Search tools Text Classification Chemistry Measure Numbers Full documents Title Abstract Claims All Any Exact Not Add AND condition These CPCs and their children These exact CPCs Add AND condition
Exact Exact Batch Similar Substructure Substructure (SMARTS) Full documents Claims only Add AND condition
Add AND condition
Application Numbers Publication Numbers Either Add AND condition

카메라를 위한 얇은 led 플래시

Abstract

카메라에 대한 얇은 플래시 모듈은 플렉시블 회로를 지지 표면으로서 사용한다. 블루 GaN-기반 플립 칩 LED 다이가 플렉스 회로 상에 장착된다. LED 다이는 "최상부" 출구창을 형성하는 두꺼운 투명 기판을 가지며, 따라서 다이로부터 방출되는 광의 적어도 40%가 측광이다. 인광체 층은 다이 및 플렉스 회로의 최상부 표면을 컨포멀 코팅한다. 나이프 에지 직사각형 개구를 가지는 스탬핑된 반사기는 다이를 둘러싼다. 개구로부터 확장하는 곡면들은 측면 표면들로부터 광을 반사시켜 일반적으로 직사각형 빔을 형성한다. 일반적으로 직사각형 렌즈는 반사기의 최상부에 부착된다. 렌즈는 다이 쪽으로 확장하는 일반적으로 직사각형 볼록 표면을 가지며, 렌즈로부터 방출되는 광의 빔은 카메라의 시야의 종횡비에 대응하는 일반적으로 직사각형 형상을 가진다.

Classifications

View 16 more classifications

Landscapes

Show more

KR102302523B1

South Korea

Other languages
English
Inventor
마크 멜빈 버터워스

Worldwide applications
2014 US CN JP KR EP WO CN 2018 US 2019 US US

Application KR1020167021508A events
2021-09-15
Application granted

Description

카메라를 위한 얇은 LED 플래시{THIN LED FLASH FOR CAMERA}
이 발명은 패키지화된 인광체-변환형 발광 다이오드(phosphor-converted light emitting diode)(pcLED)들에 관한 것이고, 특히, 카메라를 위한 플래시로서 유용한 패키지화된 pcLED에 관한 것이다.
스마트폰 카메라들을 포함하는 현대 디지털 카메라들에서, pcLED를 사용하는 플래시를 제공하는 것이 일반적이다. 일반적인 플래시는 강성 인쇄 회로 보드 상의 라운드 반사형 컵 내에 장착되는 GaN-기반 블루 LED 다이이다. YAG 인광체(옐로우-그린을 방출함)의 층이 컵을 채운다. LED 다이가 매우 얇기 때문에, 거의 모든 광이 다이의 최상부 표면으로부터 방출된다. 원형 프레넬 렌즈(Fresnel lens)가 이후 컵 위에 위치되어 일반적으로 원뿔형 발광 패턴(원형 단면을 가짐)을 생성하여 사진에 대한 대상을 조명한다. 카메라 본체의 일부를 형성하는 커버 플레이트는 통상적으로 렌즈에 대한 원형 개구를 가진다.
카메라의 시야가 직사각형이기 때문에, 원형 단면을 가지는 플래시로부터 방출되는 광의 다수가 대상 주위의 영역들을 조명하며, 낭비된다. 이러한 불필요한 조명은 또한, 사진 내에 존재하지 않는 것들에 대해 성가실 수 있다.
또한, 컵의 형상 및 컵 내의 인광체로 인해, 인광체는 LED 다이 위에서 균일하지 않아서, 컬러 불균일성 대 각도를 초래한다.
또한, 강성 인쇄 회로 보드의 사용으로 인해, 플래시 모듈의 얇기가 제한된다.
또한, 렌즈는 광을 적절하게 재지향시키기 위해 특정 최소 거리(예를 들어, 초점 거리)만큼 LED 다이의 최상부 표면으로부터 이격되어야 한다. 이러한 최소 거리는 플래시 모듈의 두께를 상당히 더한다.
또한, 컵과 LED 다이쪽으로의 렌즈로부터의 상당한 역-반사가 존재한다.
또한, LED 다이의 측면들에 대향하는 반사기 컵의 최하부 내부 에지는 LED 반도체 층들의 높이보다 통상적으로 더 큰 두께를 가지고, 따라서, 컵의 내부 에지는 측광을 차단하거나 또는 그것을 LED 다이로 역으로 반사시킨다.
또한, 거의 모든 광이 LED 다이의 최상부 표면으로부터 방출되기 때문에, 반사형 컵은 빔의 성형에서의 유용성을 제한하며, 결과적인 빔은 카메라의 시야에 걸쳐 그다지 균일하지 않다.
또한, 거의 모든 광이 램버트 패턴(Lambertian pattern)으로 LED 다이의 최상부 표면으로부터 방출되기 때문에, 반사기 컵은 LED 다이로부터 방출되는 "각이 있는(angled)" 광을 재지향시키고 시준하기(collimate) 위해 상대적으로 높은 벽을 가져야 한다. 반사되지 않는(시준된) 임의의 광선들은 광각으로 분산된다. 반사기의 높은 벽들은 플래시 모듈의 최소 두께를 제한한다.
플래시에 대해 LED 다이 위에 렌즈를 부착하는 것이 알려져 있으며, 여기서 렌즈는, 특허 공보 제KR2012079665A호에 기술된 바와 같이, LED 다이에 대한 공동을 가진다. 렌즈는 직사각형 최상부 표면 및 곡면의 측면 표면들(curved side surfaces)을 가진다. 그러나, 광의 상당 부분이 측면들로부터 빠져나가며, 대상 쪽으로 반사되지 않는다. 또한, 종래 기술의 렌즈는 상대적으로 두꺼워서, 두꺼운 플래시 모듈을 초래한다.
대상을 더욱 균일하게 그리고 효율적으로 조명하는 카메라에 대한 얇은 LED 플래시 모듈이 요구된다.
카메라를 위한 본 발명의 플래시 모듈의 일 예에서, 블루 플립 칩 LED 다이는 그것의 최상부 표면 상에 상대적으로 두꺼운 투명 기판을 가진다. 이는, 전체 광 방출의 50%와 같이, 광 방출의 상당 부분이, LED 다이의 측면들로부터 오도록 한다.
인광체의 컨포멀 코팅이 LED 다이의 최상부 표면 및 측면 표면 위에 퇴적되어 균일한 백색광을 생성한다.
pcLED는 LED 다이의 최하부 애노드 전극 및 캐소드 전극에의 접속을 위한 금속 패턴을 가지는 지지 기판 상에 장착된다. 기판은 카메라의 인쇄 회로 보드로의 결합을 위한 최하부 금속 패드를 가진다. 기판은 매우 얇은 플렉스 회로 또는 세라믹과 같은 강성 기판일 수 있다.
라운드형 코너들을 가지는 직사각형 반사기가 이후, 직사각형 LED 다이를 둘러싸는 기판 상에 장착된다. 직사각형 반사기는 측면 LED 광을 직사각형 단면을 가지는 일반적으로 피라미드형 빔으로 지향시키기 위한 곡면 벽들을 가지며, 단면 종횡비는 카메라의 시야의 표준 종횡비와 유사하다. 일 실시예에서, 반사기는 스탬핑된 알루미늄이며, LED 다이에 대한 개구는 LED 다이의 측면들을 대향하는 나이프 에지들을 가지고, 따라서, 거의 모든 측광이 개구의 내부 에지들에 의해 차단되기 보다는 상향으로 반사된다. 이러한 나이프 에지는 몰딩된 반사기 컵에 의해 달성될 수 없다.
얇은 렌즈는 반사기의 최상부 위에 부착되고, 렌즈는 LED 다이쪽으로 대향하는 볼록 측면을 가지며, 따라서, 볼록 부분은 모듈에 두께를 더하지 않는다. 렌즈는 LED 다이를 보호할 뿐만 아니라, 실질적으로 직각으로 LED 다이와 반사 벽들로부터의 광의 대부분을 수용하는 볼록 부분으로 인해 광 추출을 향상시킨다. LED 다이에 대향하는 평면을 가지는 종래의 프레넬 렌즈에 비해, 훨씬 더 적은 역-반사가 존재한다.
측광의 높은 백분율이 반사기에 의해 상향으로 반사됨으로 인해, 렌즈와 LED 다이 사이의 유효 광학 거리는 LED 다이의 측면과 반사기의 곡면 벽 사이의 수평 거리 더하기 곡면 벽과 렌즈 사이의 수직 거리의 합산이다. 따라서, 렌즈는 LED 다이의 측면들로부터의 초점 거리만큼 이격되는 한편, LED 다이의 최상부 표면에 훨씬 더 가깝다. 이는 플래시 모듈이 훨씬 더 얇아지도록 한다. 반사기 벽들은 LED 다이로부터 더 넓게 이격되어, 모듈의 얇기를 더 감소시킬 수 있다.
LED 다이로부터 방출되는 광의 많은 부분이 그것의 측면들로부터 오기 때문에, 반사기 벽들은 상대적으로 얕아져서, 모듈의 두께를 더 감소시킬 수 있다.
LED 다이를 향한 렌즈의 볼록 형상 및 LED 최상부 표면에 대한 렌즈의 근접성은 렌즈가 LED 다이의 최상부 표면으로부터 방출되는 광각의 램버트 광을 가로채서, 필요한 경우, 그것을 빔의 중심 쪽으로 약간 재지향시켜서, 빔의 균일도를 더 개선시키도록 한다. 볼록 형상은 일반적으로 직사각형 빔의 원하는 부분에 걸친 광의 균일도를 최적화하도록 설계된다. 종래 기술에 비해, 빔의 형상이 반사기의 형상에 의해 주로 제어되기 때문에, 렌즈가 빔을 성형하기 위해 주요하게(significantly) 사용되지 않는다(그러나, 주로 균일도를 개선시킨다).
따라서, LED 다이 광의 큰 백분율이 측광이며 직사각형 반사기에 의해 반사되며, 반사된 광이 LED 다이의 최상부 표면으로부터 방출되는 광과 혼합됨으로 인해, 더 균일한 직사각형 광 빔이 플래시에 의해 방출되는데, 이는 카메라의 시야의 종횡비(예를 들어, 4:3)에 일반적으로 매치한다. 또한, 플래시 모듈이 매우 얇아질 수 있다.
다른 실시예들이 기술된다.
도 1은 발명의 일 실시예에 따른 플래시 모듈의 분해도이다.
도 2는 도 1의 모듈에서 사용될 수 있는 플렉스 회로(또는 다른 지지 기판) 상에 장착되는, 컨포멀 인광체 코팅을 가지는, LED 다이의 단면 압축도이다.
도 3은 도 1의 플래시 모듈의 단면도이다.
도 4는 도 1의 플래시 모듈의 위에서 내려다 본 뷰(top down view)이다.
도 5는 전극 패턴 및 열 패드를 도시하는 도 1의 플래시 모듈의 최하부 뷰이다.
도 6은 도 1의 플래시 모듈의 투시 이분도이다.
도 7은 도 1의 플래시 모듈의 투시도이다.
도 8은 플렉스 기판을 사용하고 다양한 디멘젼들을 밀리미터로 식별하는 플래시 모듈의 실시예의 단면도이다.
도 9는 직사각형 플래시 모듈 및 카메라 렌즈를 예시하는 스마트 폰의 후면도이다.
동일하거나 유사한 엘리먼트들은 동일한 번호로 라벨링된다.
도 1은 발명의 일 실시예에 따른 플래시 모듈(10)의 분해도이다. 지지 기판(12)은 강성 기판 또는 매우 얇은 플렉시블 회로일 수 있다. 플렉시블 회로를 지지 기판(12)으로서 사용하는 것은 모듈(10)이 더 얇아지도록 한다.
금속 트레이스(14) 패턴은 플립 칩 LED 다이(16)의 최하부 애노드 전극 및 캐소드 전극에 대해 금속 패드들(15 및 17)을 정의하도록, 그리고 광학 과도 전압 억제(transient voltage suppressor)(TVS) 칩(18)의 전극들에 대한 금속 패드들(19 및 21)을 정의하도록 기판(12) 상에 형성된다.
GaN-기반 블루 LED 다이와 같은 베어 LED 다이(16)는 이후 기판(12)에 전기적으로 그리고 열적으로 접속된다. TVS 칩(18)은 또한 기판(12)에 전기적으로 접속될 수 있다.
통상적으로, LED 다이(16)가 플립 칩 다이이지만, 결합 와이어들을 가지는 것들을 포함한 다른 다이 타입들이 사용될 수 있다. 플래시 모듈(10)의 두께를 최소화하기 위해, LED 다이의 최하부 전극들은 금속 트레이스(14)의 금속 패드들(15 및 17)에 직접 결합된다. 또다른 실시예에서, 베어 LED 다이(16)가 더 강성인 최하부 금속 패드들을 가지는 서브마운트 상에 먼저 장착되어 핸들링을 간소화하고, 서브마운트로의 결합 이후 LED 다이(16)가 인광체 층(20)으로 컨포멀 코팅될 수 있도록 할 수 있다. 도 1은 인광체 층(20)이 LED의 최상부 표면만을 커버하는 대안적인 실시예를 도시한다.
베어 LED 다이(16)가 (도 2에 도시된 바와 같이) 기판(12) 상에 직접 장착되는 경우, 인광체 층(20)은 전체 기판(12) 및 LED 다이(16) 위에 퇴적되어 LED 다이(16)의 최상부 표면 및 측면 표면을 코팅할 수 있다. 인광체 층(20)은 실리콘 바인더에 주입되는, YAG 인광체 입자들 또는 레드 및 그린 인광체 입자들과 같은 인광체 입자들일 수 있다. 인광체 층(20)은 또한 기판(12)의 표면에 반사기(22)를 부착하기 위한 접착층으로서의 역할을 할 수 있다. 대안적으로, 별도의 접착제가 사용되어 반사기(22)를 부착할 수 있다.
도 1에서의 컴포넌트들의 다양한 상세항목들이 도 2-8에 관련하여 기술된다.
도 2는 컨포멀 인광체 층(20)을 가지는 LED 다이(16)의 단면 압축도이다. 플립 칩 다이가 예들에서 도시되지만, 본 발명은, 수직 LED 다이들, 측방 LED 다이들 등을 포함하는, 임의의 타입의 LED 다이에 적용가능하다.
LED 다이(16)는 (도 1의 금속 트레이스(14)의 일부분으로서 정의된) 금속 패드(15)에 결합된 최하부 애노드 전극(23)을 포함하고, 금속 패드(17)에 결합된 최하부 캐소드 전극(25)을 포함한다. 패드들(15 및 17)은 비아들(30 및 31)을 통해 연관된 최하부 패드들(32 및 34)에 전기적으로 접속되며, 이는 플래시 모듈(10)을 카메라의 인쇄 회로 보드에 땜납하기 위해 사용될 수 있다. 열 패드(36)는 기판(12)의 최하부 표면 상에 형성되며, 이는 인쇄 회로 보드 내의 히트 싱크에 땜납될 수 있다.
LED 다이(16) 반도체 층들은 상대적으로 두꺼운 사파이어 기판(40) 상에서 성장되며, 이는 1mm 두께일 수 있다. 이것은, 제조자가 통상적으로 비용을 줄이고 최상부 방출을 최대화하기 위해 실용적인 가장 얇은 성장 기판을 사용하기 때문에, 통상적인 성장 기판보다 더 두껍다. 빈번하게, 종래 기술에서, 성장 기판은 완벽하게 제거된다. 사파이어 기판(40)은 LED 반도체 층들을 기계적으로 지지하기 위해 요구되는 것보다 훨씬 더 두껍다. 성장 기판에 대한 다른 물질이 대신 사용될 수 있다. 성장 기판(40)의 최상부 표면 및 성장 표면은 광 추출을 증가시키기 위해 거칠어질 수 있다.
LED 다이(16)의 통상적인 폭은 1 mm 정도이다.
N-타입 층들(42)은 활성층(44), 및 p-타입 층들(46)에 선행하여, 사파이어 기판(40) 위에 에피텍셜 방식으로 성장한다. 활성층(44) 및 p-타입 층들(46)의 일부분들이 에칭되어 캐소드 전극으로 이어지는(leading to) 비아(48)에 의해 n-타입 층들(42)에 대한 전기적 접촉을 획득한다.
활성층(44)은 피크 파장을 가지는 광을 생성한다. 예를 들어, 피크 파장은 블루 파장이고, 층들(42, 44 및 46)은 GaN-기반이다.
대안적으로, 성장 기판(40)이 제거되고, 접착제(예를 들어, 실리콘)에 의해 또는 다른 기법들에 의해 반도체 층들에 부착되는, 유리와 같은 투명 지지 기판에 의해 대체될 수 있다.
두꺼운 성장 기판(40)(또는 다른 투명 기판)을 사용함으로써, LED 다이(16)의 측면들을 빠져나오는 광은 바람직하게는 전체 광 방출의 약 50%가 되고, 전체 광의 50%는 LED 다이(16)의 최상부 표면으로부터 방출된다. 또다른 실시예에서, LED 다이(16)에 의해 방출되는 모든 광의 30% 이상이 측면들로부터 오며, 여기서 측광의 백분율은 기판(40)의 두께에 기초한다. 측광이 더 많을수록, 반사기(22)로부터의 반사광이 전체 빔에 더 많이 부가되고, 플래시 모듈이 더 얇아질 수 있다.
일 실시예에서, LED 반도체 층들의 두께는 100 마이크론 미만이고(0.1mm), 통상적으로는 20마이크론 미만이며, 기판(40) 두께는 0.2mm보다 더 크며 1mm까지이다.
블루 광의 일부분이 인광체 층(20)을 통해 누설되며, 블루 광과 인광체 광의 조합은 플래시를 위한 백색광을 생성한다. 인광체 층(20)이 균일한 두께를 가지기 때문에, 컬러 방출은 실질적으로 균일함 대 각도일 것이다.
반사기(22)(도 1)는 알루미늄 시트를 스탬핑함으로써 바람직하게 형성된다. 스탬프는 시트 내의 직사각형 개구(52)를 형성하고, 주변 알루미늄을 압축하여 곡면 측벽들(54)을 형성한다. 용어 "직사각형"은 본원에서 사용되는 바와 같이, 정사각형을 포함하고, 라운드형 코너들을 가지는 직사각형들을 포함한다. 개구(52)의 에지들은 LED 다이(16)/인광체의 측면들로부터 방출되는 광의 임의의 역반사를 제한하기 위한 나이프 에지들(50 마이크론 미만의 두께)이다. 통상적으로, 개구(52) 및 곡면 측벽들(54)은 4:3과 같은 카메라의 시야와 동일한 종횡비를 가지고, 따라서, 결과적인 빔은 4:3 종횡비와 유사할 것이다.
반사기(22)는 이후, 예컨대, 도금, 증착, 스퍼터링 등에 의해, 높은 반사성을 위해 은 층으로 코팅된다.
반사기(22)의 풋프린트는 플래시 모듈(10)의 사이즈를 최소화시키도록 대략 기판(12)의 풋프린트일 수 있다. 반사기(22)는 이후 인광체 층(20)(실리콘을 포함함)을 접착제로서 사용하여 기판(12)에 부착된다. 반사기(22)는 모듈(10)에 강성을 부가한다. 인광체 층(20)은 이후 경화된다.
미리 형성된 폴리카보네이트 렌즈(56)는 이후 예컨대, 실리콘에 의해, 반사기(22)의 최상부 표면에 부착된다. 실리콘은 이후 경화되어 플래시 모듈(10)을 완성시킨다. 통상적으로, 렌즈(56)는 반사기(22) 및 LED 다이(16)로부터의 일반적으로 직사각형 방출을 수용하기 위한 라운드형 에지들을 가지는 직사각형이다.
도 3의 모듈(10)의 단면도에 의해 도시된 바와 같이, 렌즈(56)는 평평한 최상부 표면 및 최하부 표면을 가진다. 최하부 표면의 일부분은 LED 다이(16)에 대향하는 볼록 표면(58)이다. 따라서, 볼록 표면은 모듈(10)의 두께를 더하지 않는다. 통상적으로, 도 1에 도시된 바와 같이, 볼록 표면(58)은 직사각형 또는 라운드형 코너들을 가지는 직사각형이다.
작은 측광을 생성하는 LED 다이들을 사용하는 종래 기술의 플래시 모듈들에서, 렌즈는 광을 적절하게 재지향시키기 위해 LED 다이의 최상부 표면으로부터 상대적으로 멀리 이격되어야 했다. 본 발명의 일 실시예에서, 광의 약 40-50%가 LED 다이(16)의 측면들로부터 방출되고, LED 다이(16)로부터 렌즈(56)까지의 유효 광학 거리는 LED 다이 측면으로부터 반사기 벽(54)까지의 일반적으로 수평 거리 더하기 반사기 벽(54)으로부터 렌즈(58)까지의 일반적으로 수직 거리의 합산이다. 따라서, 모듈(10)을 훨씬 더 얇게 만들기 위해, 반사기 벽들(54)은 LED 다이(16)로부터 더 멀리 이격되는 동시에, 측면들과 렌즈(58) 사이의 동일한 유효 광학 거리를 유지할 수 있다. 렌즈(56)는 직사각형 빔의 중심 부분에 걸친 광의 균일도를 개선시키도록 설계된다.
일 실시예에서, LED 다이(16)와 렌즈(58) 사이의 유효 광학 거리는 대략 렌즈(58)의 초점 거리이다.
건조한 공기(또는 다른 기체)가 렌즈(56)와 LED 다이(16) 사이의 갭을 채워서 렌즈(56)와 갭의 인터페이스에서의 굴절률들에서의 큰 차이를 획득하여 렌즈(56)에 의한 원하는 굴절을 달성한다.
도 3은 2개의 샘플 광선들(60A 및 60B)을 도시한다. LED 다이(16)의 최상부 중심 표면으로부터의 광선, 예컨대, 60A는 렌즈(56)에 의해 실질적으로 재지향되지 않는다. 볼록 표면(58)에 각을 이루어 충돌하는 반사 광선들, 예컨대, 광선(60B)은 중심 축을 향해 약간 재지향되어 4:3 종횡비의 적어도 중심 부분에 걸쳐 빔의 균일도를 개선한다. 빔의 형상은, 반사기(22)가 거의 모든 측광 및 LED 다이(16)의 최상부 표면으로부터의 일부 기울어진 광을 반사시키기 때문에, 반사기(22)의 형상에 의해 주로 정의된다.
도 3은 반사기(22)를 형성하기 위한 알루미늄 시트가 TVS 칩(18)에 대한 최하부 공동을 가지도록 스탬핑되는 것을 또한 도시한다.
인광체 층(20)(유전체)를 알루미늄 반사기(22)에 대한 접착제로서 사용함으로써, 금속 반사기(22)의 최하부는 금속 트레이스들(14)을 단락시키지 않으며, 접착제를 최적시키기 위한 별도의 단계가 존재하지 않는다. 또다른 실시예에서, 반사기(22)는 기판(12) 상에 장착되기 전에 그것의 최하부 표면 상에 얇은 유전체 층을 가지도록 형성된다.
도 4는 도 3의 모듈(10)의 위에서 내려다본 뷰이다.
도 5는, 또한 도 2에 도시된, 캐소드 및 애노드 최하부 패드들(32 및 34), 및 열 패드(36)를 도시하는 모듈(10)의 최하부 뷰이다.
도 6은 플래시 모듈(10)의 투시 이분도이다. LED 다이(16)의 측면들 위의 인광체 층(20)은 도시되지 않는다.
도 7은 도 1의 플래시 모듈(10)의 투시도이다.
도 8은 플렉스 기판(12)을 사용하고 다양한 디멘젼들을 밀리미터로 식별하는 플래시 모듈(10)의 실시예의 단면도이다. LED 다이(16)가 약 1.0 mm 폭이지만, 최적의 분리가 반사기(22)에서 반사될 때 렌즈(56)까지의 측광의 이동 경로에 기초하기 때문에, LED 다이(16)의 최상부 표면 위의 렌즈(56)의 높이는 단지 약 0.3mm이다.
플렉스 기판(12)은 모듈(10)의 두께에 0.05 mm만을 더한다. 인광체 층(20)은 0.05 mm 두께인 것으로 도시된다. 반사기(22)는 0.750 mm 두께인 것으로 도시되고, 렌즈(56)는 모듈(10)에 0.1 mm만을 더하는 것으로서 도시된다. 성장 기판(40)(도 2)는 약 0.25-0.5 mm 두께일 수 있다. 도 8의 플래시 모듈(10)의 전체 높이는 1mm 미만이다. 플렉스 회로를 사용하는, 발명의 모든 실현가능한 플래시 모듈들이 2 mm 미만의 두께를 가지도록 형성될 수 있다는 것이 참작된다.
LED 다이(16)의 최상부 표면 면적이 약 1 mm2이며, 0.5 mm 두께 기판(40)을 사용한, LED 다이의 4개 측면들의 결합된 면적은 약 2 mm2이다. 0.25 mm의 기판(40) 두께에 대해, 측면 면적은 최상부 표면 면적과 동일하다. 따라서, 상당한 측면 방출이 존재한다.
도 9는, 직사각형 플래시 모듈(10) 및 카메라 렌즈(68)를 예시하는, 스마트폰(66)의 후면도이다.
따라서, 본 발명은 플래시 모듈의 두께를 감소시키고, 빔에 걸친 컬러 균일도를 개선하고, 빔의 관련 부분에 걸친 실질적으로 균일한 강도를 가지는 일반적으로 직사각형 빔을 생성함으로써, 그리고 LED 다이쪽으로의 LED 광의 더 적은 역반사를 발생시킴으로써, 플래시의 효율성을 증가시킨다.
본 발명은 플래시광 모듈과 같은 카메라 플래시들 이외의 다른 응용예들에 대해 사용될 수 있다.
본 발명의 특정 실시예들이 도시되고 기술되었지만, 그것의 더 넓은 양태들에서 이 발명으로부터 벗어나지 않고 변경들 및 수정들이 이루어질 수 있다는 것이 본 기술분야의 통상의 기술자에게 명백할 것이며, 따라서, 첨부되는 청구항들은 이 발명의 진의 및 범위 내에 드는 것으로서 모든 이러한 변경들 및 수정들을 이들의 범위 내에 포함해야 한다.

Claims (15)
Hide Dependent

  1. 발광 디바이스로서,
    지지 구조체;
    상기 지지 구조체 상에 장착되는 발광 다이오드(light emitting diode)(LED) 다이 ― 상기 LED 다이는 최상부 표면 및 측면 표면들을 가지고, 상기 LED 다이는 LED 반도체 층들 및 투명 기판을 포함하고, 상기 기판은 상기 LED 다이가 상기 LED 다이의 최하부 표면 상에 애노드 전극 및 캐소드 전극을 갖도록 상기 LED 다이의 상기 최상부 표면을 포함하고, 상기 측면 표면들은 상기 LED 반도체 층들의 측면들과 상기 기판의 측면들의 조합을 포함하고, 상기 기판은 상기 LED 반도체 층들보다 더 두껍고, 상기 측면 표면들로부터 방출되는 광은 상기 LED에 의해 방출되는 모든 광의 적어도 30%임 ― ;
    상기 최상부 표면과 상기 측면 표면들을 커버하는 인광체 층(phosphor layer);
    상기 LED 다이를 둘러싸는 반사기 ― 상기 반사기는 상기 LED 다이를 둘러싸는 곡면들을 가지고, 상기 LED 다이의 반대쪽을 향하는 비-볼록 표면을 가지며, 상기 곡면들은 상기 LED 다이에 대한 직사각형인 개구로부터 확장하고, 상기 LED 다이의 측면 표면들로부터의 광을 반사시켜 직사각형인 빔을 형성함 ― ; 및
    상기 반사기의 벽들에 부착되는 직사각형인 렌즈 ― 상기 렌즈는 상기 LED 다이 쪽으로 확장하는 직사각형인 볼록 표면 및 상기 LED 다이의 반대쪽을 향하는 평평한 최상부 표면을 가지고, 상기 렌즈로부터 방출되는 광의 빔은 직사각형인 형상을 가짐 ―
    를 포함하는 발광 디바이스.
  2. 제1항에 있어서, 상기 디바이스는 카메라를 위한 플래시인 발광 디바이스.
  3. 제2항에 있어서, 상기 빔의 종횡비는 상기 카메라의 시야(field of view)의 종횡비와 동일한 발광 디바이스.
  4. 제1항에 있어서, 상기 지지 구조체는 플렉시블 회로인 발광 디바이스.
  5. 제1항에 있어서, 상기 반사기는 스탬핑된 금속 반사기를 포함하고, 상기 개구는 상기 LED 다이에 대향하는 나이프 에지(knife edge)를 가지는 발광 디바이스.
  6. 제1항에 있어서, 상기 렌즈는 초점 거리(focal length)를 가지고, 상기 LED 다이의 측면에 대해 법선으로 취해지는, 상기 LED 다이의 측면으로부터 상기 반사기까지의 거리와, 상기 반사기로부터 상기 렌즈까지의 거리의 합은 상기 초점 거리인 발광 디바이스.
  7. 제1항에 있어서, 상기 측면 표면들로부터의 광은 상기 LED 다이에 의해 방출되는 모든 광의 적어도 40%인 발광 디바이스.
  8. 제1항에 있어서, 상기 측면 표면들로부터의 광은 상기 LED 다이에 의해 방출되는 모든 광의 적어도 50%인 발광 디바이스.
  9. 제1항에 있어서, 상기 기판은 상기 LED 반도체 층들에 대한 성장 기판인 발광 디바이스.
  10. 제1항에 있어서, 상기 인광체 층은 상기 최상부 표면 및 측면 표면들을 컨포멀 코팅하며(conformally coat), 실질적으로 균일한 두께를 가지는 발광 디바이스.
  11. 제1항에 있어서, 상기 인광체 층은 바인더에 주입된 인광체 입자들을 포함하고, 상기 인광체 층은 상기 지지 구조체의 최상부 표면의 일부분을 커버하고, 상기 반사기의 최하부 표면은 접착제로서 작용하는 상기 바인더에 의해 상기 지지 구조체에 부착되는 발광 디바이스.
  12. 제1항에 있어서, 상기 반사기의 풋프린트는 상기 지지 구조체의 풋프린트와 실질적으로 동일한 발광 디바이스.
  13. 제1항에 있어서, 상기 디바이스의 전체 높이는 1mm 미만인 발광 디바이스.
  14. 제1항에 있어서, 상기 디바이스의 전체 높이는 2mm 미만인 발광 디바이스.
  15. 삭제