KR102337169B1 - Preparing method for alkoxy-methylfurfural and 2,5-furandicarboxylic acid from fructose - Google Patents

Preparing method for alkoxy-methylfurfural and 2,5-furandicarboxylic acid from fructose Download PDF

Info

Publication number
KR102337169B1
KR102337169B1 KR1020190032162A KR20190032162A KR102337169B1 KR 102337169 B1 KR102337169 B1 KR 102337169B1 KR 1020190032162 A KR1020190032162 A KR 1020190032162A KR 20190032162 A KR20190032162 A KR 20190032162A KR 102337169 B1 KR102337169 B1 KR 102337169B1
Authority
KR
South Korea
Prior art keywords
catalyst
fructose
alkoxy
solution
solid acid
Prior art date
Application number
KR1020190032162A
Other languages
Korean (ko)
Other versions
KR20200112149A (en
Inventor
황동원
황영규
홍도영
곽재성
우파레 프라빈 판다리나스
이마음
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020190032162A priority Critical patent/KR102337169B1/en
Priority to PCT/KR2020/003741 priority patent/WO2020190043A1/en
Publication of KR20200112149A publication Critical patent/KR20200112149A/en
Application granted granted Critical
Publication of KR102337169B1 publication Critical patent/KR102337169B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/46Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom
    • C07D307/48Furfural
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/54Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 (a) 프룩토스(fructose)와 유기용매를 혼합하여 혼합용액을 제조하는 단계; (b) 상기 혼합용액을 고체산 촉매 하에서 가열하고 반응시켜 알콕시-메틸 퍼퓨랄을 제조하는 단계; (c) 상기 고체산 촉매가 혼합된 알콕시-메틸퍼퓨랄 용액에서 상기 고체산촉매를 여과하여 분리하는 단계; 및 (d) 상기 고체산촉매가 분리된 용액을 산화촉매 하에서 가압하고 반응시켜 2,5-퓨란디카르복실산을 제조하는 단계를 포함하는 촉매를 이용한 2,5-퓨란디카르복실산 제조방법 제공한다.
따라서 프룩토스(fructose) 로부터 2,5-퓨란디카복실산(2,5-furandicarboxylic acid)을 경제적으로 제조할 수 있다.
The present invention comprises the steps of (a) preparing a mixed solution by mixing fructose and an organic solvent; (b) heating and reacting the mixed solution under a solid acid catalyst to prepare alkoxy-methyl furfural; (c) separating the solid acid catalyst from the alkoxy-methyl furfural solution mixed with the solid acid catalyst by filtration; and (d) preparing 2,5-furandicarboxylic acid by pressurizing and reacting the solution from which the solid acid catalyst is separated under an oxidation catalyst to prepare 2,5-furandicarboxylic acid. do.
Therefore, 2,5-furandicarboxylic acid can be economically prepared from fructose.

Description

프룩토스로부터 알콕시-메틸퍼퓨랄 및 2,5-퓨란디카르복실산의 제조방법{Preparing method for alkoxy-methylfurfural and 2,5-furandicarboxylic acid from fructose}Method for preparing alkoxy-methylfurfural and 2,5-furandicarboxylic acid from fructose {Preparing method for alkoxy-methylfurfural and 2,5-furandicarboxylic acid from fructose}

본 발명은 프룩토스(fructose)로부터 2,5-퓨란디카복실산 (2,5-Furandicarboxylic acid)을 제조하는 방법에 관한 것으로서, 더욱 상세하게는 고체산촉매를 사용하여 프룩토스(fructose)로부터 중간체인 알콕시-메틸퍼퓨랄(alkoxy-methylfurfural)을 제조하고, 이로부터 2,5-퓨란디카르복실산을 제조하는 방법에 관한 것이다. The present invention relates to a method for producing 2,5-furandicarboxylic acid from fructose, and more particularly, an alkoxy intermediate from fructose using a solid acid catalyst. -Methyl furfural (alkoxy-methylfurfural) and relates to a method for preparing 2,5-furandicarboxylic acid therefrom.

2,5-퓨란디카복실산 (2,5-Furandicarboxylic acid, 이하 'FDCA')은 두개의 카르복시산이 퓨란고리에 결합된 유기화합물이고, 석유유래 테레프탈산(terephthalic acid)의 대안으로 최근에 관심이 증가되고 있는 화학 물질이다. 2,5-Furandicarboxylic acid (2,5-Furandicarboxylic acid, hereinafter 'FDCA') is an organic compound in which two carboxylic acids are bonded to a furan ring, and interest has recently increased as an alternative to petroleum-derived terephthalic acid. is a chemical substance in

또한 FDCA는 재생가능한 자원으로부터 제조할 수 있으며, 농약, 의약품, 살충제, 약제 또는 항균제 등의 다양한 분야에서 사용되는 중간체이다. In addition, FDCA can be manufactured from renewable resources and is an intermediate used in various fields such as pesticides, pharmaceuticals, pesticides, pharmaceuticals, or antibacterial agents.

일반적으로 FDCA는 헥소스 유도체의 탈수반응(dehydration of hexose derivatives)으로 유도되는 5-하이드록시메틸퍼퓨랄(5-hydroxymethyl furfural, 이하 'HMF')을 촉매를 통하여 산화하여 FDCA를 합성한다.In general, FDCA synthesizes FDCA by oxidizing 5-hydroxymethyl furfural (hereinafter 'HMF') induced by dehydration of hexose derivatives through a catalyst.

HMF의 산화는 디포르밀퓨란 (diformylfuran, DFF) 또는 하이드록시메릴푸란카르복실산 (5-hydroxymethyl-2-furancarboxylic acid, HFCA)을 중간산물로 생성하고 다음 공정에서 포르밀푸란카르복실산 (5-formyl-2-furancarboxylic acid, FCA)을 거쳐서 FDCA를 생성한다. Oxidation of HMF produces diformylfuran (DFF) or hydroxymerylfurancarboxylic acid (5-hydroxymethyl-2-furancarboxylic acid, HFCA) as an intermediate product, and formylfurancarboxylic acid (5 -formyl-2-furancarboxylic acid, FCA) to produce FDCA.

한편 프룩토스(Fructose)는 환원기로 케톤을 가지는 단당류이며, 헥소스의 하나이고 식물계에 널리 존재하여, 포도당과 함께 과일 속에 유리 형태로 들어있거나 포도당과 결합하여 슈크로스로 존재한다. On the other hand, fructose is a monosaccharide having a ketone as a reducing group, is one of hexoses, and is widely present in the plant world.

프룩토스로부터 FDCA를 제조하기 위해서는 1단계로 프룩토스 탈수반응을 통해 HMF를 제조하고, 2단계로 HMF의 산화반응을 통해 진행된다. In order to prepare FDCA from fructose, HMF is prepared through fructose dehydration in the first step, and oxidation of HMF is performed in the second step.

1단계인 프룩토스 탈수반응을 수용액상에서 수행하는 경우, 생성된 HMF가 물과의 2차반응에 의해 Levulinic acid와 formic acid로 쉽게 분해되기 때문에, HMF 수율을 높이기 위해서는 수용액 보다는 고비점 유기 용매 (ex. 1-Butanol, GVL, DMF 등)를 사용하는 것이 유리하다(비특허문헌 1, Green Chem., 비특허문헌 2 2015, 17, 3310; Green Chem., 2011, 13, 754).When the first step, the dehydration of fructose, is performed in an aqueous solution, since the generated HMF is easily decomposed into levulinic acid and formic acid by the secondary reaction with water, in order to increase the yield of HMF, a high boiling organic solvent (ex. 1-Butanol, GVL, DMF, etc.) is advantageously used (Non-Patent Document 1, Green Chem., Non-Patent Document 2 2015, 17, 3310; Green Chem., 2011, 13, 754).

HMF의 산화반응에서 FDCA 수율을 높이기 위해서는 수용액상에서 반응을 수행하는 것이 유리하다(특허문헌 1, 대한민국 공개특허공보 제10-2018-7018309호)In order to increase the yield of FDCA in the oxidation reaction of HMF, it is advantageous to perform the reaction in an aqueous solution (Patent Document 1, Korean Patent Application Laid-Open No. 10-2018-7018309)

따라서, 프룩토스로부터 고수율로 FDCA를 제조하기 위해서는 고비점 유기 용매상에서 HMF를 제조 후에 HMF 산화반응 전에 HMF를 유기용매로부터 분리해야 한다. Therefore, in order to prepare FDCA in high yield from fructose, HMF must be separated from the organic solvent before HMF oxidation after HMF is prepared in a high boiling point organic solvent.

하지만, HMF로부터 유기 용매를 분리하는 데에는 많은 노력이 필요하며, 분리과정에서 HMF의 손실을 피할 수 없다. However, a lot of effort is required to separate the organic solvent from HMF, and loss of HMF cannot be avoided in the separation process.

예를 들어, 증발법에 의해 용매를 제거하는 경우에는 HMF가 분해되지 않기 위해서는 반응 온도를 50℃ 미만으로 유지해야 한다. For example, when the solvent is removed by evaporation, the reaction temperature must be maintained below 50° C. in order not to decompose HMF.

이에 따라 고비점 용매를 제거하기 위해서는 매우 낮은 압력이 필요하며, 이는 대규모 산업 공정에서 수행하는 것은 거의 불가능하고 경제적이지 않다.Accordingly, very low pressure is required to remove the high boiling point solvent, which is almost impossible and not economical to carry out in a large-scale industrial process.

또 다른 방법으로, 유기 용매 추출제를 이용하여 HMF를 고비점 유기 용매로부터 분리하는 기술들이 소개되고 있으나, 유기 용매 추출제에서 HMF 용해도의 한계로 인해 효율이 떨어지는 문제점이 있어, 이 역시 경제적이지 않다. (비특허문헌 3. Nature, 2007, 447, 982)As another method, techniques for separating HMF from high boiling point organic solvents using an organic solvent extractant have been introduced, but there is a problem in that efficiency is lowered due to the limitation of HMF solubility in organic solvent extractants, which is also not economical. . (Non-patent document 3. Nature, 2007, 447, 982)

따라서, 프룩토스로부터 경제적으로 FDCA를 제조하기 위해서는 1단계 프룩토스 탈수반응 후 추가적인 후처리 없이 바로 산화반응을 진행하는 방법이 이상적이다. Therefore, in order to economically produce FDCA from fructose, it is ideal to immediately proceed with the oxidation reaction without additional post-treatment after the first-step fructose dehydration reaction.

또한 HMF 산화반응에서 아세트산 배지에서 Co/Mn/Br과 같은 균질 촉매를 사용하여 FDCA를 생성하는 방법이 알려져 있으나, 촉매 회수 및 재사용이 어렵고 폐기물 발생으로 인한 환경 오염 문제가 있어 바람직하지 않다. Also, a method for generating FDCA using a homogeneous catalyst such as Co/Mn/Br in an acetic acid medium in HMF oxidation is known, but it is difficult to recover and reuse the catalyst, and it is not preferable because there is a problem of environmental pollution due to waste generation.

따라서 균질계 촉매 기술에 대한 대안으로, 불균일계 촉매를 이용하여 FDCA 수율을 높이는 제조방법의 개발이 매우 필요한 실정이다. Therefore, as an alternative to the homogeneous catalyst technology, it is very necessary to develop a manufacturing method for increasing the yield of FDCA using a heterogeneous catalyst.

(1) 대한민국 공개특허공보 제10-2018-7018309호(공개일 2018.08.13)(1) Republic of Korea Patent Publication No. 10-2018-7018309 (published on August 13, 2018)

(1) Green Chem., 2015, 17, 3310 (1) Green Chem., 2015, 17, 3310 (2) Green Chem., 2011, 13, 754(2) Green Chem., 2011, 13, 754 (3) Nature, 2007, 447, 982(3) Nature, 2007, 447, 982

따라서, 본 발명은 프룩토스로부터 경제적으로 FDCA를 제조하는 방법을 제공하는데 있다. Accordingly, the present invention is to provide a method for economically producing FDCA from fructose.

구체적으로는, 고체산촉매를 사용하여 프룩토스 탈수반응 후 중간체를 분리하는 과정 없이 FDCA를 제조하는 촉매 공정 기술을 제공하며, 또한 FDCA 생성 단계에서 균일계 촉매 대신 불균일계 촉매를 활용하여 경제성이 높은 촉매 물질로 대체하여 FDCA를 제조하는 방법을 제공한다.Specifically, it provides a catalytic process technology for producing FDCA without a process of separating intermediates after dehydration of fructose using a solid acid catalyst, and a highly economical catalyst by using a heterogeneous catalyst instead of a homogeneous catalyst in the FDCA production step A method for preparing FDCA by replacing the material is provided.

본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제(들)로 제한되지 않으며, 언급되지 않은 또 다른 과제(들)는 이하의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The problem to be solved by the present invention is not limited to the problem(s) mentioned above, and another problem(s) not mentioned will be clearly understood by those skilled in the art from the following description.

상기 과제를 해결하기 위해, 본 발명의 일 실시예에 따른 프룩토스로부터 알콕시-메틸퍼퓨랄(alkoxy-methylfurfural) 제조방법은 In order to solve the above problems, the method for producing alkoxy-methylfurfural from fructose according to an embodiment of the present invention is

(a-1) 프룩토스(fructose)와 유기용매를 혼합하여 혼합용액을 제조하는 단계; (a-1) preparing a mixed solution by mixing fructose and an organic solvent;

(a-2) 상기 혼합용액을 고체산촉매 하에서 가열하고 반응시켜 알콕시-메틸퍼퓨랄을 제조하는 단계; 및(a-2) heating and reacting the mixed solution under a solid acid catalyst to prepare alkoxy-methyl furfural; and

(a-3) 상기 알콕시-메틸퍼퓨랄 용액으로부터 여과를 통해 고체산촉매를 분리하는 단계;를 포함한다(a-3) separating the solid acid catalyst from the alkoxy-methyl furfural solution through filtration; includes

또한 상기 유기용매는 메탄올 또는 에탄올일 수 있다. In addition, the organic solvent may be methanol or ethanol.

또한 상기 고체산촉매는 그래핀 산화물(graphene oxide) 또는 활성탄(activated carbon)을 지지체로 하여 술폰산(-SO3H)이 작용기로 결합된 것일 수 있다. In addition, the solid acid catalyst may be one in which sulfonic acid (-SO 3 H) is bonded as a functional group using graphene oxide or activated carbon as a support.

또한 상기 여과는 상기 알콕시-메틸퍼퓨랄 용액을 20 내지 30 ℃ 상온으로 냉각한 이후에 여과지를 사용하여 수행될 수 있다. In addition, the filtration may be performed using filter paper after cooling the alkoxy-methyl furfural solution to room temperature at 20 to 30 °C.

본 발명의 다른 실시예에 따른 알콕시-메틸퍼퓨랄로부터 2,5-퓨란디카르복실산을 제조하는 방법은A method for preparing 2,5-furandicarboxylic acid from alkoxy-methylfurfural according to another embodiment of the present invention is

상기 알콕시-메틸퍼퓨랄 용액을 산화촉매 하에서 가압하고 반응시켜 2,5-퓨란디카르복실산을 제조할 수 있다. 2,5-furandicarboxylic acid can be prepared by pressurizing and reacting the alkoxy-methylfurfural solution under an oxidation catalyst.

또한 상기 가압은 산소 가스 또는 공기를 10 내지 30 bar로 1 내지 3 시간 동안 가압할 수 있다. In addition, the pressurization may pressurize oxygen gas or air at 10 to 30 bar for 1 to 3 hours.

또한 상기 산화촉매는 활성탄, 산화아연, 이산화규소, 지르코늄디옥사이드(ZrO2), 하이드로탈사이트, 산화세륨 및 산화알루미늄(Al2O3)으로 이루어진 군에서 선택된 어느 하나인 지지체에 In addition, the oxidation catalyst is activated carbon, zinc oxide, silicon dioxide, zirconium dioxide (ZrO 2 ), hydrotalcite, cerium oxide and aluminum oxide (Al 2 O 3 ) on a support which is any one selected from the group consisting of

금, 백금, 팔라듐 및 루테늄으로 이루어진 군에서 선택된 어느 하나의 금속이 담지된 것을 특징으로 할 수 있다. It may be characterized in that any one metal selected from the group consisting of gold, platinum, palladium and ruthenium is supported.

본 발명의 또 다른 실시예에 따른 프룩토스로부터 2,5-퓨란디카르복실산 제조방법은The method for preparing 2,5-furandicarboxylic acid from fructose according to another embodiment of the present invention is

(a) 프룩토스(fructose)와 유기용매를 혼합하여 혼합용액을 제조하는 단계; (a) preparing a mixed solution by mixing fructose and an organic solvent;

(b) 상기 혼합용액을 고체산촉매 하에서 가열하고 반응시켜 알콕시-메틸퍼퓨랄을 제조하는 단계;(b) heating and reacting the mixed solution under a solid acid catalyst to prepare alkoxy-methyl furfural;

(c) 상기 고체산촉매가 혼합된 알콕시-메틸퍼퓨랄 용액에서 상기 고체산촉매를 여과하여 분리하는 단계; 및 (c) separating the solid acid catalyst from the alkoxy-methyl furfural solution mixed with the solid acid catalyst by filtration; and

(d) 상기 고체산촉매가 분리된 용액을 산화촉매 하에서 가압하고 반응시켜 2,5-퓨란디카르복실산을 제조하는 단계;를 포함한다. (d) preparing 2,5-furandicarboxylic acid by pressurizing and reacting the solution from which the solid acid catalyst is separated under an oxidation catalyst.

또한 상기 유기용매는 메탄올 또는 에탄올일 수 있다. In addition, the organic solvent may be methanol or ethanol.

또한 상기 고체산촉매는 그래핀 산화물(graphene oxide) 또는 활성탄(activated carbon)을 지지체로 하여 술폰산(-SO3H)이 작용기로 결합된 것일 수 있다. In addition, the solid acid catalyst may be one in which sulfonic acid (-SO 3 H) is bonded as a functional group using graphene oxide or activated carbon as a support.

또한 상기 가압은 산소 가스 또는 공기를 10 내지 30 bar로 1 내지 3시간 동안 가압할 수 있다. In addition, the pressurization may pressurize oxygen gas or air at 10 to 30 bar for 1 to 3 hours.

또한 상기 산화촉매는 활성탄, 산화아연, 이산화규소, 지르코늄디옥사이드 (ZrO2), 하이드로탈사이트, 산화세륨 및 산화알루미늄(Al2O3)으로 이루어진 군에서 선택된 어느 하나인 지지체에 금, 백금, 팔라듐 및 루테늄으로 이루어진 군에서 선택된 어느 하나의 금속이 담지된 것일 수 있다. In addition, the oxidation catalyst is activated carbon, zinc oxide, silicon dioxide, zirconium dioxide (ZrO 2 ), hydrotalcite, cerium oxide and aluminum oxide (Al 2 O 3 ) Gold, platinum, palladium on a support that is any one selected from the group consisting of And any one metal selected from the group consisting of ruthenium may be supported.

본 발명에 따르면, 식물계에 매우 풍부한 프룩토스(fructose)로부터 2,5-퓨란디카복실산(2,5-furandicarboxylic acid)을 경제적으로 제조할 수 있다. According to the present invention, 2,5-furandicarboxylic acid can be economically prepared from fructose, which is very abundant in the plant kingdom.

또한 프룩토스를 고체산촉매를 이용하여 탈수한 이후에 추가적인 후처리 없이 바로 산화반응을 진행할 수 있다. In addition, after dehydration of fructose using a solid acid catalyst, the oxidation reaction can proceed immediately without additional post-treatment.

또한 프룩토스를 고체산촉매와 반응시켜 매우 높은 수율로 알콕시-메틸퍼퓨랄(alkoxy-methylfurfural)을 제조할 수 있다. In addition, by reacting fructose with a solid acid catalyst, alkoxy-methylfurfural can be prepared in a very high yield.

또한 알콕시-메틸퍼퓨랄을 제조한 이후에 보다 경제적인 불균일계 산화촉매를 이용하여 높은 수율로 2,5-퓨란디카복실산을 제조하여 회수할 수 있다. In addition, after preparing alkoxy-methyl furfural, it is possible to prepare and recover 2,5-furandicarboxylic acid in high yield using a more economical heterogeneous oxidation catalyst.

또한 프룩토스로부터 탈수반응 후 중간체를 분리하는 별도의 과정 없이 원-팟(one pot)공정으로 2,5-퓨란디카복실산을 제조하여 회수할 수 있다. In addition, after dehydration from fructose, 2,5-furandicarboxylic acid can be prepared and recovered by a one-pot process without a separate process of isolating the intermediate.

또한 프룩토스로부터 2,5-퓨란디카복실산의 제조과정을 매우 감소시켜 제조비용을 매우 감소시킬 수 있다. In addition, it is possible to greatly reduce the manufacturing cost by greatly reducing the manufacturing process of 2,5-furandicarboxylic acid from fructose.

발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.The effect of the present invention is not limited to the above-described effect, and it should be understood to include all effects that can be inferred from the configuration of the invention described in the detailed description or claims of the present invention.

도 1은 본 발명의 일 실시예에 따른 고체산촉매를 이용한 알콕시-메틸퍼퓨랄(alkoxy-methylfurfural) 제조방법의 공정을 나타낸 공정흐름도이다.
도 2는 본 발명의 다른 실시예에 따른 촉매를 이용한 2,5-퓨란디카르복실산 제조방법의 공정을 나타낸 공정흐름도이다.
1 is a process flow chart showing the process of the alkoxy-methylfurfural (alkoxy-methylfurfural) manufacturing method using a solid acid catalyst according to an embodiment of the present invention.
2 is a process flow diagram showing the process of a method for producing 2,5-furandicarboxylic acid using a catalyst according to another embodiment of the present invention.

이하 첨부된 도면을 참조하면서 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다.Hereinafter, preferred embodiments according to the present invention will be described in detail with reference to the accompanying drawings.

본 발명의 이점 및 특징, 그리고 그것을 달성하는 방법은 첨부된 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다.Advantages and features of the present invention, and a method of achieving the same, will become apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings.

그러나 본 발명은 이하에 개시되는 실시예들에 의해 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.However, the present invention is not limited by the embodiments disclosed below, but will be implemented in a variety of different forms, and only these embodiments allow the disclosure of the present invention to be complete, and common knowledge in the art to which the present invention pertains It is provided to fully inform those who have the scope of the invention, and the present invention is only defined by the scope of the claims.

또한, 본 발명을 설명함에 있어 관련된 공지 기술 등이 본 발명의 요지를 흐리게 할 수 있다고 판단되는 경우 그에 관한 자세한 설명은 생략하기로 한다.In addition, in the description of the present invention, when it is determined that related known techniques may obscure the gist of the present invention, a detailed description thereof will be omitted.

본 발명자들은 프룩토스(fructose)의 탈수반응을 수용액 상에서 수행하는 경우 생성된 5-하이드록시메틸-2-퍼퓨랄(5-hydroxymethyl-2-furfural, 이하 'HMF')이 물과의 2차 반응에 의하여 레불린산(levulinic acid)과 포름산(formic acid)으로 쉽게 분해되는 것을 확인하여, 알콜 존재 하에서 고체산촉매를 이용하여 알콕시-메틸퍼퓨랄(alkoxy-methylfurfural)을 먼저 제조하고, 고체산촉매를 여과하여 제거한 이후에 별도 처리과정 없이 이를 바로 불균일계 산화촉매를 이용하여 산화반응을 통해 높은 수율로 최종산물인 2,5-퓨란디카르복실산(2,5-furandicarboxylic acid, 이하 'FDCA')을 수득할 수 있는 것을 확인하여 본 발명을 완성하였다. The present inventors found that when the dehydration reaction of fructose is performed in an aqueous solution, 5-hydroxymethyl-2-furfural (hereinafter 'HMF') produced is a secondary reaction with water. After confirming that it is easily decomposed into levulinic acid and formic acid by After removal, the final product, 2,5-furandicarboxylic acid (hereinafter 'FDCA'), is produced in high yield through oxidation using a heterogeneous oxidation catalyst without a separate treatment process. The present invention was completed by confirming what could be obtained.

본 발명자들이 아는 한 프룩토스로부터 알콕시-메틸퍼퓨랄(alkoxy-methylfurfural)을 제조 후 알콕시-메틸퍼퓨랄(alkoxy-methylfurfural) 분리과정 없이 바로 불균일계 산화촉매를 이용하여 산화반응을 통해 FDCA를 제조하는 방법은 개시된 바가 없다. As far as the present inventors know, after preparing alkoxy-methylfurfural from fructose, FDCA is prepared through oxidation using a heterogeneous oxidation catalyst without alkoxy-methylfurfural separation process. The method has not been disclosed.

도 1은 본 발명의 일 실시예에 따른 프룩토스로부터 알콕시-메틸퍼퓨랄(alkoxy-methylfurfural) 제조방법의 공정을 나타낸 공정흐름도이고, 도 2는 본 발명의 또 다른 실시예에 따른 프룩토스로부터 2,5-퓨란디카르복실산 제조방법의 공정을 나타낸 공정흐름도이다. 1 is a process flow diagram showing a process of a method for preparing alkoxy-methylfurfural from fructose according to an embodiment of the present invention, and FIG. , It is a process flow diagram showing the process of the method for producing 5-furandicarboxylic acid.

본 발명은 고체산촉매를 이용하여 프룩토스로부터 중간체인 알콕시-메틸퍼퓨랄을 제조하는 방법과, 상기 중간체인 알콕시-메틸퍼퓨랄을 불균일계 산화촉매와 반응시켜 높은 수율로 2,5-퓨란디카르복실산을 제조하는 방법을 포함하여 프룩토스로부터 2,5-퓨란디카르복실산 제조방법을 제공한다. The present invention relates to a method for producing an intermediate alkoxy-methyl furfural from fructose using a solid acid catalyst, and 2,5-furandicar in high yield by reacting the intermediate alkoxy-methyl furfural with a heterogeneous oxidation catalyst. Provided is a method for preparing 2,5-furandicarboxylic acid from fructose, including a method for preparing the acid.

우선 도 1을 참조하면, 본 발명의 일 실시예에 따른 프룩토스로부터 알콕시-메틸퍼퓨랄(alkoxy-methylfurfural) 제조방법은 First, referring to FIG. 1 , the method for preparing alkoxy-methylfurfural from fructose according to an embodiment of the present invention is

(a-1) 프룩토스(fructose)와 유기용매를 혼합하여 혼합용액을 제조하는 단계; (a-1) preparing a mixed solution by mixing fructose and an organic solvent;

(a-2) 상기 혼합용액을 고체산촉매 하에서 가열하고 반응시켜 알콕시-메틸퍼퓨랄을 제조하는 단계; 및(a-2) heating and reacting the mixed solution under a solid acid catalyst to prepare alkoxy-methyl furfural; and

(a-3) 상기 알콕시-메틸퍼퓨랄을 함유하는 혼합용액을 여과하여 고체산촉매를 분리하는 단계;를 포함한다(a-3) separating the solid acid catalyst by filtering the mixed solution containing the alkoxy-methyl furfural;

우선 프룩토스(fructose)와 유기용매를 혼합하여 혼합용액을 제조한다(S10).First, a mixed solution is prepared by mixing fructose and an organic solvent (S10).

상기 프룩투스는 탄수화물이며, 탈수반응으로 알콕시-메틸퍼퓨랄로 전환된다. The fructose is a carbohydrate and is converted into alkoxy-methylfurfural by dehydration.

상기 알콕시-메틸퍼퓨랄은 5-메톡시메틸퍼퓨랄(5-methoxymethylfurfural, 이하 'MMF') 또는 5-에톡시메틸퍼퓨랄(5-ethoxymethylfurfural, 이하 'EMF') 이다. The alkoxy-methylfurfural is 5-methoxymethylfurfural (hereinafter 'MMF') or 5-ethoxymethylfurfural (hereinafter 'EMF').

상기 유기용매는 메탄올(methanol) 또는 에탄올(ethanol)이다. The organic solvent is methanol or ethanol.

상기 메탄올 또는 에탄올 이외 C3 이상의 알코올은 고체산촉매를 이용하여 프룩토스를 탈수시켜 알콕시-메틸퍼퓨랄로 전환시키기 어려우며, 반응 후 부산물을 생성하는 문제가 있다. C 3 or higher alcohol other than methanol or ethanol is difficult to convert to alkoxy-methyl furfural by dehydrating fructose using a solid acid catalyst, and there is a problem of generating by-products after the reaction.

상기 혼합용액을 고체산촉매 하에서 가열하고 반응시켜 알콕시-메틸퍼퓨랄을 제조할 수 있다(S20). Alkoxy-methyl furfural can be prepared by heating and reacting the mixed solution under a solid acid catalyst (S20).

상기 고체산촉매는 양성자 공여체 또는 전자 수용체로 작용하여 탈수반응의 촉매로 사용된다. The solid acid catalyst acts as a proton donor or electron acceptor and is used as a catalyst for dehydration.

상기 고체산촉매는 그래핀 산화물(graphene oxide) 또는 활성탄 (activated carbon)을 지지체로 하여 술폰산(-SO3H)이 작용기로 결합된 것일 수 있다. The solid acid catalyst may be one in which sulfonic acid (-SO 3 H) is bonded as a functional group using graphene oxide or activated carbon as a support.

이하에서 GO-SO3H는 그래핀 산화물에 술폰산이 결합한 것을 의미하고, AC-SO3H 는 활성탄에 술폰산이 결합한 것으로 의미한다. Hereinafter, GO-SO 3 H means that sulfonic acid is bonded to graphene oxide, and AC-SO 3 H means that sulfonic acid is bonded to activated carbon.

상기 그래핀 산화물과 활성탄에서 술폰산 작용기는 브뢴스테드 산 작용기(Bronsted acidic function)로 작용한다. In the graphene oxide and activated carbon, the sulfonic acid functional group acts as a Bronsted acidic function.

따라서 상기 고체산촉매는 촉매활성이 매우 높으며 탈수반응에 매우 유리하다. Therefore, the solid acid catalyst has very high catalytic activity and is very advantageous for dehydration.

상기 고체산촉매 이외에는 프룩토스의 전환율이 낮으며, 가열반응 시 90 ℃ 이상의 반응온도가 요구되어 공정 효율을 감소시키는 문제가 있다. Other than the solid acid catalyst, the conversion rate of fructose is low, and a reaction temperature of 90° C. or higher is required during the heating reaction, thereby reducing process efficiency.

상기 가열은 60 내지 80 ℃에서 12 내지 32시간 동안 수행될 수 있다. The heating may be performed at 60 to 80 °C for 12 to 32 hours.

상기 가열 범위에서 프룩토스를 100 %로 전환할 수 있으며, EMF 또는 MMF를 70 내지 90 % 수율로 제조할 수 있다. In the heating range, fructose may be converted to 100%, and EMF or MMF may be prepared in a yield of 70 to 90%.

상기 가열온도가 60 ℃ 보다 낮은 경우, 프룩토스의 탈수 반응속도가 낮은 단점이 있으며, 80 ℃ 보다 높은 경우, 상압 반응 중 알코올의 증발에 의한 손실 및 부반응이 발생하는 문제점이 있다.When the heating temperature is lower than 60 °C, there is a disadvantage in that the dehydration reaction rate of fructose is low, and when it is higher than 80 °C, there are problems in that loss and side reactions occur due to evaporation of alcohol during atmospheric pressure reaction.

상기 알콕시-메틸퍼퓨랄을 함유하는 혼합용액으로부터 여과를 통해 고체산촉매를 분리한다(S30).A solid acid catalyst is separated from the mixed solution containing the alkoxy-methyl furfural through filtration (S30).

상기 여과는 상기 알콕시-메틸퍼퓨랄 용액을 20 내지 30 ℃ 상온으로 냉각한 이후에 여과지를 사용하여 수행할 수 있다. The filtration may be performed using filter paper after cooling the alkoxy-methyl furfural solution to 20 to 30° C. to room temperature.

상기 여과를 통하여 반응촉매를 제거할 수 있다. The reaction catalyst can be removed through the filtration.

상기 고체산촉매를 여과하여 분리하지 않으면, 후속 알콕시-메틸퍼퓨랄을 산화촉매 하에서 FDCA를 생성하는 단계에서 부산물이 발생하거나 FDCA 생성 속도가 저하되는 문제가 있다. If the solid acid catalyst is not separated by filtration, there is a problem in that by-products are generated or the FDCA production rate is lowered in the subsequent step of generating FDCA by oxidizing alkoxy-methyl furfural under the catalyst.

따라서 고체산촉매를 사용하여 EMF 또는 MMF를 제조할 수 있으며, 종래 고비점 유기 용매상을 분리하기 위한 별도의 처리과정과 상이하게 여과를 통하여 매우 효과적으로 고체산촉매를 제거하고 높은 수율로 알콕시-메틸퍼퓨랄(alkoxy-methylfurfural)을 제조할 수 있다. Therefore, EMF or MMF can be prepared using a solid acid catalyst, and unlike the conventional separate treatment for separating the high boiling point organic solvent phase, the solid acid catalyst is very effectively removed through filtration and alkoxy-methyl furfural in high yield. (alkoxy-methylfurfural) can be prepared.

본 발명의 다른 실시예에 따른 알콕시-메틸퍼퓨랄로부터 2,5-퓨란디카르복실산을 제조하는 방법은A method for preparing 2,5-furandicarboxylic acid from alkoxy-methylfurfural according to another embodiment of the present invention is

상기 알콕시-메틸퍼퓨랄 용액을 산화촉매 하에서 가압하고 반응시켜 2,5-퓨란디카르복실산을 제조할 수 있다. 2,5-furandicarboxylic acid can be prepared by pressurizing and reacting the alkoxy-methylfurfural solution under an oxidation catalyst.

상기 가압은 산소 가스 또는 공기를 10 내지 30 bar로 1 내지 3 시간 동안 가압할 수 있다. The pressurization may pressurize oxygen gas or air at 10 to 30 bar for 1 to 3 hours.

상기 가압 범위 내에서 산화촉매를 사용하여 FDCA를 높은 효율로 제조할 수 있으며, 상기 범위에 미치지 못하는 경우에는 산화반응에 따른 수율이 낮고, 상기 범위를 초과하는 경우 반응 수율이 증가되지 않으면서 에너지가 더 소모되는 문제가 있다.FDCA can be produced with high efficiency using an oxidation catalyst within the pressure range, and when it does not reach the above range, the yield according to the oxidation reaction is low, and when it exceeds the above range, the energy is not increased without increasing the reaction yield. There is a problem with more consumption.

상기 산화촉매는 활성탄, 산화아연, 이산화규소, 지르코늄디옥사이드(ZrO2), 하이드로탈사이트, 산화세륨 및 산화알루미늄(Al2O3)으로 이루어진 군에서 선택된 어느 하나인 지지체에 금, 백금, 팔라듐 및 루테늄으로 이루어진 군에서 선택된 어느 하나의 금속이 담지된 것일 수 있다. The oxidation catalyst is activated carbon, zinc oxide, silicon dioxide, zirconium dioxide (ZrO 2 ), hydrotalcite, cerium oxide and aluminum oxide (Al 2 O 3 ) Gold, platinum, palladium and Any one metal selected from the group consisting of ruthenium may be supported.

상기 산화촉매는 불균일계 촉매로 종래의 균일계 촉매 대비 산화반응 후 FDCA로부터 촉매의 분리가 용이하기 때문에 친환경적이면서 공정비용을 크게 감소시킬 수 있다.The oxidation catalyst is a heterogeneous catalyst, and since it is easy to separate the catalyst from FDCA after oxidation compared to a conventional homogeneous catalyst, it is environmentally friendly and can greatly reduce process costs.

도 2를 참조하면, 본 발명의 또 다른 실시예에 따른 촉매를 이용한 2,5-퓨란디카르복실산 제조방법은 2, the method for preparing 2,5-furandicarboxylic acid using a catalyst according to another embodiment of the present invention is

(a) 프룩토스(fructose)와 유기용매를 혼합하여 혼합용액을 제조하는 단계; (a) preparing a mixed solution by mixing fructose and an organic solvent;

(b) 상기 혼합용액을 고체산촉매 하에서 가열하고 반응시켜 알콕시-메틸퍼퓨랄을 제조하는 단계;(b) heating and reacting the mixed solution under a solid acid catalyst to prepare alkoxy-methyl furfural;

(c) 상기 고체산촉매가 혼합된 알콕시-메틸퍼퓨랄 용액에서 상기 고체산촉매를 여과하여 분리하는 단계; 및 (c) separating the solid acid catalyst from the alkoxy-methyl furfural solution mixed with the solid acid catalyst by filtration; and

(d) 상기 고체산촉매가 분리된 용액을 산화촉매 하에서 가압하고 반응시켜 2,5-퓨란디카르복실산을 제조하는 단계를 포함한다. (d) pressurizing and reacting the solution from which the solid acid catalyst is separated under an oxidation catalyst to prepare 2,5-furandicarboxylic acid.

또한 상기 고체산촉매 및 산화촉매를 이용한 프룩투스로부터 FDCA제조방법은 하기 반응식 1에 따라 수행될 수 있다. In addition, the method for preparing FDCA from fructus using the solid acid catalyst and the oxidation catalyst may be performed according to Scheme 1 below.

[반응식 1][Scheme 1]

Figure 112019028975218-pat00001
Figure 112019028975218-pat00001

본 발명의 일 실시예에서 프룩토스는 고체산촉매 하에서 에탄올과 혼합되어 중간체인 EMF를 생성하고 산소 가압 하에서 Pt/C 산화촉매와 반응하여 FDCA로 전환된다. In an embodiment of the present invention, fructose is mixed with ethanol under a solid acid catalyst to generate EMF as an intermediate, and is converted to FDCA by reacting with a Pt/C oxidation catalyst under oxygen pressure.

우선 프룩토스(fructose)와 유기용매를 혼합하여 혼합용액을 제조한다(S100).First, a mixed solution is prepared by mixing fructose and an organic solvent (S100).

상기 유기용매는 메탄올 또는 에탄올일 수 있다. The organic solvent may be methanol or ethanol.

상기 메탄올 또는 에탄올 이외 C3 이상의 알코올은 고체산촉매를 이용하여 프룩토스를 탈수시켜 알콕시-메틸퍼퓨랄로 전환시키기 어려우며, 반응 후 부산물을 생성하는 문제가 있다. C 3 or higher alcohol other than methanol or ethanol is difficult to convert to alkoxy-methyl furfural by dehydrating fructose using a solid acid catalyst, and there is a problem of generating by-products after the reaction.

상기 혼합용액을 고체산촉매 하에서 가열하고 반응시켜 알콕시-메틸퍼퓨랄을 제조한다(S200).The mixed solution is heated and reacted under a solid acid catalyst to prepare alkoxy-methyl furfural (S200).

상기 고체산촉매는 그래핀 산화물(graphene oxide) 또는 활성탄 (activated carbon)을 지지체로 하여 술폰산(-SO3H)이 작용기로 결합된 것일 수 있다. The solid acid catalyst may be one in which sulfonic acid (-SO 3 H) is bonded as a functional group using graphene oxide or activated carbon as a support.

상기 지지체 이외에는 술폰산이 작용기로 결합되기 어렵다.It is difficult for the sulfonic acid to bind to a functional group other than the support.

상기 술폰산이 작용기로 결합된 고체산촉매는 양성자 공여체 또는 전자 수용체로 작용하여 탈수반응의 촉매로 사용된다. The solid acid catalyst to which the sulfonic acid is bonded as a functional group acts as a proton donor or electron acceptor and is used as a catalyst for dehydration.

상기 그래핀 산화물과 활성탄에서 술폰산 작용기는 브뢴스테드 산 작용기(Bronsted acidic function)로 작용한다. In the graphene oxide and activated carbon, the sulfonic acid functional group acts as a Bronsted acidic function.

따라서 상기 고체산촉매는 촉매활성이 매우 높으며 탈수반응에 매우 유리하다. Therefore, the solid acid catalyst has very high catalytic activity and is very advantageous for dehydration.

상기 고체산촉매 이외에는 프룩토스의 전환율이 낮으며, 가열반응 시 90 ℃ 이상의 반응온도가 요구되어 공정 효율을 감소시키는 문제가 있다. Other than the solid acid catalyst, the conversion rate of fructose is low, and a reaction temperature of 90° C. or higher is required during the heating reaction, thereby reducing process efficiency.

상기 가열은 60 내지 80 ℃에서 12 내지 32시간 동안 수행될 수 있다. The heating may be performed at 60 to 80 °C for 12 to 32 hours.

상기 가열 범위에서 프룩토스를 100 %로 전환할 수 있으며, EMF 또는 MMF를 70 내지 90 % 수율로 제조할 수 있다. In the heating range, fructose may be converted to 100%, and EMF or MMF may be prepared in a yield of 70 to 90%.

상기 고체산촉매가 혼합된 알콕시-메틸퍼퓨랄 용액에서 상기 고체산촉매를 여과하여 분리한다(S300).The solid acid catalyst is separated by filtration from the alkoxy-methyl furfural solution mixed with the solid acid catalyst (S300).

상기 여과를 통하여 반응촉매를 제거할 수 있다. The reaction catalyst can be removed through the filtration.

고체산촉매를 사용하여 EMF 또는 MMF를 제조할 수 있으며, 종래 고비점 유기 용매상을 분리하기 위한 별도의 처리과정과 상이하게 여과를 통하여 매우 효과적으로 고체산촉매를 제거하고 높은 전환율로 EMF 또는 MMF을 수득하여 알콕시-메틸퍼퓨랄(alkoxy-methylfurfural)을 제조할 수 있다. EMF or MMF can be prepared using a solid acid catalyst, and unlike the conventional separate treatment for separating the high boiling point organic solvent phase, the solid acid catalyst is very effectively removed through filtration and EMF or MMF is obtained at a high conversion rate. Alkoxy-methylfurfural (alkoxy-methylfurfural) can be prepared.

상기 고체산촉매가 분리된 용액을 산화촉매 하에서 가압하고 반응시켜 2,5-퓨란디카르복실산을 제조한다(S400).The solution from which the solid acid catalyst is separated is pressurized under an oxidation catalyst and reacted to prepare 2,5-furandicarboxylic acid (S400).

상기 가압은 산소 가스 또는 공기를 10 내지 30 bar로 1 내지 3시간 동안 가압할 수 있다. The pressurization may pressurize oxygen gas or air at 10 to 30 bar for 1 to 3 hours.

상기 가압 범위 내에서 산화촉매를 사용하여 FDCA를 높은 효율로 제조할 수 있으며, 상기 범위에 미치지 못하는 경우에는 산화반응에 따른 수율이 낮고, 상기 범위를 초과하는 경우 반응 수율을 증가되지 않으면서 에너지가 더 소모되는 문제가 있다. FDCA can be produced with high efficiency using an oxidation catalyst within the pressure range, and when it does not reach the above range, the yield according to the oxidation reaction is low, and when it exceeds the above range, the energy is high without increasing the reaction yield There is a problem with more consumption.

상기 산화촉매는 활성탄, 산화아연, 이산화규소, 하이드로탈사이트, 산화세륨(CeO2) 및 산화알루미늄(Al2O3)으로 이루어진 군에서 선택된 어느 하나인 지지체에 금, 백금, 팔라듐 및 루테늄으로 이루어진 군에서 선택된 어느 하나의 금속이 담지된 것일 수 있다. The oxidation catalyst is activated carbon, zinc oxide, silicon dioxide, hydrotalcite, cerium oxide (CeO 2 ) and aluminum oxide (Al 2 O 3 ) on a support selected from the group consisting of gold, platinum, palladium and ruthenium Any one metal selected from the group may be supported.

상기 지지체를 사용하여 분균일계 촉매를 제조하여 산화반응을 수행할 수 있으며, 촉매의 회수 및 재사용이 용이하여 전체 공정 비용을 감소시켜 공정의 효율을 증가시킬 수 있다. The oxidation reaction can be performed by preparing a heterogeneous catalyst using the support, and the recovery and reuse of the catalyst is easy, thereby reducing the overall process cost and increasing the process efficiency.

상기 산화촉매 하에서 상기 범위 내 가압으로 EMF 또는 MMF의 산화반응을 수행하고, 90 % 이상의 수율로 FDCA를 제조할 수 있다. The oxidation reaction of EMF or MMF is performed under the pressure within the above range under the oxidation catalyst, and FDCA can be prepared in a yield of 90% or more.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples are presented to help the understanding of the present invention, but the following examples are only illustrative of the present invention and the scope of the present invention is not limited to the following examples.

실험예 1. 고체산촉매 제조Experimental Example 1. Preparation of solid acid catalyst

문헌(P.P. Upare, J.-W. Yoon, H.-Y. Kang, D.W. Hwang, Y.K. Hwang, H.H. Kung, J.-S. Chang, Green Chem. 15 (2013) 2935-2943)에 따라 그래핀 산화물과 활성탄의 술폰화를 수행하여 고체산 촉매인 GO-SO3H 및 AC-SO3H를 제조하였다. According to the literature (PP Upare, J.-W. Yoon, H.-Y. Kang, DW Hwang, YK Hwang, HH Kung, J.-S. Chang, Green Chem. 15 (2013) 2935-2943) graphene Sulfonation of the oxide and activated carbon was performed to prepare solid acid catalysts GO-SO 3 H and AC-SO 3 H.

술폰화된 물질에 대한 원소분석을 통하여 술폰기의 함량(S-density, mmol/g)을 확인하였다. The content of sulfone groups (S-density, mmol/g) was confirmed through elemental analysis of the sulfonated material.

AC-SO3H 는 2.5 mmol/g -SO3H 기를 함유하였으며, 이는 GO-SO3H의 1.2 mmol/g에 비해 약 2배 이상인 것으로 확인되어 AC-SO3H가 더 강한 산성점(acidic site)을 가지는 것을 확인하였다. AC-SO 3 H contained 2.5 mmol/g -SO 3 H group, which was confirmed to be about twice or more than 1.2 mmol/g of GO-SO 3 H, so that AC-SO 3 H had a stronger acidic point. site) was confirmed.

또한 AC-SO3H 및 GO-SO3H는 MTS-GO(methoxytrimethylsiliane-graphene oxide) 또는 Zr(SO4)2 촉매에 비하여 S-density가 높아서 프룩토스의 탈수반응에 매우 효과적일 것으로 예측되었다. Also, AC-SO 3 H and GO-SO 3 H had higher S-density compared to MTS-GO (methoxytrimethylsiliane-graphene oxide) or Zr(SO 4 ) 2 catalyst, so it was predicted to be very effective for dehydration of fructose.

실시예 1. fructose로부터 5-ethoxymethylfurfural (EMF) 제조 Example 1. Preparation of 5-ethoxymethylfurfural (EMF) from fructose

프룩토스 1 g을 ethanol 9 ml, 그래핀산화물에 술폰산이 결합된 고체산촉매(GO-SO3H) 1.0 g과 혼합 후 70 ℃로 가열 후 24 시간 동안 반응을 진행하였다. 반응 후 샘플을 상온으로 냉각 후 여과를 통해 GO-SO3H 촉매를 용액과 분리하였다. 1 g of fructose was mixed with 9 ml of ethanol and 1.0 g of a solid acid catalyst (GO-SO 3 H) in which graphene oxide was bound to sulfonic acid, heated to 70 °C, and then the reaction was carried out for 24 hours. After the reaction, the sample was cooled to room temperature, and the GO-SO 3 H catalyst was separated from the solution through filtration.

분리한 용액을 liquid chromatography로 분석한 결과 프룩토스 전환율은 100 %, EMF 수율은 72 %로 확인되었다.As a result of analyzing the separated solution by liquid chromatography, it was confirmed that the fructose conversion rate was 100% and the EMF yield was 72%.

실시예 2. fructose로부터 5-ethoxymethylfurfural (EMF) 제조 Example 2. Preparation of 5-ethoxymethylfurfural (EMF) from fructose

프룩토스 1 g을 ethanol 9 ml, GO-SO3H 촉매 1.0 g과 혼합 후 70 ℃로 가열 후 30 시간 동안 반응을 진행하였다. 반응 후 샘플을 상온으로 냉각 후 여과를 통해 GO-SO3H 촉매를 용액과 분리하였다. After mixing 1 g of fructose with 9 ml of ethanol and 1.0 g of a GO-SO 3 H catalyst, the mixture was heated to 70° C. and the reaction was carried out for 30 hours. After the reaction, the sample was cooled to room temperature, and the GO-SO 3 H catalyst was separated from the solution through filtration.

분리한 용액을 liquid chromatography로 분석한 결과 프룩토스 전환율은 100%, EMF 수율은 90%로 확인되었다.As a result of analyzing the separated solution by liquid chromatography, it was confirmed that the fructose conversion rate was 100% and the EMF yield was 90%.

실시예 3. fructose로부터 5-ethoxymethylfurfural (EMF) 제조 Example 3. Preparation of 5-ethoxymethylfurfural (EMF) from fructose

프룩토스 1 g을 ethanol 9 ml, AC-SO3H 촉매 1.0 g과 혼합 후 70 ℃로 가열 후 32 시간 동안 반응을 진행하였다. 반응 후 샘플을 상온으로 냉각 후 여과를 통해 AC-SO3H 촉매를 용액과 분리하였다. After mixing 1 g of fructose with 9 ml of ethanol and 1.0 g of AC-SO 3 H catalyst, the mixture was heated to 70° C. and the reaction was carried out for 32 hours. After the reaction, the sample was cooled to room temperature, and the AC-SO3H catalyst was separated from the solution through filtration.

분리한 용액을 liquid chromatography로 분석한 결과 프룩토스 전환율은 100 %, EMF 수율은 91 %로 확인되었다.As a result of analyzing the separated solution by liquid chromatography, it was confirmed that the fructose conversion rate was 100% and the EMF yield was 91%.

상기 과정을 통해 얻은 EMF/ethanol 용액을 60 ℃로 가열 후 48시간 동안 유지 후 상온으로 냉각하였다. The EMF/ethanol solution obtained through the above process was heated to 60 °C, maintained for 48 hours, and then cooled to room temperature.

용액을 liquid chromatography로 분석한 결과 EMF의 농도 변화는 거의 없었다.As a result of analyzing the solution by liquid chromatography, there was little change in the concentration of EMF.

따라서 AC-SO3H 촉매를 이용하여 ethanol 용매상에서 EMF를 제조하는 경우, EMF를 90% 이상 고수율로 얻을 수 있을 뿐 아니라 촉매 반응 완료 후 촉매를 제거한 경우에는 EMF의 2차 반응을 억제할 수 있음을 알 수 있다.Therefore, when EMF is prepared in ethanol solvent using AC-SO 3 H catalyst, EMF can be obtained in a high yield of 90% or more, and when the catalyst is removed after completion of the catalytic reaction, the secondary reaction of EMF can be suppressed. It can be seen that there is

실시예 4. fructose로부터 5-methoxymethylfurfural (MMF) 제조 Example 4. Preparation of 5-methoxymethylfurfural (MMF) from fructose

프룩토스 1 g을 methanol 9 ml, GO-SO3H 촉매 1.0 g과 혼합 후 60 ℃로 가열 후 30 시간 동안 반응을 진행하였다. 반응 후 샘플을 상온으로 냉각 후 여과를 통해 GO-SO3H 촉매를 용액과 분리하였다. 분리한 용액을 liquid chromatography로 분석한 결과 프룩토스 전환율은 100 %, MMF 수율은 91 %로 확인되었다.After mixing 1 g of fructose with 9 ml of methanol and 1.0 g of GO-SO 3 H catalyst, the mixture was heated to 60° C. and the reaction was carried out for 30 hours. After the reaction, the sample was cooled to room temperature, and the GO-SO 3 H catalyst was separated from the solution through filtration. As a result of analyzing the separated solution by liquid chromatography, it was confirmed that the fructose conversion rate was 100% and the MMF yield was 91%.

상기 과정을 통해 얻은 MMF/methanol 용액을 60 ℃로 가열 후 48시간 동안 유지 후 상온으로 냉각하였다. 용액을 liquid chromatography로 분석한 결과 MMF의 농도 변화는 거의 없었다. The MMF/methanol solution obtained through the above process was heated to 60 °C, maintained for 48 hours, and then cooled to room temperature. As a result of analyzing the solution by liquid chromatography, there was little change in the concentration of MMF.

따라서, AC-SO3H 촉매를 이용하여 methanol 용매상에서 MMF를 제조하는 경우, MMF를 90 % 이상 고수율로 얻을 수 있을 뿐 아니라 촉매 반응 완료 후 촉매를 제거한 경우에는 MMF의 2차 반응을 억제할 수 있음을 알 수 있다.Therefore, when MMF is prepared in methanol solvent using AC-SO 3 H catalyst, MMF can be obtained in a high yield of 90% or more, and when the catalyst is removed after completion of the catalytic reaction, the secondary reaction of MMF can be suppressed. It can be seen that

실시예 5. fructose로부터 5-Methoxymethylfurfural (MMF) 제조 Example 5. Preparation of 5-Methoxymethylfurfural (MMF) from fructose

프룩토스 1 g을 methanol 9 ml, 활성탄 지지체에 술폰산이 작용기로 결합된 촉매(이하 'AC-SO3H') 1.5 g과 혼합 후 60 ℃로 가열 후 21 시간 동안 반응을 진행하였다. 1 g of fructose was mixed with 9 ml of methanol and 1.5 g of a catalyst (hereinafter, 'AC-SO 3 H') in which sulfonic acid was bonded to an activated carbon support as a functional group, heated to 60° C., and reacted for 21 hours.

반응 후 샘플을 상온으로 냉각 후 여과를 통해 AC-SO3H 촉매를 용액과 분리하였다. After the reaction, the sample was cooled to room temperature, and the AC-SO 3 H catalyst was separated from the solution through filtration.

분리한 용액을 liquid chromatography로 분석한 결과 프룩토스 전환율은 100 %, MMF 수율은 90 %로 확인되었다. As a result of analyzing the separated solution by liquid chromatography, it was confirmed that the fructose conversion rate was 100% and the MMF yield was 90%.

따라서 AC-SO3H 촉매를 이용하여 methanol 용매상에서 MMF를 제조하는 경우, AC-SO3H 촉매의 양이 증가함에 따라 MMF 생성속도가 빠름을 알 수 있으며, 이를 통해 AC-SO3H 촉매의 양을 조절함으로써 MMF 수율 및 반응시간을 조절할 수 있다. Thus, the AC-SO case of preparing MMF on a methanol solvent using a 3 H catalyst, AC-SO 3 as H is increased amount of catalyst, and the MMF production rate to find out faster, this AC-SO 3 H catalyst with By controlling the amount, it is possible to control the MMF yield and reaction time.

실시예 6. fructose로부터 5-methoxymethylfurfural (MMF) 제조 Example 6. Preparation of 5-methoxymethylfurfural (MMF) from fructose

프룩토스 1 g을 methanol 9 ml, AC-SO3H 촉매 1.0 g과 혼합 후 80 ℃로 가열 후 12 시간 동안 반응을 진행하였다. After mixing 1 g of fructose with methanol 9 ml and 1.0 g of AC-SO 3 H catalyst, the mixture was heated to 80° C. and the reaction was carried out for 12 hours.

반응 후 샘플을 상온으로 냉각 후 여과를 통해 AC-SO3H 촉매를 용액과 분리하였다. After the reaction, the sample was cooled to room temperature, and the AC-SO 3 H catalyst was separated from the solution through filtration.

분리한 용액을 liquid chromatography로 분석한 결과 프룩토스 전환율은 100 %, MMF 수율은 79 %로 확인되었다.As a result of analyzing the separated solution by liquid chromatography, it was confirmed that the fructose conversion rate was 100% and the MMF yield was 79%.

실시예 1 내지 6을 확인하면, 프룩토스를 고체산 촉매와 혼합하고 가열반응으로 높은 전환율로 알콕시-메틸퍼퓨랄인 EMF 또는 MMF를 수득할 수 있는 것을 알 수 있다.Checking Examples 1 to 6, it can be seen that fructose can be mixed with a solid acid catalyst and heated to obtain EMF or MMF, which is alkoxy-methylfurfural, at a high conversion rate.

실시예 7. EMF로부터 FDCA 제조 Example 7. Preparation of FDCA from EMF

실시예 1에서 제조한 EMF/ethanol 용액을 활성탄 지지체에 백금이 도포된 촉매(이하 'Pt(5%)/C') 0.5 g과 혼합하고 100 ℃로 가열 후 O2 가스를 이용하여 15 bar로 압력을 올린 후 2 시간 동안 반응을 진행하였다. The EMF / ethanol solution prepared in Example 1 was mixed with 0.5 g of a catalyst coated with platinum on an activated carbon support (hereinafter 'Pt (5%) / C'), heated to 100 ° C, and then heated to 15 bar using O 2 gas. After increasing the pressure, the reaction was carried out for 2 hours.

반응 후 샘플을 상온 27 ℃로 냉각 후 여과를 통해 고체 혼합물을 용액으로부터 분리하였다. After the reaction, the sample was cooled to room temperature at 27 °C, and the solid mixture was separated from the solution through filtration.

상기 고체 혼합물을 디메틸포름아미트(dimethylformamide, 이하'DMF') 용매 10 ml와 혼합 후 여과를 통해 촉매를 용액과 분리하였다. The solid mixture was mixed with 10 ml of a dimethylformamide (hereinafter 'DMF') solvent and filtered to separate the catalyst from the solution.

분리한 용액을 liquid chromatography로 분석한 결과 EMF 전환율은 100 %, FDCA 수율은 97 %로 확인되었다.As a result of analyzing the separated solution by liquid chromatography, it was confirmed that the EMF conversion rate was 100% and the FDCA yield was 97%.

활성탄 지지체에 소량의 백금이 도포된 불균일계 산화촉매를 사용하는 경우 FDCA 생성 후 여과를 통하여 FDCA와 용이하게 분리할 수 있기 때문에 반응용액과 촉매의 분리가 용이하여 촉매를 재사용할 수 있는 장점을 갖는다.When a heterogeneous oxidation catalyst coated with a small amount of platinum on an activated carbon support is used, it can be easily separated from FDCA through filtration after FDCA is generated, so the reaction solution and catalyst can be easily separated and the catalyst can be reused. .

실시예 8. EMF로부터 FDCA 제조 Example 8. Preparation of FDCA from EMF

실시예 1에서 제조한 EMF/ethanol 용액을 하이드로탈사이트 지지체에 금이 도포된 촉매(이하 'Au(5%)/hydrotalcite') 촉매 0.5 g과 혼합하고 100 ℃로 가열 후 O2 가스를 이용하여 15 bar로 압력을 올린 후 2 시간 동안 반응을 진행하였다. The EMF/ethanol solution prepared in Example 1 was mixed with 0.5 g of a catalyst coated with gold on a hydrotalcite support (hereinafter 'Au(5%)/hydrotalcite') catalyst, heated to 100 ℃, and then using O 2 gas. After raising the pressure to 15 bar, the reaction was carried out for 2 hours.

반응 후 샘플을 상온으로 냉각 후 여과를 통해 고체 혼합물을 용액으로부터 분리하였다. After the reaction, the sample was cooled to room temperature, and the solid mixture was separated from the solution by filtration.

상기 고체 혼합물을 DMF 용매 10 ml와 혼합 후 여과를 통해 촉매를 용액과 분리하였다. 분리한 용액을 liquid chromatography로 분석한 결과 EMF 전환율은 100 %, FDCA 수율은 95 %로 확인되었다. After mixing the solid mixture with 10 ml of DMF solvent, the catalyst was separated from the solution through filtration. As a result of analyzing the separated solution by liquid chromatography, it was confirmed that the EMF conversion rate was 100% and the FDCA yield was 95%.

실시예 9. EMF로부터 FDCA 제조 Example 9. Preparation of FDCA from EMF

실시예 1에서 제조한 EMF/ethanol 용액을 Au(5%)/hydrotalcite 촉매 0.5 g과 혼합하고 100 ℃로 가열 후 O2 가스를 이용하여 10 bar로 압력을 올린 후 2 시간 동안 반응을 진행하였다. The EMF/ethanol solution prepared in Example 1 was mixed with 0.5 g of Au (5%)/hydrotalcite catalyst, heated to 100° C., and the pressure was increased to 10 bar using O 2 gas, followed by reaction for 2 hours.

반응 후 샘플을 상온으로 냉각 후 여과를 통해 고체 혼합물을 용액으로부터 분리하였다. After the reaction, the sample was cooled to room temperature, and the solid mixture was separated from the solution by filtration.

상기 고체 혼합물을 DMF 용매 10 ml와 혼합 후 여과를 통해 촉매를 용액과 분리하였다. 분리한 용액을 liquid chromatography로 분석한 결과 EMF 전환율은 100 %, FDCA 수율은 90 %로 확인되었다. After mixing the solid mixture with 10 ml of DMF solvent, the catalyst was separated from the solution through filtration. As a result of analyzing the separated solution by liquid chromatography, it was confirmed that the EMF conversion rate was 100% and the FDCA yield was 90%.

실시예 10. EMF로부터 FDCA 제조 Example 10. Preparation of FDCA from EMF

실시예 1에서 제조한 EMF/ethanol 용액을 활성탄 지지체에 루테늄이 도포된 촉매(이하 ' Ru(5%)/C') 0.5 g과 혼합하고 100 ℃로 가열 후 O2 가스를 이용하여 15 bar로 압력을 올린 후 2 시간 동안 반응을 진행하였다. The EMF/ethanol solution prepared in Example 1 was mixed with 0.5 g of a catalyst coated with ruthenium on an activated carbon support (hereinafter 'Ru (5%)/C'), heated to 100 ° C, and then heated to 15 bar using O 2 gas. After increasing the pressure, the reaction was carried out for 2 hours.

반응 후 샘플을 상온으로 냉각 후 여과를 통해 고체 혼합물을 용액으로부터 분리하였다. After the reaction, the sample was cooled to room temperature, and the solid mixture was separated from the solution by filtration.

상기 고체 혼합물을 DMF 용매 10 ml와 혼합 후 여과를 통해 촉매를 용액과 분리하였다. After mixing the solid mixture with 10 ml of DMF solvent, the catalyst was separated from the solution through filtration.

분리한 용액을 liquid chromatography로 분석한 결과 EMF 전환율은 100%, FDCA 수율은 96%로 확인되었다.As a result of analyzing the separated solution by liquid chromatography, it was confirmed that the EMF conversion rate was 100% and the FDCA yield was 96%.

실시예 11. EMF로부터 FDCA 제조 Example 11. Preparation of FDCA from EMF

실시예 1에서 제조한 EMF/ethanol 용액을 산화세륨 지지체에 루테늄이 도포된 촉매(이하 'Ru(5%)/CeO2 ') 0.5 g과 혼합하고 100 ℃로 가열 후 O2 가스를 이용하여 15 bar로 압력을 올린 후 2 시간 동안 반응을 진행하였다. The EMF / ethanol solution prepared in Example 1 was mixed with 0.5 g of a catalyst coated with ruthenium on a cerium oxide support (hereinafter 'Ru (5%) / CeO 2 '), heated to 100 ° C, and then 15 using O 2 gas. After raising the pressure to bar, the reaction was carried out for 2 hours.

반응 후 샘플을 상온으로 냉각 후 여과를 통해 고체 혼합물을 용액으로부터 분리하였다. After the reaction, the sample was cooled to room temperature, and the solid mixture was separated from the solution by filtration.

상기 고체 혼합물을 DMF 용매 10 ml와 혼합 후 여과를 통해 촉매를 용액과 분리하였다. After mixing the solid mixture with 10 ml of DMF solvent, the catalyst was separated from the solution through filtration.

분리한 용액을 liquid chromatography로 분석한 결과 EMF 전환율은 100 %, FDCA 수율은 95 %로 확인되었다.As a result of analyzing the separated solution by liquid chromatography, it was confirmed that the EMF conversion rate was 100% and the FDCA yield was 95%.

실시예 12. EMF로부터 FDCA 제조 Example 12. Preparation of FDCA from EMF

실시예 1에서 제조한 EMF/ethanol 용액을 활성탄 지지체에 팔라듐이 도포된 촉매(이하 'Pd(5%)/C') 촉매 0.5 g과 혼합하고 100 ℃로 가열 후 O2 가스를 이용하여 15 bar로 압력을 올린 후 2 시간 동안 반응을 진행하였다. The EMF / ethanol solution prepared in Example 1 was mixed with 0.5 g of a catalyst coated with palladium on an activated carbon support (hereinafter 'Pd (5%) / C') catalyst, heated to 100 ° C., and then 15 bar using O 2 gas. After raising the pressure to the furnace, the reaction was carried out for 2 hours.

반응 후 샘플을 상온으로 냉각 후 여과를 통해 고체 혼합물을 용액으로부터 분리하였다. After the reaction, the sample was cooled to room temperature, and the solid mixture was separated from the solution by filtration.

상기 고체 혼합물을 DMF 용매 10 ml와 혼합 후 여과를 통해 촉매를 용액과 분리하였다. 분리한 용액을 liquid chromatography로 분석한 결과 EMF 전환율은 100 %, FDCA 수율은 92 %로 확인되었다. After mixing the solid mixture with 10 ml of DMF solvent, the catalyst was separated from the solution through filtration. As a result of analyzing the separated solution by liquid chromatography, it was confirmed that the EMF conversion rate was 100% and the FDCA yield was 92%.

실시예 13. EMF로부터 FDCA 제조 Example 13. Preparation of FDCA from EMF

실시예 1에서 제조한 EMF/ethanol 용액을 활성탄 지지체에 백금이 도포된 촉매(이하 'Pt(5%)/C') 촉매 0.5 g과 혼합하고 100 ℃로 가열 후 공기를 이용하여 20 bar로 압력을 올린 후 2 시간 동안 반응을 진행하였다. The EMF/ethanol solution prepared in Example 1 was mixed with 0.5 g of a catalyst coated with platinum on an activated carbon support (hereinafter 'Pt (5%)/C') catalyst, heated to 100 ° C, and then pressured to 20 bar using air. After loading, the reaction was carried out for 2 hours.

반응 후 샘플을 상온으로 냉각 후 여과를 통해 고체 혼합물을 용액으로부터 분리하였다. After the reaction, the sample was cooled to room temperature, and the solid mixture was separated from the solution by filtration.

상기 고체 혼합물을 DMF 용매 10 ml와 혼합 후 여과를 통해 촉매를 용액과 분리하였다. 분리한 용액을 liquid chromatography로 분석한 결과 EMF 전환율은 100 %, FDCA 수율은 93 %로 확인되었다. After mixing the solid mixture with 10 ml of DMF solvent, the catalyst was separated from the solution through filtration. As a result of analyzing the separated solution by liquid chromatography, it was confirmed that the EMF conversion rate was 100% and the FDCA yield was 93%.

비교예 1. fructose로부터 5-ethoxymethylfurfural (EMF) 제조 Comparative Example 1. Preparation of 5-ethoxymethylfurfural (EMF) from fructose

프룩토스 1 g을 ethanol 9 ml, 상용 촉매인 Amberlsyt-15 resin 1.0 g과 혼합 후 70 ℃로 가열 후 24 시간 동안 반응을 진행하였다. After mixing 1 g of fructose with 9 ml of ethanol and 1.0 g of Amberlsyt-15 resin, which is a commercial catalyst, the mixture was heated to 70° C. and the reaction was carried out for 24 hours.

반응 후 샘플을 상온으로 냉각 후 여과를 통해 amberlyst-15 resin을 용액과 분리하였다. 분리한 용액을 liquid chromatography로 분석한 결과 프룩토스 전환율은 61 %, EMF 수율은 31 %로 확인되었다.After the reaction, the sample was cooled to room temperature, and the amberlyst-15 resin was separated from the solution through filtration. As a result of analyzing the separated solution by liquid chromatography, it was confirmed that the fructose conversion rate was 61% and the EMF yield was 31%.

비교예 2. fructose로부터 5-ethoxymethylfurfural (EMF) 제조 Comparative Example 2. Preparation of 5-ethoxymethylfurfural (EMF) from fructose

프룩토스 1g을 ethanol 9 ml, Amberlsyt-15 resin 1.0 g과 혼합 후 80 ℃로 가열 후 24 시간 동안 반응을 진행하였다. 반응 후 샘플을 상온으로 냉각 후 여과를 통해 amberlyst-15 resin을 용액과 분리하였다. 분리한 용액을 liquid chromatography로 분석한 결과 프룩토스 전환율은 73 %, EMF 수율은 38 %로 확인되었다.After mixing 1 g of fructose with 9 ml of ethanol and 1.0 g of Amberlsyt-15 resin, the mixture was heated to 80° C. and the reaction was carried out for 24 hours. After the reaction, the sample was cooled to room temperature, and the amberlyst-15 resin was separated from the solution through filtration. As a result of analyzing the separated solution by liquid chromatography, it was confirmed that the fructose conversion rate was 73% and the EMF yield was 38%.

비교예 3. fructose로부터 5-ethoxymethylfurfural (EMF) 제조 Comparative Example 3. Preparation of 5-ethoxymethylfurfural (EMF) from fructose

프룩토스 1g을 ethanol 9 ml, Amberlsyt-131 resin 1.0 g과 혼합 후 80 ℃로 가열 후 46 시간 동안 반응을 진행하였다. 반응 후 샘플을 상온으로 냉각 후 여과를 통해 amberlyst-15 resin을 용액과 분리하였다. After mixing 1 g of fructose with 9 ml of ethanol and 1.0 g of Amberlsyt-131 resin, the mixture was heated to 80° C. and the reaction was carried out for 46 hours. After the reaction, the sample was cooled to room temperature, and the amberlyst-15 resin was separated from the solution through filtration.

분리한 용액을 liquid chromatography로 분석한 결과 프룩토스 전환율은 100 %, EMF 수율은 86 %로 확인되었다.As a result of analyzing the separated solution by liquid chromatography, it was confirmed that the fructose conversion rate was 100% and the EMF yield was 86%.

비교예 4. fructose로부터 5-hydroxymethylfurfural (HMF) 제조 Comparative Example 4. Preparation of 5-hydroxymethylfurfural (HMF) from fructose

프룩토스 1g을 1-butanol 9 ml, Amberlsyt-15 resin 1.0 g과 혼합 후 100 ℃로 가열 후 5 시간 동안 반응을 진행하였다. 반응 후 샘플을 상온으로 냉각 후 여과를 통해 amberlyst-15 resin을 용액과 분리하였다. After mixing 1 g of fructose with 9 ml of 1-butanol and 1.0 g of Amberlsyt-15 resin, the mixture was heated to 100° C. and the reaction was carried out for 5 hours. After the reaction, the sample was cooled to room temperature, and the amberlyst-15 resin was separated from the solution through filtration.

분리한 용액을 liquid chromatography로 분석한 결과 프룩토스 전환율은 100 %, HMF 수율은 86 %로 확인되었다.As a result of analyzing the separated solution by liquid chromatography, it was confirmed that the fructose conversion rate was 100% and the HMF yield was 86%.

비교예 5. fructose로부터 5-hydroxymethylfurfural (HMF) 제조 Comparative Example 5. Preparation of 5-hydroxymethylfurfural (HMF) from fructose

프룩토스 1g을 isopropyl alcohol 9 ml, Amberlsyt-15 resin 1.0 g과 혼합 후 100 ℃로 가열 후 5 시간 동안 반응을 진행하였다. 반응 후 샘플을 상온으로 냉각 후 여과를 통해 amberlyst-15 resin을 용액과 분리하였다. After mixing 1 g of fructose with 9 ml of isopropyl alcohol and 1.0 g of Amberlsyt-15 resin, the mixture was heated to 100 ℃ and the reaction was carried out for 5 hours. After the reaction, the sample was cooled to room temperature, and the amberlyst-15 resin was separated from the solution through filtration.

분리한 용액을 liquid chromatography로 분석한 결과 프룩토스 전환율은 100 %, HMF 수율은 42 %로 확인되었다.As a result of analyzing the separated solution by liquid chromatography, it was confirmed that the conversion rate of fructose was 100% and the yield of HMF was 42%.

따라서 종래 상용 촉매인 Amberlyst resin을 사용한 경우 EMF 생성 속도가 느리고 수율이 매우 낮을 것을 확인하였다.Therefore, it was confirmed that when Amberlyst resin, which is a conventional commercial catalyst, was used, the EMF production rate was slow and the yield was very low.

또한 메탄올 또는 에탄올이 아닌 이소프로필알코올 또는 1-부탄올을 용매로 사용한 경우에는 알콕시-메틸퍼퓨랄이 생성되지 않고, 5-하이드록시메틸퍼퓨랄(5-hydroxymethylfurfural; HMF)이 주로 생성되는 것을 알 수 있다.In addition, it can be seen that, when isopropyl alcohol or 1-butanol, rather than methanol or ethanol, is used as a solvent, alkoxy-methyl furfural is not produced and 5-hydroxymethyl furfural (HMF) is mainly produced. have.

비교예 6. EMF로부터 FDCA 제조 Comparative Example 6. Preparation of FDCA from EMF

실시예 1에서 제조한 EMF/ethanol 용액을 산화촉매 없이 100 ℃로 가열 후 공기를 이용하여 20 bar로 압력을 올린 후 2 시간 동안 반응을 진행하였다. After heating the EMF/ethanol solution prepared in Example 1 to 100 °C without an oxidation catalyst, the pressure was raised to 20 bar using air, and then the reaction was carried out for 2 hours.

반응 후 샘플을 상온으로 냉각 후 상기 고체 혼합물을 DMF 용매 10 ml와 혼합 후 liquid chromatography로 분석한 결과 EMF 전환율은 15 %, FDCA 수율은 10 %로 확인되었다.After the reaction, the sample was cooled to room temperature, and the solid mixture was mixed with 10 ml of a DMF solvent and analyzed by liquid chromatography. As a result, it was confirmed that the EMF conversion rate was 15% and the FDCA yield was 10%.

지금까지 본 발명에 실시예에 따른 프룩토스로부터 알콕시-메틸퍼퓨랄을 제조방법, 알콕시-메틸퍼퓨랄로부터 2,5-퓨란디카르복실산을 제조하는 방법 및 프룩토스로부터 2,5-퓨란디카르복실산 제조방법에 관한 구체적인 실시예에 관하여 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서는 여러 가지 실시 변형이 가능함은 자명하다.Up to now, the method for preparing alkoxy-methyl furfural from fructose, the method for preparing 2,5-furandicarboxylic acid from alkoxy-methyl furfural, and 2,5-furandica from fructose according to Examples of the present invention Although specific examples have been described with respect to the method for preparing carboxylic acid, it is apparent that various implementation modifications are possible within the limits that do not depart from the scope of the present invention.

그러므로 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 안 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined by the following claims as well as the claims and equivalents.

즉, 전술된 실시예는 모든 면에서 예시적인 것이며, 한정적인 것이 아닌 것으로 이해되어야 하며, 본 발명의 범위는 상세한 설명보다는 후술될 특허청구범위에 의하여 나타내어지며, 그 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.That is, it should be understood that the above-described embodiments are illustrative in all respects and not restrictive, and the scope of the present invention is indicated by the claims to be described later rather than the detailed description, and the meaning and scope of the claims; All changes or modifications derived from the concept of equivalents should be construed as being included in the scope of the present invention.

Claims (12)

프룩토스에서 제조된 알콕시-메틸퍼퓨랄로부터 2,5-퓨란디카르복실산을 제조하는 방법으로서,
프룩토스와 유기용매의 혼합용액을 고체산촉매 하에서 반응시킨 후 고체산촉매를 여과 분리하여 알콕시-메틸퍼퓨랄 용액을 제조하고(제1단계),
상기 알콕시-메틸퍼퓨랄 용액을 불균일계 산화촉매 하에서 가압하고 반응시켜 2,5-퓨란디카르복실산을 제조하며(제2단계),
상기 유기용매는 메탄올 또는 에탄올인 것을 특징으로 하는,
알콕시-메틸퍼퓨랄로부터 2,5-퓨란디카르복실산을 제조하는 방법.
A method for preparing 2,5-furandicarboxylic acid from alkoxy-methylfurfural prepared from fructose, the method comprising:
After reacting a mixed solution of fructose and an organic solvent under a solid acid catalyst, the solid acid catalyst is separated by filtration to prepare an alkoxy-methyl furfural solution (first step),
The alkoxy-methyl furfural solution is pressurized under a heterogeneous oxidation catalyst and reacted to prepare 2,5-furandicarboxylic acid (second step),
The organic solvent is characterized in that methanol or ethanol,
A process for the preparation of 2,5-furandicarboxylic acid from alkoxy-methylfurfural.
제1항에 있어서,
상기 가압은 산소 가스 또는 공기를 10 내지 30 bar로 1 내지 3 시간 동안 가압하는 것을 특징으로 하는 알콕시-메틸퍼퓨랄로부터 2,5-퓨란디카르복실산의 제조방법.
According to claim 1,
The pressurization is a method for producing 2,5-furandicarboxylic acid from alkoxy-methyl furfural, characterized in that pressurizing oxygen gas or air at 10 to 30 bar for 1 to 3 hours.
제1항에 있어서,
상기 산화촉매는
활성탄, 산화아연, 이산화규소, 지르코늄디옥사이드(ZrO2), 하이드로탈사이트, 산화세륨 및 산화알루미늄(Al2O3)으로 이루어진 군에서 선택된 어느 하나인 지지체에
금, 백금, 팔라듐 및 루테늄으로 이루어진 군에서 선택된 어느 하나의 금속이 담지된 것을 특징으로 하는 알콕시-메틸퍼퓨랄로부터 2,5-퓨란디카르복실산의 제조방법.
According to claim 1,
The oxidation catalyst is
Activated carbon, zinc oxide, silicon dioxide, zirconium dioxide (ZrO 2 ), hydrotalcite, cerium oxide and aluminum oxide (Al 2 O 3 ) on a support which is any one selected from the group consisting of
A method for producing 2,5-furandicarboxylic acid from alkoxy-methylfurfural, wherein any one metal selected from the group consisting of gold, platinum, palladium and ruthenium is supported.
(a) 프룩토스(fructose)와 유기용매를 혼합하여 혼합용액을 제조하는 단계;
(b) 상기 혼합용액을 고체산촉매 하에서 가열하고 반응시켜 알콕시-메틸퍼퓨랄을 제조하는 단계;
(c) 상기 고체산촉매가 혼합된 알콕시-메틸퍼퓨랄 용액에서 상기 고체산촉매를 여과하여 분리하는 단계; 및
(d) 상기 고체산촉매가 분리된 용액을 불균일계 산화촉매 하에서 가압하고 반응시켜 2,5-퓨란디카르복실산을 제조하는 단계;를 포함하고,
상기 유기용매는 메탄올 또는 에탄올인 것을 특징으로 하는,
프룩토스로부터 2,5-퓨란디카르복실산 제조방법.
(a) preparing a mixed solution by mixing fructose and an organic solvent;
(b) heating and reacting the mixed solution under a solid acid catalyst to prepare alkoxy-methyl furfural;
(c) separating the solid acid catalyst from the alkoxy-methyl furfural solution mixed with the solid acid catalyst by filtration; and
(d) preparing 2,5-furandicarboxylic acid by pressurizing and reacting the solution from which the solid acid catalyst is separated under a heterogeneous oxidation catalyst;
The organic solvent is characterized in that methanol or ethanol,
Method for preparing 2,5-furandicarboxylic acid from fructose.
삭제delete 제4항에 있어서,
상기 고체산촉매는
그래핀 산화물(graphene oxide) 또는 활성탄(activated carbon)을 지지체로 하여 술폰산(-SO3H)이 작용기로 결합된 것을 특징으로 프룩토스로부터 2,5-퓨란디카르복실산 제조방법.
5. The method of claim 4,
The solid acid catalyst is
A method for producing 2,5-furandicarboxylic acid from fructose, characterized in that sulfonic acid (-SO 3 H) is bonded as a functional group using graphene oxide or activated carbon as a support.
제4항에 있어서,
상기 여과는
상기 알콕시-메틸퍼퓨랄 용액을 20 내지 30 ℃ 상온으로 냉각한 이후에 여과지를 사용하여 수행하는 것을 특징으로 하는 프룩토스로부터 알콕시-메틸퍼퓨랄을 제조하는 방법.
5. The method of claim 4,
The filtration is
A method for producing alkoxy-methyl furfural from fructose, characterized in that the alkoxy-methyl furfural solution is cooled to 20 to 30 ° C. to room temperature and then carried out using filter paper.
제4항에 있어서,
상기 가압은
산소 가스 또는 공기를 10 내지 30 bar로 1 내지 3시간 동안 가압하는 것을 특징으로 하는 촉매를 이용한 프룩토스로부터 2,5-퓨란디카르복실산 제조방법.
5. The method of claim 4,
The pressurization is
A method for producing 2,5-furandicarboxylic acid from fructose using a catalyst, characterized in that oxygen gas or air is pressurized at 10 to 30 bar for 1 to 3 hours.
제4항에 있어서,
상기 산화촉매는
활성탄, 산화아연, 이산화규소, 지르코늄디옥사이드 (ZrO2), 하이드로탈사이트, 산화세륨 및 산화알루미늄(Al2O3)으로 이루어진 군에서 선택된 어느 하나인 지지체에
금, 백금, 팔라듐 및 루테늄으로 이루어진 군에서 선택된 어느 하나의 금속이 담지된 것을 특징으로 하는 프룩토스로부터 2,5-퓨란디카르복실산 제조방법.
5. The method of claim 4,
The oxidation catalyst is
Activated carbon, zinc oxide, silicon dioxide, zirconium dioxide (ZrO 2 ), hydrotalcite, cerium oxide and aluminum oxide (Al 2 O 3 ) on a support which is any one selected from the group consisting of
A method for producing 2,5-furandicarboxylic acid from fructose, characterized in that any one metal selected from the group consisting of gold, platinum, palladium and ruthenium is supported.
삭제delete 삭제delete 삭제delete
KR1020190032162A 2019-03-21 2019-03-21 Preparing method for alkoxy-methylfurfural and 2,5-furandicarboxylic acid from fructose KR102337169B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020190032162A KR102337169B1 (en) 2019-03-21 2019-03-21 Preparing method for alkoxy-methylfurfural and 2,5-furandicarboxylic acid from fructose
PCT/KR2020/003741 WO2020190043A1 (en) 2019-03-21 2020-03-19 Method for producing 5-alkoxy-methylfurfural and 2,5-furandicarboxylic acid from fructose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190032162A KR102337169B1 (en) 2019-03-21 2019-03-21 Preparing method for alkoxy-methylfurfural and 2,5-furandicarboxylic acid from fructose

Publications (2)

Publication Number Publication Date
KR20200112149A KR20200112149A (en) 2020-10-05
KR102337169B1 true KR102337169B1 (en) 2021-12-07

Family

ID=72809398

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190032162A KR102337169B1 (en) 2019-03-21 2019-03-21 Preparing method for alkoxy-methylfurfural and 2,5-furandicarboxylic acid from fructose

Country Status (1)

Country Link
KR (1) KR102337169B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010538031A (en) * 2007-09-07 2010-12-09 フラニックス テクノロジーズ ベスローテン フェンノートシャップ Hydroxymethylfurfural ether derived from sugar or HMF and mixed alcohol

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112018008741A8 (en) 2015-11-04 2019-02-26 Basf Se Process for the preparation of acid and use of an acid ester

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010538031A (en) * 2007-09-07 2010-12-09 フラニックス テクノロジーズ ベスローテン フェンノートシャップ Hydroxymethylfurfural ether derived from sugar or HMF and mixed alcohol

Also Published As

Publication number Publication date
KR20200112149A (en) 2020-10-05

Similar Documents

Publication Publication Date Title
Ordomsky et al. Biphasic single-reactor process for dehydration of xylose and hydrogenation of produced furfural
Azadi et al. Catalytic conversion of biomass using solvents derived from lignin
CN105418561B (en) Method for preparing 2, 5-furandicarboxylic acid by catalyzing fructose through supported bifunctional catalyst
US8324409B2 (en) Efficient method for preparing 2,5-dimethylfuran
Galletti et al. A sustainable process for the production of γ-valerolactone by hydrogenation of biomass-derived levulinic acid
KR102046210B1 (en) Process for making 2,5-furandicarboxylic acid
Deng et al. Conversion of carbohydrate biomass to γ-valerolactone by using water-soluble and reusable iridium complexes in acidic aqueous media.
Chu et al. Asymmetric catalytic epoxidation of α, β-unsaturated carbonyl compounds with hydrogen peroxide: Additive-free and wide substrate scope
US9969669B2 (en) Method for producing muconic acids and furans from aldaric acids
KR101715169B1 (en) Method for preparing 2,5-furandicarboxylic acid
RU2745266C2 (en) Method for the preparation of 2,5-furandicarboxylic acid (fdca)
CN105330523A (en) Method for preparing cyclopentanone by taking biomass resource as raw material
CN106905146B (en) Method for selective catalytic oxidation of biomass-based furan compound
JP2020511405A (en) HMF manufacturing method
CN110283147A (en) The method that formic acid hydrogen supply, base metal load azepine carbon catalysis 5-HMF transfer hydrogenation prepare 2,5- furyl dimethyl carbinol
WO2018095973A1 (en) A method and a system for producing glycolic acid and/or glycolate
CN104974016B (en) The method that hydrogenation on cinnamic aldehyde prepares cinnamyl alcohol
KR102278268B1 (en) Preparing method for 2,5-furandicarboxylic acid from 5-alkoxymethylfurfural
CN109134223B (en) Method for preparing 3-hydroxymethylcyclopentanone from 5-hydroxymethylfurfural
KR102337169B1 (en) Preparing method for alkoxy-methylfurfural and 2,5-furandicarboxylic acid from fructose
CN109622031B (en) Preparation method of 2-hydroxy phosphono zirconium acetate and application thereof in furfuryl alcohol synthesis
Tamboli et al. Metal-free approach towards efficient synthesis of FDCA using ap-toluene sulfonic acid (p-TSA)-derived heterogeneous solid acid catalyst and oxone over two steps from HMF, fructose and glucose
US20140303420A1 (en) Process for the production of hydrocarbons
CN114410336B (en) Method for directly preparing long-chain alkane based on biomass levulinic acid
CN109999907A (en) A kind of preparation method and applications of sulfonic acid funtionalized inorganic-organic hybrid polyalcohol catalyst

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant