KR20000018353A - Method for forming a metal film - Google Patents

Method for forming a metal film Download PDF

Info

Publication number
KR20000018353A
KR20000018353A KR1019980035911A KR19980035911A KR20000018353A KR 20000018353 A KR20000018353 A KR 20000018353A KR 1019980035911 A KR1019980035911 A KR 1019980035911A KR 19980035911 A KR19980035911 A KR 19980035911A KR 20000018353 A KR20000018353 A KR 20000018353A
Authority
KR
South Korea
Prior art keywords
metal film
metal
film
forming
catalyst
Prior art date
Application number
KR1019980035911A
Other languages
Korean (ko)
Other versions
KR100332364B1 (en
Inventor
고원용
강상원
Original Assignee
이경수
지니텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이경수, 지니텍 주식회사 filed Critical 이경수
Priority to KR1019980035911A priority Critical patent/KR100332364B1/en
Priority claimed from KR1019980035911A external-priority patent/KR100332364B1/en
Publication of KR20000018353A publication Critical patent/KR20000018353A/en
Application granted granted Critical
Publication of KR100332364B1 publication Critical patent/KR100332364B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes

Abstract

PURPOSE: A metal film formation method is provided to improve a uniformity of the metal film on a surface having high roughness and high aspect ratio by using a catalyst metal. CONSTITUTION: A method comprises the steps of forming a catalyst metal film on a substrate by thermal CVD(chemical vapor deposition); preparing at least one source gas for formation a metal film having different materials compared to the catalyst metal film; and forming another metal film on the catalyst metal film by contacting the source gas to the catalyst metal. The catalyst metal made of a palladium or a platinum and the another metal composed of an aluminum or a copper.

Description

금속 막의 형성방법 Forming a metal film method

본 발명은 기판 위에 막을 형성하는 방법에 관한 것으로, 특히 반도체 소자에 필요한 금속 막을 기판 위에 형성하는 방법에 관한 것이다. The present invention relates to a method of forming a film on a substrate, and more particularly to a method of forming on a substrate a metal film for the semiconductor element.

반도체 소자의 제조에 있어서, 회로의 배선을 하기 위해 금속 막이 이용된다. In the production of semiconductor devices, a metal film is used for the routing of the circuit. 이러한 금속 막의 형성을 위한 재질로서는 현재 알루미늄이 널리 사용되고 있으며, 텅스텐이 일부 특수한 용도로 쓰이고 있다. As the material for this metal film formed of aluminum is now widely used, and has a tungsten being used in some special applications. 그러나, 앞으로는 알루미늄보다 전기 저항이 작은 구리가 점차 많이 사용될 것으로 예상된다. However, in the future, the electrical resistance of copper is less than the aluminum is expected to be more gradual.

한편, 회로의 배선공정은 접촉창(contact hole)의 형성과 배선(interconnection)의 2가지로 구분될 수 있는데, 근래에 반도체의 고집적화에 따라 배선의 폭은 감소하고, 특히 접촉창의 경우에 있어서는 수평방향의 크기가 줄어드는 반면 수직방향으로의 크기가 증가하여 종횡비(aspect ratio)가 증가하는 문제점이 있다. On the other hand, the horizontal, in the case the wiring process of the circuit is in contact window (contact hole) is formed and may be separated into the wiring (interconnection), in recent years in the wire according to the high integration of semiconductor width is reduced, in particular the contact window of on the other hand, the size of the shrink direction, there is a problem that increase in size in the vertical direction, increasing the aspect ratio (aspect ratio) and. 따라서, 회로 배선 용 금속 막을 요철이 있는 표면에 균일한 두께로 형성하거나, 종횡비가 큰 구멍을 빈틈없이 메우는 것이 점점 더 어려워지고 있다. Thus, the wiring metal film is formed to a uniform thickness on the surface irregularities, or the aspect ratio for becoming more and more difficult to fill the large hole tightly.

화학 증착법에서 원료가 표면에 도달하는 속도와 관계없이 표면에서 일어나는 화학 반응의 속도에 의해서만 막의 성장이 영향을 받는다면 완벽한 단차 피복성을 얻을 수 있어 종횡비가 큰 구멍을 빈틈없이 메울 수 있다. If receiving the film growth is affected only by the rate of chemical reaction at the surface, regardless of the rate at which the chemical vapor deposition raw material to reach the surface can be filled with a large aspect ratio holes it can be obtained a complete step coverage without gaps. 촉매를 이용해서 일정한 온도에서 화학 반응을 더 빠르게 하거나 화학 반응이 일어나는데 필요한 온도를 낮출 수 있다는 것은 화학자들에게 잘 알려져 있다. The fact that by using a catalyst for faster reaction at a constant temperature or chemical reaction to reduce the temperature required ileonaneunde well known to chemists. 그러나 반도체 소자의 제조에 필요한 금속 막을 형성하는 데 촉매를 이용한 예는 지금까지 수 건에 불과하다. However, for example, with a catalyst to form a metal film necessary for producing a semiconductor device is only a number of cases to date. S. J 포토크닉 등은 다이아몬드 표면에 팔라듐 이온을 도입하여 (1,1,1,5,5,5- 헥사플루오르-2,4-펜탄디오나토)구리(I)-트리메틸비닐실란을 원료로 써서 171∼183℃의 기판 온도에서 팔라듐 이온 촉매가 도입된 부분에만 선택적으로 금속 구리를 화학 증착하였다(참고자료: SJ Potochnik, PE Pehrsson, DSY Hsu and JM Calvert, "팔라듐으로 활성화시킨 유기실리콘 막을 이용한 구리의 선택적인 화학 증착(Selective copper chemical vapor deposition using Pd-activated organosilane films)" 랑뮈어(Langmuir), vol. 11, No. 6, p1841 (1994)). S. J keunik picture and the like by introducing the palladium ions into the diamond surface (1,1,1,5,5,5-hexa fluoro-2,4-pentanedionate NATO), copper (I) - trimethyl vinyl silane as a raw material using palladium ions were introduced into the catalyst is only optional in the chemical vapor deposition of copper metal portion (reference at a substrate temperature of 171~183 ℃: SJ Potochnik, PE Pehrsson, DSY Hsu and JM Calvert, "using activate palladium organosilicon film selective chemical vapor deposition of copper (copper selective chemical vapor deposition using Pd-activated organosilane films) "ditch Muir (Langmuir), vol. 11, No. 6, p1841 (1994)). 이들의 방법은 다이아몬드 표면을 산화시키는 단계와; Their method includes the steps of oxidizing the diamond surface; 이것을 아미노실란 용액에 담가 다이아몬드 표면에 아미노 기를 고정하는 단계와; This step of the amino groups fixed to the surface of diamond immersed in an aminosilane solution and; 마스크를 놓고 자외선을 조사하여 자외선이 조사된 기판 표면의 아미노 기를 제거함으로써 패턴을 만드는 단계와; Place the mask is irradiated with ultraviolet rays by steps of creating a pattern by removing the amino groups of the substrate surface is irradiated with ultraviolet rays; 아미노 기에 팔라듐 촉매를 고정하는 단계와; The step of fixing the palladium catalyst and the amino groups; 구리를 화학 증착하는 단계로 이루어졌다. It was done by the method comprising chemical vapor deposition of copper. 이들은 이 방법을 다이아몬드 뿐만 아니라 실리콘과 석영(quartz) 표면에도 적용하였다고 보고하였다. These are a method was reported that as well as the diamond applied to silicon and quartz (quartz) surface. 그러나 이들의 방법은 기판 표면에 아미노 기와 팔라듐 촉매를 도입하기 위해 용액처리를 해야 하기 때문에 진공이 필요한 다른 반도체 제조 공정과 함께 쓰기 불편하다. However, these methods are inconvenient letter along with other semiconductor fabrication processes are required because the vacuum needs to be a solution process in order to introduce an amino group and a palladium catalyst to the surface of the substrate.

한편, O. 고츨레벤과 HW 뢰스키와 M. 스턱은 자외선 엑시머 레이저로 형성한 팔라듐 촉매 금속 패턴을 만들고 (트리메틸아민)트리히드리도알루미늄을 원료로 사용한 화학증착법으로 팔라듐 촉매 금속 패턴 위에만 선택적으로 알루미늄 미세 구조를 형성하였다(참고자료: O. Gottsleben, HW Roesky, and M. Stuke, "레이저로 형성한 팔라듐 전(前)핵형성 패턴 위에 (트리메틸아민)트리히드리도알루미늄으로부터 열 화학 증착법으로 알루미늄 미세 구조의 2단계 형성(Two-step generation of aluminum microstructures on laser-generated Pd pre-nucleation patterns using thermal CVD from (trimethylamine)trihydridoaluminum)", 첨단 재료(Advanced Materials), vol. 3, No. 4, p201 (1991)). On the other hand, O. gocheul Leuven and HW torpedo ski and M. stuck is to create a palladium catalyst metal pattern is formed by UV excimer laser (trimethylamine) tree hydroxyl Lido aluminum as a chemical vapor deposition method was used as the raw material only over a palladium catalyst, a metal pattern selectively to form an aluminum microstructure (reference: O. Gottsleben, HW Roesky, and M. Stuke, "before the formation of a laser palladium (前) over nucleation pattern (trimethylamine) tree hydroxyl Lido aluminum by thermal chemical vapor deposition from aluminum. step 2 of the fine structure formation (two-step generation of aluminum microstructures on laser-generated Pd pre-nucleation patterns using thermal CVD from (trimethylamine) trihydridoaluminum) ", advanced materials (advanced materials), vol. 3, No. 4, p201 (1991)). 또한 O. 레만과 M. 스턱은 알루미나 기판에 팔라듐 촉매 금속 막의 패턴을 만들고 액체인 트리에틸아민알란을 떨어뜨려 팔라듐 촉매 금속 패턴 위에만 선택적으로 알루미늄 막을 형성하였다(참고자료: O. Lehmann and M. Stuke, "크립톤플루오르 레이저로 형성한 팔라듐 패턴 위에 액체 선구물질을 이용한 2단계 알루미늄 박막 형성(Liquid precursor two-step aluminum thin-film deposition on KrF-laser patterned palladium)", 응용 물리학 속보(Applied Physics Letters), vol. 61, No. 17, p2027 (1992)). In addition, O. and M. Lehmann stuck was formed to create a palladium catalyst, a metal film pattern on the alumina substrate with an aluminum film selectively only on a liquid drop of triethyl amine Alan palladium catalyst metal pattern (reference: M. O. Lehmann and Stuke, "krypton palladium pattern 2 step aluminum thin film formation using a liquid precursor material on the formed of a fluorine laser (liquid precursor two-step aluminum thin-film deposition on KrF-laser patterned palladium)", Bulletin of Applied Physics (Applied Physics Letters) , vol. 61, No. 17, p2027 (1992)). 그러나, O. 고츨레벤 등이 사용한 레이저를 쪼여 선구 물질을 분해하여 팔라듐 금속 막을 형성하는 방법이나 O. 레만 등이 사용한 레이저 광화학증착법으로는 구멍이나 홈의 옆면에 빛을 쪼이기 어렵기 때문에 요철이 있는 표면에 골고루 촉매 막을 형성할 수 없다는 문제점이 있다. However, because of irregularities O. gocheul Leuven, etc. to decompose the precursor jjoyeo a laser with a laser photochemical vapor deposition method and the O. Lehmann, such as forming a metal film used with palladium are difficult to be squat with a light on the side of holes or grooves there is a problem can not be formed evenly on the catalyst film surface.

한편, V. 바스카란 등은 80∼200℃로 가열한 실리콘 단결정 기판에 (1,1,1, 5,5,5-헥사플루오르-2,4-펜탄디오나토)팔라듐(Ⅱ)과 수소 기체를 공급하여 오제(Auger) 전자 분광법으로 분석할 경우 탄소, 플루오르 또는 산소가 검출되지 않는 순수한 팔라듐 금속 막을 얻었다고 보고하였다(참고자료: V. Bhaskaran, MJ Hempden-Smith and TT Kodas, "(1,1,1,5,5,5-헥사플루오르-2,4-펜탄디오나토)팔라듐을 이용한 화학 증착법으로 형성한 팔라듐 박막(Palladium thin films grown by CVD from (1,1,1,5,5,5-hexafluoro-2,4-pentanedionato)Palladium(Ⅱ)", 화학 증착(Chemical Vapor Deposition), Vol. 3, No. 2, p85 (1997)). 이들은 수소 기체와 팔라듐 원료 화합물 사이의 기상반응이 심하기 때문에 승화시킨 팔라듐 화합물을 운반하기 위해 수소 기체 대신에 질소 기체를 사용하였는데, 이 경우에도 팔라듐 화합물을 운반하는 질소 On the other hand, V. Curran et bath at a silicon single crystal substrate is heated to 80~200 ℃ (1,1,1, 5,5,5- hexafluoro-2,4-pentanedionate fluorine NATO) palladium (Ⅱ) and hydrogen gas the supplied was reported Auger (Auger) were obtained when analyzing the electron spectroscopy of carbon, fluorine, or pure oxygen is not detected palladium metal membrane (reference: V. Bhaskaran, MJ and Smith Hempden-TT Kodas, "(1, 1,1,5,5,5- hexafluoro-2,4-pentanedionate NATO fluorine), a palladium thin film formed by a chemical vapor deposition method using a palladium (palladium thin films grown by CVD from (1,1,1,5,5, 5-hexafluoro-2,4-pentanedionato) palladium (ⅱ) ", CVD (chemical vapor deposition), Vol. 3, No. 2, p85 (1997)). these are a gas phase reaction between the hydrogen gas and a palladium raw material compound We used a nitrogen gas instead of hydrogen gas to carry a palladium compound in sublimation, because snarled, nitrogen carrying the palladium compound in this case 체와 수소 기체가 만나는 관의 안쪽에 팔라듐이 증착되기 때문에 관을 자주 청소해야만 했다고 보고하였다. 일반적으로 기상반응이 심한 화학 증착조건에서는 좋은 단차 피복성을 기대하기 어렵다. 상기 참고자료에 실린, 폭이 0.5㎛, 깊이가 2.0㎛인 홈이 있는 표면에 화학 증착한 팔라듐 막의 단면사진을 보면 홈의 바닥과 윗면에 증착된 팔라듐 막의 두께 차가 5배 이상인 것을 볼 수 있다. Since the palladium is deposited on the inside of the tube the body and the hydrogen gas meeting reported that have to clean the pipes frequently. In general, severe weather reactive chemical vapor deposition conditions, it is difficult to expect a good step coverage. Published in the reference material, the width the 0.5㎛, depth look at the cross-section of a groove 2.0㎛ the chemical vapor deposition on the surface of palladium in the palladium film photo film thickness deposited on the bottom and top of the Home difference can be seen that, over five times.

따라서, 본 발명의 기술적 과제는 기판 표면의 요철에도 불구하고 균일한 두께의 금속 막을 형성하는 방법을 제공하는 데 있다. Accordingly, the object of the present invention is to Despite unevenness of the substrate surface and provide a method of forming a metal film having a uniform thickness.

상기한 기술적 과제를 달성하기 위한 본 발명의 금속 막 형성방법은, 기판 위에 열 화학증착법(thermal CVD)으로 촉매 금속 막을 형성하는 단계와; Forming a metal film forming method of the present invention for achieving the above-described aspect, the catalytic metal by thermal chemical vapor deposition (thermal CVD) on a substrate film and; 상기 촉매 금속 막과는 다른 금속 막의 형성에 필요한 적어도 하나 이상의 원료를 기체상태로 준비하는 단계와; Comprising the steps of: preparing at least one raw material and the catalytic metal film is required for the other metal film is formed to a gaseous state; 상기 원료 기체를 상기 촉매 금속 막에 접촉시켜 상기 촉매 금속 막 위에 상기 다른 금속 막을 형성하는 단계를 구비하는 것을 특징으로 한다. Contacting the raw material gas to the catalytic metal film is characterized in that it comprises the steps of forming a film of other metal on the catalyst metal film.

이 경우, 상기 촉매 금속으로 팔라듐 또는 백금을 사용할 수 있다. In this case, it is possible to use palladium or platinum as the catalyst metal.

그리고, 상기 다른 금속으로는 알루미늄 또는 구리를 사용할 수 있다. In addition, the other metal may be used aluminum or copper.

이러한 촉매 금속 막을 2회 이상 형성하여, 금속 막의 증착 속도를 향상시킬 수도 있다. By forming a metal film such catalyst more than once, it is also possible to increase the deposition rate of the metal film. 또한, 화학 증착법에서 상기 촉매 금속 막을 형성하기 위한 원료들의 기체가 적어도 2 이상인 경우, 우수한 단차 피복성을 얻기 위하여 원료를 동시에 공급하지 않고 순차적으로 상기 기판에 공급하여 상기 촉매 금속 막을 형성하는 것이 바람직하다. Further, it is preferable to form when the gas of the raw material for forming a metal film wherein the catalyst is at least 2, without at the same time supply the raw material to obtain a good step coverage provided to the substrate sequentially a metal film wherein the catalyst in the chemical vapor deposition method .

또한, 상기 다른 금속의 막 형성 중에 또는 막 형성 후에 상기 촉매 금속을 확산시켜 촉매 금속과 다른 금속의 합금 막을 형성하는 것이 더욱 바람직하다. Further, after forming the film formation of the metal or other film by diffusing the metal catalyst it is more preferable to form an alloy film of a catalytic metal and another metal.

이하, 본 발명의 바람직한 실시예에 대해 설명하기로 한다. Description will now be given on an embodiment of the present invention.

먼저 금속 막이 형성될 실리콘 기판을 준비한 후, (1,1,1, 5,5,5-헥사플루오르-2,4-펜탄디오나토)팔라듐(Ⅱ)과 수소 기체를 순차적으로 공급하여 상기 실리콘 기판에 접촉시킴으로써 팔라듐 금속 박막을 형성한다. After preparing the first silicon substrate to be a metal film is formed, (1,1,1, 5,5,5- hexafluoro-2,4-pentanedionate fluorine NATO) palladium (Ⅱ) and the silicon substrate by a hydrogen gas supply in sequence by contacting the palladium metal to form a thin film.

본 실시예에서 촉매 금속으로는 팔라듐을 사용하였으나, 백금도 사용할 수 있다. In this embodiment, the catalyst metal is used, but the palladium, platinum may be used. 특히 팔라듐은 알루미늄이나 구리와 합금을 형성하면 유리한 점이 있다. Palladium is particularly formed when the aluminum or copper alloy and has an advantageous point. 순수한 알루미늄으로 반도체 소자의 배선을 형성한 경우에, 전기이동(electro migration)이 심해서 전류 밀도를 크게 할 수 없으므로 일반적으로 순수 알루미늄 대신에 구리를 약간 첨가한 Al-Cu 합금이 배선재료로 사용된다. In the case of forming a wiring of a semiconductor device with pure aluminum, electrophoresis (electro migration) is bad that can increase the current density not typically pure aluminum instead of copper Al-Cu alloy, a bit is added to this is used as a wiring material. 알루미늄에 팔라듐을 첨가한 합금도 전기이동을 방지하는 성질이 Al-Cu 합금보다 같거나 더 좋을 뿐 아니라 반응성 이온 식각(reactive ion etching) 공정에 적용할 경우 부식이 잘 되지 않는 장점이 있다는 연구 결과가 보고된 바 있다(참고자료: KP Rodbell, DB Knorr and JD Mis, "알루미늄-팔라듐 합금의 미세구조, 기계적 스트레스, 조직 및 전기이동 거동(The microstructure, mechanical stress, texture and electromigration behavior of Al-Pd Alloys", 전자재료지(Journal of Electronic Materials), Vol. 22, No. 6, p597 (1993)). 또한, 구리에 팔라듐을 0.5%만큼 첨가하면 전기 전도도에 영향을 거의 주지 않고도 구리의 산화를 효과적으로 방지할 수 있다는 연구결과도 보고된 바 있다(참고자료: KN Tu, JW Mayer, JM Poate 및 LJ Chen이 편집한 책 "Advanced Metallization For Future ULSI(Materials Research Society, 1996)"의 201쪽 이하에 수 Alloy was added to palladium on aluminum is also a study that that corrosion is not great advantages when applied to reactive ion etching (reactive ion etching) process as well as the property of preventing the electrophoretic greater than the Al-Cu alloy or better It has been reported (reference: KP Rodbell, DB Knorr and JD Mis, "al-microstructure of palladium alloy, mechanical stress, organizational and electrophoretic behavior (the microstructure, mechanical stress, texture and electromigration behavior of Al-Pd alloys "ECM paper (Journal of electronic materials), Vol. 22, No. 6, p597 (1993)). in addition, if the palladium to copper is added as 0.5% effectively the copper oxide without substantially affecting the electrical conductivity results that can be prevented also been reported (reference: KN Tu, JW Mayer, JM Poate, and LJ Chen is editing the book "Advanced Metallization for Future ULSI (materials research Society, 1996)" the number below 201 p. 된 P. Atanasova, V. Bhaskaran, T. Kodas 및 M. Hampden-Smith의 논문 "화학 증착법으로 형성한 구리 박막의 산화 저항(Oxidation resistance of copper alloy thin films formed by CVD)"). 따라서 팔라듐 촉매를 화학 증착 중이나 화학 증착 후에 확산시켜 배선 금속과 합금을 형성한다면 배선 금속의 전기 이동이나 산화를 막기 위한 별도의 공정이 필요없다는 장점이 있다. The Atanasova P., V. Bhaskaran, T. Kodas and Hampden-Smith M. paper "oxidation resistance of the copper thin film formed by chemical vapor deposition (Oxidation resistance of copper alloy thin films formed by CVD)"). Thus, a palladium catalyst If during the chemical vapor deposition it is diffused after the chemical vapor deposition to form the wiring metal and the alloy has the advantage that the need for a separate process to prevent the electromigration and oxidation of the interconnect metal.

본 실시예에서 팔라듐 금속 막을 형성할 때에, 이를 균일한 두께로 얇게 형성하였다. In the formation of the palladium metal layer in accordance with this embodiment, and it made thinner at a uniform thickness it. 왜냐하면, 촉매로 사용되는 금속은 배선재료로 사용되는 알루미늄이나 구리보다 전기저항이 더 크므로, 촉매 금속 막이 차지하는 두께가 얇을수록 제한된 두께의 금속 막에 많은 전류를 흘릴 수 있기 때문이다. This is because a metal catalyst is used as the electrical resistance is larger than the aluminum or copper is used as wiring material, the more the thickness of the catalytic metal film is occupied by thin, it can flow a large current to the limited thickness of the metal film. 따라서, 실리콘 기판의 온도를 원료 화합물들의 열분해 온도보다 낮게 유지하며 원료 화합물들을 순차적으로 공급하는 원자층 성장법(atomic layer deposition)을 이용하여 원료들 사이의 기상반응을 방지하며 표면 반응에 의해 균일한 두께의 팔라듐 금속 막을 형성하였다. Therefore, keep the temperature of the silicon substrate than the thermal decomposition temperature of the raw material compounds and using an atomic layer deposition method (atomic layer deposition) to sequentially supplied to the raw material compound to prevent the gas phase reaction between the raw material and a uniform by the surface reaction to form a metal palladium film with a thickness. 원료를 순차적으로 공급하면 동시에 공급하는 경우에 비해 증착 속도가 현저하게 떨어진다. Supplying the raw materials are sequentially compared with the case of supplying the same time as the deposition rate drops significantly. 그렇지만, 팔라듐 금속 막이 촉매 금속 막의 역할을 하기 때문에, 증착 속도가 늦어 극히 얇은 두께의 팔라듐 금속 막을 형성시키는 것이 오히려 장점이 된다. However, the palladium metal film is a rather advantage to form, because it acts as a catalyst metal film, a slow film deposition rate is extremely small thickness of the palladium metal. SJ 포토크닉 등의 보고에서 원자층 1층 이하의 팔라듐 이온 촉매가 효과적으로 구리의 화학 증착을 유도한 것을 볼 때, 수 원자층 두께의 팔라듐 금속 박막도 충분히 촉매작용을 할 것으로 생각된다. When you see the picture SJ palladium ion catalyst of less than 1 atomic layer layer in reports such as keunik effectively induced chemical vapor deposition of copper, palladium, a metal thin film of atom layer thickness can also be sufficiently considered that the catalytic action.

팔라듐 촉매 금속 막을 형성한 후에, 알루미늄 막의 형성에 필요한 원료들을 기체 상태로 준비하고, 이 원료 기체들을 팔라듐 촉매 금속 막에 접촉시키는 화학 증착법을 사용하여 팔라듐 촉매 금속 막 위에 알루미늄 막을 형성하였다. After the formation of the palladium catalytic metal film it was formed preparing the raw materials for the aluminum film is formed to a gaseous state, and the aluminum film on the palladium catalytic metal film using a chemical vapor deposition method of contacting the raw material gas to the palladium catalytic metal film. 이렇게 알루미늄 막을 화학증착하는 과정에서 가해지는 열에 의해 팔라듐 촉매 금속이 알루미늄 막으로 확산되어 합금 막이 형성되게 되는데, 이러한 합금 막을 반도체 소자용 배선 금속으로 사용한다면 금속의 전기이동이나 산화를 막기 위한 별도의 공정이 필요없기 때문에 반도체 소자의 제조시간(turn-around time)을 단축시킬 수 있다. Thus aluminum chemical vapor deposition of palladium catalyst metal by the heat applied in the process of the spread of an aluminum film having a film there is to be an alloy layer is formed, if using such an alloy film as an interconnect metal for semiconductor devices a separate process to prevent the electromigration and oxidation of the metal since there is no need it is possible to shorten the manufacturing time (turn-around time) for semiconductor devices. 물론, 공정 조건 상 알루미늄 막을 화학증착하는 과정에서 가해지는 열이 팔라듐 촉매 금속의 확산에 불충분하다면, 알루미늄 막 형성 후에 다시 열처리를 행해 합금 막을 형성할 수도 있다. Of course, processing conditions, if an aluminum heat applied in the process of chemical vapor deposition film is insufficient diffusion of the palladium metal catalyst, an aluminum film may be formed after forming the alloy film is performed again to heat treatment.

그 후에, 상기 알루미늄 막 위에 다시 팔라듐 촉매 금속 막을 형성하는 단계 및 그 위에 다시 알루미늄 막을 형성하는 단계를 순차적으로 1회 더 거쳐 실리콘 기판 위에 금속 막을 형성하는 공정을 완료하였다. After that, through the steps of forming an aluminum film thereon again to form a palladium catalyst metal film again on the aluminum film more once in sequence completed the step of forming a metal film on a silicon substrate. 이와 같이, 촉매 금속 막을 여러 번 사용한 이유는 O. 레만과 M. 스턱의 연구결과를 반영한 것이다. Thus, the reason for using a metal catalyst film several times, O. reflects the findings of Lehmann and M. Stuck. 이들은 액체 알루미늄 원료를 오래 팔라듐 금속 막과 접촉시켜도, 형성되는 알루미늄 막의 두께가 더 이상 증가하지 않고 포화된다고 보고하였다. It was reported to be saturated even when the aluminum film thickness is long in contact with a palladium metal layer of liquid aluminum raw material, and formed without any further incrementing. 이는 촉매 금속이 그 위에 형성되는 금속 막의 아래에 묻혀 증착 속도가 떨어지는 것에 기인한 결과로서, 이를 방지하기 위해 본 실시예에서는 다시 팔라듐 촉매 금속 막을 형성하고 그 위에 알루미늄 금속 막을 화학증착하여 전체적인 금속 막 증착 속도를 증가시킬 수 있었다. Which as a result is due to the catalytic metal deposition rates falling buried under the metal film formed thereon, in the present embodiment, the back palladium catalytic metal film is formed by depositing overall a metal film by chemical vapor deposition film of aluminum metal on it in order to prevent this, It was able to increase the speed.

따라서, 본 발명에 따르면, 요철이 심한 표면이나 종횡비가 큰 구멍에도 균일한 두께의 금속 막을 종래의 방법보다 쉽게 형성할 수 있다. Therefore, according to the present invention, even though it may be a metal film having a uniform thickness easily formed than the prior art methods the hole surface and the aspect ratio of severe irregularities large.

Claims (8)

  1. 기판 위에 열 화학증착법으로 촉매 금속 막을 형성하는 단계와; Forming a catalytic metal film by thermal chemical vapor deposition method on the substrate;
    상기 촉매 금속 막과는 다른 금속 막의 형성에 필요한 적어도 하나 이상의 원료를 기체 상태로 준비하는 단계와; Comprising the steps of: preparing at least one raw material and the catalytic metal film is required for the other metal film is formed to a gaseous state;
    상기 원료 기체를 상기 촉매 금속 막에 접촉시켜 상기 촉매 금속 막 위에 상기 다른 금속 막을 형성하는 단계를 구비하는 금속 막의 형성방법. Contacting the raw material gas to the catalytic metal film of the metal film forming method comprising: forming a film of other metal on the catalyst metal film.
  2. 제1항에 있어서, 상기 촉매 금속이 팔라듐 또는 백금인 것을 특징으로 하는 금속 막의 형성방법. The method of claim 1, wherein the metal film forming method characterized in that the catalytic metal is palladium or platinum.
  3. 제1항에 있어서, 상기 다른 금속이 알루미늄 또는 구리인 것을 특징으로 하는 금속 막의 형성방법. The method of claim 1, wherein the metal film forming method characterized in that the other metal is aluminum or copper.
  4. 제1항에 있어서, 상기 다른 금속 막의 형성단계 후에: The method of claim 1 wherein the other metal film forming step after:
    상기 다른 금속 막 위에 촉매 금속 막을 다시 형성하는 단계와; Comprising the steps of: re-forming a catalytic metal film on the other metal film;
    상기 다른 금속 막의 형성에 필요한 적어도 하나 이상의 원료를 기체상태로 준비하는 단계와; Comprising: preparing at least one raw material necessary for forming the other metal film in a gaseous state;
    상기 원료 기체를, 더 형성된 촉매 금속 막에 접촉시켜 그 위에 다른 금속 막을 다시 형성하는 단계를 순차적으로 적어도 1회 이상 더 진행하는 것을 특징으로 하는 금속 막의 형성방법. The metal film forming method to the raw material gas, characterized in that it further in contact with the catalyst metal film formed through the steps of forming a film of other metal on the back at least more than one time in sequence.
  5. 제1항 내지 제4항 중의 어느 한 항에 있어서, 상기 촉매 금속 막을 형성하기 위한 원료들의 기체가 적어도 2 이상인 경우, 이들을 교대로 상기 기판에 공급하여 상기 촉매 금속 막을 형성하는 것을 특징으로 하는 금속 막의 형성방법. Any one of claims 1 to 4, according to any one of, wherein when the gas of the raw material for forming a metal film above the catalyst at least 2 or more, these alternating with the metal film, characterized in that for forming and supplying to said substrate a metal film wherein the catalyst The method of forming.
  6. 제1항에 있어서, 상기 다른 금속의 막 형성 중에 또는 막 형성 후에 상기 촉매 금속을 확산시켜 촉매 금속과 다른 금속의 합금 막을 형성하는 것을 특징으로 하는 금속 막의 형성 방법. The method in the film formation of the other metal film or after the formation by diffusion of the catalyst metal forming the metal film, characterized in that the alloy to form a film of the catalyst metal and the other metal of claim 1.
  7. 제6항에 있어서, 상기 촉매 금속이 팔라듐인 것을 특징으로 하는 금속 막의 형성방법. The method of claim 6, wherein the metallic film forming method characterized in that said palladium metal catalyst.
  8. 제6항에 있어서, 상기 다른 금속이 알루미늄 또는 구리인 것을 특징으로 하는 금속 막의 형성방법. The method of claim 6, wherein the metallic film forming method characterized in that the other metal is aluminum or copper.
KR1019980035911A 1998-09-01 method of forming metal film KR100332364B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980035911A KR100332364B1 (en) 1998-09-01 method of forming metal film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019980035911A KR100332364B1 (en) 1998-09-01 method of forming metal film
PCT/KR1999/000500 WO2000013207A2 (en) 1998-09-01 1999-09-01 Method for forming a metal film

Publications (2)

Publication Number Publication Date
KR20000018353A true KR20000018353A (en) 2000-04-06
KR100332364B1 KR100332364B1 (en) 2002-09-18

Family

ID=

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100717086B1 (en) * 1999-03-09 2007-05-29 어플라이드 머티어리얼스, 인코포레이티드 A method for enhancing the adhesion of copper deposited by chemical vapor deposition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100717086B1 (en) * 1999-03-09 2007-05-29 어플라이드 머티어리얼스, 인코포레이티드 A method for enhancing the adhesion of copper deposited by chemical vapor deposition

Also Published As

Publication number Publication date
WO2000013207A3 (en) 2000-06-02
WO2000013207A2 (en) 2000-03-09

Similar Documents

Publication Publication Date Title
US3620833A (en) Integrated circuit fabrication
US3479237A (en) Etch masks on semiconductor surfaces
US3385729A (en) Composite dual dielectric for isolation in integrated circuits and method of making
TWI326113B (en) A method of forming a silicon oxynitride film with tensile stress
US8409985B2 (en) Methods for growing low-resistivity tungsten for high aspect ratio and small features
Aaltonen et al. Atomic layer deposition of noble metals: Exploration of the low limit of the deposition temperature
JP5005170B2 (en) Method for forming ultra-high quality silicon-containing compound layer
EP0070751B1 (en) Method for lpcvd co-deposition of metal and silicon to form metal silicide
US5733816A (en) Method for depositing a tungsten layer on silicon
US6468924B2 (en) Methods of forming thin films by atomic layer deposition
KR100415523B1 (en) Method of forming a semiconductor device
KR100871082B1 (en) System and method to form a composite film stack utilizing sequential deposition techniques
EP0373360B1 (en) Method and structure for providing improved insulation in VLSI and ULSI circuits
DE60125338T2 (en) Graded thin layers
EP0526779B1 (en) Pulsed gas plasma-enhanced chemical vapor deposition of silicon
TWI252510B (en) Method for forming metal films
TWI333234B (en) Integration of ald/cvd barriers with porous low k materials
US5442235A (en) Semiconductor device having an improved metal interconnect structure
KR100402085B1 (en) Process for plasma enhanced anneal of titanium nitride
TWI379347B (en) Methods of forming carbon-containing silicon epitaxial layers
TWI507560B (en) Oxygen-doping for non-carbon radical-component cvd films
US20050124154A1 (en) Method of forming copper interconnections for semiconductor integrated circuits on a substrate
US20030068881A1 (en) Method of depositing low k barrier layers
EP1135545B1 (en) Removing oxides or other reducible contaminants from a substrate by plasma treatment
KR100960755B1 (en) A method of depositing dielectric materials in damascene applications

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130305

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140228

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150302

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160303

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20170302

Year of fee payment: 16