은 농도를 갖는 것을 특징으로 하는 광전소자.And the N-silicon layer grown on the light receiving portion and the light emitting portion has a low concentration so as to be sufficiently depleted when the reverse bias is applied to the light receiving element. SiGe 광전소자 제조방법에 있어서,In the SiGe optoelectronic device manufacturing method, 실리콘 기판, 제1 산화막 및 N+ 실리콘층을 적층하는 단계와,Stacking a silicon substrate, a first oxide film and an N + silicon layer; 상기 N+ 실리콘층 상부에 제2 산화막을 증착한후, 패턴닝 공정으로 웨이브가이드 영역에만 상기 제2 산화막을 남기는 단계와,Depositing a second oxide film over the N + silicon layer, and leaving the second oxide film only in a waveguide region by a patterning process; 상기 제2 산화막을 마스크로 상기 수광부과 발광부에 있는 N+ 실리콘층을 식각하여 얇은 두께가 남도록 하는 단계와,Etching the N + silicon layer in the light receiving portion and the light emitting portion by using the second oxide film as a mask to leave a thin thickness; 상기 수광부와 발광부에 N- 실리콘층과 SiGe/SiGeC 박막을 성장시키고, 그 표면에 P-실리콘층을 성장시키는 단계와,Growing an N-silicon layer and a SiGe / SiGeC thin film on the light receiving portion and the light emitting portion, and growing a P-silicon layer on the surface thereof; 상기 수광부에 국부적으로 Ge을 임플란트하여 N- 실리콘층과 SiGe/SiGeC 박막에 Ge 임플란트 영역을 다수개 형성하고, 열공정으로 활성화시키는 단계와,Locally implanting Ge into the light-receiving portion to form a plurality of Ge implant regions on an N-silicon layer and a SiGe / SiGeC thin film, and activating by thermal process; 상기 제2 산화막을 제거하고, 웨이브가이드층과 수광부와 발광부의 경계부에 일정깊이의 트렌치를 형성한다음, 수광부와 발광부의 경계면으로 N+ 불순물을 임플란트 시키는 단계와,Removing the second oxide layer, forming a trench having a predetermined depth at the boundary between the waveguide layer, the light receiving portion, and the light emitting portion, and implanting N + impurities into the interface between the light receiving portion and the light emitting portion; 상기 트렌치에 소자분리막을 형성하는 단계와,Forming an isolation layer in the trench; 수광부와 발광부 및 웨이브가이드부의 일정 폭을 남기고 제1 산화막 상부의 N+ 실리콘층의 일정 두께까지 식각하는 단계와,Etching to a predetermined thickness of the N + silicon layer on the first oxide layer, leaving a predetermined width of the light receiving part, the light emitting part, and the waveguide part; 제3 산화막을 증착하고, 전극이 형성될 부분의 제3 산화막은 제거하는 단계와,Depositing a third oxide film and removing the third oxide film of the portion where the electrode is to be formed; 상기 수광부와 발광부의 상부에 P형전극을 형성하고, 상기 수광부와 발광부의 측면 하부에 N형전극을 형성하는 단계를 포함하는 광전소자의 제조방법.Forming a P-type electrode on the light receiving portion and the light emitting portion, and forming an N-type electrode on the lower side of the light receiving portion and the light emitting portion. 제7항에 있어서,The method of claim 7, wherein 상기 실리콘 기판의 제1 산화막 상부에 N+ 실리콘층을 성장시키는 온도는 500-600℃ 인 것을 특징으로 하는 광전소자의 제조방법.The temperature for growing the N + silicon layer on the first oxide film of the silicon substrate is 500-600 ℃ manufacturing method of the optoelectronic device. 제7항에 있어서,The method of claim 7, wherein 상기 SiGeC/SiGe 계열의 양자우물구조는 인장력(Tensile Strain)을 받는 조건으로 형성하는 것을 특징으로 하는 광전소자의 제조방법.The SiGeC / SiGe-based quantum well structure is a method for manufacturing an optoelectronic device, characterized in that formed under the conditions of receiving a tension (Tensile Strain). 제7항에 있어서,The method of claim 7, wherein 상기 발광부에 해당되는 영역은 디펙트를 최소화시키기 위하여 10㎛ 이내로 하는 것을 특징으로 하는 광전소자의 제조방법.The area corresponding to the light emitting portion is a manufacturing method of the optoelectronic device, characterized in that within 10㎛ to minimize the defect. 제7항에 있어서,The method of claim 7, wherein 상기 수광부와 발광부의 상부면에 형성되는 P- 실리콘층의 두께는 SiGe계열의 활성층을 통하여 가이드되는 빔의 직경보다 훨씬 크게 되도록 1-2㎛로 하는 것을 특징으로 하는 광전소자의 제조방법.The thickness of the P-silicon layer formed on the light-receiving portion and the upper surface of the light emitting portion is 1-2㎛ so as to be much larger than the diameter of the beam guided through the active layer of SiGe series. 제7항에 있어서,The method of claim 7, wherein 상기 수광부와 발광부에 성장되는 N- 실리콘층은 도핑농도를 낮추어서 소광소자에서 역바이서스를 걸었을 때 충분히 디플리션 되도록 하는 것을 특징으로 하는 광전소자의 제조방법.And the N-silicon layer grown on the light receiving portion and the light emitting portion to reduce the doping concentration so that the depletion is sufficiently depleted when the reverse quenching device is applied to the quenching device. 제7항에 있어서,The method of claim 7, wherein 상기 수광부의 Ge 임플란트 영역은 디펙트를 최소화시키기 위하여 약 5㎛×5㎛ 정도의 구소면적으로 여러군데에 걸쳐 임플란트 하는 것을 특징으로 하는 광전소자의 제조방법.The Ge implant region of the light receiving portion is implanted over several places with a spherical area of about 5㎛ 5㎛ in order to minimize the defect. 제7항에 있어서,The method of claim 7, wherein 상기 Ge영역을 활성화시키기 위하여 700-900C에서 열처리를 하는 것을 특징으로 하는 광전소자의 제조방법.Method of manufacturing a photoelectric device, characterized in that the heat treatment at 700-900C to activate the Ge region. 제7항에 있어서,The method of claim 7, wherein 상기 웨이브가이드부의 폭은 1-3㎛ 으로 설정하는 것을 특징으로 하는 광전소자의 제조방법.The width of the wave guide portion is a manufacturing method of the optoelectronic device, characterized in that it is set to 1-3㎛.
KR1019980045609A 1998-10-28 1998-10-28 Photoelectric devices and method for manufacturing photoelectric devices KR20000027652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980045609A KR20000027652A (en) 1998-10-28 1998-10-28 Photoelectric devices and method for manufacturing photoelectric devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980045609A KR20000027652A (en) 1998-10-28 1998-10-28 Photoelectric devices and method for manufacturing photoelectric devices

Publications (1)

Publication Number Publication Date
KR20000027652A true KR20000027652A (en) 2000-05-15

Family

ID=19555987

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980045609A KR20000027652A (en) 1998-10-28 1998-10-28 Photoelectric devices and method for manufacturing photoelectric devices

Country Status (1)

Country Link
KR (1) KR20000027652A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002061842A1 (en) * 2001-01-31 2002-08-08 Matsushita Electric Industrial Co., Ltd. Semiconductor crystal film and method for preparation thereof
US8901694B2 (en) 2011-09-14 2014-12-02 Samsung Electronics Co., Ltd. Optical input/output device and method of fabricating the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002061842A1 (en) * 2001-01-31 2002-08-08 Matsushita Electric Industrial Co., Ltd. Semiconductor crystal film and method for preparation thereof
US6852602B2 (en) 2001-01-31 2005-02-08 Matsushita Electric Industrial Co., Ltd. Semiconductor crystal film and method for preparation thereof
US8901694B2 (en) 2011-09-14 2014-12-02 Samsung Electronics Co., Ltd. Optical input/output device and method of fabricating the same

Similar Documents

Publication Publication Date Title
US20080079022A1 (en) Optical device having photoelectric conversion layer
JPS61172381A (en) Inp group compound semiconductor device
US9570359B2 (en) Substrate structure, complementary metal oxide semiconductor device, and method of manufacturing complementary metal oxide semiconductor device
JP6091273B2 (en) Semiconductor device and manufacturing method thereof
EP2846353B1 (en) Method of manufacturing a complementary metal oxide semiconductor device
EP0709901B1 (en) Fabrication process for a silicon photosensitive element
CN107910750B (en) Preparation method of semiconductor laser material
KR20140121192A (en) Substrate structure and semiconductor device employing the same
KR101199187B1 (en) Light emitting diode and fabricating method thereof
WO2015115396A1 (en) Sige photodiode
CN100573906C (en) The structure of dislocation behavior and method in the controlling strain semiconductor layer
KR20000027652A (en) Photoelectric devices and method for manufacturing photoelectric devices
US5323027A (en) Light emitting device with double heterostructure
US9076921B2 (en) Dark current reduction for large area photodiodes
JPH0897466A (en) Light emitting device
JP2003031790A (en) Semiconductor device and its fabricating method
CN220774376U (en) Heteroepitaxial structure with bottom interconnection path
JPH10125894A (en) Photoelectronic integrated circuit and its manufacture
JPH0750429A (en) Photodetector and manufacture thereof
JP2692971B2 (en) Semiconductor light emitting device
CN117476799A (en) Germanium-silicon photodiode
KR100242789B1 (en) Fabricating method of current blocking structure for optical device
KR100369992B1 (en) Structure of laser diode and fabricating method thereof
WO2016021057A1 (en) Semiconductor optical element and semiconductor optical element manufacturing method
Zimmermann et al. SiGe Photodetectors

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination