KR102649805B1 - Active Blast Furnace Slag Fine Powder Containing Slag Stimulanting Materials - Google Patents

Active Blast Furnace Slag Fine Powder Containing Slag Stimulanting Materials Download PDF

Info

Publication number
KR102649805B1
KR102649805B1 KR1020220151382A KR20220151382A KR102649805B1 KR 102649805 B1 KR102649805 B1 KR 102649805B1 KR 1020220151382 A KR1020220151382 A KR 1020220151382A KR 20220151382 A KR20220151382 A KR 20220151382A KR 102649805 B1 KR102649805 B1 KR 102649805B1
Authority
KR
South Korea
Prior art keywords
slag
blast furnace
fine powder
stimulant
carbonate
Prior art date
Application number
KR1020220151382A
Other languages
Korean (ko)
Inventor
이재환
윤인근
박종호
박천진
Original Assignee
(주)에스피에스엔에이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에스피에스엔에이 filed Critical (주)에스피에스엔에이
Priority to KR1020220151382A priority Critical patent/KR102649805B1/en
Priority to KR1020230068306A priority patent/KR20240070380A/en
Application granted granted Critical
Publication of KR102649805B1 publication Critical patent/KR102649805B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/14Cements containing slag
    • C04B7/147Metallurgical slag
    • C04B7/153Mixtures thereof with other inorganic cementitious materials or other activators
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/0006Waste inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • C04B22/062Oxides, Hydroxides of the alkali or alkaline-earth metals
    • C04B22/064Oxides, Hydroxides of the alkali or alkaline-earth metals of the alkaline-earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/10Acids or salts thereof containing carbon in the anion
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • C04B22/142Sulfates
    • C04B22/143Calcium-sulfate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • C04B22/142Sulfates
    • C04B22/147Alkali-metal sulfates; Ammonium sulfate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/006Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mineral polymers, e.g. geopolymers of the Davidovits type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/14Cements containing slag
    • C04B7/147Metallurgical slag
    • C04B7/153Mixtures thereof with other inorganic cementitious materials or other activators
    • C04B7/17Mixtures thereof with other inorganic cementitious materials or other activators with calcium oxide containing activators
    • C04B7/19Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/52Grinding aids; Additives added during grinding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00017Aspects relating to the protection of the environment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • Y02P40/18Carbon capture and storage [CCS]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

본 발명은 이산화탄소를 탈황석고에 고정하여 생성된 탄산화물, 제철공정 부산물 등을 원료로 활용한 슬래그 자극재를 포함한 활성 고로슬래그 미분말에 관한 것이다.
본 발명은 「고로 수쇄슬래그 94~97 wt%; 슬래그 자극재 2~5 wt%; 및 석회석 1 wt% 이내(0 wt% 제외)를 혼합·분쇄한 것으로서, 상기 슬래그 자극재는 정유공정에 적용되는 순환유동층 연소(CFBC : Circulating Fluidized Bed Combustion) 보일러에서 생성된 정유부산애시인 탈황석고를 물(H2O) 및 이산화탄소(CO2)와 반응시킨 생성물을 85~105℃로 건조시킨 후, 뭉쳐져 있는 덩어리를 분말도 3,000~4,500 ㎠/g 이 되도록 해쇄(解碎)함으로써 제조된 탄산화물을 포함하고, 상기 탄산화물은 XRF 분석 기준으로 CaO가 40~45 wt% 함유되어 있고, SO3 가 25~30 wt% 함유되어 있는 것을 특징으로 하는 활성 고로슬래그 미분말」을 제공한다.
The present invention relates to activated blast furnace slag fine powder containing a slag stimulant using carbonates produced by fixing carbon dioxide in desulfurized gypsum and by-products of the steelmaking process as raw materials.
The present invention relates to “blast furnace crushed slag 94 to 97 wt%; Slag stimulant 2~5 wt%; and limestone within 1 wt% (excluding 0 wt%) mixed and crushed, and the slag stimulant is desulfurized gypsum, which is oil refinery ash generated in a Circulating Fluidized Bed Combustion (CFBC) boiler applied in the oil refining process. Carbonate prepared by drying the product reacted with water (H 2 O) and carbon dioxide (CO 2 ) at 85-105°C, and then pulverizing the agglomerated lumps to a powder fineness of 3,000-4,500 cm2/g. It provides an activated blast furnace slag fine powder, characterized in that the carbonate contains 40 to 45 wt% of CaO and 25 to 30 wt% of SO 3 based on XRF analysis.

Description

슬래그 자극재를 포함한 활성 고로슬래그 미분말{Active Blast Furnace Slag Fine Powder Containing Slag Stimulanting Materials}Active blast furnace slag fine powder containing slag stimulant {Active Blast Furnace Slag Fine Powder Containing Slag Stimulanting Materials}

본 발명은 이산화탄소를 탈황석고에 고정하여 생성된 탄산화물, 제철공정 부산물 등을 원료로 활용한 슬래그 자극재를 포함한 활성 고로슬래그 미분말에 관한 것이다.The present invention relates to activated blast furnace slag fine powder containing a slag stimulant using carbonates produced by fixing carbon dioxide in desulfurized gypsum and by-products of the steelmaking process as raw materials.

온실가스로 인한 기후 변화는 전 세계적인 문제이다. 각 산업 분야에서 CO2 배출량 저감을 위한 기술적 노력이 이루어지고 있는 가운데, 시멘트 산업 분야에서는 소성 공정에서 다량의 CO2가 배출되는 시멘트를 대체할 수 있는 고로슬래그, 플라이애시, 석분슬러지 등 산업부산물에 관한 연구가 활발히 이루어지고 있다.Climate change caused by greenhouse gases is a global problem. While technological efforts are being made to reduce CO2 emissions in each industrial field, the cement industry is using industrial by-products such as blast furnace slag, fly ash, and stone dust sludge to replace cement, which emits a large amount of CO2 during the firing process. Research on this topic is actively being conducted.

위 산업부산물 중 고로슬래그는 철, 탄소, 석회석 등의 건설재료로 재활용이 가능한 유효한 성분을 함유하고 있어 미분말화하여 시멘트의 품질을 개선하는데 많은 이점을 가지고 있다. 일반 시멘트의 일정량을 고로슬래그 미분말로 치환·혼합하는 경우 콘크리트의 유동특성, 건조수축, 장기강도, 내동해성, 내열성 등의 성능이 개선된다. Among the above industrial by-products, blast furnace slag contains effective components that can be recycled into construction materials such as iron, carbon, and limestone, and has many advantages in improving the quality of cement by pulverizing it into fine powder. When a certain amount of general cement is replaced and mixed with blast furnace slag fine powder, the performance of concrete such as flow characteristics, drying shrinkage, long-term strength, freeze-thaw resistance, and heat resistance is improved.

다만, 고로슬래그 미분말을 결합재로 사용함에 따라 일반 시멘트 사용 시 대비 초기강도 저하 문제가 발생하므로, 잠재수경성 반응을 촉진하는 알칼리 자극재 결합재 성분으로 포함시킬 필요가 있었으며, 열병합 발전소, 정유공장 등에서 발생하는 산업부산물인 탈황석고가 고로슬래그 미분말의 알칼리 자극재로 활용되어 왔다.However, as fine powder of blast furnace slag is used as a binder, there is a problem of lowering the initial strength compared to the use of general cement, so it was necessary to include an alkali stimulant that promotes latent hydraulic reaction as a binder component, and it is necessary to include alkaline stimulant as a binder component that promotes latent hydraulic reaction. Desulfurized gypsum, an industrial by-product, has been used as an alkali stimulant for blast furnace slag fine powder.

1. 등록특허 10-1286030 "정유부산 애시를 함유하는 고로슬래그 시멘트 조성물"1. Registered Patent 10-1286030 “Blast furnace slag cement composition containing refined ash” 2. 등록특허 10-2458784 "온실가스 배출의 저감을 위한 순환 자원을 이용한 무기 화합물의 제조방법"2. Registered Patent 10-2458784 “Method for producing inorganic compounds using recycled resources to reduce greenhouse gas emissions” 3. 등록특허 10-2414541 "반응기 및 이를 포함하는 탄산화 장치"3. Registered Patent 10-2414541 “Reactor and carbonation device including the same” 2. 등록특허 10-1482017 "CO2 포집 중간 생성물을 이요한 탈황 석고의 탄산화 반응으로부터의 순수 방해석 합성 방법"2. Registered Patent 10-1482017 “Method for synthesizing pure calcite from carbonation reaction of desulfurized gypsum using CO2 capture intermediate product” 3. 등록특허 10-0934379 "유기성 바인더를 이용한 제철 소결용 결합제 및 제조방법과 소결결합제를 이용한 소결 공정 부산물처리방법"3. Registered Patent 10-0934379 “Binder and manufacturing method for steel sintering using an organic binder and method for processing by-products of the sintering process using a sintering binder”

1. 송경선, 김원백, 박상원, 서창열, 안지환, "배연 탈황석고 탄산화반응으로 생성된 고순도 탄산칼슘의 상변화", 한국공업화학회 연구논문 초록집 2016권1호, 2016.1. Song Gyeong-seon, Kim Won-baek, Park Sang-won, Seo Chang-yeol, and Ahn Ji-hwan, "Phase change of high-purity calcium carbonate produced by flue gas desulfurization gypsum carbonation reaction", Korea Society of Industrial Chemistry Research Paper Abstract Collection 2016, No. 1, 2016. 2. 이명규, "이산화탄소 저감을 위한 탈황석고의 광물탄산화 연구", 과학기술연합대학원대학교 박사학위논문, 2013. 2. Myeong-gyu Lee, “Study on mineral carbonation of desulfurized gypsum for carbon dioxide reduction”, PhD thesis, University of Science and Technology, 2013.

본 발명은 시멘트를 대체하는 방식의 소극적 CO2 저감 기술에서 벗어나, CO2를 고체 물질에 고정시키는 방식의 적극적 CO2 저감 기술을 적용한 것으로, CO2를 탈황석고에 고정시킨 탄산화물을 슬래그 자극재로 활용하는 기술 수단을 제공함에 그 목적이 있다.The present invention moves away from the passive CO 2 reduction technology that replaces cement and applies an active CO 2 reduction technology that fixes CO 2 in a solid material. Carbonate that fixes CO 2 in desulfurized gypsum is used as a slag stimulant. The purpose is to provide technical means for use.

전술한 과제 해결을 위해 본 발명은 「고로 수쇄슬래그 94~97 wt%; 슬래그 자극재 2~5 wt%; 및 석회석 1 wt% 이내(0 wt% 제외)를 혼합·분쇄한 것으로서, 상기 석회석은 분쇄조제 역할을 수행하고, 상기 슬래그 자극재는 정유공정에 적용되는 순환유동층 연소(CFBC : Circulating Fluidized Bed Combustion) 보일러에서 생성된 정유부산애시인 탈황석고를 물(H2O) 및 이산화탄소(CO2)와 반응시킨 생성물을 85~105℃로 건조시킨 후, 뭉쳐져 있는 덩어리를 분말도 3,000~4,500 ㎠/g 이 되도록 해쇄(解碎)함으로써 제조된 탄산화물을 포함하고, 상기 탄산화물은 XRF 분석 기준으로 CaO가 40~45 wt% 함유되어 있고, SO3 가 25~30 wt% 함유되어 있는 것을 특징으로 하는 활성 고로슬래그 미분말」을 제공한다.In order to solve the above-mentioned problem, the present invention is a mixture of "blast furnace crushed slag 94-97 wt%; Slag stimulant 2~5 wt%; and limestone within 1 wt% (excluding 0 wt%) mixed and crushed. The limestone serves as a grinding aid, and the slag stimulant is used in a Circulating Fluidized Bed Combustion (CFBC) boiler applied to the oil refining process. After reacting desulfurized gypsum, which is oil refinery ash produced in , with water (H 2 O) and carbon dioxide (CO 2 ), the product is dried at 85 to 105°C, and then the aggregated lump is ground to a fineness of 3,000 to 4,500 ㎠/g. An active blast furnace comprising carbonates produced by disintegration, wherein the carbonates contain 40 to 45 wt% CaO and 25 to 30 wt% SO 3 based on XRF analysis. Slag fine powder” is provided.


상기 슬래그 자극재는 망초(Na2SO4)를 25 wt% 이하(0 wt% 제외) 포함하거나, 무수석고(CaSO4)를 80 wt% 이하(0 wt% 제외) 포함할 수 있다.

The slag stimulant may include 25 wt% or less (excluding 0 wt%) of Na 2 SO 4 or 80 wt% or less (excluding 0 wt%) of anhydrous gypsum (CaSO 4 ).

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

본 발명의 효과는 다음과 같다.The effects of the present invention are as follows.

1. CO2를 탈황석고에 고정시켜 슬래그 자극재를 제조함에 따라 CO2 배출량을 적극적으로 저감시킬 수 있다.1. By fixing CO 2 in desulfurized gypsum to manufacture slag stimulant, CO 2 emissions can be actively reduced.

2. 종래의 탈황석고 대비 동등 이상의 효과를 나타내는 슬래그 자극재를 제공함에 따라 고로슬래그 미분말 사용을 더욱 촉진시켜, 시멘트 사용량 감소에 따른 CO2 배출량 저감에 기여할 수 있다.2. By providing a slag stimulant that has an effect equal to or greater than that of conventional desulfurized gypsum, it can further promote the use of blast furnace slag fine powder and contribute to reducing CO 2 emissions by reducing cement usage.

3. 초기 강도 발현 성능이 향상된 활성 고로슬래그 미분말을 제공한다.3. Provides activated blast furnace slag fine powder with improved initial strength development performance.

[도 1]은 탄산화물 제조 공정 모식도이다.
[도 2]는 분말 상태의 탄산화물 사진이다.
[도 3]은 정유부산애시와 탄산화물의 XRD 성분분석 그래프이다.
[도 4]는 정유부산애시와 탄산화물의 XRF 화학분석 비교표이다.
[Figure 1] is a schematic diagram of the carbonate production process.
[Figure 2] is a photograph of carbonate in powder form.
[Figure 3] is an XRD component analysis graph of oil refinery ash and carbonate.
[Figure 4] is a comparative table of XRF chemical analysis of oil refinery ash and carbonate.

탈황석고는 석탄 등의 연료에 포함된 황(S) 성분이 연소하면서 발생하는 황산화물(SOx)을 흡수제(주로 석회석)에 반응시켜 제거하는 공정에서 발생되는 부산물로, CaSO4 및 CaO가 주성분으로 함유되어 있다. CaO 성분은 고로슬래그 미분말의 잠재수경성 반응을 촉진하는 효과를 발휘한다. 따라서 탈황석고는 시멘트 대체재 내지 혼화재를 조성하는 성분으로 활용되고 있다.Desulfurized gypsum is a by-product generated in the process of removing sulfur oxides (SOx) generated when the sulfur (S) component contained in fuel such as coal is burned by reacting it with an absorbent (mainly limestone). CaSO 4 and CaO are the main components. It is contained. The CaO component has the effect of promoting the latent hydraulic reaction of blast furnace slag fine powder. Therefore, desulfurized gypsum is used as a cement substitute or an ingredient in admixtures.

정유공정에는 유해물질 대기 방출을 방지하기 위해 순환유동층 연소(CFBC : Circulating Fluidized Bed Combustion) 보일러를 적용하며, 유동층 연소로에서 코크스(Cokes, C)와 석회석(CaCO3)이 함께 연소된 후 발생하는 정유부산애시도 탈황석고라 칭할 수 있다.In the oil refining process, a Circulating Fluidized Bed Combustion (CFBC) boiler is applied to prevent the release of hazardous substances into the air, and the waste gas generated after coke (C) and limestone (CaCO 3 ) are burned together in the fluidized bed combustion furnace. Oil refinery ash can also be called desulfurized gypsum.

탈황석고는 CaO 성분이 물(H2O)과 반응하여 수산화칼슘(Ca(OH)2)을 생성시키고(아래 [화학식 1] 참조), 생성된 수산화칼슘(Ca(OH)2)은 이산화탄소(CO2)와 반응하여 탄산칼슘(CaCO3)를 생성시킨다(아래 [화학식 2] 참조).In desulfurized gypsum, the CaO component reacts with water (H 2 O) to produce calcium hydroxide (Ca(OH) 2 ) (see [Formula 1] below), and the produced calcium hydroxide (Ca(OH) 2 ) is converted into carbon dioxide (CO 2 ). ) to produce calcium carbonate (CaCO 3 ) (see [Formula 2] below).

[화학식 1][Formula 1]

CaO + H2O → Ca(OH)2 CaO + H 2 O → Ca(OH) 2

[화학식 2][Formula 2]

Ca(OH)2 + CO2 → CaCO3 Ca(OH) 2 + CO 2 → CaCO 3

위의 반응을 응용하여 각종 공장에서 발생하는 이산화탄소를 탄산화물로 고정(고체 물질 성분을 이루도록 포집)시킬 수 있다. 구체적으로, [도 1]에 도시된 바와 같이 수조 내에서 위 [화학식 1] 반응을 제어하고, 반응조 내에서 위 [화학식 2] 반응을 제어함에 따라 탈황석고에 이산화탄소를 고정시킬 수 있다.By applying the above reaction, carbon dioxide generated from various factories can be fixed as carbonate (captured to form a solid material component). Specifically, as shown in [Figure 1], carbon dioxide can be fixed in desulfurized gypsum by controlling the reaction [Formula 1] in the water tank and controlling the reaction [Formula 2] in the reaction tank.

위와 같은 반응 메커니즘에 따라 정유부산애시를 물(H2O) 및 이산화탄소(CO2)와 반응시킴으로써, XRF 분석 기준으로 CaO가 40~45 wt% 함유되어 있고, SO3가 25~30 wt% 함유되어 있는 탄산화물이 생성된다. By reacting oil refinery ash with water (H 2 O) and carbon dioxide (CO 2 ) according to the above reaction mechanism, it contains 40 to 45 wt% of CaO and 25 to 30 wt% of SO 3 based on XRF analysis. carbonate is produced.

정유부산애시(탈황석고)를 물 및 이산화탄소와 반응시킨 생성물을 85~105℃로 건조시킨 후, 뭉쳐져 있는 덩어리를 기존의 탈황석고 분말도와 유사한 분말도 3,000~4,500 ㎠/g 이 되도록 해쇄(解碎)함으로써 [도 2]에 도시된 바와 같은 탄산화물 분말을 생성시킬 수 있다. 탈황석고를 물과 이산화탄소에 반응시킨 상태부터 "탄산화물"이라 할 수 있으나, 수분이 함유된 상태이므로 이를 건조할 필요가 있다. 다만 위의 탄산화물이 건조된 후에는 덩어리 형태로 뭉쳐져 있게 되므로 이를 분말 상으로 분산시키는 공정을 "해쇄"라 기재하였다. 단단한 덩어리를 잘게 깨서 분리하는 "분쇄"와 개념상 차이가 있다. The product obtained by reacting oil refinery ash (desulfurized gypsum) with water and carbon dioxide is dried at 85 to 105°C, and then the agglomerated lumps are pulverized to a powder size of 3,000 to 4,500 ㎠/g, similar to that of existing desulfurized gypsum. ), thereby producing carbonate powder as shown in [Figure 2]. Desulfurized gypsum can be called "carbonate" when it reacts with water and carbon dioxide, but it needs to be dried because it contains moisture. However, after the above carbonate is dried, it remains in the form of lumps, so the process of dispersing it into powder is described as "disintegration." There is a conceptual difference from “crushing,” which involves breaking and separating solid lumps.

[도 3]은 특정 정유부산애시와 그 정유부산애시를 물 및 이산화탄소와 반응시켜 생성된 탄산화물의 XRD 성분분석 그래프이고, [도 4]는 XRF 화학분석 비교표이다. XRF는 원자 정량분석에 관한 것으로, 분자 형태 분석 결과는 나타나지 않으므로, XRD 결정분석에 의해 탄산화 정도를 분석할 수 있다.[Figure 3] is an XRD component analysis graph of specific oil refinery ash and carbonate produced by reacting the refined oil refinery ash with water and carbon dioxide, and [Figure 4] is an XRF chemical analysis comparison table. XRF is related to atomic quantitative analysis and does not provide molecular shape analysis results, so the degree of carbonation can be analyzed by XRD crystal analysis.

위의 탄산화물은 XRF 분석 기준 SO3 함량이 25 wt% 이상이므로, KS F 2563(고로슬래그 미분말), KS L 5210(고로슬래그 시멘트) 및 KS L 5313(시멘트용 천연석고) 등에 규정된 석고류에 포함될 수 있으며, 슬래그 제품(슬래그 시멘트, 고로슬래그 미분말)의 자극재로 사용 가능하다.Since the above carbonates have an SO 3 content of more than 25 wt% based on XRF analysis, they are gypsum specified in KS F 2563 (blast furnace slag fine powder), KS L 5210 (blast furnace slag cement), and KS L 5313 (natural gypsum for cement). It can be used as a stimulant for slag products (slag cement, blast furnace slag fine powder).

다만, 기존 탈황석고에 비해 CaO 함량이 감소하여 자극재로서의 성능이 저하될 우려가 있으나, 상기 탄산화물에 무수석고(CaSO4) 또는 망초(NaSO4)를 슬래그 자극재 조성 성분으로 사용함으로써, 기존 탈황석고와 동등 이상의 성능이 발현될 수 있으며, 이산화탄소 고정화 재료 사용에 따라 CO2 발생량 저감에도 기여할 수 있다. 제철공정 중 소결공정 부산물도 망초(NaSO4) 성분이므로, 상기 소결공정 부산물을 슬래그 자극재 조성 원료로 적용할 수 있다. However, there is a risk that the performance as a stimulant may be deteriorated due to the decrease in CaO content compared to the existing desulfurized gypsum. However, by using anhydrous gypsum (CaSO 4 ) or NaSO 4 ) as a component of the slag stimulant composition in the carbonate, the existing gypsum It can achieve performance equivalent to or better than desulfurized gypsum, and can also contribute to reducing CO 2 emissions by using carbon dioxide fixation materials. Since the by-product of the sintering process during the steelmaking process is also a NaSO 4 component, the by-product of the sintering process can be applied as a raw material for slag stimulant composition.

이하에서는 여러 시험예와 함께 본 발명을 설명한다.Below, the present invention will be described along with several test examples.

결합재 450g, 잔골재 1,350g, 물-결합재비 50 wt% 기준으로 배합된 공시체를 제작하여 재령별 압축강도 시험(재령 3일, 7일, 28일)을 진행하였으며, 이하의 각 실시예들은 결합재 조성에 차이가 있는 것이다.Specimens mixed with 450 g of binder, 1,350 g of fine aggregate, and 50 wt% of water-binder ratio were manufactured and compressive strength tests were conducted for each age (3 days, 7 days, and 28 days). Each of the examples below is based on the binder composition. There is a difference.

1. 슬래그 자극재 조성에 따른 슬래그 시멘트 강도 발현 시험1. Slag cement strength development test according to slag stimulant composition

아래 [표 1]은 슬래그 시멘트를 결합재로 적용한 모르타르 조성물의 비교예와 실시예를 구분하여 나타낸 것이다. 적용된 슬래그 시멘트는 보통포틀랜드시멘트 39 wt%, 고로슬래그 미분말 57 wt% 및 슬래그 자극재 4 wt%로 조성되어 있다.[Table 1] below shows comparative examples and examples of mortar compositions using slag cement as a binder. The applied slag cement is composed of 39 wt% of ordinary Portland cement, 57 wt% of blast furnace slag fine powder, and 4 wt% of slag stimulant.

비교예 1은 통상의 슬래그 시멘트로서, 이는 탈황석고가 슬래그 자극재로 적용된 것이다.Comparative Example 1 is a typical slag cement, in which desulfurized gypsum was applied as a slag stimulant.

각 실시예들은 다른 배합조건은 비교예 1과 모두 동일하되, 슬래그 자극재 성분만을 달리한 것으로서, 슬래그 자극재의 성분을 전술한 탄산화물과 망초의 중량비에 따라 구분하여 나타낸 것이다.In each Example, other mixing conditions were the same as Comparative Example 1, but only the slag stimulant component was different, and the components of the slag stimulant were classified according to the weight ratio of carbonate and carbonate as described above.

이하의 각 실시예에서는 [도 3] 및 [도 4]와 같이 분석된 탄산화물을 적용하였으며, 제철공정 중 소결공정 부산물을 상기 망초로 적용하였다.In each of the following examples, the carbonates analyzed as shown in [FIG. 3] and [FIG. 4] were applied, and the by-product of the sintering process during the steelmaking process was applied as the nettle.

아래 [표 2]는 위의 비교예 1 및 실시예들에 대한 재령별 압축강도 시험결과를 나타낸 것이다.[Table 2] below shows the compressive strength test results by age for Comparative Example 1 and Examples above.

탄산화물 100 wt%로 이루어진 슬래그 자극재를 적용한 실시예 1은 재령 3일 및 재령 28일 압축강도가 비교예 1에 비해 동등한 수준을 유지하며 약간 낮아졌으나 재령 7일 압축강도는 오히려 높게 나타났다. In Example 1, in which a slag stimulant containing 100 wt% of carbonate was applied, the compressive strength at 3 days and 28 days of age was maintained at the same level as Comparative Example 1 and slightly lower, but the compressive strength at 7 days was rather high.

상기 슬래그 자극재에서 망초 함량을 5~25 wt%까지 높임에 따라 재령별 압축강도 시험을 진행한 실시예 2 내지 실시예 6을 보면, 탄산화물 80 wt%, 망초 20 wt%가 혼합된 슬래그 자극재를 적용한 실시예 5에서 각 재령별 압축강도가 가장 우수하게 나타났다.Looking at Examples 2 to 6, in which compressive strength tests were conducted for each age as the slag stimulant content was increased to 5 to 25 wt%, slag stimulant containing 80 wt% carbonate and 20 wt% slag stimulant was mixed. In Example 5 where ash was applied, the compressive strength for each ash was found to be the best.

탄산화물 75 wt%, 망초 25 wt%가 혼합된 슬래그 자극재를 적용한 실시예 6은 재령 3일 및 7일 압축강도는 비교예 1 및 실시예 1과 대비할 때 여전히 우수하게 발현되나, 재령 28일 강도가 다소 저하되는 것으로 나타났다.Example 6, which applied a slag stimulant mixed with 75 wt% carbonate and 25 wt% carbonate, still showed excellent compressive strength at 3 and 7 days of age compared to Comparative Example 1 and Example 1, but at 28 days of age. It was found that the strength decreased somewhat.

따라서 상기 탄산화물을 슬래그 자극재로 적용함에 있어, 탄산화물의 일부를 망초로 치환 조성할 때 상기 망초는 25 wt% 이하의 범위에서 치환 적용하는 것이 바람직하다.Therefore, when applying the carbonate as a slag stimulant, it is preferable to substitute a portion of the carbonate with carbon dioxide in a range of 25 wt% or less.

아래 [표 3]에 나타난 실시예 7 내지 실시예 9는 탄산화물 100 wt%로 이루어진 슬래그 자극재를 적용한 실시예 1과 대비하여, 탄산화물과 무수석고 중량비에 따라 구분하여 나타낸 것이다. [표 3]에는 각 실시예에 대한 재령별 압축강도 시험결과를 함께 나타냈다.Examples 7 to 9 shown in [Table 3] below are shown separately according to the weight ratio of carbonate and anhydrous gypsum compared to Example 1 in which a slag stimulant consisting of 100 wt% of carbonate was applied. [Table 3] shows the compressive strength test results by age for each example.

탄산화물 100 wt%로 이루어진 실시예 1의 슬래그 자극재에서 무수석고 함량을 20 내지 100 wt%까지 높임에 따라 재령별 압축강도 시험을 진행한 실시예 2 내지 실시예 6을 보면, 탄산화물 60 wt%, 무수석고 40 wt%가 혼합된 슬래그 자극재를 적용한 실시예 8에서 각 재령별 압축강도가 가장 우수하게 나타났다.Looking at Examples 2 to 6, in which compressive strength tests were conducted by age as the anhydrous gypsum content was increased from 20 to 100 wt% in the slag stimulus material of Example 1 consisting of 100 wt% of carbonate, 60 wt of carbonate was obtained. In Example 8, which applied a slag stimulant mixed with 40 wt% anhydrous gypsum, the compressive strength at each age was the best.

이후 무수석로 혼합량을 증가시킴에 따라 재령별 압축강도가 저하되는 경향이 나타나는데, 실시예 10까지는 통상의 슬래그 시멘트 조성물인 비교예 1과 동등한 수준의 재령별 압축강도가 발현되다가, 실시예 11에서 재령 3일, 28일 압축강도가 상대적으로 크게 저하되는 것으로 나타났다.Thereafter, as the mixing amount of the anhydrous stone furnace was increased, the compressive strength by age tended to decrease. Up to Example 10, the compressive strength by age was expressed at a level equivalent to that of Comparative Example 1, which was a typical slag cement composition, but in Example 11. It was found that the compressive strength decreased relatively significantly at 3 and 28 days of age.

따라서 상기 탄산화물을 슬래그 자극재로 적용함에 있어, 탄산화물의 일부를 무수석고로 치환 조성할 때 상기 무수석고는 80 wt% 이하의 범위에서 치환 적용하는 것이 바람직하다.Therefore, when applying the carbonate as a slag stimulant, it is preferable to replace a portion of the carbonate with anhydrous gypsum and apply the anhydrous gypsum in a range of 80 wt% or less.

아래 [표 4]는 동일한 모르타르 배합 조건에서, 슬래그 자극재 성분으로 적용되는 탄산화물의 분쇄 여부에 따른 재령별 압축강도를 비교한 것이다. 위의 실시예 1 내지 11에 적용된 탄산화물은 모두 탈황석고를 물(H2O) 및 이산화탄소(CO2)와 반응시킨 생성물을 100℃로 건조시킨 후, 뭉쳐져 있는 덩어리를 분말도 3,500 ㎠/g 이 되도록 해쇄(解碎)한 것이다. [Table 4] below compares the compressive strength by age according to whether the carbonate applied as a slag stimulant component was pulverized under the same mortar mixing conditions. All of the carbonates applied in Examples 1 to 11 above were obtained by reacting desulfurized gypsum with water (H 2 O) and carbon dioxide (CO 2 ), drying the product at 100°C, and then clumping the lumps with a powder fineness of 3,500 cm2/g. It was dismantled as much as possible.

실시예 3 및 실시예 5와 동일한 조건에서 탄산화물에 대한 상기 해쇄 공정 적용 없이 모르타르 배합에 투여하여 믹싱한 실시예 3-1 및 실시예 3-2는 전 재령에서 압축강도가 모두 저하되는 것으로 나타났다.In Examples 3-1 and 3-2, which were added to the mortar mixture and mixed under the same conditions as Examples 3 and 5 without applying the disintegration process to carbonates, the compressive strength was found to decrease at all ages. .

2. 고로슬래그 미분말 활성도 시험2. Blast furnace slag fine powder activity test

아래 [표 5]는 고로슬래그 미분말을 결합재로 적용한 모르타르 조성물의 비교예와 실시예를 구분하여 나타낸 것이다. [Table 5] below shows comparative examples and examples of mortar compositions using blast furnace slag fine powder as a binder.

전술한 바와 같이 결합재 450g, 잔골재 1,350g, 물-결합재비 50 wt% 기준으로 배합된 공시체를 제작하여 재령별 압축강도 시험(재령 3일, 7일, 28일)을 진행하되, 비교예 2의 결합재는 종래의 고로슬래그 미분말을 적용한 것으로서, 수쇄슬래그 99 wt%와 석회석 1 wt%(분쇄조제 역할)를 혼합하여 미분말로 분쇄한 것이다.As described above, a specimen mixed with 450 g of binder, 1,350 g of fine aggregate, and a water-binder ratio of 50 wt% was manufactured and compressive strength tests were performed at each age (3 days, 7 days, and 28 days), but the The binder is a conventional blast furnace slag fine powder, which is ground into fine powder by mixing 99 wt% of crushed slag and 1 wt% of limestone (acting as a grinding aid).

실시예 12 및 실시예 13은 수쇄슬래그 95 wt%, 슬래그 자극재 4 wt% 및 석회석 1 wt%(분쇄조제 역할)를 혼합하여 미분말로 분쇄한 것으로, 상기 슬래그 자극재는 탄산화물과 망초를 혼합한 것이고, 실시예 12 및 실시예 13은 탄산화물과 망초의 함량을 달리한 것이다. 상기 실시예 12 및 실시예 13은 탄산화물은 위의 실시예 1 내지 11에 적용된 탄산화물과 마찬가지로 분말상으로 해쇄된 것을 분쇄조제 역할을 하는 석회석과 함께 수쇄슬래그 분쇄 공정 라인 투입한 것이다.Examples 12 and 13 were ground into fine powder by mixing 95 wt% of crushed slag, 4 wt% of slag stimulant, and 1 wt% of limestone (serving as a grinding aid), and the slag stimulant was a mixture of carbonate and limestone. In Examples 12 and 13, the contents of carbonate and citron were varied. In Examples 12 and 13, carbonates, like the carbonates applied in Examples 1 to 11 above, were pulverized into powder and added to the crushed slag grinding process line together with limestone serving as a grinding aid.

아래 [표 6]은 슬래그 자극재 적용에 따른 고로슬래그 미분말의 활성도 시험을 위해 상기 비교예 2 및 실시예들에 대한 재령별 압축강도 시험결과를 나타낸 것이다.[Table 6] below shows the compressive strength test results by age for Comparative Example 2 and Examples to test the activity of blast furnace slag fine powder according to the application of slag stimulant.

앞서 검토한 비교예 1과 대비할 때 고로슬래그 미분말을 결합재로 적용한 모르타르 조성물은 초기 강도(재령 3일 강도)가 저하되는 점이 확인되며, 본 발명 슬래그 자극재가 혼입된 실시예 12(탄산화물 90 wt% 및 망초 10 wt% 혼합) 및 실시예 13(탄산화물 80 wt% 및 망초 20 wt% 혼합)에서 재령 3일 강도 향상이 이루어지는 것이 확인된다. 통상적으로 재령 3일 강도는 ±0.5 MPa 범위를 동등한 수준의 강도로 파악하는 점에 비추어 보면, 실시예 13에 나타난 2.3 MPa 향상 효과는 물론 실시예 12에서 나타난 1.5 MPa 향상 효과 역시 유의미한 초기 강도 향상 효과로서, 슬래그 자극재 적용에 의해 고로슬래그의 잠재수경성 반응이 촉진된 결과로 파악된다.When compared to Comparative Example 1 reviewed previously, it was confirmed that the initial strength (3-day strength) of the mortar composition using blast furnace slag fine powder as a binder was reduced, and Example 12 (carbonoxide 90 wt%) containing the slag stimulant of the present invention was confirmed to be reduced. In Example 13 (mixing 80 wt% of carbon dioxide and 20 wt% of turmeric), it was confirmed that the strength was improved after 3 days of age. Considering that the 3-day strength is generally considered to be equivalent to the ±0.5 MPa range, the 2.3 MPa improvement effect shown in Example 13 as well as the 1.5 MPa improvement effect shown in Example 12 are significant initial strength improvement effects. As a result, it is understood that the latent hydraulic reaction of blast furnace slag is promoted by the application of slag stimulant.

한편, 재령 7일 및 28일 강도는 전체적으로 동등한 수준으로 나타나고 실시예 13의 재령 28일 강도가 비교예 2에 비해 약간 향상된 것이 확인된다.Meanwhile, the strengths at 7 days and 28 days were shown to be at the same level overall, and it was confirmed that the strength at 28 days of Example 13 was slightly improved compared to Comparative Example 2.

본 발명에서는 위와 같이 수쇄슬래그 분쇄 과정에서 전술한 슬래그 자극재가 투입된 고로슬래그 미분말을 "활성 고로슬래그 미분말"로 칭하며, 상기 비교예 1 및 실시예 1 내지 실시예 10에 나타난 슬래그 시멘트에 적용된 일반 고로슬래그 미분말 대신 상기 활성 고로슬래그 미분말을 적용하여 초기 강도를 더욱 증진시킬 수 있다.In the present invention, the blast furnace slag fine powder into which the above-mentioned slag stimulant was added during the crushed slag grinding process is referred to as "activated blast furnace slag fine powder", and the general blast furnace slag applied to the slag cement shown in Comparative Example 1 and Examples 1 to 10 The initial strength can be further improved by applying the activated blast furnace slag fine powder instead of the fine powder.

이상, 본 명세서는 본 발명의 실시예를 중심으로 관련 내용을 기재하였으며, 본 명세서에 기재된 용어들은 단지 본 발명의 기술 내용을 쉽게 설명하고 발명의 이해를 돕기 위한 일반적인 의미에서 사용된 것이지, 본 발명의 범위가 용어의 사전적 의미에 한정되는 것은 아니다. 본 명세서에 개시된 실시예 외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들 또한 실시 가능하다.Above, this specification has described related content focusing on the embodiments of the present invention, and the terms described in this specification are merely used in a general sense to easily explain the technical content of the present invention and aid understanding of the present invention. The scope of is not limited to the dictionary meaning of the term. In addition to the embodiments disclosed in this specification, other modifications based on the technical idea of the present invention can also be implemented.

해당 없음Not applicable

Claims (9)

고로 수쇄슬래그 94~97 wt%; 슬래그 자극재 2~5 wt%; 및 석회석 1 wt% 이내(0 wt% 제외)를 혼합·분쇄한 것으로서, 상기 석회석은 분쇄조제 역할을 수행하고,
상기 슬래그 자극재는 정유공정에 적용되는 순환유동층 연소(CFBC : Circulating Fluidized Bed Combustion) 보일러에서 생성된 정유부산애시인 탈황석고를 물(H2O) 및 이산화탄소(CO2)와 반응시킨 생성물을 85~105℃로 건조시킨 후, 뭉쳐져 있는 덩어리를 분말도 3,000~4,500 ㎠/g 이 되도록 해쇄(解碎)함으로써 제조된 탄산화물을 포함하고,
상기 탄산화물은 XRF 분석 기준으로 CaO가 40~45 wt% 함유되어 있고, SO3 가 25~30 wt% 함유되어 있는 것을 특징으로 하는 활성 고로슬래그 미분말.
Blast furnace crushed slag 94~97 wt%; Slag stimulant 2~5 wt%; and limestone within 1 wt% (excluding 0 wt%) mixed and crushed, wherein the limestone serves as a grinding aid,
The slag stimulant is a product obtained by reacting desulfurized gypsum, which is oil refinery ash generated in a Circulating Fluidized Bed Combustion (CFBC) boiler applied in the oil refining process, with water (H 2 O) and carbon dioxide (CO 2 ). It contains carbonate prepared by drying at 105°C and then pulverizing the agglomerated lumps to a powder fineness of 3,000 to 4,500 cm2/g,
The carbonate is an activated blast furnace slag fine powder, characterized in that it contains 40 to 45 wt% of CaO and 25 to 30 wt% of SO 3 based on XRF analysis.
제1항에서,
상기 슬래그 자극재는 망초(Na2SO4)를 25 wt% 이하(0 wt% 제외) 포함하는 것을 특징으로 하는 활성 고로슬래그 미분말.
In paragraph 1:
The slag stimulant is an activated blast furnace slag fine powder, characterized in that it contains 25 wt% or less (excluding 0 wt%) of Na 2 SO 4 .
제2항에서,
상기 망초는 제철공정 중 소결공정 부산물인 것을 특징으로 하는 활성 고로슬래그 미분말.
In paragraph 2,
The activated blast furnace slag fine powder is characterized in that the mango is a by-product of the sintering process during the steelmaking process.
제1항에서,
무수석고(CaSO4)를 80 wt% 이하(0 wt% 제외) 포함하는 것을 특징으로 하는 활성 고로슬래그 미분말.
In paragraph 1:
Activated blast furnace slag fine powder, characterized in that it contains 80 wt% or less (excluding 0 wt%) of anhydrous gypsum (CaSO 4 ).
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020220151382A 2022-11-14 2022-11-14 Active Blast Furnace Slag Fine Powder Containing Slag Stimulanting Materials KR102649805B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020220151382A KR102649805B1 (en) 2022-11-14 2022-11-14 Active Blast Furnace Slag Fine Powder Containing Slag Stimulanting Materials
KR1020230068306A KR20240070380A (en) 2022-11-14 2023-05-26 Slag Cement Composition Containing Slag Stimulanting Materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220151382A KR102649805B1 (en) 2022-11-14 2022-11-14 Active Blast Furnace Slag Fine Powder Containing Slag Stimulanting Materials

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020230068306A Division KR20240070380A (en) 2022-11-14 2023-05-26 Slag Cement Composition Containing Slag Stimulanting Materials

Publications (1)

Publication Number Publication Date
KR102649805B1 true KR102649805B1 (en) 2024-03-21

Family

ID=90472330

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020220151382A KR102649805B1 (en) 2022-11-14 2022-11-14 Active Blast Furnace Slag Fine Powder Containing Slag Stimulanting Materials
KR1020230068306A KR20240070380A (en) 2022-11-14 2023-05-26 Slag Cement Composition Containing Slag Stimulanting Materials

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020230068306A KR20240070380A (en) 2022-11-14 2023-05-26 Slag Cement Composition Containing Slag Stimulanting Materials

Country Status (1)

Country Link
KR (2) KR102649805B1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100934379B1 (en) 2007-10-15 2009-12-30 주식회사 제철세라믹 Sintering binder and manufacturing method for steel sintering using organic binder and sintering process by-product processing method using sintering binder.
KR101286030B1 (en) 2012-09-24 2013-07-19 주식회사 삼표 Blast furnace slag cement containing by-products of petroleum refinery process
KR20130107578A (en) * 2012-03-22 2013-10-02 영진글로벌(주) Furnace slag cement composition and mortar mixed with the furnace slag cement composition
KR101482017B1 (en) 2013-05-23 2015-01-14 한국지질자원연구원 Method for synthesizing high purity calcite from fgd gypsum with carbonation reaction using the intermediate product (ammonium carbamate) of captured co2
KR20180051840A (en) * 2016-11-09 2018-05-17 주식회사 지안산업 Instillation material and method using the same
KR20200113347A (en) * 2019-03-25 2020-10-07 (주)아시아특수재료 Blast furnace slag stimulant for improving the replacement rate of blast furnace slag powder
KR20220038908A (en) * 2020-09-21 2022-03-29 현대오일뱅크 주식회사 Method for producing inorganic compounds using circulating resources for reduction of greenhouse gas emissions
KR102414541B1 (en) 2021-12-23 2022-06-28 현대오일뱅크 주식회사 Reaction apparatus and carbonation device including the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100934379B1 (en) 2007-10-15 2009-12-30 주식회사 제철세라믹 Sintering binder and manufacturing method for steel sintering using organic binder and sintering process by-product processing method using sintering binder.
KR20130107578A (en) * 2012-03-22 2013-10-02 영진글로벌(주) Furnace slag cement composition and mortar mixed with the furnace slag cement composition
KR101286030B1 (en) 2012-09-24 2013-07-19 주식회사 삼표 Blast furnace slag cement containing by-products of petroleum refinery process
KR101482017B1 (en) 2013-05-23 2015-01-14 한국지질자원연구원 Method for synthesizing high purity calcite from fgd gypsum with carbonation reaction using the intermediate product (ammonium carbamate) of captured co2
KR20180051840A (en) * 2016-11-09 2018-05-17 주식회사 지안산업 Instillation material and method using the same
KR20200113347A (en) * 2019-03-25 2020-10-07 (주)아시아특수재료 Blast furnace slag stimulant for improving the replacement rate of blast furnace slag powder
KR20220038908A (en) * 2020-09-21 2022-03-29 현대오일뱅크 주식회사 Method for producing inorganic compounds using circulating resources for reduction of greenhouse gas emissions
KR102458784B1 (en) 2020-09-21 2022-10-24 현대오일뱅크 주식회사 Method for producing inorganic compounds using circulating resources for reduction of greenhouse gas emissions
KR102414541B1 (en) 2021-12-23 2022-06-28 현대오일뱅크 주식회사 Reaction apparatus and carbonation device including the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1. 송경선, 김원백, 박상원, 서창열, 안지환, "배연 탈황석고 탄산화반응으로 생성된 고순도 탄산칼슘의 상변화", 한국공업화학회 연구논문 초록집 2016권1호, 2016.
2. 이명규, "이산화탄소 저감을 위한 탈황석고의 광물탄산화 연구", 과학기술연합대학원대학교 박사학위논문, 2013.

Also Published As

Publication number Publication date
KR20240070380A (en) 2024-05-21

Similar Documents

Publication Publication Date Title
Ukrainczyk et al. Reuse of woody biomass ash waste in cementitious materials
CN1143001C (en) Agglomeration method of steel slag
KR102125577B1 (en) Composition agent
KR101168151B1 (en) Solidified agent to strengthen stratum
KR20140092699A (en) Sludge solidified agent and menufacturing method of artificial soil usign the same
JP7052154B2 (en) Biomass ash reforming method, biomass ash cement raw material system, and reformed biomass ash
KR101543307B1 (en) Method of manufacture and Environment-Friendly Quarry Landfill filler of occurred in the circulating fluidized bed boiler using gas desulfurization gypsum
JP2023181518A (en) Cement manufacturing method
JP2019011223A (en) Gypsum and manufacturing method therefor, cement composition and manufacturing method therefor, and foundation improvement material
KR101973093B1 (en) Binder composition for replacement of cement using circulation resources
KR101331057B1 (en) Solidified agent to strengthen stratum
KR101867471B1 (en) Improve the quality from a functional admixture of granulated Blast Furnace Slag Plenty Replacement Secondary Product Concrete of Concrete ts Products
Velardo et al. Design and evaluation of physical, mechanical and micro-structural properties of eco-friendly binary-blended mortars using biomass bottom ash or construction and demolition waste powder
KR102649805B1 (en) Active Blast Furnace Slag Fine Powder Containing Slag Stimulanting Materials
KR20150114771A (en) Stabilizer composition of industrial wastes modified utilizing the carbonation for soft ground
KR101468363B1 (en) Solidifiying Composion Using Subbituminous Coal
KR20230093962A (en) Binder composition using carbonated gypsum
WO2014140614A1 (en) Cement composition and method of producing the same
CN103502175A (en) A process for the production of binders
KR101236862B1 (en) Soil Conditioner manufacturing method utilizing sewage sludge
Brandštetr et al. Phase composition of solid residues of fluidized bed coal combustion, quality tests, and application possibilities
KR102681404B1 (en) Soil grout material composition with resistance to heavy metal leaching
KR101917820B1 (en) Binder composition
CN110304885A (en) The cement mortar and preparation method thereof of high additive solid waste preparation
KR101899805B1 (en) Admixture stabilized industrial by-products containing large amounts of free-CaO

Legal Events

Date Code Title Description
GRNT Written decision to grant