KR102371936B1 - Coating method of semiconductor parts with excellent plasma erosion resistance and mechanical properties - Google Patents

Coating method of semiconductor parts with excellent plasma erosion resistance and mechanical properties Download PDF

Info

Publication number
KR102371936B1
KR102371936B1 KR1020190159575A KR20190159575A KR102371936B1 KR 102371936 B1 KR102371936 B1 KR 102371936B1 KR 1020190159575 A KR1020190159575 A KR 1020190159575A KR 20190159575 A KR20190159575 A KR 20190159575A KR 102371936 B1 KR102371936 B1 KR 102371936B1
Authority
KR
South Korea
Prior art keywords
coating
yttrium
coating film
semiconductor component
mechanical properties
Prior art date
Application number
KR1020190159575A
Other languages
Korean (ko)
Other versions
KR20210069837A (en
Inventor
오윤석
이성민
Original Assignee
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원 filed Critical 한국세라믹기술원
Priority to KR1020190159575A priority Critical patent/KR102371936B1/en
Publication of KR20210069837A publication Critical patent/KR20210069837A/en
Application granted granted Critical
Publication of KR102371936B1 publication Critical patent/KR102371936B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • H01L21/02315Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

이트륨계 불화물 기반에 강화제인 산화물 입자를 첨가함에 따라, 내플라즈마 침식성과 함께 반도체 부품의 기계적 강성을 향상시키는 내플라즈마 침식성 및 기계적 특성이 우수한 반도체 부품의 코팅방법에 대하여 개시한다.
본 발명에 따른 내플라즈마 침식성 및 기계적 특성이 우수한 반도체 부품의 코팅방법은 (a) 반도체 부품을 마련하는 단계; 및 (b) 상기 반도체 부품 표면에 이트륨계 불화물과 함께 강화제를 분사 코팅하는 단계;를 포함하고, 상기 강화제는 산화물 입자를 포함하는 것을 특징으로 한다.
Disclosed is a method for coating a semiconductor component having excellent plasma erosion resistance and mechanical properties, which improves mechanical rigidity of semiconductor components with plasma erosion resistance by adding oxide particles as a reinforcing agent to a yttrium-based fluoride base.
A method for coating a semiconductor component having excellent plasma erosion resistance and mechanical properties according to the present invention comprises the steps of: (a) preparing a semiconductor component; and (b) spray-coating a reinforcing agent together with yttrium-based fluoride on the surface of the semiconductor component, wherein the reinforcing agent comprises oxide particles.

Description

내플라즈마 침식성 및 기계적 특성이 우수한 반도체 부품의 코팅방법{COATING METHOD OF SEMICONDUCTOR PARTS WITH EXCELLENT PLASMA EROSION RESISTANCE AND MECHANICAL PROPERTIES}Coating method of semiconductor parts with excellent plasma erosion resistance and mechanical properties

본 발명은 반도체 부품 표면에 이트륨계 불화물과 함께 강화제로서 산화물 입자를 분사 코팅하여, 코팅막 전체의 기계적 특성을 강화시킨, 내플라즈마 침식성 및 기계적 특성이 우수한 반도체 부품의 코팅방법에 관한 것이다. The present invention relates to a method for coating a semiconductor component with excellent plasma erosion resistance and excellent mechanical properties by spray-coating oxide particles as a reinforcing agent together with yttrium-based fluoride on the surface of the semiconductor component to enhance the mechanical properties of the entire coating film.

반도체, 발광다이오드, 태양전지 등을 제작할 때 증착, 에칭, 확산, 세정 등의 공정을 거치게 된다. 이러한 공정들은 플라즈마 챔버 내부에서 수행된다. 플라즈마 처리를 위해 사용되는 장비는 부품 또는 구성부품의 표면에 내식성 코팅이 제공된 부품을 전형적으로 포함한다. 플라즈마 챔버 내부에 배치된 부품들은 플라즈마 분위기와 고온에 노출되어 있기 때문에 내플라즈마성, 내식성 및 내부식성 등과 같은 물성이 요구된다. When manufacturing semiconductors, light emitting diodes, solar cells, etc., processes such as deposition, etching, diffusion, and cleaning are performed. These processes are performed inside a plasma chamber. Equipment used for plasma treatment typically includes a component in which the surface of the component or component is provided with a corrosion resistant coating. Since components disposed inside the plasma chamber are exposed to a plasma atmosphere and high temperature, properties such as plasma resistance, corrosion resistance and corrosion resistance are required.

예를 들어 챔버 내면이 반응성 할로겐 가스가 주입된 플라즈마 또는 강한 산성 에칭 분위기와 접촉하게 되면, 챔버 내면이 부식되면서 응집물이 떨어져 제조 중인 반도체 소자를 오염시킨다. For example, when the inner surface of the chamber comes into contact with plasma injected with reactive halogen gas or a strong acid etching atmosphere, the inner surface of the chamber is corroded and aggregates fall off, contaminating the semiconductor device being manufactured.

따라서 반응성 할로겐 가스가 주입된 플라즈마 또는 강한 산성 분위기에서도 내식성을 유지할 수 있는 챔버의 부품을 제조할 필요가 있다. Therefore, there is a need to manufacture a chamber component capable of maintaining corrosion resistance even in a plasma injected with reactive halogen gas or in a strong acid atmosphere.

종래에는 챔버의 부품에 사용되는 소재로 알루미나(Al2O3)를 주로 사용하였다. 하지만 알루미나(Al2O3)는 플라즈마에 대한 내식성이 약해 RF 파워가 커지는 환경에서는 사용되기에 부적합한 단점이 있다. 이를 극복하기 위해 알루미나(Al2O3)와 이트리아(Y2O3)를 혼합하여 사용하였으나, 이트리아(Y2O3)는 굽힘 강도가 작아 열적 안정성과 경도가 낮은 단점이 있다. Conventionally, alumina (Al 2 O 3 ) was mainly used as a material used for parts of the chamber. However, alumina (Al 2 O 3 ) has a weak corrosion resistance to plasma, so it is unsuitable for use in an environment in which RF power is increased. To overcome this, alumina (Al 2 O 3 ) and yttria (Y 2 O 3 ) were mixed and used, but yttria (Y 2 O 3 ) has low bending strength and low thermal stability and hardness.

한편, 지르코니아(ZrO2) 소재에 기계적 강도를 높이기 위한 산화물을 첨가하여 챔버의 부품을 제조하는 연구가 진행되어 왔다. 하지만, 이 경우 산화물 첨가 시 제3상의 반응물이 생성되는데, 생성된 반응물은 제거가 어려우며 반도체 소자에서 웨이퍼 수준 결함을 야기하는 원인이 된다.On the other hand, by adding an oxide to increase the mechanical strength of the zirconia (ZrO 2 ) material has been researched to manufacture the chamber parts. However, in this case, when the oxide is added, a reactant of the third phase is generated, and the reactant is difficult to remove and causes wafer-level defects in the semiconductor device.

따라서, 내플라즈마 침식성이 우수함과 동시에 기계적 물성을 향상시킬 수 있는 반도체 부품이 마련될 필요가 있다.Therefore, there is a need to provide a semiconductor component that is excellent in plasma erosion resistance and can improve mechanical properties at the same time.

본 발명의 목적은 내플라즈마 침식성과 기계적 특성을 동시에 확보할 수 있는 반도체 부품의 코팅방법을 제공하는 것이다.An object of the present invention is to provide a method for coating a semiconductor component capable of simultaneously securing plasma erosion resistance and mechanical properties.

또한 본 발명의 목적은 내플라즈마 코팅의 성능을 유지하고 수명을 연장시킬 수 있는 반도체 부품의 코팅방법을 제공하는 것이다. It is also an object of the present invention to provide a method for coating a semiconductor component capable of maintaining the performance of the plasma coating and extending the lifespan.

본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 이해될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects and advantages of the present invention not mentioned can be understood by the following description, and will be more clearly understood by the examples of the present invention. Further, it will be readily apparent that the objects and advantages of the present invention may be realized by the means and combinations thereof indicated in the claims.

본 발명에 따른 내플라즈마 침식성 및 기계적 특성이 우수한 반도체 부품의 코팅방법은 (a) 반도체 부품을 마련하는 단계; 및 (b) 상기 반도체 부품 표면에 이트륨계 불화물과 함께 강화제를 분사 코팅하는 단계;를 포함하고, 상기 강화제는 산화물 입자를 포함하는 것을 특징으로 한다.A method for coating a semiconductor component having excellent plasma erosion resistance and mechanical properties according to the present invention comprises the steps of: (a) preparing a semiconductor component; and (b) spray-coating a reinforcing agent together with yttrium-based fluoride on the surface of the semiconductor component, wherein the reinforcing agent comprises oxide particles.

본 발명에 따른 내플라즈마 침식성 및 기계적 특성이 우수한 반도체 부품은 반도체 부품; 및 상기 반도체 부품 표면에 형성된 코팅막;을 포함하고, 상기 코팅막은 이트륨계 불화물과 함께 강화제를 포함하며, 상기 강화제는 산화물 입자를 포함하는 것을 특징으로 한다.A semiconductor component having excellent plasma erosion resistance and mechanical properties according to the present invention is a semiconductor component; and a coating film formed on the surface of the semiconductor component, wherein the coating film includes a reinforcing agent together with yttrium-based fluoride, and the reinforcing agent includes oxide particles.

본 발명에 따른 반도체 부품의 코팅방법은 이트륨계 불화물 기반에 강화제인 산화물 입자를 첨가함에 따라, 내플라즈마 침식성과 함께 반도체 부품의 기계적 강성을 향상시키는 효과가 있다. 아울러 반도체 부품의 내플라즈마 코팅 성능을 유지할 수 있으며, 수명을 연장시킬 수 있다. The coating method of a semiconductor component according to the present invention has an effect of improving the mechanical rigidity of the semiconductor component with plasma erosion resistance by adding oxide particles as a reinforcing agent to the yttrium-based fluoride base. In addition, it is possible to maintain the plasma coating performance of the semiconductor component and extend the lifespan.

또한 본 발명의 반도체 부품의 코팅방법은 강도와 경도를 향상시킴에 따라 공정 안정성, 유지비용 절감 효과가 있다.In addition, the coating method of the semiconductor component of the present invention has the effect of reducing the process stability and maintenance cost by improving the strength and hardness.

상술한 효과와 더불어 본 발명의 구체적인 효과는 이하 발명을 실시하기 위한 구체적인 사항을 설명하면서 함께 기술한다.In addition to the above-described effects, the specific effects of the present invention will be described together while describing specific details for carrying out the invention below.

도 1은 본 발명에 따른 내플라즈마 침식성이 우수한 반도체 부품의 코팅방법을 나타낸 순서도이다.
도 2는 본 발명에 따른 내플라즈마 침식성이 우수한 반도체 부품의 코팅과정을 나타낸 모습이다.
도 3은 본 발명에 따른 표면이 코팅된 반도체 부품의 단면도이다.
1 is a flowchart illustrating a method for coating a semiconductor component having excellent plasma erosion resistance according to the present invention.
2 is a view showing the coating process of the semiconductor component excellent in plasma erosion resistance according to the present invention.
3 is a cross-sectional view of a surface-coated semiconductor component according to the present invention.

전술한 목적, 특징 및 장점은 첨부된 도면을 참조하여 상세하게 후술되며, 이에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 상세한 설명을 생략한다. 이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 도면에서 동일한 참조부호는 동일 또는 유사한 구성요소를 가리키는 것으로 사용된다.The above-described objects, features and advantages will be described below in detail with reference to the accompanying drawings, and accordingly, those of ordinary skill in the art to which the present invention pertains will be able to easily implement the technical idea of the present invention. In describing the present invention, if it is determined that a detailed description of a known technology related to the present invention may unnecessarily obscure the gist of the present invention, the detailed description will be omitted. Hereinafter, preferred embodiments according to the present invention will be described in detail with reference to the accompanying drawings. In the drawings, the same reference numerals are used to indicate the same or similar components.

이하에서 구성요소의 "상부 (또는 하부)" 또는 구성요소의 "상 (또는 하)"에 임의의 구성이 배치된다는 것은, 임의의 구성이 상기 구성요소의 상면 (또는 하면)에 접하여 배치되는 것뿐만 아니라, 상기 구성요소와 상기 구성요소 상에 (또는 하에) 배치된 임의의 구성 사이에 다른 구성이 개재될 수 있음을 의미할 수 있다. In the following, that an arbitrary component is disposed on the "upper (or lower)" of a component or "above (or below)" of a component means that any component is disposed in contact with the upper surface (or lower surface) of the component. Furthermore, it may mean that other components may be interposed between the component and any component disposed on (or under) the component.

이하에서는, 본 발명의 실시예에 따른 내플라즈마 침식성 및 기계적 특성이 우수한 반도체 부품의 코팅방법을 설명하도록 한다.Hereinafter, a method of coating a semiconductor component having excellent plasma erosion resistance and mechanical properties according to an embodiment of the present invention will be described.

종래에는 부품에 산화물을 첨가하여 기계적 물성을 향상시키고자 하였으나, 코팅 시 부품과 산화물이 반응하여 제3상의 반응물이 생성된다. 제3상의 반응물은 불순물로 작용하여 제거가 어렵고, 반도체 소자에서 웨이퍼 수준 결함을 야기하는 원인이 된다.Conventionally, an oxide is added to a component to improve mechanical properties, but during coating, the component and the oxide react to generate a reactant in the third phase. The reactant in the third phase acts as an impurity and is difficult to remove, causing wafer-level defects in semiconductor devices.

본 발명에서는 불화물에 대하여 반응성이 낮은 산화물을 이용하여 코팅 시 제3상이 생성되지 않도록 함과 동시에 코팅막 전체의 기계적 특성을 강화시키기 위한 목적으로 본 발명을 연구하였다.In the present invention, the present invention was studied for the purpose of preventing the generation of a third phase during coating using an oxide having low reactivity with respect to fluoride and at the same time strengthening the mechanical properties of the entire coating film.

도 1은 본 발명에 따른 내플라즈마 침식성 및 기계적 특성이 우수한 반도체 부품의 코팅방법을 나타낸 순서도이다. 도 2는 본 발명에 따른 내플라즈마 침식성 및 기계적 특성이 우수한 반도체 부품의 코팅과정을 나타낸 모습이다.1 is a flowchart illustrating a method for coating a semiconductor component having excellent plasma erosion resistance and mechanical properties according to the present invention. 2 is a view showing the coating process of a semiconductor component excellent in plasma erosion resistance and mechanical properties according to the present invention.

도 1 및 도 2를 참조하면, 본 발명에 따른 반도체 부품의 코팅방법은 반도체 부품을 마련하는 단계(S110) 및 이트륨계 불화물과 함께 강화제인 산화물 입자를 분사 코팅하는 단계(S120)를 포함한다.1 and 2, the method for coating a semiconductor component according to the present invention includes the step of preparing the semiconductor component (S110) and spray-coating the oxide particles as a reinforcing agent together with yttrium-based fluoride (S120).

먼저, 반도체 부품을 마련한다.First, a semiconductor component is prepared.

반도체 부품은 통상의 챔버에 사용되는 반도체용 부품으로, 금속, 합금, 세라믹 재질로 형성된 부품일 수 있다.The semiconductor component is a component for a semiconductor used in a typical chamber, and may be a component formed of a metal, alloy, or ceramic material.

반도체 부품은 예를 들어, 실리콘(Si), 탄화규소(SiC), 탄화티타늄(TiC), 탄화텅스텐(WC), 탄화크롬(CrC), 탄화탄탈륨(TaC) 및 탄화지르코늄(ZrC), 이트리아(Y2O3), 실리카(SiO2), 알루미나(Al2O3), 산화크롬(Cr2O3), 산화마그네슘(MgO), 산화칼슘(CaO), 산화철(FeO), 산화주석(SnO2), 이산화타이타늄(TiO2), 지르코니아(ZrO2), 산화하프늄(HfO2), 산화탄탈륨(Ta2O5), 루테늄산화물(RuO2), 일산화납(PbO), 산화아연(ZnO), 과산화스트론튬(SrO2), 산화비스무트(Bi2O3), 뮬라이트(3Al2O3-2SiO2), 란탄족계 산화물 중 1종 이상을 포함할 수 있다.Semiconductor components include, for example, silicon (Si), silicon carbide (SiC), titanium carbide (TiC), tungsten carbide (WC), chromium carbide (CrC), tantalum carbide (TaC) and zirconium carbide (ZrC), yttria. (Y 2 O 3 ), Silica (SiO 2 ), alumina (Al 2 O 3 ), chromium oxide (Cr 2 O 3 ), magnesium oxide (MgO), calcium oxide (CaO), iron oxide (FeO), tin oxide (SnO 2 ), titanium dioxide ( TiO 2 ), zirconia (ZrO 2 ), hafnium oxide (HfO 2 ), tantalum oxide (Ta 2 O 5 ), ruthenium oxide (RuO 2 ), lead monoxide (PbO), zinc oxide (ZnO), strontium peroxide (SrO 2 ) ), bismuth oxide (Bi 2 O 3 ), mullite (3Al 2 O 3 -2SiO 2 ), and may include one or more of lanthanide-based oxides.

본 발명에서는 반도체 부품 표면에 내플라즈마 침식성을 향상시키기 위해 이트륨계 불화물로 분사 코팅하되, 기계적 강도를 향상시키기 위한 강화제로서 산화물 입자를 첨가하여 분사 코팅한다. In the present invention, the surface of the semiconductor component is spray-coated with yttrium-based fluoride to improve plasma erosion resistance, and spray-coated by adding oxide particles as a reinforcing agent to improve mechanical strength.

본 발명에서 코팅막을 형성하기 위해 이트륨계 불화물을 사용하는 이유는 내플라즈마성이 매우 우수하고, 화학적 안정성이 높으며, 첨가될 산화물과 반응성이 낮기 때문이다. 여기서 이트륨계 불화물은 YOF, Y5O4F7, Y7O6F9, 및 YF3 중 1종 이상을 포함하는 것이 바람직하다. The reason why yttrium-based fluoride is used to form the coating film in the present invention is that it has excellent plasma resistance, high chemical stability, and low reactivity with the oxide to be added. Here, the yttrium-based fluoride preferably includes at least one of YOF, Y 5 O 4 F 7 , Y 7 O 6 F 9 , and YF 3 .

본 발명에서는 이트륨계 불화물 기반에 강화제인 산화물 입자를 함께 혼합하여 분사 코팅함에 따라 내플라즈마 침식성과 기계적 특성을 동시에 확보할 수 있다. 이트륨계 불화물은 평균입도가 0.1~20 ㎛ 이내의 구형 또는 일부 변형된 구형의 형태로 제공되며 경우에 따라서는 편석된 형태로 제공될 수 있다.In the present invention, plasma erosion resistance and mechanical properties can be secured at the same time by mixing and spraying coating with oxide particles as a reinforcing agent on a yttrium-based fluoride base. The yttrium-based fluoride is provided in the form of a spherical or partially deformed spherical having an average particle size of 0.1 to 20 μm, and in some cases, may be provided in a segregated form.

강화제는 평균 입도가 100㎛ 이하인 산화물 입자인 것이 바람직하고, 0.1㎛ 이상 내지 50㎛ 이하인 것이 보다 바람직하다. 평균 입도가 100㎛ 이하인 산화물 입자로부터 코팅막을 형성하게 되면, 코팅막의 조직이 치밀하게 되면서 경도와 강도가 증가하는 효과가 있다. 반대로, 100㎛를 초과하는 산화물 입자를 사용하는 경우, 코팅막의 강도 등 기계적 특성이 저하될 우려와 코팅막 자체의 성능이 낮아지는 문제점이 있다.The reinforcing agent is preferably oxide particles having an average particle size of 100 µm or less, and more preferably 0.1 µm or more to 50 µm or less. When the coating film is formed from oxide particles having an average particle size of 100 μm or less, the structure of the coating film is dense, and hardness and strength are increased. Conversely, when the oxide particles exceeding 100 μm are used, there is a concern that mechanical properties such as strength of the coating film may be lowered and the performance of the coating film itself is lowered.

강화제는 3-13족의 금속 산화물 및 란탄계 희토류 산화물 중 1종 이상을 포함하는 산화물 입자가 선택될 수 있다.The reinforcing agent may be selected from oxide particles including at least one of Group 3-13 metal oxides and lanthanide-based rare earth oxides.

상기 금속 산화물은 산화아연, 산화티탄, 산화알루미늄, 산화지르코늄, 산화실리콘, 산화크롬, 산화하프늄, 산화철, 산화니오븀, 산화탄탈륨, 산화텅스텐, 산화주석 중 1종 이상을 포함할 수 있다. 상기 란탄계 희토류 산화물은 원자 번호 57~71에 해당하는 란탄족 원소의 산화물을 가리킨다. 란탄계 희토류 산화물은 예를 들어 산화란탄넘, 산화 가돌리늄, 산화세륨, 산화프라세오디뮴, 산화네오디뮴, 산화사마륨, 산화루테늄 중 1종 이상을 포함할 수 있다. The metal oxide may include at least one of zinc oxide, titanium oxide, aluminum oxide, zirconium oxide, silicon oxide, chromium oxide, hafnium oxide, iron oxide, niobium oxide, tantalum oxide, tungsten oxide, and tin oxide. The lanthanide-based rare earth oxide refers to an oxide of a lanthanide element corresponding to an atomic number of 57 to 71. The lanthanide-based rare earth oxide may include, for example, at least one of lanthanum oxide, gadolinium oxide, cerium oxide, praseodymium oxide, neodymium oxide, samarium oxide, and ruthenium oxide.

이러한 강화제는 코팅막 자체의 기계적 특성, 즉, 고강도 및 고경도를 향상시키기 위해 첨가되는 것으로, 이트륨계 불화물 100중량부에 대하여, 1~50중량부로 혼합될 수 있다. 강화제의 함량이 1중량부 미만인 경우, 코팅막의 기계적 특성 효과 없이 제조비용만 증가하게 된다. 반대로, 50중량부를 초과하는 경우, 코팅막 자체의 고유의 특성이 변화되는 문제점이 발생한다.This reinforcing agent is added to improve the mechanical properties of the coating film itself, that is, high strength and high hardness, and may be mixed in an amount of 1 to 50 parts by weight based on 100 parts by weight of the yttrium-based fluoride. When the content of the reinforcing agent is less than 1 part by weight, only the manufacturing cost increases without the effect of the mechanical properties of the coating film. Conversely, when it exceeds 50 parts by weight, a problem occurs in that the intrinsic properties of the coating film itself are changed.

본 발명에서는 이트륨계 불화물과 강화제를 혼합한 상태로 분사 코팅하기 때문에 코팅막의 치밀도가 향상되면서 균일한 두께의 코팅막을 얻을 수 있다. 이트륨계 불화물과 강화제는 혼합 및 교반되어 슬러리 상태로 분사 코팅될 수 있으며, 분산매로 유기 용제나 증류수를 포함할 수 있다. In the present invention, since the coating is spray coated in a state in which the yttrium-based fluoride and the reinforcing agent are mixed, the density of the coating film is improved and a coating film of a uniform thickness can be obtained. The yttrium-based fluoride and the reinforcing agent may be spray-coated in a slurry state by mixing and stirring, and may include an organic solvent or distilled water as a dispersion medium.

본 발명에서 분사 코팅은 APS(Atmospheric Plasma Spray), PVD(Physical Vapor Deposition), 서스펜션 플라즈마 용사 코팅(Suspension plasma spray), 고속화염 코팅(High Velocity Oxygen Fuel Spraying, HVOF), 진공 플라즈마 코팅(Vacuum Plasma Spraying, VPS), 저온분사 코팅(cold spray) 또는 저압건식분사 코팅(aerosol deposition, AD)으로 수행될 수 있다.In the present invention, spray coating is APS (Atmospheric Plasma Spray), PVD (Physical Vapor Deposition), suspension plasma spray coating (Suspension plasma spray), high-speed flame coating (High Velocity Oxygen Fuel Spraying, HVOF), vacuum plasma coating (Vacuum Plasma Spraying) , VPS), cold spray coating or low pressure dry spray coating (aerosol deposition, AD).

APS는 고온의 열원을 이용하여 분말을 녹인 후 분사하여 후막을 형성하는 방법이다. PVD는 드라이 플레이팅이라고도 한다. PVD 는 진공 중에 금속 또는 세라믹을 기화시켜 기화된 금속 또는 세라믹 입자가 방해물 없이 부품 표면에 증착된다. 서스펜션 플라즈마 용사 코팅은 기존의 플라즈마 용사와 유사한 방법이나 코팅원료로 서스펜션 혹은 슬러리를 사용하는 방법이다. APS is a method of forming a thick film by dissolving powder using a high-temperature heat source and then spraying it. PVD is also called dry plating. PVD vaporizes the metal or ceramic in a vacuum so that the vaporized metal or ceramic particles are deposited on the component surface without obstructions. Suspension plasma spray coating is a method similar to conventional plasma spraying, but a method using a suspension or slurry as a coating material.

고속화염 코팅은 연료가스(프로판, 메틸아세틸렌, 헵탄, 수소)를 산소와 함께 고압에서 연소시켜 고속의 제트를 발생시키는 것이다. 분말은 공급가스로 제트에 주입되고, 작동가스는 연소실에서 연소되어 노즐을 통하여 토치 밖으로 분사된다. 화염의 온도는 3170~3440K이며 분사되는 제트의 속도는 1500~2000m/sec이다. 고속화염 코팅은 우수한 접합강도를 지니는 코팅막을 제조할 수 있으며, 생성된 코팅막은 내구성 및 수명연장이 가능한 효과가 있다. 또한 고속화염 코팅은 고경도를 갖는 치밀한 코팅막을 제조하기에 용이하다. 진공 플라즈마 코팅은 진공챔버 내를 진공 환경으로 변화시켜 불활성 가스를 주입한 다음 플라즈마를 발생시켜 코팅물질을 스퍼터링하여 소재 표면에 코팅물질이 코팅되도록 하는 공정이다. High-speed flame coating is to generate a high-speed jet by burning fuel gas (propane, methylacetylene, heptane, hydrogen) at high pressure with oxygen. The powder is injected into the jet as a feed gas, and the working gas is burned in the combustion chamber and injected out of the torch through the nozzle. The flame temperature is 3170~3440K and the jet speed is 1500~2000m/sec. The high-speed flame coating can produce a coating film with excellent bonding strength, and the resulting coating film has the effect of enabling durability and life extension. In addition, the high-speed flame coating is easy to manufacture a dense coating film with high hardness. Vacuum plasma coating is a process that changes the inside of a vacuum chamber to a vacuum environment, injects an inert gas, and then generates plasma to sputter the coating material so that the coating material is coated on the surface of the material.

저온분사 코팅은 금속 분말을 고압의 가스에 태워 아주 빠르게 기판에 분사시키는 것이다. 저압건식분사 코팅은 상온 및 저진공 분위기에서, 노즐을 이용하여 분말 또는 과립을 기판 상에 분사하여 증착시킴으로써, 후막을 제조하는 공정이다.Low-temperature spray coating is to burn metal powder in high-pressure gas and spray it on the substrate very quickly. Low-pressure dry spray coating is a process for manufacturing a thick film by depositing powder or granules on a substrate by spraying them using a nozzle at room temperature and in a low vacuum atmosphere.

이들 중 선택되는 분사 코팅 방법을 이용하여 부품 표면에 균일한 코팅막을 형성할 수 있다. A uniform coating film can be formed on the surface of the part by using the spray coating method selected among them.

코팅막의 두께는 대략 10~1000㎛ 일 수 있으나, 이에 제한되는 것은 아니다. 또한, 코팅막은 0.1~5vol%의 기공율을 갖는 고밀도 코팅막이다. 기공율이 5vol%를 초과할 경우 코팅막의 기계적 강도가 다소 저하될 수 있다. 또한 코팅막은 평균중심 조도 값이 약 0.1~5㎛인 표면 거칠기 값을 가질 수 있다. 표면 거칠기 값이 이 범위를 벗어나는 경우 코팅막이 균일하게 형성되지 않을 수 있다.The thickness of the coating film may be about 10 ~ 1000㎛, but is not limited thereto. In addition, the coating film is a high-density coating film having a porosity of 0.1 to 5 vol%. When the porosity exceeds 5 vol%, the mechanical strength of the coating film may be slightly lowered. In addition, the coating film may have a surface roughness value of about 0.1 to 5㎛ average center roughness value. If the surface roughness value is out of this range, the coating film may not be uniformly formed.

이처럼, 본 발명에 따른 반도체 부품의 코팅방법은 이트륨계 불화물 기반에 산화물 입자를 함께 분사 코팅한 기술로, 코팅 시 제3상이 생성되지 않도록 함과 동시에 내플라즈마 침식성과 코팅막 전체의 기계적 특성을 강화시키는 효과가 있다. 이를 통해 반도체 부품의 내플라즈마 코팅 성능을 유지할 수 있으며, 수명을 연장시킬 수 있다.As such, the coating method of semiconductor parts according to the present invention is a technology in which oxide particles are spray coated on a yttrium-based fluoride base together, so that a third phase is not generated during coating, and at the same time, plasma erosion resistance and mechanical properties of the entire coating film are strengthened. It works. Through this, the plasma coating performance of the semiconductor component can be maintained and the lifespan can be extended.

본 발명에 따라 코팅된 반도체 부품은 챔버 벽, 챔버 라이너, 기판 지지부, 가스 분배판, 플라즈마 한정 링, 노즐, 발열체, 플라즈마 포커스 링 등과 같은 구성에 적용될 수 있다.Semiconductor components coated in accordance with the present invention may be applied in constructions such as chamber walls, chamber liners, substrate supports, gas distribution plates, plasma confinement rings, nozzles, heating elements, plasma focus rings, and the like.

도 3은 본 발명에 따른 표면이 코팅된 반도체 부품의 단면도이다.3 is a cross-sectional view of a surface-coated semiconductor component according to the present invention.

본 발명에 따라 분사 코팅된 반도체 부품은 반도체 부품 및 반도체 부품 표면에 형성되는 코팅막을 포함한다. 이때 코팅막은 이트륨계 불화물과 산화물 입자가 분산되어 있는 구조를 가진다. 코팅막에서 이트륨계 불화물 100중량부에 대하여, 산화물 입자 1~50중량부가 포함될 수 있으며, 이에 대한 사항은 전술한 바와 같다. 도 3에 도시한 바와 같이 부품의 일면에 코팅막을 형성할 수 있으며, 필요에 따라 부품의 전면에 코팅막을 형성할 수도 있다.The spray-coated semiconductor component according to the present invention includes a semiconductor component and a coating film formed on the surface of the semiconductor component. At this time, the coating film has a structure in which yttrium-based fluoride and oxide particles are dispersed. Based on 100 parts by weight of the yttrium-based fluoride in the coating film, 1 to 50 parts by weight of oxide particles may be included, and details thereof are as described above. As shown in FIG. 3 , a coating film may be formed on one surface of the component, and if necessary, a coating film may be formed on the entire surface of the component.

본 발명의 이트륨계 불화물과 산화물 입자가 분산된 코팅막은 강화제 첨가에 의해, 기존 이트륨계 불화물로만 이루어진 코팅막 대비, 약 10~200% 정도 개선된 기계적 특성을 얻을 것으로 예상된다.It is expected that the coating film in which the yttrium-based fluoride and oxide particles are dispersed of the present invention will have improved mechanical properties by about 10-200% compared to the existing coating film made only of the yttrium-based fluoride by adding a reinforcing agent.

따라서 본 발명에 따른 반도체 부품의 코팅방법은 이트륨계 불화물 기반에 강화제인 산화물 입자를 적정 비율로 첨가함에 따라, 내플라즈마 침식성과 함께 반도체 부품의 기계적 강성을 향상시키는 효과가 있다. Therefore, the method for coating a semiconductor component according to the present invention has an effect of improving the mechanical rigidity of the semiconductor component together with plasma erosion resistance by adding oxide particles as a reinforcing agent in an appropriate ratio to the yttrium-based fluoride base.

아울러 강도와 경도를 향상시킴에 따라 공정 안정성, 유지비용 절감 효과 있으며, 수명을 연장시킬 수 있다.In addition, by improving strength and hardness, process stability, maintenance cost reduction, and lifespan can be extended.

이상과 같이 본 발명에 대해서 예시한 도면을 참조로 하여 설명하였으나, 본 명세서에 개시된 실시 예와 도면에 의해 본 발명이 한정되는 것은 아니며, 본 발명의 기술사상의 범위 내에서 통상의 기술자에 의해 다양한 변형이 이루어질 수 있음은 자명하다. 아울러 앞서 본 발명의 실시 예를 설명하면서 본 발명의 구성에 따른 작용 효과를 명시적으로 기재하여 설명하지 않았을 지라도, 해당 구성에 의해 예측 가능한 효과 또한 인정되어야 함은 당연하다.As described above, the present invention has been described with reference to the illustrated drawings, but the present invention is not limited by the embodiments and drawings disclosed in this specification, and various methods can be obtained by those skilled in the art within the scope of the technical spirit of the present invention. It is obvious that variations can be made. In addition, although the effects according to the configuration of the present invention have not been explicitly described and described while describing the embodiments of the present invention, it is natural that the effects predictable by the configuration should also be recognized.

10 : 반도체 부품
20 : 코팅막
10: semiconductor parts
20: coating film

Claims (7)

(a) 반도체 부품을 마련하는 단계; 및
(b) 상기 반도체 부품 표면에 이트륨계 불화물 입자 기반에 란탄계 희토류 산화물 입자를 혼합한 상태로 서스펜션 플라즈마 용사 코팅(Suspension plasma spray)하여, 이트륨계 불화물 입자와 란탄계 희토류 산화물 입자가 분산된 코팅막을 형성하는 단계;를 포함하고,
상기 (b) 단계에서 이트륨계 불화물 입자의 함량은 란탄계 희토류 산화물 입자의 함량보다 많고,
상기 이트륨계 불화물 입자는 평균 입도가 0.1 ~ 20㎛이고 YOF, Y5O4F7, Y7O6F9, 및 YF3 중 1종 이상을 포함하며, 상기 란탄계 희토류 산화물 입자는 평균 입도가 0.1 ~ 50㎛이며,
상기 코팅막은 5vol% 이하의 기공율을 갖는,
내플라즈마 침식성 및 기계적 특성이 우수한 반도체 부품의 코팅방법.
(a) providing a semiconductor component; and
(b) Suspension plasma spray coating on the surface of the semiconductor component in a state of mixing lanthanum-based rare-earth oxide particles with yttrium-based fluoride particles based on yttrium-based fluoride particles to form a coating film in which yttrium-based fluoride particles and lanthanum-based rare-earth oxide particles are dispersed Including; forming;
In step (b), the content of the yttrium-based fluoride particles is greater than the content of the lanthanum-based rare earth oxide particles,
The yttrium-based fluoride particles have an average particle size of 0.1 to 20 μm and include at least one of YOF, Y 5 O 4 F 7 , Y 7 O 6 F 9 , and YF 3 , and the lanthanide-based rare earth oxide particles have an average particle size is 0.1 ~ 50㎛,
The coating film has a porosity of 5 vol% or less,
A coating method for semiconductor parts with excellent plasma erosion resistance and mechanical properties.
삭제delete 삭제delete 삭제delete 제1항에 있어서,
상기 (b) 단계에서 이트륨계 불화물 입자 100중량부에 대하여, 란탄계 희토류 산화물 입자 1~50중량부를 혼합하여 코팅하는,
내플라즈마 침식성 및 기계적 특성이 우수한 반도체 부품의 코팅방법.
The method of claim 1,
In step (b), 1 to 50 parts by weight of the lanthanum-based rare earth oxide particles are mixed and coated with respect to 100 parts by weight of the yttrium-based fluoride particles,
A coating method for semiconductor parts with excellent plasma erosion resistance and mechanical properties.
삭제delete 반도체 부품; 및
상기 반도체 부품 표면에 형성된 이트륨계 불화물 입자와 란탄계 희토류 산화물 입자가 분산된 코팅막;을 포함하고,
상기 코팅막에서 이트륨계 불화물 입자의 함량은 란탄계 희토류 산화물 입자의 함량보다 많고,
상기 이트륨계 불화물 입자는 평균 입도가 0.1 ~ 20㎛이고 YOF, Y5O4F7, Y7O6F9, 및 YF3 중 1종 이상을 포함하며, 상기 란탄계 희토류 산화물 입자는 평균 입도가 0.1 ~ 50㎛이며,
상기 코팅막은 5vol% 이하의 기공율을 갖는,
내플라즈마 침식성 및 기계적 특성이 우수한 반도체 부품.
semiconductor components; and
and a coating film in which yttrium-based fluoride particles and lanthanum-based rare earth oxide particles formed on the surface of the semiconductor component are dispersed;
The content of the yttrium-based fluoride particles in the coating film is greater than the content of the lanthanide-based rare earth oxide particles,
The yttrium-based fluoride particles have an average particle size of 0.1 to 20 μm and include at least one of YOF, Y 5 O 4 F 7 , Y 7 O 6 F 9 , and YF 3 , and the lanthanide-based rare earth oxide particles have an average particle size is 0.1 ~ 50㎛,
The coating film has a porosity of 5 vol% or less,
Semiconductor components with excellent plasma erosion resistance and mechanical properties.
KR1020190159575A 2019-12-04 2019-12-04 Coating method of semiconductor parts with excellent plasma erosion resistance and mechanical properties KR102371936B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190159575A KR102371936B1 (en) 2019-12-04 2019-12-04 Coating method of semiconductor parts with excellent plasma erosion resistance and mechanical properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190159575A KR102371936B1 (en) 2019-12-04 2019-12-04 Coating method of semiconductor parts with excellent plasma erosion resistance and mechanical properties

Publications (2)

Publication Number Publication Date
KR20210069837A KR20210069837A (en) 2021-06-14
KR102371936B1 true KR102371936B1 (en) 2022-03-08

Family

ID=76417734

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190159575A KR102371936B1 (en) 2019-12-04 2019-12-04 Coating method of semiconductor parts with excellent plasma erosion resistance and mechanical properties

Country Status (1)

Country Link
KR (1) KR102371936B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102517083B1 (en) 2022-11-03 2023-04-03 주식회사 디에프텍 Coating surface treatment method to improve the elapsed time of semiconductor etch process equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001351966A (en) 2000-06-05 2001-12-21 Sumitomo Osaka Cement Co Ltd Suscepter and method for manufacturing the suscepter
KR101500932B1 (en) 2008-11-12 2015-03-10 어플라이드 머티어리얼스, 인코포레이티드 Protective coatings resistant to reactive plasma processing
WO2017116130A1 (en) 2015-12-31 2017-07-06 ㈜코미코 Plasma resistant coating film and formation method therefor
US20180100228A1 (en) 2013-07-20 2018-04-12 Applied Materials, Inc. Rare-earth oxide based coatings based on ion assisted deposition
US20190127280A1 (en) * 2017-10-27 2019-05-02 Applied Materials, Inc. Nanopowders, nanoceramic materials and methods of making and use thereof
JP6526568B2 (en) 2013-11-29 2019-06-05 株式会社東芝 Parts for plasma apparatus and method for manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10730798B2 (en) * 2014-05-07 2020-08-04 Applied Materials, Inc. Slurry plasma spray of plasma resistant ceramic coating
KR102447682B1 (en) * 2015-05-29 2022-09-27 삼성전자주식회사 Methods of forming coating layer, plasma treatment apparatus and methods of forming patterns
KR102106533B1 (en) * 2017-05-26 2020-05-06 아이원스 주식회사 Forming method of fluorinated yttrium oxide coating film and fluorinated yttrium oxide coating film thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001351966A (en) 2000-06-05 2001-12-21 Sumitomo Osaka Cement Co Ltd Suscepter and method for manufacturing the suscepter
KR101500932B1 (en) 2008-11-12 2015-03-10 어플라이드 머티어리얼스, 인코포레이티드 Protective coatings resistant to reactive plasma processing
US20180100228A1 (en) 2013-07-20 2018-04-12 Applied Materials, Inc. Rare-earth oxide based coatings based on ion assisted deposition
JP6526568B2 (en) 2013-11-29 2019-06-05 株式会社東芝 Parts for plasma apparatus and method for manufacturing the same
WO2017116130A1 (en) 2015-12-31 2017-07-06 ㈜코미코 Plasma resistant coating film and formation method therefor
US20190127280A1 (en) * 2017-10-27 2019-05-02 Applied Materials, Inc. Nanopowders, nanoceramic materials and methods of making and use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102517083B1 (en) 2022-11-03 2023-04-03 주식회사 디에프텍 Coating surface treatment method to improve the elapsed time of semiconductor etch process equipment

Also Published As

Publication number Publication date
KR20210069837A (en) 2021-06-14

Similar Documents

Publication Publication Date Title
US20210261465A1 (en) Ceramic material for high temperature service
CN106435443B (en) A kind of preparation method of Environmental Barrier Coatings on Si-based Ceramics
US9790581B2 (en) Emissivity controlled coatings for semiconductor chamber components
US9890089B2 (en) Compositions and methods for thermal spraying a hermetic rare earth environmental barrier coating
US6875464B2 (en) In-situ method and composition for repairing a thermal barrier coating
US20100272982A1 (en) Thermal spray coatings for semiconductor applications
US20120196139A1 (en) Thermal spray composite coatings for semiconductor applications
JP6929716B2 (en) Yttrium oxyfluoride sprayed film, its manufacturing method, and sprayed members
CN103924185A (en) Novel Architectures For Ultra Low Thermal Conductivity Thermal Barrier Coatings With Improved Erosion And Impact Properties
KR101466967B1 (en) Multi-component ceramic coating material for thermal spray and fabrication method and coating method thereof
KR20210069838A (en) Method of manufacturing components for semiconductor processing chamber having high hardness
KR102371936B1 (en) Coating method of semiconductor parts with excellent plasma erosion resistance and mechanical properties
KR20210131150A (en) Plasma resistance coating layer and forming method thereof
JP6929718B2 (en) Yttrium fluoride-based sprayed film and its manufacturing method, and base material with sprayed film and its manufacturing method
Zhang et al. Cyclic oxidation performances of new environmental barrier coatings of HfO2-SiO2/Yb2Si2O7 coated SiC at 1375° C and 1475° C in the air environment
Gatzen et al. Improved adhesion of different environmental barrier coatings on Al2O3/Al2O3‐ceramic matrix composites
JP2010229471A (en) Material for thermal barrier coating, thermal barrier coating, turbine member, and gas turbine
JP2022514483A (en) Coating for protecting EBC layer and CMC layer and spray coating method thereof
KR102464219B1 (en) Composition for coating with reduced generation of contaminants and method for producing the same
US11325869B1 (en) Environmental barrier coatings for improved temperature capabilities and longevity
KR102384479B1 (en) Ceramic composition for coating and coating method using the same
JP2001295075A (en) Corrosion resistant ceramic coating member to metallic base material, method for manufacturing the same and part composed of the member
CN112501538A (en) High-temperature-resistant ablation-resistant composite coating and preparation method thereof
US20240294440A1 (en) Coating layer with slow sio2 crystallization rate
WO2023200720A1 (en) Environmental barrier materials and coatings containing low melting temperature phases

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant