KR102459976B1 - Heavy metal adsorbent and its adsorption method using iron oxide fume produced by cutting - Google Patents

Heavy metal adsorbent and its adsorption method using iron oxide fume produced by cutting Download PDF

Info

Publication number
KR102459976B1
KR102459976B1 KR1020200082711A KR20200082711A KR102459976B1 KR 102459976 B1 KR102459976 B1 KR 102459976B1 KR 1020200082711 A KR1020200082711 A KR 1020200082711A KR 20200082711 A KR20200082711 A KR 20200082711A KR 102459976 B1 KR102459976 B1 KR 102459976B1
Authority
KR
South Korea
Prior art keywords
iron oxide
heavy metal
wastewater
present
antimony
Prior art date
Application number
KR1020200082711A
Other languages
Korean (ko)
Other versions
KR20220005191A (en
Inventor
구본흔
이지은
김민수
이형욱
문일우
Original Assignee
창원대학교 산학협력단
한토커팅시스템주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 창원대학교 산학협력단, 한토커팅시스템주식회사 filed Critical 창원대학교 산학협력단
Priority to KR1020200082711A priority Critical patent/KR102459976B1/en
Publication of KR20220005191A publication Critical patent/KR20220005191A/en
Application granted granted Critical
Publication of KR102459976B1 publication Critical patent/KR102459976B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/38Treatment of water, waste water, or sewage by centrifugal separation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Abstract

본 발명은 절단 생성 산화철 흄을 이용한 중금속 흡착제 및 그 흡착 방법에 관한 것이다. 구체적으로, 본 발명의 중금속 흡착 방법은 폐수 내 구리(Cu) 및 안티몬(Sb) 성분을 흡착하는 방법으로서 (a) 절단 생성 산화철 흄을 제공하는 단계; (b) 상기 (a) 단계에서 제공된 산화철 흄을 폐수에 첨가하는 단계; 및 (c) 상기 (b) 단계의 혼합물을 교반하는 단계;를 포함하는, 방법을 제공한다.The present invention relates to a heavy metal adsorbent using cleavage produced iron oxide fumes and a method for adsorbing the same. Specifically, the heavy metal adsorption method of the present invention is a method for adsorbing copper (Cu) and antimony (Sb) components in wastewater, comprising the steps of: (a) providing cleavage produced iron oxide fume; (b) adding the iron oxide fume provided in step (a) to the wastewater; and (c) stirring the mixture of step (b).

Description

절단 생성 산화철 흄을 이용한 중금속 흡착제 및 이를 이용한 중금속 흡착 방법{Heavy metal adsorbent and its adsorption method using iron oxide fume produced by cutting}Heavy metal adsorbent and its adsorption method using iron oxide fume produced by cutting}

본 발명은 절단 생성 산화철 흄을 이용하여 중금속을 흡착하는 방법에 관한 것이다.The present invention relates to a method for adsorbing heavy metals using cleavage produced iron oxide fumes.

중금속을 흡착, 분해하여 농도를 감소시킬 수 있는 소재 및 공정으로 분리막, 흡착제, 수처리 모듈이 주로 사용된다. 이 중 흡착제의 소재로 탄소계 흡착 소재, 식물계 원료 흡착 소재 등 다양한 소재가 사용되고 있다.As materials and processes that can reduce the concentration by adsorbing and decomposing heavy metals, separation membranes, adsorbents, and water treatment modules are mainly used. Among them, various materials such as carbon-based adsorption material and plant-based material adsorption material are used as the material of the adsorbent.

그러나, 대부분의 흡착제는 복잡한 제조 공정을 거쳐 생산되어 생산단가가 높으며, 그 비용 대비 제거 효율이 높지 않은 문제가 있다. 이에, 최근 산화철을 중금속 흡착제로 이용하려는 시도가 있으나, 제조 과정에서 NaOH, H2SO4, Ca(OH)2 등의 용액이 필요하며 다량의 배출물과 폐기물이 발생하며, 제조 공정이 복잡하고 비용이 높은 단점이 있었다.However, most of the adsorbents are produced through a complicated manufacturing process, so the production cost is high, and there is a problem in that the removal efficiency is not high compared to the cost. Accordingly, recent attempts have been made to use iron oxide as a heavy metal adsorbent, but in the manufacturing process, a solution such as NaOH, H 2 SO 4 , Ca(OH) 2 is required, a large amount of emissions and waste are generated, and the manufacturing process is complicated and expensive. There was a high downside to this.

한국 공개특허 제10-2017-0040009호에서도 산화철 나노튜브를 이용하여 축산폐수에서 인 성분을 흡착시켜 제거하는 방법을 개시하고 있다. 그러나, 이는 산화철 나노튜브를 제조하는 별도의 공정이 요구되며, 축산폐수 내의 인 성분 흡착을 목적으로 하는 점에서 범용화에 어려움이 있다.Korean Patent Application Laid-Open No. 10-2017-0040009 also discloses a method of adsorbing and removing phosphorus from livestock wastewater using iron oxide nanotubes. However, this requires a separate process for producing iron oxide nanotubes, and it is difficult to generalize in that it aims to adsorb phosphorus in livestock wastewater.

따라서, 처리 비용을 절감하면서 보다 효율적이고 친환경적인 처리를 위하여 많은 연구와 개발이 요구되는 상황이다.Therefore, a lot of research and development is required for more efficient and eco-friendly treatment while reducing treatment costs.

한국 공개특허 제10-2017-0040009호Korean Patent Publication No. 10-2017-0040009

상술한 기술적 과제를 달성하기 위하여 본 발명은, 복잡한 제조 공정 없이 사용할 수 있는 산화철 중금속 흡착제 및 이를 이용한 중금속 흡착 방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide an iron oxide heavy metal adsorbent that can be used without a complicated manufacturing process and a heavy metal adsorption method using the same.

상기 기술적 과제를 달성하기 위하여 본 발명은, 폐수 내 구리(Cu) 및 안티몬(Sb) 성분을 흡착하는 방법에 있어서, (a) 절단 생성 산화철 흄을 제공하는 단계; (b) 상기 (a) 단계에서 제공된 산화철 흄을 폐수에 첨가하는 단계; 및 (c) 상기 (b) 단계의 혼합물을 교반하는 단계;를 포함하는, 방법을 제공한다.In order to achieve the above technical object, the present invention provides a method for adsorbing copper (Cu) and antimony (Sb) components in wastewater, comprising the steps of: (a) providing cleavage produced iron oxide fume; (b) adding the iron oxide fume provided in step (a) to the wastewater; and (c) stirring the mixture of step (b).

본 발명의 일 실시예에 따르면, 상기 폐수는 pH 5 이상으로 조절되는 것이 바람직하다.According to an embodiment of the present invention, the wastewater is preferably adjusted to pH 5 or higher.

본 발명의 또다른 실시예에 따르면, 상기 (a) 단계 이후에, 불순물을 제거하는 공정이 추가적으로 수행된 후 상기 (b) 단계를 수행하는 것을 특징으로 한다.According to another embodiment of the present invention, after step (a), a process of removing impurities is additionally performed, and then step (b) is performed.

또한, 본 발명은 상기 (c) 단계 이후에, (d) 원심분리한 후, 구리(Cu) 및 안티몬(Sb) 성분이 흡착된 산화철 흄을 여과하는 단계를 추가적으로 포함하는 것을 특징으로 한다.In addition, the present invention is characterized in that, after the step (c), (d) after centrifugation, filtering the iron oxide fume adsorbed with copper (Cu) and antimony (Sb) components is additionally included.

아울러, 본 발명에서 상기 (a) 단계는 탄소강 절단 공정에서 절단기에 부착된 집진기를 통해 집진됨으로써 수행되는 것을 특징으로 한다.In addition, in the present invention, the step (a) is characterized in that it is performed by collecting dust through a dust collector attached to the cutter in the carbon steel cutting process.

한편, 본 발명은 절단 생성 산화철 흄을 포함하는 중금속 흡착제를 제공한다.On the other hand, the present invention provides a heavy metal adsorbent comprising cleavage produced iron oxide fume.

본 발명의 중금속 흡착제는 기존에 폐기물로 처리되던 절단 생성 산화철 흄을 사용하여 그 제조 공정이 간단하며 환경친화적이고 경제적일 뿐만 아니라, 중금속 종류에 관계없이 동일한 방법으로 제거 가능하나 특히 독성이 높은 구리(Cu), 안티몬(Sb)에 대하여 높은 흡착 효율을 나타낸다.The heavy metal adsorbent of the present invention is simple, environmentally friendly, and economical in its manufacturing process by using the iron oxide fume produced by cutting, which was previously treated as waste. It shows high adsorption efficiency with respect to Cu) and antimony (Sb).

도 1은 절단 생성 산화철 흄의 XRD를 측정한 결과이다.
도 2는 절단 생성 산화철 흄(도 2(a)) 및 시중에 판매되는 산화철(도 2(b)) 각각의 SEM 이미지이다.
도 3은 pH에 따른 구리(Cu)와 안티몬(Sb)의 제거율을 나타낸 것이다.
도 4는 구리(Cu)와 안티몬(Sb)의 초기 농도에 따른 제거율을 나타낸 것이다.
도 5는 본 발명의 절단 생성 산화철의 첨가량에 따른 구리(Cu)와 안티몬(Sb)의 제거율을 나타낸 것이다.
도 6은 본 발명의 절단 생성 산화철을 폐수에 첨가한 후 교반 시간에 따른 구리(Cu)와 안티몬(Sb)의 제거율을 나타낸 것이다.
도 7은 pH(도 7(a)), 6가 크롬(Cr6 +)의 초기 농도(도 7(b)), 절단 생성 산화철의 첨가량(도 7(c)), 교반 시간(도 7(d))에 따른 6가 크롬(Cr6 +)의 제거율을 나타낸 것이다.
1 is a result of measuring the XRD of cleavage produced iron oxide fume.
2 is an SEM image of each of cleavage produced iron oxide fumes (FIG. 2(a)) and commercially available iron oxide (FIG. 2(b)).
3 shows the removal rates of copper (Cu) and antimony (Sb) according to pH.
4 shows the removal rates according to the initial concentrations of copper (Cu) and antimony (Sb).
Figure 5 shows the removal rates of copper (Cu) and antimony (Sb) according to the addition amount of the cleavage produced iron oxide of the present invention.
Figure 6 shows the removal rates of copper (Cu) and antimony (Sb) according to the stirring time after adding the cleavage produced iron oxide of the present invention to wastewater.
Figure 7 shows the pH (Fig. 7(a)), the initial concentration of hexavalent chromium (Cr 6 + ) (Fig. 7(b)), the addition amount of cleavage produced iron oxide (Fig. 7(c)), and the stirring time (Fig. 7(c)). d)) shows the removal rate of hexavalent chromium (Cr 6 + ).

이하, 첨부한 기술을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명을 상세히 설명한다. 본 발명을 설명함에 있어서, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, the present invention will be described in detail so that those of ordinary skill in the art to which the present invention pertains can easily carry out the present invention with reference to the accompanying technology. In describing the present invention, if it is determined that a detailed description of a related known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.

또한 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 본 출원에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다.In addition, in this application, terms such as "comprise" or "have" are intended to designate that a feature, number, step, operation, component, part, or combination thereof described in the specification exists, but one or more other It is to be understood that this does not preclude the possibility of addition or presence of features or numbers, steps, operations, components, parts, or combinations thereof. In the present application, a singular expression may include a plural expression unless the context clearly dictates otherwise.

본 발명에서 절단 생성 산화철 흄(Fume)이란, 탄소강 절단 시 발생되는 고체의 미립자 분말로, 구체적으로 탄소강이 절단되면서 발생되는 철 입자가 절단 시 발생되는 고열로 인해 고온상태에서 기체 분자가 되며 이것이 공기 중의 산소와 반응하여 분말 형태의 산화철이 된 것이다.In the present invention, cutting-generated iron oxide fume is a solid fine particle powder generated when carbon steel is cut. Specifically, iron particles generated while cutting carbon steel become gas molecules at a high temperature due to the high heat generated during cutting, and this is It reacts with oxygen in the powder to form iron oxide.

본 발명은 기존의 복잡하고 고비용이 요구되는 산화철 분말 제조 공정과 달리, 탄소강 절단 시 절단기에 부착된 집진기를 통해 집진된 절단 생성 산화철 흄을 이용하는 것만으로 중금속 흡착 효과가 높음을 특징으로 한다.The present invention is characterized in that the heavy metal adsorption effect is high only by using the cutting-generated iron oxide fume collected through a dust collector attached to the cutter when cutting carbon steel, unlike the existing complex and high-cost iron oxide powder manufacturing process.

상술한 과정에 의해 생성된 절단 생성 산화철 흄의 XRD를 살펴보면(도 1 참조), Fe3O4의 면지수와 일치하는 Peak가 관찰됨을 확인할 수 있다.Looking at the XRD of the cleavage generated iron oxide fume generated by the above-described process (see FIG. 1 ), it can be confirmed that a peak consistent with the surface index of Fe 3 O 4 is observed.

상기 절단 생성 산화철 흄의 미세조직을 살펴보면(도 2 참조), 일반적으로 시중에 판매되는 산화철의 경우(도 2(b))와 달리, μm의 입자 크기를 갖는 구형 입자이며 그 표면이 거칠어서 중금속을 흡착할 수 있는 표면적이 넓고, 중금속 흡착에 용이한 미세공극이 다량 관찰된다(도 2(a)).Looking at the microstructure of the cleavage-generated iron oxide fume (see FIG. 2 ), it is a spherical particle having a particle size of μm, unlike the case of generally commercially available iron oxide ( FIG. 2( b )), and its surface is rough and heavy metal It has a large surface area capable of adsorbing metals, and a large amount of micropores that are easy to adsorb heavy metals are observed (Fig. 2(a)).

상기 흄은 열처리 전 Fe3O4로 존재하고, 이러한 절단 흄을 별도의 가스 처리 없이 대기 분위기에서 열처리하면 흄의 조성을 쉽게 변경 가능하다. 즉, 흄을 온도별로 열처리하여 γ-Fe2O3 및 α-Fe2O3로 조성을 변화시킬 수 있으며, 이를 이용하여 또 다시 중금속 정화에 사용 가능하다.The fume is present as Fe 3 O 4 before heat treatment, and if the cutting fume is heat-treated in an atmospheric atmosphere without a separate gas treatment, the composition of the fume can be easily changed. That is, by heat-treating the fume for each temperature, the composition can be changed to γ-Fe 2 O 3 and α-Fe 2 O 3 , and it can be used again for heavy metal purification using this.

본 발명은 절단 생성 산화철 흄을 사용하여 독성이 높은 구리(Cu) 및 안티몬(Sb)을 흡착하는 방법에 관한 것으로, (a) 절단 생성 산화철 흄을 제공하는 단계; (b) 상기 (a) 단계에서 제공된 산화철 흄을 폐수에 첨가하는 단계; 및 (c) 상기 (b) 단계의 혼합물을 교반하는 단계;를 포함한다.The present invention relates to a method for adsorbing highly toxic copper (Cu) and antimony (Sb) using cleavage produced iron oxide fumes, comprising the steps of: (a) providing cleavage produced iron oxide fumes; (b) adding the iron oxide fume provided in step (a) to the wastewater; and (c) stirring the mixture of step (b).

이 때, 상기 (b) 단계에서 상기 폐수는 pH 5 이상으로 조절되는 것이 바람직하다. 구리(Cu)의 경우 강산성에서 제거율이 매우 낮으나, pH 5 이상에서 99% 이상의 제거율을 나타낸다. 또한, 안티몬(Sb)의 경우 강산성에서 제거율이 매우 높으나, pH 9 이상의 강염기성에서도 96% 이상의 제거율을 나타낸다. 따라서, 폐수 내 구리(Cu) 및 안티몬(Sb) 성분을 모두 효율적으로 흡착하기 위해서는 폐수의 pH가 5 이상으로 조절되는 것이 바람직하다.At this time, in step (b), the wastewater is preferably adjusted to pH 5 or higher. In the case of copper (Cu), although the removal rate is very low in strong acidity, it shows a removal rate of 99% or more at pH 5 or higher. In addition, in the case of antimony (Sb), although the removal rate is very high in strong acidity, it exhibits a removal rate of 96% or more even in strong basicity of pH 9 or higher. Therefore, in order to efficiently adsorb both copper (Cu) and antimony (Sb) components in the wastewater, it is preferable that the pH of the wastewater is adjusted to 5 or more.

pH는 해당 분야에서 일반적으로 수행되는 방법으로 조절될 수 있으며, 대상 폐수에서 제거하려는 금속의 종류에 따라 pH 조건이 조절될 수 있음은 물론이다.The pH may be adjusted by a method generally performed in the field, and of course, the pH condition may be adjusted according to the type of metal to be removed from the target wastewater.

본 발명의 절단 생성 산화철 흄은 별도의 공정 없이, 집진기에서 집진된 형태의 절단 생성 산화철 흄을 폐수 등의 오염 물질에 직접적으로 첨가함으로써 중금속 흡착 기능을 수행할 수 있다. 또한, 추가적으로 불순물을 제거하는 공정을 수행한 후 폐수에 첨가될 수 있다. 상기 불순물 제거 공정은, 소니케이터(Sonicator)를 이용하여 에탄올 내에서 1회 이상 세척 후 탈이온화수 내에서 1회 이상 세척함으로써 불순물을 제거하는 방법으로 수행될 수 있으나, 이에 제한되지 않는다. 구체적으로, 에탄올 내에서 3분동안 3회 세척 후 탈이온화수 내에서 3분동안 3회 세척하여 불순물을 제거하는 것이 바람직하다.The cleavage produced iron oxide fume of the present invention can perform a heavy metal adsorption function by directly adding the cleavage produced iron oxide fume collected in a dust collector to pollutants such as wastewater without a separate process. In addition, it may be added to wastewater after performing a process of additionally removing impurities. The impurity removal process may be performed as a method of removing impurities by washing one or more times in ethanol using a sonicator and then washing one or more times in deionized water, but is not limited thereto. Specifically, it is preferable to remove impurities by washing three times for 3 minutes in ethanol and then three times for 3 minutes in deionized water.

본 발명은 또한, 상기 (c) 단계 이후에 (d) 단계를 통해 중금속이 흡착된 산화철 흄을 여과하는 단계를 포함할 수 있다. 상기 (d) 단계는, (c) 단계에서 교반된 혼합물을 원심분리한 후, 구리(Cu) 및 안티몬(Sb) 성분이 흡착된 산화철 흄을 여과하는 단계를 추가적으로 포함할 수 있다.The present invention may also include filtering the iron oxide fumes to which the heavy metal is adsorbed through the step (d) after the step (c). The step (d) may further include filtering the iron oxide fume to which copper (Cu) and antimony (Sb) components are adsorbed after centrifuging the mixture stirred in step (c).

한편, 본 발명은 다양한 종류의 폐수나, 오염된 토양, 대기 중의 중금속 제거 등에 범용적으로 사용될 수 있다. 본 발명의 절단 생성 산화철 흄은 폐수에 첨가되어 폐수 내의 중금속 성분을 흡착할 수 있고, 오염된 토양에 뿌림으로써 토양의 중금속 성분을 흡착할 수 있으며, 필터 형태로 가공함으로써 대기 중의 중금속을 제거할 수 있다.On the other hand, the present invention can be universally used for the removal of various types of wastewater, contaminated soil, heavy metals in the atmosphere, and the like. The cleavage produced iron oxide fume of the present invention can be added to wastewater to adsorb heavy metal components in wastewater, can adsorb heavy metal components in soil by spraying it on contaminated soil, and can remove heavy metals in the atmosphere by processing into a filter form have.

이하, 본 발명을 실시예를 통해 보다 상세히 설명한다. 그러나 하기의 실시예는 본 발명을 구체적으로 예시하기 위한 것일 뿐, 본 발명의 권리범위를 제한하는 것이 아니다. 즉, 본 발명의 단순한 변형 내지 변경은 본 발명이 속하는 통상의 기술자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Hereinafter, the present invention will be described in more detail through examples. However, the following examples are only for specifically illustrating the present invention, and do not limit the scope of the present invention. That is, simple modifications or changes of the present invention can be easily carried out by those skilled in the art to which the present invention pertains, and all such modifications or changes can be considered to be included in the scope of the present invention.

<< 실시예Example >>

구리(Cu)와 안티몬(Sb)의 중금속 표준용액을 제조하였다. Cu metal powder를 이용하여 Cu 표준용액 1000mg/L를 제조하고, C4H4KO7Sb2H2O를 이용하여 Sb 표준용액 1000mg/L를 각각 제조하였다.A standard solution of a heavy metal of copper (Cu) and antimony (Sb) was prepared. 1000 mg/L of Cu standard solution was prepared using Cu metal powder, and 1000 mg/L of Sb standard solution was prepared using C 4 H 4 KO 7 Sb2H 2 O, respectively.

제조된 중금속 표준용액에 본 발명의 절단 생성 산화철 흄을 첨가하여 교반하였다. 교반은 가열교반기를 이용하여 상온에서 200rpm 으로 10분 동안 수행되었다. 이후, 원심분리기를 이용하여 중금속이 흡착된 산화철 흄과 용액을 분리하였다. 여과지(Filter Paper)를 사용하여 분리된 용액을 여과하고, 여과된 용액에 대해 ICP-OES(유도결합플라즈마 분광분석기) 분석을 실시하여 중금속 농도 변화를 측정하였다.The cleavage produced iron oxide fume of the present invention was added to the prepared heavy metal standard solution and stirred. Stirring was performed for 10 minutes at 200 rpm at room temperature using a heat stirrer. Thereafter, the solution was separated from the iron oxide fume adsorbed by the heavy metal by using a centrifuge. The separated solution was filtered using a filter paper, and the heavy metal concentration change was measured by performing ICP-OES (inductively coupled plasma spectroscopy) analysis on the filtered solution.

실시예 1-1. 중금속 용액의 pH에 따른 제거율 측정Example 1-1. Measurement of removal rate according to pH of heavy metal solution

구리(Cu) 및 안티몬(Sb) 표준용액 각각에 대하여, 0.1M의 HCl 및 0.1M의 NaOH를 사용하여 중금속 용액의 pH를 조절하면서 pH에 따른 중금속 제거율을 측정하였다. 중금속 표준용액 30ml 당 절단 생성 산화철 흄을 200 mg 첨가하여 10분 동안 교반하고, 중금속 제거율을 측정하였다.For each copper (Cu) and antimony (Sb) standard solution, the heavy metal removal rate according to pH was measured while adjusting the pH of the heavy metal solution using 0.1 M HCl and 0.1 M NaOH. 200 mg of cleavage produced iron oxide fume per 30 ml of the heavy metal standard solution was added and stirred for 10 minutes, and the heavy metal removal rate was measured.

그 결과, 도 3에서 알 수 있는 바와 같이, 구리(Cu)의 경우 강산성인 pH 3에서 중금속 정화 효과가 매우 낮으며, pH 7에서 99.6%로 가장 높은 중금속 제거율을 나타내고, 그 외의 pH에서도 97% 이상의 제거율을 나타냄을 알 수 있다. 안티몬(Sb)의 경우 pH 3, 5에서 100%의 제거율을 나타내며, pH가 증가할수록 그 제거율이 미소하게 감소하나, 모두 96% 이상의 제거율을 나타냄을 알 수 있다.As a result, as can be seen from FIG. 3 , in the case of copper (Cu), the heavy metal purification effect is very low at pH 3, which is strongly acidic, and shows the highest heavy metal removal rate at 99.6% at pH 7, and 97% at other pHs. It can be seen that the above removal rate is represented. Antimony (Sb) shows a removal rate of 100% at pH 3 and 5, and the removal rate is slightly decreased as the pH increases, but it can be seen that all of them exhibit a removal rate of 96% or more.

실시예Example 1-2. 중금속 용액의 농도에 따른 제거율 측정 1-2. Measurement of removal rate according to concentration of heavy metal solution

실시예 1-2. 중금속 용액의 농도에 따른 제거율 측정Example 1-2. Measurement of removal rate according to concentration of heavy metal solution

구리(Cu) 표준용액의 pH를 7로, 안티몬(Sb) 표준용액의 pH를 5로 고정하고, 중금속 표준용액 30ml 당 절단 생성 산화철 흄을 200 mg 첨가하여 10분 동안 교반하고, 중금속 농도 변화를 측정하였다.The pH of the copper (Cu) standard solution was set at 7 and the pH of the antimony (Sb) standard solution was fixed at 5, 200 mg of cleavage produced iron oxide fume was added per 30 ml of the heavy metal standard solution, stirred for 10 minutes, and the heavy metal concentration was changed. measured.

중금속 용액의 초기 농도(C0)를 달리하면서 흡착 효율을 측정하였다. 그 결과, 도 4에서 알 수 있는 바와 같이, 초기 농도(C0)가 증가함에 따라 평형에서의 제거 용량(qe) 또한 증가함을 알 수 있다. 구리(Cu)의 경우 흡착 후 최종 농도(Ce)가 안티몬(Sb)에 비해 훨씬 많이 감소하였으며, 안티몬(Sb)에 비해 구리(Cu)가 대부분 농도에서의 흡착 효율(AE, Absorption Efficiency)이 높음을 알 수 있다.The adsorption efficiency was measured while varying the initial concentration (C 0 ) of the heavy metal solution. As a result, as can be seen in FIG. 4 , it can be seen that the removal capacity at equilibrium (q e ) also increases as the initial concentration (C 0 ) increases. In the case of copper (Cu), the final concentration (C e ) after adsorption decreased much more than that of antimony (Sb), and compared to antimony (Sb), the absorption efficiency (AE, Absorption Efficiency) of copper (Cu) at most concentrations was lower than that of antimony (Sb). high can be seen.

한편, 흡착 효율(AE)는 하기 수학식 1에 의해 계산된다.On the other hand, the adsorption efficiency (AE) is calculated by the following equation (1).

Figure 112020069773570-pat00001
Figure 112020069773570-pat00001

또한, qe는 평형에서 절단 생성 산화철 흄의 중량 당 흡착된 용질의 양(mg/g)으로, 하기 수학식 2에 의해 계산된다.In addition, q e is the amount of adsorbed solute (mg/g) per weight of cleavage produced iron oxide fume at equilibrium, calculated by Equation 2 below.

Figure 112020069773570-pat00002
Figure 112020069773570-pat00002

실시예Example 1-3. 절단 생성 산화철 1-3. cutting produced iron oxide 흄의Hume's 첨가량에 따른 제거율 측정 Removal rate measurement according to the amount added

구리(Cu) 표준용액의 pH를 7로, 안티몬(Sb) 표준용액의 pH를 5로 고정하고, 중금속 표준용액 30ml 당 절단 생성 산화철 흄을 각 50, 100, 150, 200 mg 첨가하여 10분 동안 교반하고, 중금속 제거율을 측정하였다.The pH of the copper (Cu) standard solution was fixed at 7 and the pH of the antimony (Sb) standard solution was set at 5, and 50, 100, 150, and 200 mg of iron oxide fumes produced by cleavage were added per 30 ml of the heavy metal standard solution, respectively, for 10 minutes. After stirring, the heavy metal removal rate was measured.

그 결과, 도 5에서 알 수 있는 바와 같이, 절단 생성 산화철 흄의 첨가량에 따라 큰 변화를 나타내지는 않았으나, 첨가량이 증가할수록 제거율이 미세하게 증가함을 알 수 있다.As a result, as can be seen in FIG. 5 , it can be seen that, although there was no significant change according to the addition amount of the cleavage-generated iron oxide fume, the removal rate increased slightly as the addition amount increased.

실시예Example 1-4. 절단 생성 산화철 흄 첨가 후 1-4. After addition of cutting-generated iron oxide fume 교반agitation 시간에 따른 제거율 측정 Determination of removal rates over time

구리(Cu) 표준용액의 pH를 7로, 안티몬(Sb) 표준용액의 pH를 5로 고정하고, 중금속 표준용액 30ml 당 절단 생성 산화철 흄을 200 mg 첨가하여 교반 시간을 각 1, 3, 5, 7, 10분으로 하고, 중금속 제거율을 측정하였다.The pH of the copper (Cu) standard solution was set at 7 and the pH of the antimony (Sb) standard solution was set at 5, and 200 mg of cleavage produced iron oxide fume was added per 30 ml of the heavy metal standard solution to adjust the stirring time to 1, 3, 5, It was set as 7 and 10 minutes, and the heavy metal removal rate was measured.

그 결과, 도 6에서 알 수 있는 바와 같이, 교반 시간에 따라 큰 변화를 나타내지는 않았으며, 짧은 교반 시간에서도 뛰어난 중금속 정화 효과를 갖는 것을 확인하였다.As a result, as can be seen from FIG. 6 , it was confirmed that there was no significant change according to the stirring time, and it had an excellent effect of purifying heavy metals even in a short stirring time.

비교예comparative example 1-1. 6가 크롬( 1-1. hexavalent chromium ( CrCr 66 ++ ) 용액의 pH에 따른 제거율 측정) Measurement of the removal rate according to the pH of the solution

K2Cr2O7을 사용하여 6가 크롬(Cr6 +) 표준용액 1000mg/L을 제조하고, 제조된 중금속 표준용액에 본 발명의 절단 생성 산화철 흄을 첨가하여 교반하였다. 이 때 실시예와 동일한 방법으로 0.1M의 HCl 및 0.1M의 NaOH를 사용하여 중금속 용액의 pH를 조절하면서 pH에 따른 중금속 제거율을 측정하였다. 그 결과를 도 7(a)에 나타냈다. 6가 크롬(Cr6 +)의 경우 pH 7과 9에서는 정화 효과를 보이지 않았으며, 산성인 pH 3에서 가장 높은 중금속 제거율을 나타냈다.Using K 2 Cr 2 O 7 , 1000 mg/L of a hexavalent chromium (Cr 6 + ) standard solution was prepared, and the cleavage produced iron oxide fume of the present invention was added to the prepared heavy metal standard solution and stirred. At this time, the heavy metal removal rate according to the pH was measured while adjusting the pH of the heavy metal solution using 0.1 M HCl and 0.1 M NaOH in the same manner as in Example. The results are shown in Fig. 7(a). In the case of hexavalent chromium (Cr 6 + ), the purification effect was not observed at pH 7 and 9, and the highest heavy metal removal rate was exhibited at pH 3, which is acidic.

비교예comparative example 1-2. 6가 크롬( 1-2. hexavalent chromium ( CrCr 66 ++ ) 용액의 ) of the solution 농도H에at concentration H 따른 제거율 측정 Removal rate measurement

6가 크롬(Cr6 +) 표준용액의 pH를 3으로 고정하고, 중금속 표준용액 30ml 당 절단 생성 산화철 흄을 200 mg 첨가하여 10분 동안 교반하고, 중금속 농도 변화를 측정하였다. 중금속 용액의 초기 농도(C0)를 달리하면서 흡착 효율을 측정하였다. 그 결과를 도 7(b)에 나타냈다. 초기 농도(C0)가 증가할수록 mg/g에 대한 제거 용량인 qe가 함께 증가함을 알 수 있었으나, 제거 효율(AE)이 떨어짐을 알 수 있었다.The pH of the hexavalent chromium (Cr 6 + ) standard solution was fixed at 3, 200 mg of cleavage produced iron oxide fume was added per 30 ml of the heavy metal standard solution, and stirred for 10 minutes, and the heavy metal concentration change was measured. The adsorption efficiency was measured while varying the initial concentration (C 0 ) of the heavy metal solution. The results are shown in Fig. 7(b). As the initial concentration (C 0 ) increased, it could be seen that the removal capacity for mg/g, q e , increased together, but the removal efficiency (AE) decreased.

비교예comparative example 1-3. 절단 생성 산화철 1-3. cutting produced iron oxide 흄의Hume's 첨가량에 따른 제거율 측정 Removal rate measurement according to the amount added

6가 크롬(Cr6 +) 표준용액의 pH를 3으로 고정하고, 중금속 표준용액 30ml 당 절단 생성 산화철 흄을 각 50, 100, 150, 200 mg 첨가하여 10분 동안 교반하고, 중금속 제거율을 측정하였다. 그 결과, 도 7(c)와 같이 첨가량을 높일수록 제거율 또한 증가함을 알 수 있었다. The pH of the hexavalent chromium (Cr 6 + ) standard solution was fixed at 3, and 50, 100, 150, and 200 mg of iron oxide fume produced by cleavage per 30 ml of the heavy metal standard solution were added, stirred for 10 minutes, and the heavy metal removal rate was measured. . As a result, as shown in FIG. 7(c), it was found that the removal rate also increased as the addition amount was increased.

비교예comparative example 1-4. 절단 생성 산화철 흄 첨가 후 1-4. After addition of cutting-generated iron oxide fume 교반agitation 시간에 따른 제거율 측정 Determination of removal rates over time

6가 크롬(Cr6 +) 표준용액의 pH를 3으로 고정하고, 중금속 표준용액 30ml 당 절단 생성 산화철 흄을 200 mg 첨가하여 교반 시간을 각 1, 3, 5, 7, 10분으로 하고, 중금속 제거율을 측정하였다. 그 결과, 도 7(d)와 같이 교반 시간이 증가할수록 중금속 제거율도 함께 증가하며 교반 시간 10분에서 약 74%의 중금속 제거율을 보임을 확인하였다.The pH of the hexavalent chromium (Cr 6 + ) standard solution is fixed at 3, and 200 mg of cleavage iron oxide fume is added per 30 ml of the heavy metal standard solution, and the stirring time is 1, 3, 5, 7, and 10 minutes, respectively, and the heavy metal The removal rate was measured. As a result, as shown in FIG. 7(d), as the stirring time increased, the heavy metal removal rate also increased, and it was confirmed that the heavy metal removal rate was about 74% at 10 minutes of stirring time.

실시예 및 비교예의 결과를 살펴보면, 본 발명의 절단 생성 산화철은 중금속 중 구리(Cu)와 안티몬(Sb)의 제거 효과가 현저히 뛰어남을 알 수 있다.Looking at the results of the Examples and Comparative Examples, it can be seen that the cleavage produced iron oxide of the present invention is remarkably excellent in the removal effect of copper (Cu) and antimony (Sb) among heavy metals.

상술한 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서 본 발명에 기재된 실시예들은 본 발명의 기술 사상을 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상이 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의해서 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and various modifications and variations will be possible without departing from the essential characteristics of the present invention by those skilled in the art to which the present invention pertains. Accordingly, the embodiments described in the present invention are for explaining the technical spirit of the present invention, and the technical spirit of the present invention is not limited by these embodiments. The protection scope of the present invention should be construed by the following claims, and all technical ideas within the equivalent range should be construed as being included in the scope of the present invention.

Claims (7)

폐수 내 구리(Cu) 및 안티몬(Sb) 성분을 흡착하는 방법에 있어서,
(a) 탄소강 절단 공정에서 발생된 산화철 흄을 별도의 공정 없이 발생된 형태 그대로 제공하는 단계;
(b) 상기 (a) 단계에서 제공된 산화철 흄을 폐수에 첨가하는 단계; 및
(c) 상기 (b) 단계의 혼합물을 교반하는 단계;를 포함하는, 방법.
In the method for adsorbing copper (Cu) and antimony (Sb) components in wastewater,
(a) providing the iron oxide fume generated in the carbon steel cutting process as it is generated without a separate process;
(b) adding the iron oxide fume provided in step (a) to the wastewater; and
(c) stirring the mixture of step (b);
제1항에 있어서,
상기 (b) 단계에서 상기 폐수는 pH 5 이상으로 조절되는, 방법.
The method of claim 1,
In the step (b), the wastewater is adjusted to pH 5 or higher, the method.
삭제delete 제1항에 있어서,
상기 (c) 단계 이후에,
(d) 원심분리한 후, 구리(Cu) 및 안티몬(Sb) 성분이 흡착된 산화철 흄을 여과하는 단계를 추가적으로 포함하는, 방법.
The method of claim 1,
After step (c),
(d) after centrifugation, further comprising the step of filtering the iron oxide fume adsorbed with copper (Cu) and antimony (Sb) components.
제1항에 있어서,
상기 (a) 단계는 탄소강 절단 공정에서 절단기에 부착된 집진기를 통해 집진됨으로써 수행되는, 방법.
The method of claim 1,
The step (a) is carried out by collecting dust through a dust collector attached to the cutter in the carbon steel cutting process.
탄소강 절단 공정에서 발생되며 별도의 공정 없이 발생된 형태 그대로 폐수에 첨가되는 산화철 흄(Fume)을 포함하는, 폐수 내 구리(Cu) 및 안티몬(Sb) 성분 흡착제.
Copper (Cu) and antimony (Sb) component adsorbent in wastewater, including iron oxide fume, which is generated in the carbon steel cutting process and added to wastewater in the form it is generated without a separate process.
제6항에 있어서,
상기 산화철 흄은, 탄소강 절단 공정에서 절단기에 부착된 집진기를 통해 집진된 것인, 폐수 내 구리(Cu) 및 안티몬(Sb) 성분 흡착제.
7. The method of claim 6,
The iron oxide fume is, the copper (Cu) and antimony (Sb) component adsorbent in wastewater that is collected through a dust collector attached to the cutter in the carbon steel cutting process.
KR1020200082711A 2020-07-06 2020-07-06 Heavy metal adsorbent and its adsorption method using iron oxide fume produced by cutting KR102459976B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200082711A KR102459976B1 (en) 2020-07-06 2020-07-06 Heavy metal adsorbent and its adsorption method using iron oxide fume produced by cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200082711A KR102459976B1 (en) 2020-07-06 2020-07-06 Heavy metal adsorbent and its adsorption method using iron oxide fume produced by cutting

Publications (2)

Publication Number Publication Date
KR20220005191A KR20220005191A (en) 2022-01-13
KR102459976B1 true KR102459976B1 (en) 2022-10-28

Family

ID=79341882

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200082711A KR102459976B1 (en) 2020-07-06 2020-07-06 Heavy metal adsorbent and its adsorption method using iron oxide fume produced by cutting

Country Status (1)

Country Link
KR (1) KR102459976B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008200753A (en) * 2005-10-28 2008-09-04 Komatsu Sanki Kk Pellet, method of manufacturing pellet, and fume treatment apparatus
JP2019135039A (en) * 2018-02-05 2019-08-15 鹿島建設株式会社 Antimony-containing water treatment method and antimony-containing water treatment apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170040009A (en) 2015-10-02 2017-04-12 박기범 Method for Animal Waste Water Treatment Using Iron Oxide Nanotube

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008200753A (en) * 2005-10-28 2008-09-04 Komatsu Sanki Kk Pellet, method of manufacturing pellet, and fume treatment apparatus
JP2019135039A (en) * 2018-02-05 2019-08-15 鹿島建設株式会社 Antimony-containing water treatment method and antimony-containing water treatment apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
이상훈, 등., "Mn-ferrite의 중금속 흡착특성-폐 페라이트의 중금속폐수 처리 활용 가능성",자원환경지질, 제36권, 제5호, 381-385, 2003.*

Also Published As

Publication number Publication date
KR20220005191A (en) 2022-01-13

Similar Documents

Publication Publication Date Title
Saleh et al. Polyamide magnetic palygorskite for the simultaneous removal of Hg (II) and methyl mercury; with factorial design analysis
Li et al. Preparation of thiol-functionalized activated carbon from sewage sludge with coal blending for heavy metal removal from contaminated water
Fang et al. Recovery of gallium from coal fly ash
AU2018203359A1 (en) Magnetic adsorbents, methods for manufacturing a magnetic adsorbent, and methods of removal of contaminants from fluid streams
Liu et al. Adsorption behavior of ammonium by a bioadsorbent–Boston ivy leaf powder
Tang et al. Highly efficient recovery and clean-up of four heavy metals from MSWI fly ash by integrating leaching, selective extraction and adsorption
JP4676898B2 (en) Arsenic removal method and arsenic removal treatment agent in contaminated water
JP5482979B2 (en) Adsorbent
CA2876164A1 (en) Magnetic adsorbents, methods for manufacturing a magnetic adsorbent, and methods of removal of contaminants from fluid streams
CN107970890B (en) Hydroxyl iron modified activated carbon composite material and preparation method thereof
He et al. Removal of vanadium from vanadium-containing wastewater by amino modified municipal sludge derived ceramic
Zang et al. Adsorption removal of roxarsone, arsenite (III), and arsenate (V) using iron-modified sorghum straw biochar and its kinetics
Özcan et al. Removal of heavy metals from simulated water by using eggshell powder
CN109012565A (en) A kind of method of the magnetic carbon material Adsorption heavy metal ions in wastewater of nitrating
Abdelfattah et al. Montmorillonitic clay as a Cost Effective, Eco Friendly and Sustainable Adsorbent for Physicochemical Treatment of Contaminated Water
KR102459976B1 (en) Heavy metal adsorbent and its adsorption method using iron oxide fume produced by cutting
Danish et al. Adsorptive removal of lanthanum based on hydrothermally synthesized iron oxide-titanium oxide nanoparticles
CN110075806B (en) Amino modified nano porous silicon adsorbent and preparation method and application thereof
You et al. Removal of NO3-N in alkaline rare earth industry effluent using modified coconut shell biochar
Hang et al. Adsorption performances of naked and 3-aminopropyl triethoxysilane-modified mesoporous TiO2 hollow nanospheres for Cu2+, Cd2+, Pb2+, and Cr (VI) ions
CN108499531B (en) Method for purifying heavy metal ions in coal underground gasification polluted water
Pang et al. Adsorption of chromium (VI) onto activated carbon modified with KMnO4
Miljković et al. Remediation of arsenic contaminated water by a novel carboxymethyl cellulose bentonite adsorbent
CN104353407A (en) Fe-Mn system adsorbent and preparation and application method of Fe-Mn system adsorbent
JP2006218359A (en) Heavy metal remover and removal method for heavy metal

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant