KR102272190B1 - Skin supporting agent f0r pretensioned spun high strength concrete piles - Google Patents

Skin supporting agent f0r pretensioned spun high strength concrete piles Download PDF

Info

Publication number
KR102272190B1
KR102272190B1 KR1020190161549A KR20190161549A KR102272190B1 KR 102272190 B1 KR102272190 B1 KR 102272190B1 KR 1020190161549 A KR1020190161549 A KR 1020190161549A KR 20190161549 A KR20190161549 A KR 20190161549A KR 102272190 B1 KR102272190 B1 KR 102272190B1
Authority
KR
South Korea
Prior art keywords
weight
parts
desulfurization
fixing material
main surface
Prior art date
Application number
KR1020190161549A
Other languages
Korean (ko)
Other versions
KR20210071408A (en
Inventor
서세관
안양진
임양현
문경주
Original Assignee
주식회사 지안산업
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 지안산업 filed Critical 주식회사 지안산업
Priority to KR1020190161549A priority Critical patent/KR102272190B1/en
Publication of KR20210071408A publication Critical patent/KR20210071408A/en
Application granted granted Critical
Publication of KR102272190B1 publication Critical patent/KR102272190B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • C09K17/10Cements, e.g. Portland cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/061Ashes from fluidised bed furnaces
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/062Purification products of smoke, fume or exhaust-gases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/58Prestressed concrete piles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0068Ingredients with a function or property not provided for elsewhere in C04B2103/00
    • C04B2103/0082Segregation-preventing agents; Sedimentation-preventing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/34Flow improvers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00051Mortar or concrete mixtures with an unusual low cement content, e.g. for foundations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2300/00Materials
    • E02D2300/0004Synthetics
    • E02D2300/0018Cement used as binder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

본 발명은 PHC 말뚝 시공용 주면 고정재에 관한 것으로서, 보다 상세하게는 잠재수경성 물질인 고로슬래그 미분말을 제철소에서 탈황 공정 중에 부산물로 배출되는 탈황 분진과, 순환 유동층 보일러에서 부산물로 배출되는 바텀애시를 통해 활성화시켜 강도를 발현하여 기존 PHC 말뚝 시공용 주면 고정재로 사용되는 1종 시멘트를 대체할 수 있는 PHC 말뚝 시공용 주면 고정재에 관한 것이다.
본 발명에 의한 PHC 말뚝용 주면 고정재는 1종 시멘트 100중량부에 대하여, 고로슬래그 미분말 100∼2,000중량부와, Na2O 함량이 10∼50중량%이고 SO3 함량이 10∼50중량%인 제철소 탈황공정에서 부산물로 배출되는 중조 탈황 분진 1∼500중량부와, CaO 함량이 40∼70중량%이고 SO3 함량이 2∼20중량%인 제철소 탈황공정에서 부산물로 배출되는 석회 탈황 분진 1∼500중량부와, 순환 유동층 보일러 바텀애시 1∼500중량와, 고형연료 플라이애시 1~500중량부를 포함한다.
The present invention relates to a main surface fixing material for PHC pile construction, and more particularly, through the desulfurization dust discharged as a by-product during the desulfurization process in a steel mill of fine powder of blast furnace slag, which is a latent hydraulic material, and bottom ash discharged as a by-product from a circulating fluidized bed boiler. It relates to a main surface fixing material for PHC pile construction that can be activated to express strength and can replace type 1 cement used as a main surface fixing material for PHC pile construction.
The main fixing material for PHC piles according to the present invention contains 100 to 2,000 parts by weight of fine blast furnace slag powder, 10 to 50% by weight of Na 2 O, and 10 to 50% by weight of SO 3 based on 100 parts by weight of type 1 cement. 1~500 parts by weight of sodium bicarbonate desulfurization dust discharged as a by-product from the desulfurization process of a steelworks, and 1~500 parts by weight of lime desulfurization dust discharged as a by-product from the desulfurization process of a steelworks having a CaO content of 40 to 70% by weight and an SO 3 content of 2 to 20% by weight 500 parts by weight, and 1 to 500 parts by weight of circulating fluidized bed boiler bottom ash, and 1 to 500 parts by weight of solid fuel fly ash.

Description

PHC 말뚝 시공용 주면 고정재{SKIN SUPPORTING AGENT F0R PRETENSIONED SPUN HIGH STRENGTH CONCRETE PILES}Main surface fixing material for PHC pile construction {SKIN SUPPORTING AGENT F0R PRETENSIONED SPUN HIGH STRENGTH CONCRETE PILES}

본 발명은 PHC 말뚝 시공용 주면 고정재에 관한 것으로서, 보다 상세하게는 잠재수경성 물질인 고로슬래그 미분말을 제철소에서 탈황 공정 중에 부산물로 배출되는 탈황 분진과, 순환 유동층 보일러에서 부산물로 배출되는 바텀애시를 통해 활성화시켜 강도를 발현하여 기존 PHC 말뚝 시공용 주면 고정재로 사용되는 1종 시멘트를 대체할 수 있는 PHC 말뚝 시공용 주면 고정재에 관한 것이다. The present invention relates to a main surface fixing material for PHC pile construction, and more particularly, through the desulfurization dust discharged as a by-product during the desulfurization process in a steel mill of fine powder of blast furnace slag, which is a latent hydraulic material, and bottom ash discharged as a by-product from a circulating fluidized bed boiler. It relates to a main surface fixing material for PHC pile construction that can be activated to express strength and can replace type 1 cement used as a main surface fixing material for PHC pile construction.

최근의 건설 현장에서 파일 기초공사시의 소음과 진동 규제 강화 추세에 따라 매입 말뚝 공법의 파일공사가 증가하고 있다. In recent construction sites, pile construction using the buried pile method is increasing according to the trend of strengthening noise and vibration regulations during pile foundation construction.

매입 말뚝 시공은 지반에 오거를 이용해 구멍을 파고 기성 제품인 PHC 말뚝또는 선단 확장형 말뚝을 심는 방법으로서, 지반과 말뚝의 공간에 1종 시멘트 또는 1종 시멘트에 벤토나이트를 첨가한 분말에 물을 혼합하여 제조된 고정액을 충진하여 말뚝의 마찰력 및 지지력을 강화시키는 방법으로 수행된다.Buried pile construction is a method of digging a hole in the ground using an auger and planting a ready-made PHC pile or a tip-extended pile. It is manufactured by mixing water with type 1 cement or powder with bentonite added to type 1 cement in the space between the ground and piles. It is performed by filling the fixed solution to strengthen the friction and bearing capacity of the pile.

천공 구멍과 말뚝 사이의 고정재는 하중 재하 초기 단계에서 파일의 자립을 위한 고정재 및 말뚝 주면마찰력의 기능을 발휘하는 것이 기본 역할이다. The basic role of the fixing material between the drilling hole and the pile is to exert the function of the fixing material and the frictional force of the pile surface for the independence of the pile in the initial stage of loading.

하지만, 1종 시멘트는 주원료인 석회석을 채광하여 1,450℃의 고온에서 소성하여 제조되는 관계로 석회석의 탈탄산 과정에서 온실가스의 주원인인 다량의 CO2 가스가 발생하여 지구온난화의 원인이 된다. However, since type 1 cement is manufactured by mining limestone, the main raw material, and calcining it at a high temperature of 1,450 ° C., a large amount of CO 2 gas, the main source of greenhouse gas, is generated during the decarboxylation process of limestone, which causes global warming.

또한 시멘트는 pH가 13 이상에 달할 정도로 강한 알칼리이기 때문에 토양에 사용하였을 경우 바람직하지 않다. In addition, since cement is a strong alkali with a pH of 13 or higher, it is undesirable when used in soil.

또한, 벤토나이트는 국내에 천연자원으로 부존하지 않는 광물로서 전량 수입에 의존하고 있는 고가의 재료이며 염분과 접촉하면 그 팽윤도가 현저히 떨어져 차수성이 크게 저하되는 문제점이 있다.In addition, bentonite is an expensive material dependent on imports as a mineral that does not exist as a natural resource in Korea, and when it comes into contact with salt, its swelling degree is remarkably reduced, and there is a problem in that water resistance is greatly reduced.

최근에는 이러한 기존의 시멘트의 성능을 개선시키기 위해 여러 기술들이 제시되고 있다. 이러한 기술은 1종 시멘트를 주원료로 사용하고 일부를 고로슬래그 및 미분탄 보일러 플라이애시로 치환하고 다양한 고가의 혼화제 및 혼화재 원료를 추가하는 기술이다. Recently, several technologies have been proposed to improve the performance of such conventional cements. This technology uses type 1 cement as the main raw material, replaces some with blast furnace slag and pulverized coal boiler fly ash, and adds various expensive admixtures and admixture raw materials.

그러므로 제조공정이 매우 복잡하고 생산에 많은 비용이 수반되며, 여러 가지 원료를 동시에 사용해야하기 때문에 원료의 물리 화학적 품질특성 변동에 따른 배합의 선정이 어렵다. Therefore, the manufacturing process is very complicated, the production cost is high, and it is difficult to select a formulation according to the physical and chemical quality characteristics of the raw materials because it is necessary to use several raw materials at the same time.

한편, LH 전문시방서에서는 「매입말뚝을 박은 후, 생기는 말뚝 주변 공간은 말뚝의 수평저항력과 주면마찰력을 확보하기 위하여 물-결합재비(W/B)가 표준일축압축강도 0.49MPa 이상의 주면 고정액으로 충전하여야 한다. 만약 이 액이 지반속으로 스며들어 주면 고정액의 상면이 침강하면 지속적으로 보충하여야 한다.」라고 명시되어 있다. 즉, 주면고정액의 경우 매우 낮은 일축압축강도를 요구하기 때문에 건설현장에서는 물-결합재비(W/B)를 83% 이상으로 하여도 표준일축강도 0.49MPa 이상은 충분히 확보할 수 있으나 높은 물-결합재비를 갖는 빈배합비의 주면 고정액은 주입하더라도 말뚝 주변지반으로 빠져나가 충진이 되지 않아 지속적으로 주면 고정액을 보충해 주어야 하는 문제점이 발생하게 된다. 이에 따라 투수성이 큰 지반이나 지하수가 많은 현장에서는 물-결합재비(W/B)를 83% 이하의 부배합으로 변경하여 사용하고 있어 주면고정액에 요구되는 일축압축강도에 비하여 과도한 시멘트가 지반에 투입되는 현상을 초래한다. 또한, 시멘트는 지반의 강알칼리 및 육가 크롬에 의한 환경오염을 유발할 수 있고 체적 수축이 발생하여 매입 말뚝의 주면 마찰력이 저하되는 문제점을 내포하고 있다. On the other hand, in the LH-specialized specification, "The space around the pile that is created after the embedded pile is driven is filled with a fixing solution for the main face with a water-binding material ratio (W/B) of 0.49 MPa or more standard uniaxial compressive strength to secure the horizontal resistance and friction force of the pile. shall. If this solution permeates into the ground, and the upper surface of the fixing solution settles, it must be continuously replenished.” In other words, since the main surface fixing solution requires very low uniaxial compressive strength, even if the water-binding material ratio (W/B) is 83% or higher at the construction site, the standard uniaxial strength of 0.49 MPa or more can be sufficiently secured, but high water-bonding Even if the main surface of the empty mixing ratio having a material ratio is injected, the fixing liquid escapes to the ground around the pile and is not filled, resulting in a problem of continuously supplying the fixed liquid. Accordingly, in the ground with high permeability or at sites with a lot of groundwater, the water-binding material ratio (W/B) is changed to a sub-mix of 83% or less, and excessive cement is injected into the ground compared to the uniaxial compressive strength required for the main surface fixing solution. causes the phenomenon to be In addition, cement may cause environmental pollution due to strong alkali and hexavalent chromium in the ground, and has a problem in that volume shrinkage occurs and frictional force on the main surface of the embedded pile is lowered.

최근에는 이러한 기존의 시멘트를 주입재로 사용하는 문제점을 개선하기 위한 몇 가지 기술이 제시되고 있다. Recently, several techniques have been proposed to improve the problem of using the conventional cement as an injection material.

예를 들면, 대한민국 등록특허 제10-1377552호에서는 산화칼슘 함량이 30∼60%인 석탄재 100중량부에 대하여 고로슬래그 미분말 100∼300중량부, 페트롤 코크스 탈황석고 20∼100중량부 및 황산염자극제 20∼50중량부의 구성비를 가진 주입재에 팽창재를 석탄재 100중량부에 대하여 40∼100중량부를 더 포함하는 것을 특징으로 하는 시멘트를 사용하지 않은 매입말뚝 시공용 밀크 주입재 기술을 제시하였다. For example, in Korean Patent Registration No. 10-1377552, based on 100 parts by weight of coal ash having a calcium oxide content of 30 to 60%, 100 to 300 parts by weight of fine powder of blast furnace slag, 20 to 100 parts by weight of petroleum coke desulfurized gypsum, and 20 parts by weight of a sulfate stimulant A milk injection material technology for embedded pile construction without cement was presented, characterized in that it further comprises 40 to 100 parts by weight based on 100 parts by weight of coal ash in the injection material having a composition ratio of -50 parts by weight.

또한, 대한민국 등록특허 제10-1402877호에서는 고로슬래그 미분말 55∼65중량%와 F급 플라이애시 10∼20중량%와 산화칼슘 함량이 20% 이상인 C급 플라이애시 10∼20 중량%와 탈황석고 2∼5중량% 및 제지슬러지 소각재 10∼20중량%를 혼합한 고로 슬래그를 이용한 친환경 에코 채움재 제조 기술을 제시하였다. In addition, in Korean Patent Registration No. 10-1402877, 55 to 65% by weight of fine powder of blast furnace slag, 10 to 20% by weight of F-class fly ash, 10-20% by weight of C-class fly ash having a calcium oxide content of 20% or more, and desulfurized gypsum 2 An eco-friendly eco-filling material manufacturing technology using blast furnace slag mixed with ∼5 wt% and paper sludge incineration ash with 10 to 20 wt% was presented.

또한, 대한민국 특허 출원 제2013-147586호에서는 고로슬래그 미분말 100중량부에 대하여 페트로 코우크스 탈황석고 5∼200중량부와 배합수 50∼300중량부를 포함하되, 팽창재가 고로슬래그 미분말 100중량부에 대하여 5∼100중량부 더 포함되는 것을 특징으로 하는 기술을 제시하였다.In addition, in Korean Patent Application No. 2013-147586, 5 to 200 parts by weight of petrocoke desulfurized gypsum and 50 to 300 parts by weight of mixing water are included with respect to 100 parts by weight of fine blast furnace slag powder, but the expansion material is based on 100 parts by weight of fine blast furnace slag powder. 5 to 100 parts by weight is presented, characterized in that it is further included.

이러한 기술들은 고로슬래그 미분말을 노내 탈황 공정의 부산물로 발생되는 석고에 의한 알칼리 및 황산염 자극으로 활성화시키는 알칼리 활성화 슬래그의 이론을 바탕으로 하고, 순환 유동층 고칼슘 플라이애시를 팽창재로 활용하는 기술내용이다. 즉, 상기 특허들은 알칼리 활성화 슬래그의 강도발현과 순환 유동층 보일러 고칼슘 플라이애시의 팽창성을 활용하여 말뚝 주면을 경화시키는 기술이라 할 수 있다. These technologies are based on the theory of alkali-activated slag, which activates fine blast furnace slag powder by stimulation of alkali and sulfate by gypsum, which is generated as a by-product of the desulfurization process in the furnace, and uses circulating fluidized bed high-calcium fly ash as an expanding material. That is, the above patents can be said to be a technique for hardening the main surface of piles by utilizing the strength expression of alkali-activated slag and the expandability of high-calcium fly ash in a circulating fluidized bed boiler.

그러나 상기의 기술들은 탈황석고 및 고칼슘 플라이애시가 많은 수분을 급격히 흡수하여 유동성이 크게 저하되어 이송관이 막히는 문제가 종종 발생되고 초기 강도 발현이 늦어 현재 상업화되지 못하고 있는 형편이다. 본 발명에서는 유동성이 확보되고 초기 강도 발현이 가능한 제철 탈황 공정 분진, 순환 유동층 보일러 바텀애시 및 고형연료 플라이애시를 고로슬래그 미분말의 주요 자극제로 이용하는 차별성이 있다.However, the above techniques are in a situation where desulfurization gypsum and high-calcium fly ash rapidly absorb a lot of moisture, and the fluidity is greatly reduced, so that the transport pipe is often clogged, and the initial strength expression is delayed, which is not currently commercialized. In the present invention, there is a difference in using iron desulfurization process dust, circulating fluidized bed boiler bottom ash, and solid fuel fly ash, which can secure fluidity and exhibit initial strength, as major stimulants for fine powder of blast furnace slag.

등록특허 제10-1377552호Registered Patent No. 10-1377552 등록특허 제10-1402877호Registered Patent No. 10-1402877 특허출원 제2013-147586호Patent Application No. 2013-147586

본 발명은 상술한 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 잠재수경성 물질인 고로슬래그 미분말을 제철소에서 탈황 공정 중에 부산물로 배출되는 탈황 분진과, 순환 유동층 보일러에서 부산물로 배출되는 바텀애시를 통해 활성화시켜 강도를 발현하여 기존 PHC 말뚝 시공용 주면 고정재로 사용되는 1종 시멘트를 대체할 수 있는 PHC 말뚝 시공용 주면 고정재를 제공함에 있다.The present invention has been devised to solve the above problems, and an object of the present invention is to desulfurize fine powder of blast furnace slag, which is a latent hydraulic material, as a by-product during a desulfurization process in a steel mill, and bottom ash discharged as a by-product from a circulating fluidized bed boiler. It is to provide a main surface fixing material for PHC pile construction that can be activated to express strength through the PHC pile construction and can replace Type 1 cement used as a main surface fixing material for PHC pile construction.

본 발명의 다른 목적은 고형연료 플라이애시의 점성 증가 및 체적 팽창작용을 이용하여 천공 구멍과 매입말뚝 사이에 존재할 수 있는 지하수에 의한 주면고정액의 유실을 방지할 수 있는 PHC 말뚝 시공용 주면 고정재를 제공함에 있다.Another object of the present invention is to provide a main surface fixing material for PHC pile construction that can prevent the loss of the main surface fixing solution by groundwater that may exist between the drilling hole and the buried pile by using the increase in viscosity and volume expansion action of solid fuel fly ash. is in

본 발명의 다른 목적은 기존 PHC 말뚝 시공용 주면 고정재로 사용되는 1종 시멘트 대비 큰 폭의 원가절감이 가능하며 말뚝 주변 지반 속으로 고정액의 유실 방지를 최소화할 수 있는 PHC 말뚝 시공용 주면 고정재를 제공함에 있다.Another object of the present invention is to provide a main surface fixing material for PHC pile construction that can reduce the cost significantly compared to type 1 cement used as a main surface fixing material for PHC pile construction and minimize the loss of fixing liquid into the ground around the pile. is in

위와 같은 기술적 과제를 해결하기 위하여 본 발명에 의한 PHC 말뚝용 주면 고정재는 1종 시멘트 100중량부에 대하여, 고로슬래그 미분말 100∼2,000중량부와, Na2O 함량이 10∼50중량%이고 SO3 함량이 10∼50중량%인 제철소 탈황공정에서 부산물로 배출되는 중조 탈황 분진 1∼500중량부와, CaO 함량이 40∼70중량%이고 SO3 함량이 2∼20중량%인 제철소 탈황공정에서 부산물로 배출되는 석회 탈황 분진 1∼500중량부와, 순환 유동층 보일러 바텀애시 1∼500중량와, 고형연료 플라이애시 1~500중량부를 포함한다. In order to solve the above technical problems, the main fixing material for PHC piles according to the present invention contains 100 to 2,000 parts by weight of fine blast furnace slag powder, 10 to 50% by weight of Na 2 O, and SO 3 based on 100 parts by weight of type 1 cement. 1 to 500 parts by weight of sodium bicarbonate desulfurization dust discharged as a by-product from the desulfurization process of a steelworks having a content of 10 to 50% by weight, and by-products from the desulfurization process of a steelworks having a CaO content of 40 to 70% by weight and an SO 3 content of 2 to 20% by weight 1 to 500 parts by weight of lime desulfurization dust discharged from the furnace, 1 to 500 parts by weight of circulating fluidized bed boiler bottom ash, and 1 to 500 parts by weight of solid fuel fly ash.

또한 상기 순환 유동층 보일러 바텀애시는 연료와 석회석을 혼합 연소하여 노내 탈황을 하는 과정에서 배출되는 것이 바람직하다. In addition, it is preferable that the bottom ash of the circulating fluidized bed boiler is discharged during desulfurization in a furnace by mixing and burning fuel and limestone.

또한 상기 고형연료 플라이애시는 일반 고형연료(SRF, Solid Refuse Fuel), 바이오고형연료(BIO-SRF, Biomass-Solid Refuse Fuel)를 연소하는 발전시설에서 배출되는 것이 바람직하다. In addition, the solid fuel fly ash is preferably discharged from a power plant that burns general solid fuel (SRF, Solid Refuse Fuel) and biosolid fuel (BIO-SRF, Biomass-Solid Refuse Fuel).

또한 천연 무수석고, 페트로 코크스 탈황석고, 인산석고, 불산 석고 중 어느 하나 또는 둘 이상의 혼합물을 더 포함하는 것이 바람직하다. In addition, it is preferable to further include any one or a mixture of two or more of natural anhydrite, petrocoke desulfurization gypsum, phosphate gypsum, and hydrofluoric acid gypsum.

또한 유동성을 증진시키기 위하여 상기 1종 시멘트 100중량부에 대하여 액상 및 분말형 유동화제 0.01∼5중량부를 더 포함하는 것이 바람직하다. In addition, in order to improve fluidity, it is preferable to further include 0.01 to 5 parts by weight of liquid and powder fluidizing agents based on 100 parts by weight of the first-class cement.

또한 수중 분리를 방지하기 위하여 상기 1종 시멘트 100중량부에 대하여 수중 불분리제 0.01∼5중량부를 더 포함하는 것이 바람직하다. In addition, in order to prevent separation in water, it is preferable to further include 0.01 to 5 parts by weight of an in-water non-separating agent based on 100 parts by weight of the first-class cement.

본 발명에 따르면, 잠재수경성 물질인 고로슬래그 미분말을 제철소에서 탈황 공정 중에 부산물로 배출되는 탈황 분진과, 순환 유동층 보일러에서 부산물로 배출되는 바텀애시를 통해 활성화시켜 강도를 발현하여 기존 PHC 말뚝 시공용 주면 고정재로 사용되는 1종 시멘트를 대체할 수 있는 효과가 있다. According to the present invention, strength is expressed by activating fine powder of blast furnace slag, which is a latent hydraulic material, through desulfurization dust discharged as a by-product during the desulfurization process in a steel mill and bottom ash discharged as a by-product from a circulating fluidized bed boiler to express strength. It has the effect of replacing type 1 cement used as a fixing material.

또한, 고형연료 플라이애시의 점성 증가 및 체적 팽창작용을 이용하여 천공 구멍과 매입말뚝 사이에 존재할 수 있는 지하수에 의한 주면고정액의 유실을 방지할 수 있는 효과도 있다. In addition, there is an effect of preventing the loss of the main surface fixing solution by groundwater that may exist between the drilling hole and the buried pile by using the increase in viscosity and the volume expansion action of the solid fuel fly ash.

따라서 기존 PHC 말뚝 시공용 주면 고정재로 사용되는 1종 시멘트 대비 큰 폭의 원가절감이 가능하며 말뚝 주변 지반 속으로 고정액의 유실 방지를 최소화할 수 있다.Therefore, it is possible to reduce the cost significantly compared to the type 1 cement used as a main fixing material for PHC pile construction, and it is possible to minimize the loss of the fixing solution into the ground around the pile.

이하, 본 발명에 의한 PHC 말뚝 시공용 주면 고정재의 구성성분 및 작용을 설명한다. Hereinafter, components and actions of the main fixing material for PHC pile construction according to the present invention will be described.

본 발명에 의한 PHC 말뚝 시공용 주면 고정재는 1종 시멘트 100중량부에 대하여, 고로슬래그 미분말 100∼2,000중량부, Na2O 함량이 10∼50중량%이고 SO3 함량이 10∼50중량%인 제철소 탈황공정에서 부산물로 배출되는 중조 탈황 분진 1∼500중량부와, CaO 함량이 40∼70중량%이고 SO3 함량이 2∼20중량%인 제철소 탈황공정에서 부산물로 배출되는 석회 탈황 분진 1∼500중량부, 순환 유동층 보일러 바텀애시 5∼500중량부, 재료분리를 억제하기 위하여 점성을 증가시키는 고형연료 플라이애시 1~500중량부를 포함한다. The main fixing material for PHC pile construction according to the present invention is 100 to 2,000 parts by weight of fine blast furnace slag powder, 10 to 50% by weight of Na 2 O, and 10 to 50% by weight of SO 3 based on 100 parts by weight of type 1 cement. 1~500 parts by weight of sodium bicarbonate desulfurization dust discharged as a by-product from the desulfurization process of a steelworks, and 1~500 parts by weight of lime desulfurization dust discharged as a by-product from the desulfurization process of a steelworks having a CaO content of 40 to 70% by weight and an SO 3 content of 2 to 20% by weight 500 parts by weight, 5 to 500 parts by weight of circulating fluidized bed boiler bottom ash, and 1 to 500 parts by weight of solid fuel fly ash to increase the viscosity to suppress material separation.

상기 1종 시멘트 및 고로슬래그 미분말은 일반적으로 시중에서 유통되는 KS 제품이면 사용이 가능하다. The fine powder of type 1 cement and blast furnace slag can be used as long as it is a KS product that is generally distributed in the market.

상기 고로슬래그 미분말은 잠재수경성 물질로서, 1종 시멘트 100중량부에 대하여 100∼2,000중량부를 사용하는 바람직하다. 100중량부 미만일 경우 본 발명의 목적인 1종 시멘트의 사용량 절감 효과가 없으며 2,000중량부 초과일 경우 초기 강도 발현이 어렵다. The fine powder of blast furnace slag is a latent hydraulic material, and it is preferable to use 100 to 2,000 parts by weight based on 100 parts by weight of type 1 cement. When it is less than 100 parts by weight, there is no effect of reducing the amount of cement used for the purpose of the present invention, and when it is more than 2,000 parts by weight, it is difficult to develop initial strength.

상기 중조 탈황 분진은 제철소에서 철광석을 고로에 투입하기 전에 소결광을 제조하게 되는데, 이때 발생하는 가스 내 황산화물(SOx)을 포집하기 위하여 분말도가 높은 고분말의 중조(NaHCO3)를 투입하게 된다. 중조는 탈황 반응을 거쳐 최종적으로 주성분이 황산나트름(Na2SO4)이고 염소이온을 일부 함유하는 분진 형태로 배출된다. The sodium bicarbonate desulfurization dust is produced before the iron ore is put into the blast furnace at the ironworks to produce sintered ore. In order to collect sulfur oxides (SOx) in the gas generated at this time, sodium bicarbonate of high powder (NaHCO 3 ) is added. . Sodium sodium bicarbonate is finally discharged in the form of dust containing sodium sulfate (Na 2 SO 4 ) and chlorine ions in part through a desulfurization reaction.

반응식 1(중조 탈황 반응)Scheme 1 (bicarbonate desulfurization reaction)

Figure 112019126317655-pat00001
Figure 112019126317655-pat00001

상기 중조 탈황 분진은 Fe, Ca 등 유용성분 부족으로 제철소내 공정 재활용이 불가능하며, 매립처리 외에는 적절한 처리방안이 없는 상황이다. 하지만 매립처리 역시 2018년도부터 시행된 자원순환기본법의 영향으로 처분부담금이 발생하고, 위탁매립처리비 또한 급격히 동반상승하고 있는 실정이다. 따라서 중조 탈황 분진의 매립량 저감을 위해 대체처리 방안이 필요한 상황이다. 하지만 중조 탈황 분진의 경우 물과 반응시 Na+ 및 SO42-로 용해되어 높은 pH를 유지시킴과 더불어 알칼리 및 황산염 복합 자극을 유도하므로 잠재수경성 물질인 고로슬래그 미분말을 자극하여 수화반응을 초기에 급격히 촉진할 수 있다. 또한 물에 쉽게 용해되는 성질이 있고 페트로 코크스 탈황석고와 같이 free CaO 성분이 없어 고정액의 유동성이 개선되는 효과가 있다. The sodium bicarbonate desulfurization dust cannot be recycled in the process due to a lack of useful components such as Fe and Ca, and there is no suitable treatment method other than landfill treatment. However, landfill disposal also incurs disposal charges due to the impact of the Framework Act on Resource Circulation, which has been in effect since 2018, and the cost of entrusted landfill disposal is also rising rapidly. Therefore, an alternative treatment method is needed to reduce the amount of sodium bicarbonate desulfurization dust in landfill. However, in the case of sodium bicarbonate desulfurization dust, when reacting with water, it dissolves into Na + and SO4 2- to maintain a high pH and induces complex stimulation of alkali and sulfate. can promote In addition, it has the property of being easily soluble in water and has the effect of improving the fluidity of the fixative because it does not contain free CaO components like petrocoke desulfurization gypsum.

또한 분진 형태로 발생하기 때문에 파(분)쇄와 같은 별도 가공 없이 바로 사용 가능한 장점이 있다. 따라서 제철 공정 중에 부산물로 발생하는 중조 탈황 분진은 고로 슬래그의 반응 자극제로서 활용 할 수 있는 가능성이 있다. 또한 염소가 일부 함유되어 있는 물질이기 때문에 염소이온(Cl-)은 고로슬래그 미분말 및 시멘트의 수화반응을 촉진하는 특성을 가지고 있어 동절기에 초기강도를 요구하는 현장에서 일반적으로 사용되는 염화칼슘 및 염화나트륨 등을 대체할 수 있다. Also, since it is generated in the form of dust, it has the advantage that it can be used immediately without additional processing such as crushing (pulverization). Therefore, there is a possibility that sodium bicarbonate desulfurization dust generated as a by-product during the ironmaking process can be used as a reaction stimulant of blast furnace slag. In addition, since it contains some chlorine, chlorine ions (Cl - ) have the property of promoting the hydration reaction of fine blast furnace slag powder and cement. can be replaced

상기 중조 탈황 분진은 1종 시멘트 대비 1∼500중량부를 사용하는 것이 바람직하다. 1중량 미만일 경우 급결 및 유동성 개선 효과가 미비하며 500중량부 초과일 경우 상대적으로 강도가 크게 저하되고 백화현상이 발생할 수 있다.The sodium bicarbonate desulfurization dust is preferably used in an amount of 1 to 500 parts by weight compared to type 1 cement. When it is less than 1 weight, the effect of rapid setting and fluidity improvement is insignificant, and when it exceeds 500 parts by weight, the strength is relatively greatly reduced and whitening may occur.

상기 석회 탈황 분진은 일관제철소 등의 고로에서 생산된 용선 중에 함유된 황(S)을 제거하기 위하여, 상기 용선 상부에 석회 등의 탈황 부원료를 투입한 후 교반함으로써, 황과 상기 탈황 부원료의 반응을 도모하여 용선 중에 함유된 황을 제거하고 있다. 이러한 탈황처리 과정에서 분진이 발생되는데, 이를 석회 탈황 분진이라한다. In the lime desulfurization dust, in order to remove sulfur (S) contained in the molten iron produced in a blast furnace such as an integrated steel mill, a desulfurization auxiliary material such as lime is added to the upper part of the molten iron and stirred, thereby reacting sulfur with the desulfurization auxiliary material In this way, sulfur contained in molten iron is removed. In this desulfurization process, dust is generated, which is called lime desulfurization dust.

상기 석회 탈황 분진은 주성분이 CaO, Ca(OH)2 및 CaSO4 성분으로 구성되어 있으며 pH가 11.5 이상의 강알칼리 물질이며 고로슬래그와 같이 활용될 경우 알칼리 및 황산염 자극제로서 역할을 수행하여 고로슬래그의 잠재수경성을 발현시킬 수 있는 성질을 가지고 있다. 상기 석회 탈황 분진은 1종 시멘트 100중량부에 대하여 1∼500중량부 혼합되는 것이 바람직한데, 1중량부 미만일 경우 그 효과가 발휘되지 못하고 500중량부 초과일 경우 상대적으로 1종 시멘트의 함량이 적어져 초기 강도 발현이 어렵게 된다.The lime desulfurization dust is mainly composed of CaO, Ca(OH) 2 and CaSO 4 components, and has a pH of 11.5 or higher and is a strong alkali material. When used with blast furnace slag, it acts as an alkali and sulfate stimulant, resulting in potential hydraulic properties of blast furnace slag. has the ability to express Preferably, the lime desulfurization dust is mixed in an amount of 1 to 500 parts by weight based on 100 parts by weight of the first-class cement. When the amount is less than 1 part by weight, the effect is not exhibited. When it exceeds 500 parts by weight, the content of the first-class cement is relatively small This makes it difficult to develop initial strength.

상기 순환 유동층 보일러 바텀애시는 순환 유동층 보일러에서 석회석과 혼소하여 로내 탈황하는 방식의 보일러 하부에서 발생한다. 순환 유동층 보일러의 탈황공정은 연소실 내에 석회석을 주입하여 연료와 함께 연소시켜 연소가스 중의 인산화황과 석회석이 로내에서 반응하여 연소가스 중의 황은 제거되고 무수석고가 생성되며, 황과 반응하지 않은 석회석은 탈탄산되어 생석회 성분으로 전이되어 배출된다. 특히, 상부에서 집진되는 플라이애시에 비해 CaSO4 성분이 더 높게 함유되어 있으며 고로슬래그 미분말의 알칼리 및 황산염 자극제로서 더 탁월한 조성을 가지고 있고 플라이애시에 비해 free CaO 성분 및 다공질 성분이 적어 유동성을 크게 개선시킬 수 있다. 고로슬래그 미분말의 자극 효과를 더욱 더 향상시키기 위해 1mm 이하로 분급 및 분쇄하여 사용하는 것이 바람직하다. The circulating fluidized bed boiler bottom ash is generated at the bottom of the boiler in a way of desulfurizing in a furnace by mixing with limestone in a circulating fluidized bed boiler. In the desulfurization process of a circulating fluidized bed boiler, limestone is injected into the combustion chamber and combusted with fuel. Sulfur oxide in the combustion gas and limestone react in the furnace to remove sulfur in the combustion gas and produce anhydrite, and limestone that does not react with sulfur is desulfurized. It is carbonated and transferred to the quicklime component. In particular, it contains a higher amount of CaSO 4 than fly ash collected from the top, has a superior composition as an alkali and sulfate stimulant of fine blast furnace slag powder, and has fewer free CaO and porous components compared to fly ash, which greatly improves fluidity. can In order to further improve the stimulating effect of the fine powder of blast furnace slag, it is preferable to classify and pulverize it to a size of 1 mm or less.

상기 순환 유동층 보일러 바텀애시는 1종 시멘트 100중량부에 대하여 1∼500중량부 혼합되는 것이 바람직한데, 1중량부 미만일 경우 그 효과가 발휘되지 못하고 500중량부 초과일 경우 상대적으로 강도가 크게 저하하게 된다. The circulating fluidized bed boiler bottom ash is preferably mixed in an amount of 1 to 500 parts by weight based on 100 parts by weight of type 1 cement, but when it is less than 1 part by weight, the effect is not exhibited, and when it exceeds 500 parts by weight, the strength is relatively significantly lowered. do.

또한, 상기 고형연료 플라이애시는 일반 고형연료(SRF, Solid Refuse Fuel), 바이오 고형연료(BIO-SRF, Biomass-Solid Refuse Fuel)를 연소하는 발전시설에서 배출되는 것이 바람직하다. 고형연료 플라이애시는 재료분리를 억제하기 위하여 점성을 증가시키는 역할을 수행한다. 수분을 흡수하는 성질 또한 석탄을 연료로 하는 순환 유동층 보일러 플라이애시에 비해 적어 유동성 또한 양호하다. 또한, 고형연료 연소재는 염소 성분을 일부 함유하고 있어 초기 강도 향상에 효과적이다. 상기 고형연료 플라이애시는 1종 시멘트 100중량부에 대하여 1∼500중량부 혼합되는 것이 바람직한데, 5중량부 미만일 경우 그 효과가 발휘되지 못하고 500중량부 초과일 경우 상대적으로 강도가 크게 저하하게 된다. In addition, the solid fuel fly ash is preferably discharged from a power plant that burns general solid fuel (SRF, Solid Refuse Fuel) and biosolid fuel (BIO-SRF, Biomass-Solid Refuse Fuel). The solid fuel fly ash serves to increase the viscosity to suppress material separation. The property of absorbing moisture is also less than that of a circulating fluidized bed boiler fly ash using coal as a fuel, so the fluidity is good. In addition, the solid fuel combustion ash contains a part of chlorine, which is effective in improving initial strength. It is preferable that the solid fuel fly ash be mixed in an amount of 1 to 500 parts by weight based on 100 parts by weight of type 1 cement, but when it is less than 5 parts by weight, the effect is not exhibited, and when it exceeds 500 parts by weight, the strength is relatively significantly reduced. .

또한, 유동성을 증진시키기 위하여 액상 및 분말형 유동화제를 더 포함하는 것이 바람직하다. 유동화제는 나프탈렌계, 멜라민계, 아민계, 리그닌계, 폴리 카르본산계로 이루어진 군에서 선택된 어느 하나이거나 둘 이상의 혼합물이 바람직하다. 상기 유동화제는 1종 시멘트 100중량부에 대하여 0.01∼20중량부 혼입되는 것이 바람직한데 0.01 중량부 미만일 경우 유동성 개선 효과가 없으며 20중량부를 초과할 경우 유동성이 과도하게 개선되어 재료분리가 일어날 수 있고 경제성이 부족하다.In addition, it is preferable to further include liquid and powder fluidizing agents in order to enhance fluidity. The fluidizing agent is preferably any one selected from the group consisting of naphthalene-based, melamine-based, amine-based, lignin-based, and polycarboxylic acid-based, or a mixture of two or more. The fluidizing agent is preferably incorporated in an amount of 0.01 to 20 parts by weight based on 100 parts by weight of type 1 cement, but when it is less than 0.01 parts by weight, there is no effect of improving the fluidity, and when it exceeds 20 parts by weight, the fluidity is excessively improved and material separation may occur. lack of economics.

또한, 수중 분리를 방지하기 위하여 수중 불분리제를 더 포함하는 것이 바람직하다. 수중 불분리제는 하이드록시프로필 메틸셀룰로오스(HYDROXY PROPYL METHYL CELLULOSE, HPMC), 하이드록시 에틸셀룰로오스(HYDROXY ETHYL CELLULOSE, HEC), 카르복시메틸 셀룰로오스(CARBOXY METHYL CELLULOSE, CMC), 에틸 하이드록시틸 셀룰로오즈(ETHYL HYDROXY ETHYL CELLULOSE, EHEC), 폴리 아크릴계, 다당체(POLY SACCARIDE), 하이드 록시에틸 메틸셀룰로오스(HYDROXY ETHYL METHYL CELLULOSE, HEMC), 폴리 에틸렌 옥시드(POLY ETHYLENE OXIDE, PEO)계, 에틸렌 비닐 아세테이트(ETHYLENE VINYL ACETATE, EVA)계로 이루어진 군에서 선택된 어느 하나이거나 둘 이상의 혼합물을 것이 바람직하다. 상기 수중 불분리제는 상기 1종 시멘트 100중량부에 대하여 0.1∼20중량부 혼입되는 것이 바람직한데 0.01 중량부 미만일 경우 수중 불분리 개선 효과가 없으며 20중량부를 초과할 경우 점성이 과도해져서 시공이 어렵게 된다.In addition, it is preferable to further include an in-water non-separating agent in order to prevent separation in water. Non-separating agents in water include hydroxypropyl methyl cellulose (HYDROXY PROPYL METHYL CELLULOSE, HPMC), hydroxyethyl cellulose (HYDROXY ETHYL CELLULOSE, HEC), carboxymethyl cellulose (CARBOXY METHYL CELLULOSE, CMC), ethyl hydroxytyl cellulose (ETHYL HYDROXY) ETHYL CELLULOSE, EHEC), poly acrylic, polysaccharide (POLY SACCARIDE), hydroxyethyl methyl cellulose (HYDROXY ETHYL METHYL CELLULOSE, HEMC), polyethylene oxide (POLY ETHYLENE OXIDE, PEO), ethylene vinyl acetate (ETHYLENE, VINYL ACETHYLENE) EVA) is preferably any one selected from the group consisting of or a mixture of two or more. It is preferable that the water non-separation agent be incorporated in an amount of 0.1 to 20 parts by weight based on 100 parts by weight of the first-class cement. If it is less than 0.01 parts by weight, there is no effect of improving the separation in water, and if it exceeds 20 parts by weight, the viscosity becomes excessive and construction is difficult. do.

이하에서 본 발명의 바람직한 실시예 및 비교예들이 기술되어질 것이다. 또한 이하의 실시예들은 본 발명을 예증하기 위한 것으로서 본 발명의 범위를 국한하는 것으로 이해되어져서는 안 된다.Hereinafter, preferred examples and comparative examples of the present invention will be described. In addition, the following examples are intended to illustrate the present invention and should not be construed as limiting the scope of the present invention.

실시예 1Example 1

먼저, 1종 시멘트 100중량부에 대하여, 고로슬래그 미분말 200중량부, 중조 탈황 분진 30중량부 및 석회 탈황 분진 30중량부, 순환 유동층 보일러 바텀애시 200중량부, 고형연료 플라이애시 30중량부를 균일하게 혼합하여 말뚝 고정재를 제조하였다. First, with respect to 100 parts by weight of type 1 cement, 200 parts by weight of fine powder of blast furnace slag, 30 parts by weight of sodium bicarbonate desulfurization dust and 30 parts by weight of lime desulfurization dust, 200 parts by weight of circulating fluidized bed boiler bottom ash, and 30 parts by weight of solid fuel fly ash uniformly A pile fixing material was prepared by mixing.

다음으로 고정재에 물결합재비(W/B) 83%가 되도록 물을 첨가하여 강제식 믹서로 충분히 혼합하여 고정액을 제조하였다. Next, water was added to the fixing material so that the water binder ratio (W/B) was 83%, and the mixture was sufficiently mixed with a forced mixer to prepare a fixing solution.

실시예 2Example 2

먼저, 1종 시멘트 100중량부에 대하여, 고로슬래그 미분말 200중량부, 중조 탈황 분진 30중량부 및 석회 탈황 분진 30중량부, 순환 유동층 보일러 바텀애시 200중량부, 고형연료 플라이애시 30중량부, 천연 무수석고 10중량부, 유동화제 5중량부, 수중 불분리제 5중량부를 균일하게 혼합하여 말뚝 고정재를 제조하였다. First, with respect to 100 parts by weight of type 1 cement, 200 parts by weight of fine blast furnace slag powder, 30 parts by weight of sodium bicarbonate desulfurization dust and 30 parts by weight of lime desulfurization dust, 200 parts by weight of circulating fluidized bed boiler bottom ash, 30 parts by weight of solid fuel fly ash, natural A pile fixing material was prepared by uniformly mixing 10 parts by weight of anhydrite, 5 parts by weight of a fluidizing agent, and 5 parts by weight of a non-separating agent in water.

다음으로 주입재에 물바인더비(W/B) 83%가 되도록 물을 첨가하여 강제식 믹서로 충분히 혼합하여 고정액을 제조하였다. Next, water was added to the injection material so that the water binder ratio (W/B) was 83%, and the mixture was sufficiently mixed with a forced mixer to prepare a fixed solution.

비교예comparative example

먼저, 1종 시멘트에 대하여 물바인더비(W/B) 83%가 되도록 물을 첨가하여 강제식 믹서로 충분히 혼합하여 고정액을 제조하였다. First, water was added so that the water binder ratio (W/B) was 83% with respect to type 1 cement, and the mixture was sufficiently mixed with a forced mixer to prepare a fixed solution.

매입 말뚝 시공용 밀크 주입재의 성능시험방법 및 결과Performance test method and result of milk injection material for buried pile construction

아래 표 1에 나타낸 바와 같이 슬럼프 플로우 시험은 KS F 2594, 압축강도시험은 KS F 2343방법에 의해 실시하였다. As shown in Table 1 below, the slump flow test was performed according to KS F 2594 and the compressive strength test was performed according to the KS F 2343 method.

실험Experiment 방법Way 비고remark 슬럼프 플로우slump flow KS F 2594KS F 2594 슬럼프 플로우 시험방법Slump flow test method 압축강도compressive strength KS F 2343KS F 2343 일축압축강도시험방법Uniaxial compressive strength test method 재료분리 저항성 및 체적수축Material separation resistance and volume shrinkage 육안검사Visual inspection

(1) 슬럼프 플로우 시험 결과(1) Slump flow test result

말뚝 고정액의 유동성 변화를 관찰한 결과 실시예 1은 62cm로 1종 시멘트를 사용한 비교예 64cm와 유사한 유동 특성을 보이나 실시예 1에 천연 무수석고, 유동화제 및 수중 불분리제가 더 포함된 실시예 2는 68cm로 유동성이 크게 개선되는 경향을 보였다.As a result of observing the change in the flowability of the pile fixing solution, Example 1 was 62 cm and showed similar flow characteristics to Comparative Example 64 cm using type 1 cement, but Example 2 further containing natural anhydrite, a fluidizing agent and a water non-separating agent in Example 1 is 68 cm, showing a tendency to significantly improve fluidity.

(2) 일축압축강도 시험 결과(2) uniaxial compressive strength test result

단위(MPa)Unit (MPa) 재령age 3일3 days 7일7 days 28일28 days 실시예 1Example 1 7.67.6 10.710.7 14.314.3 실시예 2Example 2 8.28.2 11.311.3 14.814.8 실시예 3Example 3 10.910.9 14.314.3 18.418.4

본 발명의 실시예의 경우 비교예인 1종 시멘트에 비하여는 전반적으로 약 70∼80% 수준의 낮은 강도를 보였으나 LH 전문시방서 기준인 0.49MPa을 훨씬 상회하는 강도를 보였다. 따라서, 주면마찰력이 중요한 중상단부 층에 활용하면 적절할 것으로 판단된다. In the case of the example of the present invention, compared to the comparative example, type 1 cement, the overall strength was about 70 to 80% lower, but the strength was much higher than 0.49 MPa, which is the standard of the LH specialized specification. Therefore, it is judged that it is appropriate to use it for the upper middle and upper layers where the frictional force of the main surface is important.

(3) 재료분리 저항성 및 체적수축(3) Material separation resistance and volume shrinkage

실시예 1 및 2는 재료분리 및 체적 수축이 육안으로 관찰되지 않았으나 비교예는 상면이 침강하고 블리딩수가 다량 발생함을 확인할 수 있었다. 또한 7일 양생 후 체적 수축을 관찰한 결과 비교예에서는 약 3% 이상 체적수축이 발생하였음을 확인할 수 있었다.In Examples 1 and 2, material separation and volumetric shrinkage were not observed with the naked eye, but in Comparative Examples, it was confirmed that the upper surface was settled and a large amount of bleeding water was generated. In addition, as a result of observing the volumetric shrinkage after curing for 7 days, it was confirmed that the volume shrinkage occurred by about 3% or more in the comparative example.

Claims (6)

1종 시멘트 100중량부에 대하여,
고로슬래그 미분말 100∼2,000중량부와,
Na2O 함량이 10∼50중량%이고 SO3 함량이 10∼50중량%인 제철소 탈황공정에서 부산물로 배출되는 중조 탈황 분진 1∼500중량부와,
CaO 함량이 40∼70중량%이고 SO3 함량이 2∼20중량%인 제철소 탈황공정에서 부산물로 배출되는 석회 탈황 분진 1∼500중량부와,
순환 유동층 보일러 바텀애시 1∼500중량와,
재료분리를 억제하기 위하여 점성을 증가시키는 고형연료 플라이애시 1~500중량부를 포함하며,
상기 고형연료 플라이애시는 일반 고형연료(SRF, Solid Refuse Fuel) 또는 바이오 고형연료(BIO-SRF, Biomass-Solid Refuse Fuel)를 연소하는 발전시설에서 배출되는 것을 특징으로 하는 PHC 말뚝용 주면 고정재.
Based on 100 parts by weight of type 1 cement,
100 to 2,000 parts by weight of fine powder of blast furnace slag;
1 to 500 parts by weight of sodium bicarbonate desulfurization dust discharged as a by-product from the desulfurization process of a steelworks having a Na 2 O content of 10 to 50% by weight and an SO 3 content of 10 to 50% by weight, and
1 to 500 parts by weight of lime desulfurization dust discharged as a by-product in the desulfurization process of a steel mill having a CaO content of 40 to 70% by weight and an SO 3 content of 2 to 20% by weight;
1 to 500 weight of circulating fluidized bed boiler bottom ash;
Contains 1 to 500 parts by weight of solid fuel fly ash that increases viscosity to suppress material separation,
The solid fuel fly ash is a main surface fixing material for PHC piles, characterized in that discharged from a power plant that burns general solid fuel (SRF, Solid Refuse Fuel) or biosolid fuel (BIO-SRF, Biomass-Solid Refuse Fuel).
제1항에 있어서,
상기 순환 유동층 보일러 바텀애시는 연료와 석회석을 혼합 연소하여 노내 탈황을 하는 과정에서 배출되는 것을 특징으로 하는 PHC 말뚝용 주면 고정재.
According to claim 1,
The main surface fixing material for PHC piles, characterized in that the circulating fluidized bed boiler bottom ash is discharged in the process of desulfurization in the furnace by mixing fuel and limestone.
삭제delete 제1항에 있어서,
천연 무수석고, 페트로 코크스 탈황석고, 인산석고, 불산 석고 중 어느 하나 또는 둘 이상의 혼합물을 더 포함하는 것을 특징으로 하는 PHC 말뚝용 주면 고정재.
According to claim 1,
Main surface fixing material for PHC piles, characterized in that it further comprises any one or a mixture of two or more of natural anhydrite, petrocoke desulfurization gypsum, phosphate gypsum, and hydrofluoric acid gypsum.
제1항에 있어서,
유동성을 증진시키기 위하여 상기 1종 시멘트 100중량부에 대하여 액상 및 분말형 유동화제 0.01∼5중량부를 더 포함하는 것을 특징으로 하는 PHC 말뚝용 주면 고정재.
According to claim 1,
Main surface fixing material for PHC piles, characterized in that it further comprises 0.01 to 5 parts by weight of liquid and powder fluidizing agents based on 100 parts by weight of the first-class cement in order to improve fluidity.
제1항에 있어서,
수중 분리를 방지하기 위하여 상기 1종 시멘트 100중량부에 대하여 수중 불분리제 0.01∼5중량부를 더 포함하는 것을 특징으로 하는 PHC 말뚝용 주면 고정재.
According to claim 1,
Main fixing material for PHC piles, characterized in that it further comprises 0.01 to 5 parts by weight of an underwater non-separating agent based on 100 parts by weight of the first-class cement to prevent underwater separation.
KR1020190161549A 2019-12-06 2019-12-06 Skin supporting agent f0r pretensioned spun high strength concrete piles KR102272190B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190161549A KR102272190B1 (en) 2019-12-06 2019-12-06 Skin supporting agent f0r pretensioned spun high strength concrete piles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190161549A KR102272190B1 (en) 2019-12-06 2019-12-06 Skin supporting agent f0r pretensioned spun high strength concrete piles

Publications (2)

Publication Number Publication Date
KR20210071408A KR20210071408A (en) 2021-06-16
KR102272190B1 true KR102272190B1 (en) 2021-07-05

Family

ID=76602785

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190161549A KR102272190B1 (en) 2019-12-06 2019-12-06 Skin supporting agent f0r pretensioned spun high strength concrete piles

Country Status (1)

Country Link
KR (1) KR102272190B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101377552B1 (en) 2012-04-30 2014-03-24 주식회사 씨엠디기술단 composition for soft ground construction pile
KR101622257B1 (en) 2014-12-10 2016-05-20 한국철도기술연구원 Composition of a pile using byproduct materials and weak ground reinforcing piles for railway using the same
KR101636283B1 (en) 2015-02-13 2016-07-08 건설자원기술단 주식회사 Pile grouting materials using ferronickel slag
KR101840470B1 (en) * 2016-10-20 2018-05-04 주식회사 지안산업 Grouting agent and method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5827139B2 (en) 2012-01-20 2015-12-02 三井化学株式会社 Flame retardant resin composition, method for producing the same, molded product thereof, and electric wire
KR101402877B1 (en) 2013-11-25 2014-06-02 주식회사 한화건설 Manufacturing method for eco-friendly filler using blast furnace slag

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101377552B1 (en) 2012-04-30 2014-03-24 주식회사 씨엠디기술단 composition for soft ground construction pile
KR101622257B1 (en) 2014-12-10 2016-05-20 한국철도기술연구원 Composition of a pile using byproduct materials and weak ground reinforcing piles for railway using the same
KR101636283B1 (en) 2015-02-13 2016-07-08 건설자원기술단 주식회사 Pile grouting materials using ferronickel slag
KR101840470B1 (en) * 2016-10-20 2018-05-04 주식회사 지안산업 Grouting agent and method

Also Published As

Publication number Publication date
KR20210071408A (en) 2021-06-16

Similar Documents

Publication Publication Date Title
KR101840470B1 (en) Grouting agent and method
KR102117552B1 (en) Low cement-based solidification agent composition for solidifying weak ground and method for solidifying weak ground using the same
KR101636283B1 (en) Pile grouting materials using ferronickel slag
KR102141914B1 (en) Eco-friendly solidification agent composition for solidifying weak ground and method for solidifying weak ground using the same
KR101680348B1 (en) Pile grouting materials
KR101436151B1 (en) Hardening composition for deep mixing method
KR101331057B1 (en) Solidified agent to strengthen stratum
KR101600840B1 (en) Quick-setting mortar composition for compaction grouting process using bottom ash as aggregate
KR102226027B1 (en) Soil grouting material and groution method using the same
KR20180028048A (en) Ground grouting process
KR101410796B1 (en) Rapid solidified agent for deep mixing method on sea
KR101999297B1 (en) Grout Material for earth tunnel using Circulating fluidized bed boiler ash
KR102272190B1 (en) Skin supporting agent f0r pretensioned spun high strength concrete piles
KR20150062681A (en) Composition for soft ground construction pile
KR101640160B1 (en) Method for preparing a hardening composition for deep mixing method and hardening composition for deep mixing method
KR20180051840A (en) Instillation material and method using the same
KR101636277B1 (en) Pile grouting materials composition using light burned dolomite
KR101974591B1 (en) Eco-friendly and high functional solidifying composition for point foundation
KR102510283B1 (en) Perimeter supporting material for constructing phc pile
KR102369849B1 (en) Weak foundation treatment method
KR20170020628A (en) Soil stabilizer
KR101602130B1 (en) Mortar composition for compaction grouting process using unsintered inorganic binder bottom ash
KR102488745B1 (en) Binder compositon for pile construction
KR101592199B1 (en) Deep cement mixing method without hexavalent chromium elution
KR101614309B1 (en) Cement milk injection agent for soil cement wall and soil cement wall method of the same

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant