KR102671821B1 - 시료의 수평방향으로 대물렌즈 움직임이 가능한 라만 프로브 - Google Patents

시료의 수평방향으로 대물렌즈 움직임이 가능한 라만 프로브 Download PDF

Info

Publication number
KR102671821B1
KR102671821B1 KR1020210166077A KR20210166077A KR102671821B1 KR 102671821 B1 KR102671821 B1 KR 102671821B1 KR 1020210166077 A KR1020210166077 A KR 1020210166077A KR 20210166077 A KR20210166077 A KR 20210166077A KR 102671821 B1 KR102671821 B1 KR 102671821B1
Authority
KR
South Korea
Prior art keywords
sample
objective lens
raman
excitation light
moving
Prior art date
Application number
KR1020210166077A
Other languages
English (en)
Other versions
KR20230078360A (ko
Inventor
안성일
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Priority to KR1020210166077A priority Critical patent/KR102671821B1/ko
Publication of KR20230078360A publication Critical patent/KR20230078360A/ko
Application granted granted Critical
Publication of KR102671821B1 publication Critical patent/KR102671821B1/ko

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics
    • G01N2021/6467Axial flow and illumination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics
    • G01N2021/6471Special filters, filter wheel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics
    • G01N2021/6478Special lenses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6484Optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/063Illuminating optical parts
    • G01N2201/0636Reflectors

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

본 발명은 시료의 수평방향으로 대물렌즈 움직임이 가능한 라만 프로브에 관한 것으로, 여기광을 방출하는 레이저 다이오드, 상기 여기광이 시료의 초점에 수렴하도록 하는 콜리메이터(Collimator) 렌즈, 상기 콜리메이터(Collimator) 렌즈로부터 수렴된 상기 여기광이 입사하면 입사각과 동일한 크기를 갖는 반사각으로 반사하는 반사거울, 상기 반사거울로부터 반사된 상기 여기광이 상기 시료에 입사되도록 시료를 고정하는 시료홀더, 상기 시료홀더에 고정된 시료로부터 반사된 상기 여기광을 발산하는 대물렌즈, 상기 대물렌즈를 상기 시료를 기준으로 수평방향과 수직방향으로 움직임으로써 상기 여기광의 경로를 미세 조정하는 대물렌즈 구동부, 상기 대물렌즈 구동부로부터 경로가 조정된 상기 여기광이 입사되면 생성된 라만 산란광을 포집하는 상기 대물렌즈 움직임이 가능한 집광부와 라만 산란을 분리하는 라만 필터를 포함하는 라만 프로브에 관한 것이다.

Description

시료의 수평방향으로 대물렌즈 움직임이 가능한 라만 프로브 {Raman Probe Capable of Moving The Objective Lens in the Horizontal Direction of The Sample}
본 발명은 시료의 수평방향으로 대물렌즈 움직임이 가능한 라만 프로브에 관한 것으로, 보다 구체적으로 시료에 여기광의 집속은 유지되는 범위에서 대물렌즈를 수평방향으로 움직여 시료의 초점에서 벗어나게 함으로써, 라만신호 대비 형광신호가 크게 나타나는 것을 방지하고 라만신호의 분해능을 향상시키는 시료의 수평방향으로 대물렌즈 움직임이 가능한 라만 프로브에 관한 것이다.
라만 분광 기법은 레이저를 대상 시료에 조사하고 이로부터 얻어지는 스펙트럼을 통해서 물질의 성분을 판별하는 분석 기법이다. 대상 시료에 단색 광원인 레이저를 조사하면 빛이 산란되는데, 이처럼 빛의 대부분은 레이저의 파장에 상응하는 신호이지만, 일부는 레이저의 파장에서 시료의 진동모드의 주파수에 해당하는 라만 변이(Raman Shift)가 되어 나오는 신호가 있다. 이 신호를 분석하면 시료의 분자나 결정의 형태 및 대칭성에 대한 정보를 알 수 있고, 시료의 결정화 정도를 파악할 수 있다. 이렇게 파장이 변하는 양상은 물질의 구조적 특징에 따라 다르게 나타나고 각각의 특정한 물질에 대해서 고유한 특성처럼 나타가기 때문에 라만 스펙트럼은 물질을 판단하는데 유용하게 사용된다.
다만, 라만분광기로부터 라만 스펙트럼을 얻는 과정에 있어서 시료의 장착 단계부터 시작하여, 장착된 시료의 검출 위치 이동, 광학 장치 부분의 주건 변경, 초점 조절 등의 과정이 수동으로 반복적으로 미세하게 진행되어야 하므로 작업자의 많은 시간과 노력이 소요되고, 부적절한 시험조건으로 라만 스펙트럼이 획득될 경우 라만신호 대비 형광신호가 상당히 크게 획득되어 확인하고자 하는 라만 신호를 정확하게 획득할 수 없고, 이에 라만신호의 분해능이 떨어지는 기술적 한계가 존재한다.
이와 관련하여, 관련문헌 1 내지 2는 광원을 샘플에 조사하여 라만 분광을 획득하거나 획득된 라만 분광 신호를 후보정할 수 있도록 하나 라만 스펙트럼을 획득하는 과정에서 신호의 분해능을 향상시킬 수 없는 기술적 한계가 존재한다. 따라서 종래 문제점을 해결할 수 있는 기술이 필요한 실정이다.
KR 10-2234113 KR 10-2088163
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로 라만신호 대비 형광신호가 크게 나타나는 것을 방지하고 라만신호의 분해능을 향상시킬 수 있도록 시료에 여기광의 집속은 유지되는 범위에서 대물렌즈를 수평방향으로 움직임이 가능하도록 하여 형광강도를 줄이고, 라만 신호의 분해능을 높인 라만 프로브를 얻고자 하는 것을 목적으로 한다.
상기 목적을 달성하기 위하여, 본 발명의 시료의 수평방향으로 대물렌즈 움직임이 가능한 라만 프로브는 여기광을 방출하는 레이저 다이오드; 상기 여기광이 시료의 초점에 수렴하도록 하는 콜리메이터(Collimator) 렌즈; 상기 콜리메이터(Collimator) 렌즈로부터 수렴된 상기 여기광이 입사하면 입사각과 동일한 크기를 갖는 반사각으로 반사하는 반사거울; 상기 반사거울로부터 반사된 상기 여기광이 상기 시료에 입사되도록 시료를 고정하는 시료홀더; 상기 시료홀더에 고정된 시료로부터 반사된 상기 여기광을 발산하는 대물렌즈; 상기 대물렌즈를 상기 시료를 기준으로 수평방향과 수직방향으로 움직임으로써 상기 여기광의 경로를 미세 조정하는 대물렌즈 구동부; 상기 대물렌즈 구동부로부터 경로가 조정된 상기 여기광이 입사되면 라만효과를 이용하여 상기 라만 산란광을 생성하는 라만필터; 및 상기 라만 산란광을 집광하는 집광렌즈;를 제공한다.
이상과 같이 본 발명에 의하면 시료에 여기광의 집속은 유지되는 범위에서 대물렌즈를 수평방향으로 움직여 집속되는 여기광 경로를 시료와 대물렌즈 사이에서만 변화시킴으로써, 추가적인 장비를 마련하거나 소프트웨어를 통해서 라만 스펙트럼을 차후 보정해야 하는 번거로움을 해소하고, 라만 프로브 자체에서 라만신호 대비 형광신호가 크게 나타나는 것을 방지하고 라만신호의 분해능을 향상시키는 효과가 있다.
도 1은 종래 라만 분광 시스템 내부 구성도이다.
도 2는 본 발명의 라만 프로브 내부 구성도이다.
도 3은 본 발명의 일실시예에 따른 대물렌즈 구동부 평면도이다.
도 4는 본 발명의 일실시예에 따른 대물렌즈 구동부 사시도이다.
도 5는 본 발명의 일실시예에 따라 레이저 다이오드에서 방출된 여기광이 시료에 조사되는 것을 표시한 도면이다.
도 6은 본 발명의 일실시예에 따른 반사거울 사시도 및 평면도이다.
도 7은 본 발명의 일실시예에 따른 반사거울의 제조과정을 표시한 도면이다.
도 8은 본 발명의 일실시예에 따른 라만 프로브 외부 도면이다.
도 9는 본 발명의 일실시예에 따라 아세톤(Acetone)을 시료로 얻은 라만 스펙트럼 그래프와 전압에 따라 시료에 조사되는 여기광의 위치변화를 표시한 도면이다.
도 10은 본 발명의 일실시예에 따라 톨루엔(Toluene)을 시료로 얻은 라만 스펙트럼 그래프이다.
도 11은 본 발명의 일실시예에 따라 아세톤(Acetone)을 시료로 얻은 라만 스펙트럼 그래프이다.
본 명세서에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.
다르게 정의되지 않는 한 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 본 발명에 따른 실시예를 첨부한 도면을 참조하여 상세히 설명하기로 한다. 도 1은 종래 라만 분광 시스템 내부 구성도이다. 도 2는 본 발명의 라만 프로브(100) 내부 구성도이다. 도 3은 본 발명의 일실시예에 따른 대물렌즈 구동부(160) 평면도이다. 도 4는 본 발명의 일실시예에 따른 대물렌즈 구동부(160) 사시도이다. 도 5는 본 발명의 일실시예에 따라 레이저 다이오드(110)에서 방출된 여기광이 시료에 조사되는 것을 표시한 도면이다. 도 6은 본 발명의 일실시예에 따른 반사거울(130) 사시도 및 평면도이다. 도 7은 본 발명의 일실시예에 따른 반사거울(130)의 제조과정을 표시한 도면이다. 도 8은 본 발명의 일실시예에 따른 라만 프로브(100) 외부 도면이다.
우선 도 1을 보면 종래 라만 분광 시스템은 레이저로부터 방출된 광이 포커싱 렌즈(Focusing Lens)에서 반사되어 빔 스플리터(Beam Splitter)로 이동된 후 대물렌즈(Microscope Objective)를 통해서 샘플에 닿게 된다. 그리고 샘플에 반사된 광은 다시 상기 빔 스플리터(Beam Splitter)로 이동된 후 노치필터(Notch Filter) 혹은 롱패스 필터(Long-pass filter 중 하나인 라만 필터를 거쳐 라만 분광기(Raman Spectrometer)로 입사함으로써 라만 스펙트럼을 획득할 수 있다.
여기서, 종래 라만 분광 시스템은 레이저 광의 초점을 맞추기 위해서 샘플 자체 또는 샘플이 놓인 기판을 자동 혹은 수동으로 상하방향으로 움직여야만 하는 기술적 한계가 존재한다. 이렇게 되면, 레이저 광의 산란이 강하게 일어나고 레이저 광에 의해 여기된 형광신호가 상당히 크게 획득된다. 더불어, 레이저 광이 렌즈에 집중되게 만드는 광경로가 짧은 경우 이러한 현상이 특히 심화되어 얻고자 하는 샘플의 라만신호가 불필요한 형광신호에 묻히게 되는 문제가 발생하게 된다.
이를 해결하고자, 종래에는 라만 필터를 사용하여 레이저 광을 차단하고 있지만 레이저 광의 일부만 차단할 뿐 상당한 레이저 광이 상기 라만 필터를 차단되지 못하고 통과하게 된다. 또한, 이를 해결하고자 추가적인 필터를 사용하거나 획득한 라만 스펙트럼을 소프트웨어적으로 후보정해야 하는 기술이 개발되었으나, 추가적인 장치 및 소프트웨어에 대한 비용부담이 발생한다.
이에, 본원발명의 라만 프로브(100)는 레이저 다이오드(110), 콜리메이터(Collimator) 렌즈(120), 반사거울(130), 시료홀더(140), 대물렌즈(150), 대물렌즈 구동부(160), 라만필터(170) 및 집광렌즈(180)를 포함함으로써, 시료에 광원의 집속은 유지되는 범위에서 대물렌즈(150)를 수평방향으로 움직여 집속되는 여기광 경로를 시료와 상기 대물렌즈(150) 사이에서만 변화시킴으로써, 라만신호 대비 형광신호가 크게 나타나는 것을 미연에 방지하고 라만신호의 분해능을 향상시킬 수 있다.
도 2를 보면서 보다 구체적으로 설명해보면, 상기 레이저 다이오드(110)는 단색의 여기광을 방출한다. 상기 콜리메이터(Collimator) 렌즈(120)는 상기 여기광이 시료의 초점에 수렴하도록 한다. 상기 여기광이 시준되기 전에는 한 지점에 입사되지 못하고 넓은 지점에 입사되게 되고, 상기 여기광이 상기 콜리메이터(Collimator) 렌즈(120)로부터 시준되면 한 지점에 입사되어 상기 반사거울(130) 표면의 특정 지점에 입사될 수 있는 효과가 있다.
다음으로, 상기 반사거울(130)은 상기 콜리메이터(Collimator) 렌즈(120)로부터 수렴된 상기 여기광이 입사하면 입사각과 동일한 크기를 갖는 반사각으로 반사한다.
가장 바람직하게, 상기 반사거울(130)은 일측 표면에 은(Ag) 원형 패턴을 구비함으로써, 입사 시 상기 여기광의 크기와 반사 시 상기 여기광의 크기가 동일한 것을 특징으로 한다. 보다 구체적으로, 상기 반사거울(130)은 패턴지(132)가 결합된 유리기판(131)의 표면에 은(Ag)이 도포되고, 은(Ag) 경화반응이 일어난 후 상기 패턴지(132)가 제거되고, 상기 패턴지(132)가 제거된 상기 유리기판(131)이 본체(190) 중심축에 형성된 천공부(191)의 크기와 유사하게 절단되어 제조됨으로써, 상기 입사광의 강도가 반사 시에도 유지될 수 있다.
일반적으로 광경로를 변경하는데 있어서 빔 스플리터(Beam Splitter)가 사용되나, 광의 절반만 반사되거나 투과되므로 이를 통과할 때마다 광의 강도가 절반 이상으로 감소하여 최종적으로 라만 분광기(Raman Spectrometer)를 통해서 라만 산란광을 관찰하기 어려운 문제점이 있다. 이를 해결하고자, 본원발명은 은(Ag)이 원형 패턴화 되어 표면에 경화된 반사거울(130)이 구비될 수 있다. 따라서 은(Ag)이 원형 패턴화 된 표면에서 상기 여기광이 반사될 수 있고, 나머지 은(Ag)이 경화되지 않은 부분은 모두 투과될 수 있다. 이때, 가장 바람직하게 상기 원형 패턴화되어 경화된 은(Ag) 부분의 사이즈는 상기 레이저 다이오드(110)의 빔 사이즈와 동일하거나 다소 큰 크기를 가질 수 있다. 한편, 상기 은(Ag)은 알루미늄(Al) 재질로 대체될 수 있다.
상기 반사거울(130)의 제조방법에 있어서, 도 7을 보면, 상기 패턴지(132)는 상업용 방수 라벨 용지이고 지름 2mm 정도의 원형 패턴이 포함될 수 있다. 상기 패턴지(132)가 부착된 유리기판(131) 표면에 은(Ag) 이온을 분사하고 표면에 부착될 수 있도록 염기성 용액에 약 5분 동안 담근다. 그리고 경화반응이 일어나면 상기 패턴지(132)를 제거한다. 그리고 폭 7mm, 너비 5mm 정도로 절단하면 일측 표면에 은(Ag) 원형 패턴이 포함된 상기 반사거울(130)이 제조될 수 있다.
도 6과 도 8을 보면, 상기 본체(190)의 상단은 광섬유(200)가 체결될 수 있도록 상기 광섬유(200)의 외주면과 대응되는 내주면을 가질 수 있고, 상기 본체(190)의 하단은 상기 레이저 다이오드(110), 콜리메이터(Collimator) 렌즈(120), 반사거울(130), 대물렌즈(150), 대물렌즈 구동부(160), 라만필터(170) 및 집광렌즈(180)가 체결될 수 있다, 따라서 본원발명의 상기 시료홀더(140)를 제외하고 일체형으로 형성될 수 있다. 그리고 상기 본체(190)의 중심축에는 천공부(191)가 구비되어 상기 여기광이 상기 광섬유(200)까지 도달할 수 있도록 할 수 있다.
다시 말하면, 상기와 같이 폭 7mm, 너비 5mm 정도로 절단되고 일측 표면에 은(Ag) 원형 패턴이 포함된 상기 반사거울(130)은 상기 본체(190)의 천공부(191)의 중심축과 일직선상에 위치할 수 있다. 이에 따라, 상기 반사거울(130)은 상기 여기광의 강도를 절감시키지 않고 강도를 유지하며 최종적으로 상기 광섬유(200)에 도달할 수 있도록 하는 현저한 효과가 있다.
다시 도 1을 보면, 상기 시료홀더(140)는 상기 반사거울(130)로부터 반사된 상기 여기광이 상기 시료에 입사되도록 시료를 고정한다.
한편, 상기 시료홀더(140)는 시료가 놓이기 전후에 상하좌우 방향으로 움직일 수 있지만, 상기 시료홀더(140)에 놓여진 시료가 상기 시료홀더(140)를 통해서 움직이더라도 여기광 경로가 변하지 않아 본 발명에서 주장하는 형광신호가 경감되거고 라만신호의 분해능이 향상되는 효과는 얻기 어렵다. 즉, 본원발명은 상기 시료홀더(140)를 통해서 시료를 움직이는 것보다 상기 대물렌즈 구동부(160)를 통해서 상기 대물렌즈(150) 자체를 움직이는데 초점이 맞춰져 있다.
다음으로, 상기 대물렌즈(150)는 상기 시료홀더(140)에 고정된 시료로부터 반사된 상기 여기광을 발산한다. 그리고 상기 대물렌즈 구동부(160)는 상기 대물렌즈(150)를 상기 시료를 기준으로 수평방향과 수직방향으로 움직임으로써 상기 여기광의 경로를 미세 조정한다.
도 3 내지 도 4를 보면, 상기 대물렌즈 구동부(160)는 상기 대물렌즈(150)가 z축 방향으로 움직일 수 있도록 전원부(167)로부터 인가되는 인가전압에 따라 자기장을 발생시키는 포커스 코일(163a, 163b) 및 상기 대물렌즈(150)의 일측에 구비되어 상기 자기장의 세기와 방향에 따라 상기 대물렌즈(150)를 상기 시료를 기준으로 수직방향으로 구동시키는 포커스 피벗(164)을 포함할 수 있다.
상기 대물렌즈 구동부(160)의 상기 포커스 코일(163a, 163b)은 전자석의 원리를 이용한 것으로, 가장 바람직하게 상기 대물렌즈(150)를 중심으로 양측에 각각 구비될 수 있다. 그리고 상기 포커스 코일(163a, 163b)은 코일이 감긴 중심축을 기준으로 상기 대물렌즈 구동부(160)에 구비된 자석(166a, 166b)과 수평으로 배치될 수 있다. 그리고 상기 포커스 코일(163a, 163b)과 연결된 회로를 통해서 -1.6V 내지 1.6V 범위이내의 상기 인가전압이 인가될 수 있다.
그러면 상기 포커스 코일(163a, 163b) 내 전류가 흐르게 되고 상기 포커스 코일(163a, 163b) 내부에는 일측 방향으로 자기장이 발생하게 된다. 이때 자기장은 인가되는 전류 방향에 따라서 N극과 S극이 결정되고, 상기 대물렌즈 구동부(160)에 구비된 자석(166a, 166b)의 N극과 S극의 방향이 동일하면 척력이 발생하고 방향이 상이하면 인력이 발생하게 된다.
즉, 상기 대물렌즈(150) 일측에 연결되어 구동 축 역할을 하는 상기 포커스 피벗(164)에 따라서 상기 대물렌즈(150)가 상하방향으로 구동할 수 있다. 이때, 가장 바람직하게 인가전압은 -1V 내지 1V 범위이내임으로 미세한 조정이 가능하다. 도 3 내지 도 4의 일실시예를 보면 상기 트레킹 피벗(162)과 포커스 피벗(164)은 일체형으로 구비되어 동시에 표시되어 있지만, 분리되어 구비될 수도 있고 특정 배치위치에 한정되지 않는다.
또한, 상기 대물렌즈 구동부(160)는 상기 대물렌즈(150)가 xy축 방향으로 움직일 수 있도록 상기 전원부(167)로부터 인가되는 인가전압에 따라 자기장을 발생시키는 트레킹 코일(161a, 161b, 161c, 161d) 및 상기 대물렌즈(150)의 일측에 구비되어 상기 자기장의 세기와 방향에 따라 상기 대물렌즈(150)를 상기 시료를 기준으로 수평방향으로 구동시키는 트레킹 피벗(162)을 포함할 수 있다.
상기 대물렌즈 구동부(160)의 상기 트레킹 코일(161a, 161b, 161c, 161d)은 역시나 전자석의 원리를 이용한 것으로, 가장 바람직하게 상기 대물렌즈(150)를 중심으로 양측에 각각 구비될 수 있다. 그리고 상기 트레킹 코일(161a, 161b, 161c, 161d)은 코일이 감긴 중심축을 기준으로 상기 대물렌즈 구동부(160)에 구비된 자석(166a, 166b)과 수직으로 배치될 수 있다. 그리고 상기 트레킹 코일(161a, 161b, 161c, 161d)과 연결된 회로를 통해서 -1.6V 내지 1.6V 범위이내의 상기 인가전압이 인가될 수 있다.
여기서, 상기 대물렌즈 구동부(160)는 상기 트레킹 코일(161a, 161b, 161c, 161d)과 상기 포커스 코일(163a, 163b) 중 적어도 하나를 구비할 수 있다. 즉, 도 3 내지 도 4와 같이 두 코일을 동시에 구비하게 된다면 상기 트레킹 코일(161a, 161b, 161c, 161d)은 상기 포커스 코일(163a, 163b) 일측면에 각 코일의 중심축이 수직을 이루도록 배치될 수 있다.
그러면 상기 트레킹 코일(161a, 161b, 161c, 161d) 내 전류가 흐르게 되고 상기 트레킹 코일(161a, 161b, 161c, 161d) 내부에는 일측 방향으로 자기장이 발생하게 된다. 이때 자기장은 인가되는 전류 방향에 따라서 N극과 S극이 결정되고, 상기 대물렌즈 구동부(160)에 구비된 자석(166a, 166b)의 N극과 S극의 방향이 동일하면 척력이 발생하고 방향이 상이하면 인력이 발생하게 된다.
즉, 상기 대물렌즈(150) 일측에 연결되어 구동 축 역할을 하는 상기 트레킹 피벗(162)에 따라서 상기 대물렌즈(150)가 좌우방향으로 구동할 수 있다. 이때, 가장 바람직하게 인가전압은 -1.6V 내지 1.6V 범위이내임으로 미세한 조정이 가능하다. 도 3 내지 도 4의 일실시예를 보면 상기 트레킹 피벗(162)과 포커스 피벗(164)은 일체형으로 구비되어 동시에 표시되어 있지만, 분리되어 구비될 수도 있고 특정 배치위치에 한정되지 않는다.
한편, 본원발명의 상기 트레킹 코일(161a, 161b, 161c, 161d)과 포커스 코일(163a, 163b) 중 적어도 하나는 자기장의 세기를 향상시키기 위해서 중심축 상에 철심(165a, 165b)을 구비할 수 있다. 이는, 구리(Cu) 등의 재질로 된 코일을 반복적으로 감아서 전자석을 만드는데 크기의 제약이 있다. 따라서 코일의 감는 횟수를 줄이고 자기장의 세기를 동일하게 하기 위해서 상기 철심(165a, 165b)을 구비할 수 있다.
다음으로, 상기 라만필터(170)는 상기 대물렌즈 구동부(160)로부터 경로가 조정된 상기 여기광이 입사되면 라만효과를 이용하여 상기 라만 산란광을 생성한다. 여기서, 라만 산란은 일반적으로 물질에 일정한 주파수의 빛을 조사한 경우 분자 고유 진동, 회전 에너지 또는 결정의 격자 진동 에너지만큼 달라진 주파수의 빛이 산란되는 현상이다.
다음으로, 상기 집광렌즈(180)는 상기 라만 산란광을 집광한다.
다음으로, 본원발명은 라만 스펙트럼을 획득할 수 있도록 집광된 상기 라만 산란광을 라만 분광기(Raman Spectrometer)(300)로 이동시키는 광섬유(200)를 더 포함할 수 있다.
한편, 본원발명의 상기 라만 프로브(100)는 종래 라만 분광 시스템과 비교하여 레이저 일체형 프로브라는 점에서 차이가 있다. 종래 라만 분광 시스템은 외부에 위피한 레이저를 라만 분광기(Raman Spectrometer)와 연결하여 사용하지만, 도 5와 같이 본원발명의 상기 라만 프로브(100)는 상기 레이저 다이오드(110)를 타 구성들과 일체형으로 구비함으로써 광원의 흔들림이 없고, 일정한 여기광 경로를 제공하여 보다 명확한 라만 분석 스펙트럼을 획득할 수 있는 현저한 효과가 있다.
다음으로, 본원발명의 라만 프로브(100)로부터 생성된 라만 산란광이 상기 광섬유(200)를 통해서 상기 라만 분광기(Raman Spectrometer)(300)로 이동됨으로써 획득한 라만 스펙트럼을 보면 다음과 같다.
도 9는 본 발명의 일실시예에 따라 톨루엔(Toluene)을 시료로 얻은 라만 스펙트럼 그래프와 전압에 따라 시료에 조사되는 여기광의 위치변화를 표시한 도면이다. 도 10은 본 발명의 일실시예에 따라 톨루엔(Toluene)을 시료로 얻은 라만 스펙트럼 그래프이다. 도 11은 본 발명의 일실시예에 따라 아세톤(Acetone)을 시료로 얻은 라만 스펙트럼 그래프이다.
도 9를 보면, 본 발명의 일실시예에서는 상기 대물렌즈 구동부(160)의 인가전압을 -1.6V, -0.8V, 0V, 0.8V, 1.6V로 했을 때 상기 여기광이 상기 시료에 닿는 부위가 미세하게 상이한 것을 확인할 수 있다. 이는, 앞서 언급한 것과 같이 상기 대물렌즈 구동부(160)의 트레킹 코일(161a, 161b, 161c, 161d)과 포커스 코일(163a, 163b) 중 적어도 하나가 전자석이 되어 인력 또는 척력의 크기에 따라 각 피벗을 움직인 결과이다.
여기서, 상기 포커스 코일(163a, 163b)은 상기 대물렌즈(150)와 시료 간의 사이거리를 조절함으로써 여기광의 초점을 맞출 수 있다. 상기 대물렌즈(150)와 시료 간의 사이거리가 멀어질수록 시료에 여기광이 집중되어 강한 라만신호를 허용할 수 있다. 반대로, 상기 대물렌즈(150)와 시료 간의 사이거리가 가까워질수록 시료에 여기광이 집중되지 못하고 퍼지게 되어 상대적으로 약한 라만신호를 허용할 수 있다.
가장 바람직하게 본 발명은 상기 포커스 코일(163a, 163b)을 통해서 초점을 맞춘 후 상기 트레킹 코일(161a, 161b, 161c, 161d)을 통해서 산란현상 및 형광신호를 현저히 줄일 수 있다. 즉, 상기 트레킹 코일(161a, 161b, 161c, 161d)에 소정의 인가전압이 인가되고 상기 트레킹 피벗(162)은 발생되는 인력 및 척력의 크기에 따라 움직임으로써 상기 대물렌즈(150)를 x 혹은 y방향 즉, 상기 시료를 기준으로 수평방향으로 움직이게 된다.
그러면, 짧은 광학경로로 인해 매우 강한 산란현상 및 형광신호가 나타나게 되는데, 상기 트레킹 코일(161a, 161b, 161c, 161d)을 통해서 인위적으로 광학 경로의 미세한 불일치를 발생시킴으로써, 강한 산란현상 및 형광신호를 현저히 줄일 수 있고, 이에 따라 라만신호의 분해능을 향상시킬 수 있는 현저한 효과가 있다. 이는 도 8에서 볼 수 있듯이 라만 스펙트럼 그래프에서 인가전압에 따라서 형광신호의 강도(Intensity)가 변하는 것을 확인할 수 있다.
또한, 상기 시료가 불규칙한 모양의 고체일 경우 상기 트레킹 코일(161a, 161b, 161c, 161d)을 통해서 보다 정확한 초점을 맞출 수 있는 효과가 있다.
다음으로, 도 10의 (a)를 보면, 톨루엔(Toluene) 시료를 대상으로 상기 대물렌즈 구동부(160)의 상기 트레킹 코일(161a, 161b, 161c, 161d)에 인가전압을 -1.6V, -0.8V, 0V, 0.8V, 1.6V로 가했을 때 획득한 라만 스펙트럼을 표시한 도면이다. 도 10의 (b)를 보면, 0.8V로 인가전압을 가했을 때 획득한 라만 스펙트럼을 확대한 도면이다. 표에서 종래 라만 분광 시스템(Ref)으로부터 획득한 파수와 본 발명의 일실시예로부터 획득한 파수의 차이가 10cm-1 이내일 수 있고, 톨루엔(Toluene) 내 각 물질을 판단하기 충분함을 확인하였다.
다음으로, 도 11의 (a)를 보면, 아세톤(Acetone) 시료를 대상으로 상기 대물렌즈 구동부(160)의 상기 트레킹 코일(161a, 161b, 161c, 161d)에 인가전압을 -1.6V, -0.8V, 0V, 0.8V, 1.6V로 가했을 때 획득한 라만 스펙트럼을 표시한 도면이다. 도 11의 (b)를 보면, 1.6V로 인가전압을 가했을 때 획득한 라만 스펙트럼을 확대한 도면이다. 표에서 종래 라만 분광 시스템(Ref)으로부터 획득한 파수와 본 발명의 일실시예로부터 획득한 파수의 차이가 10cm-1 이내일 수 있고, 아세톤(Acetone) 시료 각 물질을 판단하기 충분함을 확인하였다.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 으로 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.
100.. 라만 프로브
110.. 레이저 다이오드
120.. 콜리메이터(Collimator) 렌즈
130.. 반사거울
131.. 유리기판
132.. 패턴지
140.. 시료홀더
150.. 대물렌즈
160.. 대물렌즈 구동부
161a, 161b, 161c, 161d.. 트레킹 코일
162.. 트레킹 피벗
163a, 163b.. 포커스 코일
164.. 포커스 피벗
165a, 165b.. 철심
166a, 166b.. 자석
167.. 전원부
170.. 라만필터
180.. 집광렌즈
190.. 본체
191.. 천공부
200.. 광섬유
300.. 라만 분광기(Raman Spectrometer)

Claims (5)

  1. 여기광을 방출하는 레이저 다이오드;
    상기 여기광이 시료의 초점에 수렴하도록 하는 콜리메이터(Collimator) 렌즈;
    상기 콜리메이터(Collimator) 렌즈로부터 수렴된 상기 여기광이 입사하면 입사각과 동일한 크기를 갖는 반사각으로 반사하는 반사거울;
    상기 반사거울로부터 반사된 상기 여기광이 상기 시료에 입사되도록 시료를 고정하는 시료홀더;
    상기 시료홀더에 고정된 시료로부터 반사된 상기 여기광을 발산하는 대물렌즈;
    상기 대물렌즈를 상기 시료를 기준으로 수평방향과 수직방향으로 움직임으로써 상기 여기광의 경로를 미세 조정하는 대물렌즈 구동부;
    상기 대물렌즈 구동부로부터 경로가 조정된 상기 여기광이 입사되면 라만효과를 이용하여 상기 라만 산란광을 생성하는 라만필터; 및
    상기 라만 산란광을 집광하는 집광렌즈;를 포함하고,
    상기 반사거울은,
    일측 표면에 은(Ag) 원형 패턴을 구비함으로써, 입사 시 상기 여기광의 크기와 반사 시 상기 여기광의 크기가 동일한 것을 특징으로 하는 시료의 수평방향으로 대물렌즈 움직임이 가능한 라만 프로브.
  2. 제 1항에 있어서,
    라만 스펙트럼을 획득할 수 있도록 집광된 상기 라만 산란광을 라만 분광기(Raman Spectrometer)로 이동시키는 광섬유;를 더 포함하는 것을 특징으로 하는 시료의 수평방향으로 대물렌즈 움직임이 가능한 라만 프로브.
  3. 제 1항에 있어서,
    상기 대물렌즈 구동부는,
    전원부로부터 인가되는 인가전압에 따라 자기장을 발생시키는 포커스 코일; 및
    상기 대물렌즈의 일측에 구비되어 상기 자기장의 세기와 방향에 따라 상기 대물렌즈를 상기 시료를 기준으로 수직방향으로 구동시키는 포커스 피벗;을 포함하는 것을 특징으로 하는 시료의 수평방향으로 대물렌즈 움직임이 가능한 라만 프로브.
  4. 제 1항에 있어서,
    상기 대물렌즈 구동부는,
    전원부로부터 인가되는 인가전압에 따라 자기장을 발생시키는 트레킹 코일; 및
    상기 대물렌즈의 일측에 구비되어 상기 자기장의 세기와 방향에 따라 상기 대물렌즈를 상기 시료를 기준으로 수평방향으로 구동시키는 트레킹 피벗;을 포함하는 것을 특징으로 하는 시료의 수평방향으로 대물렌즈 움직임이 가능한 라만 프로브.
  5. 삭제
KR1020210166077A 2021-11-26 2021-11-26 시료의 수평방향으로 대물렌즈 움직임이 가능한 라만 프로브 KR102671821B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210166077A KR102671821B1 (ko) 2021-11-26 2021-11-26 시료의 수평방향으로 대물렌즈 움직임이 가능한 라만 프로브

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210166077A KR102671821B1 (ko) 2021-11-26 2021-11-26 시료의 수평방향으로 대물렌즈 움직임이 가능한 라만 프로브

Publications (2)

Publication Number Publication Date
KR20230078360A KR20230078360A (ko) 2023-06-02
KR102671821B1 true KR102671821B1 (ko) 2024-05-31

Family

ID=86755729

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210166077A KR102671821B1 (ko) 2021-11-26 2021-11-26 시료의 수평방향으로 대물렌즈 움직임이 가능한 라만 프로브

Country Status (1)

Country Link
KR (1) KR102671821B1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147745A (ja) 2003-11-12 2005-06-09 Shimadzu Corp 近接場散乱光測定装置
JP2007508097A (ja) 2003-10-17 2007-04-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 流体の特性を決定する方法及び分光システム
JP2007212170A (ja) * 2006-02-07 2007-08-23 Funai Electric Co Ltd 蛍光検出装置
KR101334183B1 (ko) * 2007-06-01 2013-12-02 삼성전자주식회사 미세 반응을 위한 형광 검출 모듈과 이를 구비한 형광 검출시스템
US20150346102A1 (en) * 2014-06-03 2015-12-03 Innovative Photonic Solutions, Inc. Compact Raman Probe Integrated with Wavelength Stabilized Diode Laser Source

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11879846B2 (en) 2018-02-08 2024-01-23 Answeray Inc. Raman spectroscopy method and apparatus using broadband excitation light
KR102461187B1 (ko) * 2018-03-09 2022-11-01 삼성전자주식회사 라만 프로브, 라만 스펙트럼 획득 장치, 라만 프로브를 이용한 라만 스펙트럼 획득 방법 및 표적 물질 분포 탐지 방법
KR102088163B1 (ko) 2019-06-18 2020-03-12 밸업 주식회사 라만분광법을 이용한 휴대용 농식품 미량성분 측정 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007508097A (ja) 2003-10-17 2007-04-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 流体の特性を決定する方法及び分光システム
JP2005147745A (ja) 2003-11-12 2005-06-09 Shimadzu Corp 近接場散乱光測定装置
JP2007212170A (ja) * 2006-02-07 2007-08-23 Funai Electric Co Ltd 蛍光検出装置
KR101334183B1 (ko) * 2007-06-01 2013-12-02 삼성전자주식회사 미세 반응을 위한 형광 검출 모듈과 이를 구비한 형광 검출시스템
US20150346102A1 (en) * 2014-06-03 2015-12-03 Innovative Photonic Solutions, Inc. Compact Raman Probe Integrated with Wavelength Stabilized Diode Laser Source

Also Published As

Publication number Publication date
KR20230078360A (ko) 2023-06-02

Similar Documents

Publication Publication Date Title
EP1430485B1 (de) Vorrichtung und Verfahren für ein Rastersondenmikroskop
CN106383105B (zh) 可自动调整测样距离的拉曼光谱测量装置与方法
RU2016589C1 (ru) Устройство для облучения поверхности лазерным излучением
DE102007024075B4 (de) Durchstimmbares akusto-optisches Filterelement, einstellbare Lichtquelle, Mikroskop und akusto-optischer Strahlteiler
WO2023217518A1 (de) Magnetfeldsensor auf basis von spinresonanzen
EP1615064B1 (de) Reflektiver Phasenfilter für ein Rastermikroskop
US20210011266A1 (en) Improved scanning optical microscope
JP2011203281A (ja) 顕微鏡システム
US7586606B2 (en) Near-field polarized-light measurement apparatus
US20040190134A1 (en) Time resolved fluorescence microscope
DE102009059260A1 (de) Versetzungssensor
CN113008849A (zh) 紫外-近红外宽波段微区光致发光光谱测试装置
DE102007056944B4 (de) Lumineszenz-Messgerät zur ortsaufgelösten Messung von Halbleiterproben
KR102671821B1 (ko) 시료의 수평방향으로 대물렌즈 움직임이 가능한 라만 프로브
JP4800655B2 (ja) 光測定装置
JPH08184552A (ja) 多波長光光学顕微鏡
DE112010004624B4 (de) Optische Vorrichtung mit einem Phasenfilter und Rastermikroskop mit einem Phasenfilter
JP2008299146A (ja) 共焦点顕微分光装置
JP3210227B2 (ja) レーザアブレーション分析装置
JP2004125454A (ja) 近接場分光装置及び光ファイバプローブの作成方法
JP2012038805A (ja) 電界分布またはキャリア分布を高次高調波の強度に基づいて検出する検出装置
WO1999003008A1 (de) Vorrichtung zur optischen erfassung von proben
CN110966928B (zh) 激光加工形态性能时间分辨差动共焦光谱测量方法及装置
JP4614495B2 (ja) 二重共鳴吸収顕微鏡
JPH05141961A (ja) 原子間力顕微鏡

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant