KR102129282B1 - Novel Strain from Thermococcus BCF12 and Method for Producing Formic Acid Using the Same - Google Patents

Novel Strain from Thermococcus BCF12 and Method for Producing Formic Acid Using the Same Download PDF

Info

Publication number
KR102129282B1
KR102129282B1 KR1020180138475A KR20180138475A KR102129282B1 KR 102129282 B1 KR102129282 B1 KR 102129282B1 KR 1020180138475 A KR1020180138475 A KR 1020180138475A KR 20180138475 A KR20180138475 A KR 20180138475A KR 102129282 B1 KR102129282 B1 KR 102129282B1
Authority
KR
South Korea
Prior art keywords
ala
gly
glu
val
leu
Prior art date
Application number
KR1020180138475A
Other languages
Korean (ko)
Other versions
KR20200054770A (en
Inventor
이정현
임재규
이현숙
강성균
권개경
김윤재
양지인
Original Assignee
한국해양과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양과학기술원 filed Critical 한국해양과학기술원
Priority to KR1020180138475A priority Critical patent/KR102129282B1/en
Priority to US17/292,967 priority patent/US20220213463A1/en
Priority to PCT/KR2018/014807 priority patent/WO2020101100A1/en
Publication of KR20200054770A publication Critical patent/KR20200054770A/en
Application granted granted Critical
Publication of KR102129282B1 publication Critical patent/KR102129282B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/96Stabilising an enzyme by forming an adduct or a composition; Forming enzyme conjugates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01002Formate dehydrogenase (1.2.1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/02Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with a cytochrome as acceptor (1.2.2)
    • C12Y102/02001Formate dehydrogenase (cytochrome) (1.2.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/07Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with an iron-sulfur protein as acceptor (1.2.7)
    • C12Y102/07004Carbon-monoxide dehydrogenase (ferredoxin) (1.2.7.4)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

본 발명은 일산화탄소:포름산 산화·환원효소(carbon monoxide:formate oxidoreductase, CFOR) 유전자가 도입되어 포름산 생성능이 향상된 서모코커스 유래 신균주 BCF12 및 이를 이용한 포름산의 생산방법에 관한 것이다.
본 발명의 서모코커스 유래 신균주 BCF12는 Fe-S 단백질 유래 Fe-S 융합단백질을 매개로 하여 CO 탈수소효소(CO dehydrogenase, CODH)와 포름산 탈수소효소(formate dehydrogenase)를 물리적으로 직접 결합하여 CO 탈수소효소에서 생성된 전자가 Fe-S 융합단백질의 Fe-S 클러스터를 통해 포름산 탈수소효소에 직접적으로 전달되는 일산화탄소:포름산 산화·환원효소(carbon monoxide:formate oxidoreductase, CFOR)가 형질전환된 균주로, 기존에 없던 새로운 일산화탄소:포름산 산화·환원효소(carbon monoxide:formate oxidoreductase, CFOR) 반응을 이용해 포름산 생성의 반응속도 및 수율을 획기적으로 개선할 수 있는 장점이 있다. 또한, 세포 내에서 효소들이 물리적으로 고정된 상태로 존재할 수 있도록 함으로써, 각 효소들의 안정성 또한 확보할 수 있다.
The present invention relates to a new strain BCF12 derived from Thermococcus having improved formic acid production ability by introducing a carbon monoxide:formate oxidoreductase (CFOR) gene and a method for producing formic acid using the same.
The thermococcus-derived strain BCF12 of the present invention physically directly binds CO dehydrogenase (CO dehydrogenase, CODH) and formic acid dehydrogenase via a Fe-S fusion protein derived from Fe-S protein to form a CO dehydrogenase A carbon monoxide:formate oxidoreductase (CFOR) transformed by electrons generated directly from the Fe-S fusion protein to the formic acid dehydrogenase through a Fe-S cluster. The new carbon monoxide:formic acid oxidoreductase (CFOR) reaction has the advantage of dramatically improving the reaction rate and yield of formic acid production. In addition, by allowing enzymes to exist in a physically fixed state in a cell, stability of each enzyme can also be secured.

Description

서모코커스 유래 신균주 BCF12 및 이를 이용한 포름산의 생산방법{Novel Strain from Thermococcus BCF12 and Method for Producing Formic Acid Using the Same}{Novel Strain from Thermococcus BCF12 and Method for Producing Formic Acid Using the Same}

본 발명은 서모코커스 유래 신균주 BCF12 및 이를 이용한 포름산의 생산방법에 관한 것으로, 더욱 상세히는 일산화탄소:포름산 산화·환원효소(carbon monoxide:formate oxidoreductase, CFOR) 유전자가 도입되어 포름산 생성능이 향상된 서모코커스 유래 신균주 BCF12 및 이를 이용한 포름산의 생산방법에 관한 것이다.The present invention relates to a production method of thermococcus-derived new strain BCF12 and formic acid using the same, and more specifically, carbon monoxide:formate oxidoreductase (CFOR) gene is introduced to introduce thermococcus with improved formic acid production It relates to a new strain BCF12 and a method for producing formic acid using the same.

유전공학적 기술의 획기적인 발달에 따라 생물공정에 의한 생물학적 물질의 생산이 점차 석유화학 공정을 대체하고 있다. 생물전환 공정을 적용하는 방식에 의한 생물학적 물질의 생산은 값싼 재생자원을 원료로 이용할 수 있고, 이산화탄소 등 온실가스의 발생을 최소화할 수 있어 환경문제를 해결할 수 있는 장점이 있으므로, 최근 생물공정에 의한 생물학적 물질의 생산을 위하여 관련 균주의 개발 및 공정개선 등을 위한 연구가 확대되고 있다. With the development of genetic engineering technology, the production of biological materials by biological processes is gradually replacing petrochemical processes. Since the production of biological materials by the method of applying the bioconversion process can use cheap renewable resources as a raw material and minimize the generation of greenhouse gases such as carbon dioxide, it has the advantage of solving environmental problems. For the production of biological materials, research for development of related strains and process improvement is expanding.

구체적으로, 대사 조절 변이주를 제조하는 방법으로는, 즉 새로운 물질대사 경로를 만들거나 물질대사 과정에 포함된 경로를 조작/변화시켜서 목적 물질의 생산 효율을 높이는 다양한 기술들이 이용되고 있다. 이러한 기술은 특정/목적 산물의 합성과 관련된 하나 이상의 목적 단백질(또는 효소)의 발현 또는 활성이 촉진되거나 억제될 것이 전제된다. 예를 들면, 부탄올 생성능이 증가된 재조합 미생물에 대해서, 한국 특허공개공보 제10-2014-0064469호에는 아세틸-CoA를 아세테이트로 전환하는 경로에 관여하는 단백질(또는 효소)의 발현 또는 활성이 억제되고, 아세틸-CoA를 부티릴-CoA로 전환하는 경로에 관여하는 단백질(또는 효소)의 발현 또는 활성이 촉진된 미생물이 개시되어 있다. 또한, 일본 특허등록공보 제4760951호에는 부탄올 합성에 관여하는 효소인 3-히드록시부티릴-CoA 탈수소효소(3-hydroxybutyryl-CoA dehydrogenase, HBD), 3-히드록시부티릴-CoA 탈수효소(3-hydroxybutyryl-CoA dehydratase, CRT), 트랜스-에노일-CoA 환원효소(trans-enoyl-CoA reductase, TER), 알데히드/알코올 탈수소효소(aldehyde and alcohol dehydrogenase, AdhE2) 등과 같은 효소를 미생물에 도입하여 부탄올의 생산 효율을 향상시키고자 하는 시도도 있었다.Specifically, as a method of manufacturing a metabolic regulatory mutant, a variety of techniques are used to increase the production efficiency of a target substance by creating a new metabolic pathway or manipulating/changing a pathway included in the metabolic process. This technique is presumed to promote or inhibit the expression or activity of one or more target proteins (or enzymes) involved in the synthesis of a specific/purpose product. For example, for recombinant microorganisms with increased butanol production capacity, Korean Patent Publication No. 10-2014-0064469 suppresses the expression or activity of a protein (or enzyme) involved in the pathway for converting acetyl-CoA to acetate, , Microorganisms that promote the expression or activity of proteins (or enzymes) involved in the pathway for converting acetyl-CoA to butyryl-CoA are disclosed. In addition, Japanese Patent Registration No. 4760951 discloses 3-hydroxybutyryl-CoA dehydrogenase (HBD), 3-hydroxybutyryl-CoA dehydrogenase (3), an enzyme involved in the synthesis of butanol (3 Enzymes such as -hydroxybutyryl-CoA dehydratase (CRT), trans-enoyl-CoA reductase (TER), aldehyde/alcohol dehydrogenase (aldehyde and alcohol dehydrogenase, AdhE2) are introduced into the microorganism, butanol There have been attempts to improve the production efficiency of.

그러나, 상기와 같은 종래기술들은 반응을 통해 미생물 내에 합성하고자 하는 물질의 생산 경로에 필요한 중간 생성물들이 축적될 수는 있으나, 세포 내부에서는 합성하고자 하는 물질의 합성 경로에 관여하는 효소들 외에도 다양한 전환효소들이 존재하고 있어 그 생산 효율이 낮고, 무엇보다도 생산하고자 하는 목적 물질을 직접 생산할 수 있는 자연계에 존재하지 않는 신규 합성 경로를 직접 생성하거나 목적 물질을 직접 합성하는 반응을 생성할 수 없다는 단점이 발생하였다. However, although the above-described prior arts may accumulate intermediate products necessary for the production path of the substance to be synthesized in the microorganism through reaction, various conversion enzymes in addition to enzymes involved in the synthesis pathway of the substance to be synthesized in the cell There was a disadvantage that the production efficiency was low because they existed, and above all, it was not possible to directly generate a new synthetic route that does not exist in the natural system capable of directly producing the desired substance to be produced, or to generate a reaction to directly synthesize the target substance. .

이러한 문제점들을 해결하기 위하여 한국 특허공개공보 제10-2017-0024466호 등은 목적 물질의 합성 효율을 높이기 위해 목적 물질의 생합성 관련 효소들 사이에 존재하는 물리적 간격을 좁혀 중간 생성물이 즉각적으로 반응에 참여함으로써 다른 기타 효소들에 의해 축적이 방해되는 문제를 해소할 수 있는 시스템을 개시한 바 있으나, 단순하게 생합성 관련 효소들 사이에 존재하는 물리적 간격을 좁히는 간접적인 방식을 통하여 효소의 활성을 높이는 방법은 복합 효소의 전자전달 또는 산화 환원 반응에 영향을 주지 못하므로, 일정 수준 이상의 효소 활성 증가를 기대할 수 없는 근본적인 문제점이 있었다. To solve these problems, Korean Patent Publication No. 10-2017-0024466, etc., narrows the physical gap existing between enzymes related to biosynthesis of the target substance to increase the synthesis efficiency of the target substance, so that the intermediate product immediately participates in the reaction. There has been disclosed a system capable of resolving the problem that accumulation is prevented by other enzymes, but the method of increasing the activity of the enzyme through a simple, indirect method of narrowing the physical gap existing between biosynthesis-related enzymes Since it does not affect the electron transfer or redox reaction of the complex enzyme, there is a fundamental problem that it is not expected to increase the enzyme activity above a certain level.

따라서, 본 발명의 목적은 전자전달 기능을 하는 두 개 이상의 Fe-S 단백질을 연결한 Fe-S 융합단백질을 포함하는 신규한 일산화탄소:포름산 산화·환원효소가 도입된 서모코커스 유래 신균주 BCF12, 및 이를 이용한 포름산의 생산방법을 제공하는 것이다.Accordingly, an object of the present invention is a new carbon monoxide: a new strain BCF12 derived from thermococcus introduced with a formic acid oxidative and reductase, comprising a Fe-S fusion protein linked to two or more Fe-S proteins that function as electron transporters, and It is to provide a method for producing formic acid using this.

본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.Other objects and advantages of the present invention will become more apparent from the following detailed description of the invention, claims and drawings.

본 발명의 한 양태에 따르면, 본 발명은 서모코커스 유래 신균주 BCF12(수탁번호: KCTC 13649BP)를 제공한다. According to one aspect of the present invention, the present invention provides a thermococcus-derived strain BCF12 (Accession No.: KCTC 13649BP).

본 발명자들은 목적 물질의 합성 효율을 높이고 생산하고자 하는 목적물질을 직접 생산할 수 있는 자연계에 존재하지 않는 반응이 가능하도록 목적 물질의 생합성 관련 효소들 사이에 즉각적이며 직접적으로 전자의 전달이 커플링 될 수 있는 시스템에 대하여 연구하였고, 전자가 이동하는 통로 역할을 하는 전자전달 체인으로 작동할 수 있도록 두 개 이상의 Fe-S 단백질이 플랙서블 링커를 통해 공유결합하여 형성된 Fe-S 융합단백질을 이용하여 세포 내에서 목적 물질의 합성과 관련 효소들을 직접 연결함으로써 기존에 자연계에서 발견되지 않은 새로운 일산화탄소:포름산 산화·환원효소(carbon monoxide:formate oxidoreductase, CFOR)를 합성하였다. 또한, 이를 서모코커스 속 균주에 도입하여 목적 물질인 포름산을 고효율/고수율로 생산할 수 있는 것을 확인함으로써 본 발명을 완성하였다.The present inventors can directly and directly transfer electrons between enzymes related to biosynthesis of the target substance to increase the efficiency of synthesis of the target substance and enable a reaction that does not exist in nature that can directly produce the target substance to be produced. The system has been studied, and the Fe-S fusion protein formed by covalently bonding two or more Fe-S proteins through a flexible linker to operate as an electron transport chain that serves as a pathway for electrons to move is intracellular. A new carbon monoxide:formate oxidoreductase (CFOR) was synthesized by direct synthesis of target substances and direct linkage of related enzymes. In addition, the present invention was completed by confirming that the target substance, formic acid, can be produced with high efficiency/high yield by introducing it into a strain of the genus Thermococcus.

이에, 본 발명자들은 상기 균주를 서모코커스 온누리누스 BCF12로 명명하고, 이를 2018년 9월 21일자로 한국생명공학연구원에 기탁하고, 수탁번호 KCTC 13649BP를 부여받았다.Accordingly, the present inventors named the strain Thermococcus Onnurinus BCF12, deposited it on September 21, 2018 at the Korea Research Institute of Bioscience and Biotechnology, and received accession number KCTC 13649BP.

하기 본 발명의 일 실시예에서 입증되는 바와 같이, 서모코커스 유래 신균주 BCF12(수탁번호: KCTC 13649BP)는 일산화탄소:포름산 산화·환원효소(carbon monoxide:formate oxidoreductase, CFOR) 유전자가 형질전환 되어 포름산 생성능이 개선된 것을 특징으로 한다. As demonstrated in one embodiment of the present invention, Thermococcus-derived mycobacteria BCF12 (Accession No.: KCTC 13649BP) is a carbon monoxide:formate oxidoreductase (CFOR) gene that is transformed to produce formic acid. It is characterized by an improvement.

본 발명에 있어서, 상기 일산화탄소:포름산 산화·환원효소(carbon monoxide:formate oxidoreductase, CFOR)는 전자가 이동하는 통로 역할을 하는 전자전달 체인으로 작동하고, 두 개 이상의 Fe-S 단백질이 서열번호 1 내지 6에서 선택된 어느 하나의 아미노산 서열을 갖는 플랙서블 링커를 통해 공유결합하여 형성된 Fe-S 융합단백질과, 상기 Fe-S 융합단백질의 C-말단에 작동가능하게 연결된 CO 탈수소효소(CO dehydrogenase, CODH), 및 상기 Fe-S 융합단백질의 N-말단에 작동가능하게 연결된 포름산 탈수소효소(fomrate dehydrogenase, Fdh)를 포함하고, 상기 CO 탈수소효소에서 생성된 전자가 상기 Fe-S 융합단백질을 통과하여 포름산 탈수소효소(fomrate dehydrogenase, Fdh)에 전달되는 것을 특징으로 하며, Fe-S 융합단백질을 매개로 하여 CO 탈수소효소(CO dehydrogenase, CODH)와 포름산 탈수소효소(fomrate dehydrogenase, Fdh)가 결합된 일산화탄소:포름산 산화·환원효소(carbon monoxide:formate oxidoreductase, CFOR)인 것을 특징으로 한다. In the present invention, the carbon monoxide: formic acid oxidoreductase (carbon monoxide: formate oxidoreductase, CFOR) acts as an electron transport chain that serves as a pathway through which electrons move, and two or more Fe-S proteins have SEQ ID NOs: 1 to Fe-S fusion protein formed by covalent bonding through a flexible linker having any one amino acid sequence selected from 6, and CO dehydrogenase (CODH) operably linked to the C-terminus of the Fe-S fusion protein , And formic dehydrogenase (Fdh) operably linked to the N-terminus of the Fe-S fusion protein, wherein electrons generated in the CO dehydrogenase pass through the Fe-S fusion protein to dehydrogen formate. It is characterized in that it is delivered to an enzyme (fomrate dehydrogenase, Fdh), and carbon monoxide: formic acid oxidation combined with CO dehydrogenase (CODH) and formic dehydrogenase (Fdh) via a Fe-S fusion protein. · It is characterized by a carbon monoxide (formate oxidoreductase, CFOR).

또한, 상기 서모코커스 유래 신균주 BCF12에서, 상기 CO 탈수소효소(CO dehydrogenase, CODH), 상기 Fe-S 융합단백질, 및 상기 포름산 탈수소효소(fomrate dehydrogenase, Fdh)의 기능에 영향을 미치지 않는 범위 내에서, 아미노산 잔기의 결실, 삽입, 치환 또는 이들의 조합에 의해서 상이한 서열을 가지는 아미노산의 변이체들, 또는 단편들일 수 있다. 또한, 상기 CO 탈수소효소(CO dehydrogenase, CODH), 상기 Fe-S 융합단백질, 및 포름산 탈수소효소(fomrate dehydrogenase, Fdh)들의 활성을 전체적으로 변경시키지 않는 단백질 및 펩타이드 수준에서의 아미노산 교환은 당해 분야에 공지되어 있다. 경우에 따라서는 인산화(phosphorylation), 황화(sulfation), 아크릴화(acrylation), 당화(glycosylation), 메틸화(methylation), 파네실화(farnesylation) 등으로 변형될 수 있다. In addition, in the thermococcus-derived new strain BCF12, within the range not affecting the functions of the CO dehydrogenase (CODH), the Fe-S fusion protein, and the formic acid dehydrogenase (Fdh) , Variants, or fragments of amino acids having different sequences by deletion, insertion, substitution or combination of amino acid residues. In addition, amino acid exchanges at the protein and peptide levels that do not entirely alter the activity of the CO dehydrogenase (CODH), the Fe-S fusion protein, and formic acid dehydrogenase (Fdh) are known in the art. It is done. In some cases, phosphorylation, sulfation, acrylation, glycosylation, methylation, and farnesylation may be modified.

본 명세서에서 사용되는 용어 "펩타이드"는 펩타이드 결합에 의해 4개 내지 1,000개의 아미노산 잔기들이 서로 결합되어 형성된 사슬 형태의 고분자를 의미하며, '폴리펩타이드'와 상호 혼용 가능한 의미이다. The term "peptide" as used herein refers to a polymer in the form of a chain formed by bonding 4 to 1,000 amino acid residues to each other by peptide bonding, and means interchangeable with'polypeptide'.

본 발명에서 일컫는 '폴리뉴클레오타이드(polynucleotide)'는 염기, 당, 인산의 세 가지 요소로 구성된 화학적 단량체인 뉴클레오타이드가 다수의 인산에스테르 결합을 매개로 사슬 형태로 이어진 고분자 화합물을 의미한다.The term'polynucleotide' referred to in the present invention means a polymer compound in which a nucleotide, a chemical monomer composed of three elements of a base, a sugar, and phosphoric acid, is chained through a plurality of phosphate ester bonds.

본 발명에서 상기 CO 탈수소효소(CO dehydrogenase, CODH)와 포름산 탈수소효소(fomrate dehydrogenase, Fdh)의 결합은 Fe-S 융합단백질을 매개로 이루어지되, 상기의 Fe-S 융합단백질은 서로 다른 두 개의 Fe-S 단백질이 플랙서블 링커로 연결된 것을 특징으로 한다.In the present invention, the combination of the CO dehydrogenase (CO dehydrogenase, CODH) and the formic acid dehydrogenase (Fmrate dehydrogenase, Fdh) is made through the Fe-S fusion protein, but the Fe-S fusion protein is two different Fe -S protein is characterized by being connected by a flexible linker.

본 명세서에서 사용되는 용어 "Fe-S 단백질(Iron-sulfur protein)"은 다양한 산화 상태에서 다이(di), 트리(tri), 또는 테트라(tetra)의 이온 센터와 연계된 황화물(sulfide)을 포함하는 "Fe-S 클러스터"가 존재하는 것을 특징으로 하는 단백질을 의미한다. The term "Fe-S protein (Iron-sulfur protein)" as used herein includes sulfides associated with ion centers of di, tri, or tetra in various oxidation states. The term "Fe-S cluster" means a protein characterized by being present.

상기 "Fe-S 클러스터"는 페레독신(ferredoxins)과 같은 메탈로프로틴(metalloproteins)에서 나타나는데, NADH 탈수소효소(NADH dehydrogenase), 수소화 효소(hydrogenases), 코엔자임 Q - 시토크롬 C 환원 효소(coenzyme Q - cytochrome c reductase), 숙신산 - 코엔자임 Q 환원 효소(succinate - coenzyme Q reductase and nitrogenase) 및 질소 분해 효소와 같은 다양한 단백질에서 발견된다. 상기, "Fe-S 클러스터"로 구성된 "Fe-S 단백질(Iron-sulfur protein)"은 미토콘드리아의 전자전달의 산화환원 반응에서 그 역할이 가장 잘 알려져 있다. The "Fe-S cluster" appears in metalloproteins such as ferredoxins, NADH dehydrogenase, hydrogenases, coenzyme Q-cytochrome C reductase (coenzyme Q-cytochrome) c reductase), succinic acid-coenzyme Q reductase and nitrogenase, and nitrogen. The "Fe-S protein" composed of "Fe-S clusters" is best known for its role in the redox reaction of mitochondrial electron transport.

본 명세서에서 사용되는 용어 "전자전달 체인"은 "Fe-S 단백질"이 둘 이상 직렬 방식의 체인 형태로 플랙서블 링커를 통해 공유 결합으로 연결된 전자전달의 통로를 의미하며, 본 명세서에서 사용되는 전자전달 체인 역할을 하는 용어 "Fe-S 융합 단백질"은 플랙서블 링커를 통해 공유 결합으로 연결된 두 개 이상의 "Fe-S 단백질"로 구성되고, 상기 전자전달 체인을 형성하는데 단위 요소 역할을 하는 본 발명자에 의해 새롭게 합성된 융합 단백질을 의미한다. As used herein, the term "electron transport chain" refers to a passage of electron transport in which two or more "Fe-S proteins" are linked in a covalent bond through a flexible linker in the form of a chain in series. The term "Fe-S fusion protein" serving as a delivery chain is composed of two or more "Fe-S proteins" covalently linked through a flexible linker, and the inventors acting as unit elements in forming the electron transport chain Means a newly synthesized fusion protein.

본 발명의 서모코커스 유래 신균주 BCF12에서, 상기 Fe-S 융합단백질은 두 개 이상의 Fe-S 단백질이 하기 [표 1]에 나타낸 서열번호 1 내지 6에서 선택된 어느 하나의 아미노산 서열을 갖는 플랙서블 링커를 통해 공유결합하는 것을 특징으로 하는데, 상기 플랙서블 링커와 유사한 역할을 하는 플랙서블 링커의 예로는 Chen X 등에 의해 공지되어 있다(Chen X, et al. 2013. Adv Drug Deliv Rev 65:1357-69.). In the thermococcus-derived strain BCF12 of the present invention, the Fe-S fusion protein is a flexible linker having two or more Fe-S proteins having any one amino acid sequence selected from SEQ ID NOs: 1 to 6 shown in Table 1 below. It is characterized in that it is covalently linked to, an example of a flexible linker that plays a role similar to the flexible linker is known by Chen X et al. (Chen X, et al. 2013. Adv Drug Deliv Rev 65:1357-69 .).

[표 1][Table 1]

Figure 112018112283774-pat00001
Figure 112018112283774-pat00001

또한, 상기 플랙서블 링커를 포함하는 펩타이드 링커에 관한 내용은 문헌 "Toon H. Evers et al., 2006, J. Christopher Anderson et al., 2010"에 상세히 개시되어 있으며, 이 문헌에 개시된 내용은 본 명세서에 참조로서 삽입된다.In addition, the content of the peptide linker including the flexible linker is disclosed in detail in the document "Toon H. Evers et al., 2006, J. Christopher Anderson et al., 2010", the content disclosed in this document It is incorporated by reference into the specification.

한편, "Fe-S 단백질이 전자를 수용하여 환원상태가 되면 180kG 정도의 초미세 자기장을 형성하게 되는데, 상기 플랙서블 링커(flexible linker)로 연결되어 근거리에 위치하게 되는 Fe-S 단백질이 상기 형성된 초미세 자기장의 영향으로 인하여 상기 전자를 수용한 Fe-S 단백질과 서로 강한 결합(tight binding)이 유도되고, 이로 인하여 Fe-S 단백질들의 전자전달 체인 사이의 물리적인 거리가 사라져, 결과적으로 "Fe-S 융합 단백질"이 하나의 전자전달의 통로로 이용될 수 있게 된다.On the other hand, "When the Fe-S protein accepts electrons and is in a reduced state, an ultra-fine magnetic field of about 180 kG is formed. The Fe-S protein that is located at a short distance by being connected to the flexible linker is formed. Due to the influence of the ultra-fine magnetic field, strong binding is induced with the Fe-S protein that accommodates the electrons, and thereby the physical distance between the electron transport chains of the Fe-S proteins disappears, resulting in "Fe -S fusion protein" can be used as a single electron transport pathway.

본 명세서에서 사용되는 용어 "작동가능하게 연결된"은 핵산 발현 조절 서열(예: 프로모터 서열, 시그널 서열, 또는 전사조절인자 결합 위치의 어레이)과 다른 핵산 서열 사이의 기능적인 결합을 의미하며, 이에 의해 상기 조절 서열은 상기 다른 핵산 서열의 전사 및/또는 번역을 조절하게 된다.As used herein, the term "operably linked" refers to a functional binding between a nucleic acid expression control sequence (eg, a promoter sequence, a signal sequence, or an array of transcription regulator binding sites) and another nucleic acid sequence, thereby The regulatory sequence regulates the transcription and/or translation of the other nucleic acid sequence.

또한, 본 발명의 서모코커스 유래 신균주 BCF12에서, 상기 Fe-S 단백질은 하기 서열번호 7 내지 11에서 선택되는 어느 하나의 아미노산 서열 또는 이들의 조합을 포함하는 것을 특징으로 한다. 상기 Fe-S 단백질은 Fe-S 클러스터 형성을 위하여 하기 [표 2]에 나타낸 서열번호 7 내지 11의 시스테인 모티프(cystein motif)를 포함하는데, 본 발명자들은 공지된 190개의 Fe-S 단백질을 비교하여 하기 서열번호 7 내지 11의 아미노산 서열을 갖는 시스테인 모티프를 선정하였고, 이들을 포함하는 Fe-S 단백질이 플랙서블 링커로 공유결합하여 생성된 Fe-S 융합 단백질이 전자전달 체인으로 작용하는 것을 실시예를 통해 확인한 바 있다. In addition, in the new strain BCF12 derived from Thermococcus of the present invention, the Fe-S protein is characterized by including any one amino acid sequence selected from SEQ ID NOs: 7 to 11 or a combination thereof. The Fe-S protein includes a cystein motif of SEQ ID NOs: 7 to 11 shown in [Table 2] below to form Fe-S clusters, and the present inventors compared 190 well-known Fe-S proteins. Cysteine motifs having the amino acid sequences of SEQ ID NOs: 7 to 11 were selected, and Fe-S fusion proteins generated by covalently bonding Fe-S proteins containing them as flexible linkers act as electron transport chains. I checked it through.

[표 2][Table 2]

Figure 112018112283774-pat00002
Figure 112018112283774-pat00002

또한, 본 발명의 서모코커스 유래 신균주 BCF12에서, 상기 Fe-S 융합단백질은 2 내지 5개의 Fe-S 단백질이 각각 플랙서블 링커를 통해 서로 공유결합하여 형성된 것을 특징으로 한다.In addition, in the new strain BCF12 derived from Thermococcus of the present invention, the Fe-S fusion protein is characterized in that 2 to 5 Fe-S proteins are formed by covalently bonding to each other through a flexible linker.

본 발명의 서모코커스 유래 신균주 BCF12에서, 상기 CO 탈수소효소(CO dehydrogenase, CODH)는 써모코커스 온누리누스(Thermococcus onnurineus NA1), 써모코커스 CH5(Thermococcus sp. CH5), 써모코커스 과이마센시스(Thermococcus guaymasensis ), 써모코커스 프로펀두스( Thermococcus profundus), 써모코커스 라디오톨러란스(Thermococcus radiotolerans), 써모코커스 감마톨러란스( Thermococcus gammatolerans), 써모코커스 바로필루스( Thermococcus barophilus), 써모코커스 AM4(Thermococcus AM4), 메타노써모박터 써모오토트로피쿠스(Methanothermobacter thermoautotrophicus), 아케오글로부스 풀기두스(Archaeoglobus fulgidus), 클로스트리듐 오토에타노지눔(Clostridium autoethanogenum), 클로스트리듐 융달리(Clostridium ljungdahlii), 클로스트리듐 카르복시디보란스(Clostridium carboxidivorans), 옥소박터 펜니기(Oxobacter pfennigii), 펩토스트렙토코커스 프로덕투스( Peptostreptococcus productus), 아세토박테리움 우디( Acetobacterium woodii), 유박테리움 리모숨( Eubacterium limosum), 뷰티리박테리움 메틸로트로피쿰(Butyribacterium methylotrophicum), 루브리비백스 젤라티노수스( Rubrivivax gelatinosus), 로도수도모나스 팔루스트리스( Rhodopseudomonas palustris), 로도스피릴룸 루브럼( Rhodospirillum rubrum), 씨트로박터 Y19( Citrobacter sp Y19), 메타노살시나 바케리( Methanosarcina barkeri), 메타노살시나 아세티보란스(Methanosarcina acetivorans), 무렐라 써모아세티카( Moorella thermoacetica), 무렐라 써모오토트로피카(Moorella thermoautotrophica), 무렐라 AMP( Moorella strain AMP), 카복시도써머스 하이드로제노포만스(Carboxydothermus hydrogenoformans), 카복시디브라키움 파시피쿠스( Carboxydibrachium pacificus), 카복시도셀라 스포로프로듀센스( Carboxydocella sporoproducens), 카복시도셀라 써모오토트로피카(Carboxydocella thermoautotrophica), 써민콜라 카복시디필라( Thermincola carboxydiphila), 써민콜라 페리아세티카(Thermincola ferriacetica), 써모리쏘박터 카복시디보란스( Thermolithobacter carboxydivorans), 써모시누스 카복시디보란스( Thermosinus carboxydivorans), 디설포토마쿨럼 쿠즈네초비(Desulfotomaculum kuznetsovii), 디설포토마쿨럼 써모벤조이쿰( Desulfotomaculum thermobenzoicum sub sp. thermosyntrophicum), 디설포토마쿨럼 카복시티보란스( Desulfotomaculum carboxydivorans)로 구성된 군에서 선택되는 어느 하나의 균주에서 유래한 유전자일 수 있으며, 상기 포름산 탈수소효소(fomrate dehydrogenase, Fdh)는 써모코커스 온누리누스(Thermococcus onnurineus NA1), 써모코커스 푸미콜란스(Thermococcus fumicolans), 써모코커스 CH5( Thermococcus sp. CH5), 써모코커스 셀레리크레센스(Thermococcus celericrescens), 써모코커스 리토랄리스( Thermococcus litoralis), 써모코커스 퍼시피쿠스(Thermococcus pacificus), 써모코커스 프로펀두스( Thermococcus profundus), 써모코커스 라디오톨러란스(Thermococcus radiotolerans), 써모코커스 스테테리( Thermococcus stetteri), 써모코커스 와이오타푸엔시스(Thermococcus waiotapuensis), 써모코커스 AM4( Thermococcus sp . AM4), 써모코커스 시비리쿠스(Thermococcus sibiricus), 써모코커스 코타카렌시스( Thermococcus kodakarensis), 써모코커스 감마톨러란스(Thermococcus gammatolerans), 써모코커스 바로필루스( Thermococcus barophilus), 써모코커스 4557(Thermococcus sp . 4557), 파이로코커스 퓨리오수스( Pyrococcus furiosus), 파이로코커스 어비시(Pyrococcus abyssi), 파이로코커스 야야노시( Pyrococcus yayanosii), 파이로코커스 NA2( Pyrococcus sp . NA2), 카복시도써무스 하이드로제노포만스( Carboxydothermus hydrogenofomans), 루브리비백스 젤라티노수스(Rubrivivax gelatinosus), 에스케리키아 콜라이( Escherichia coli), 로도스피릴룸 루브럼(Rhodospirillum rubrum), 무렐라 써모아세티카( Moorella thermoacetica), 클로스트리듐 오토에타노지눔(Clostridium autoethanogenum), 클로스트리듐 융달리(Clostridium ljungdahlii), 아세토박테리움 우디(Acetobacterium woodii), 유박테리움 리모숨( Eubacterium limosum), 클로스트리듐 카르복시디보란스(Clostridium carboxidivorans), 로도수도모나스 팔루스트리스( Rhodopseudomonas palustris)로 구성된 군에서 선택되는 어느 하나의 균주에서 유래한 유전자일 수 있다.In the new strain BCF12 derived from Thermococcus of the present invention, the CO dehydrogenase (CODH) is Thermococcus onnurineus NA1), Thermococcus CH5 ( Thermococcus sp. CH5), Thermo Rhodococcus and forehead sensor system (Thermococcus guaymasensis), Thermo Caucus Businesses fun Douce (Thermococcus profundus ), Thermo Lactococcus radio tolreo lance (Thermococcus radiotolerans), Thermo Lactococcus gamma tolreo lance (Thermococcus gammatolerans), Thermo caucus immediately fill Ruth (Thermococcus barophilus), Thermo Lactococcus AM4 (Thermococcus AM4), meta furnace Thermo bakteo Thermo auto trophy kusu (Methanothermobacter thermoautotrophicus), peeling booth Ake Ogle Douce (Archaeoglobus fulgidus ), Clostridium autoethanogenum , Clostridium ljungdahlii , Clostridium carboxidivorans , Oxobacter pfennigii , Pepto Streptococcus a production Tooth (Peptostreptococcus productus ), Acetonitrile tumefaciens Woody (Acetobacterium woodii ), Oil cake Te Solarium Limoges breath (Eubacterium limosum ), Butyribacterium methylotrophicum , Rubrivivax ( Rubrivivax gelatinosus ), Pseudomonas may also Palouse tris (Rhodopseudomonas palustris ), Iam also rilrum Lou beureom (Rhodospirillum rubrum ), Citrobacter Y19 ( Citrobacter sp Y19 ), Methanosarcina ( Methanosarcina) barkeri ), Meta nosal Sinai acetic Lance Thibault (Methanosarcina acetivorans), Non Relais Thermo acetic Utica (Moorella thermoacetica ), Non Pasteurella Thermo auto trophy car (Moorella thermoautotrophica), Pasteurella-free AMP (AMP Moorella strain), Carboxy FIG sseomeoseu hydrogenocarbonate's satiety (Carboxydothermus hydrogenoformans), carboxy-di bra Kiwoom wave As kusu (Carboxydibrachium pacificus ), Carboxydocella Sporoproduce Sense ( Carboxydocella sporoproducens ), Carboxydocella thermoautotrophica , Thermincola ( Thermincola) carboxydiphila ), Sseomin Cola Feria three Utica (Thermincola ferriacetica), Emory Shaw wrote bakteo carboxy diborane Lance (Thermolithobacter carboxydivorans), Thermo When Augustine carboxy diborane Lance (Thermosinus carboxydivorans ), Desulfotomaculum kuznetsovii , Disulfonic photos Do Coolum Thermo benjoyi Qom (Desulfotomaculum thermobenzoicum sub sp. thermosyntrophicum ), Disulfonic photos Do Coolum carboxy Lance Thibault (Desulfotomaculum carboxydivorans ) may be a gene derived from any one strain selected from the group consisting of, and the formic dehydrogenase (Fdh) is Thermococcus onnurineus NA1), Thermococcus fumicolans , Thermococcus CH5 ( Thermococcus sp. CH5), Thermo Caucus Selena Lee Crescent sense (Thermococcus celericrescens), Thermococcus litoralis (Thermococcus litoralis), Thermo Caucus flops you see Syracuse (Thermococcus pacificus), Thermo Caucus Businesses fun Douce (Thermococcus profundus), Thermo Caucus tolreo Radio Esperance (Thermococcus radiotolerans), Thermo Caucus Stephen Terry (Thermococcus stetteri ), Thermococcus waiotapuensis , Thermococcus AM4 ( Thermococcus sp . AM4), Thermo Lactococcus fertilization Li kusu (Thermococcus sibiricus), Thermo Lactococcus cotta Karen sheath (Thermococcus kodakarensis), Thermo Gamma Caucus tolreo Lance (Thermococcus gammatolerans), Thermo caucus immediately fill Ruth (Thermococcus barophilus ), Thermococcus 4557 (Thermococcus sp . 4557 ), Pyro's Caucus Purifying wastewater (Pyrococcus furiosus ), Pyrococcus abyssi , Pyro Caucus Yaya shi (Pyrococcus yayanosii ), Pyrococcus NA2 ( Pyrococcus sp . NA2 ), Carboxy also written mousse hydrogenocarbonate's satiety (Carboxydothermus hydrogenofomans ), Rubrivivax gelatinosus , Escherichia coli (Escherichia coli ), Rhodospirillum rubrum , Non Relais Thermo acetic Utica (Moorella thermoacetica ), Clostridium autoethanogenum , Clostridium ljungdahlii , Acetobacterium woodii , Oil cake Te Solarium Limoges breath (Eubacterium limosum ), Clostridium carboxidivorans , Pseudomonas may also Palouse tris (Rhodopseudomonas palustris ) may be a gene derived from any one strain selected from the group consisting of.

또한, 본 발명의 서모코커스 유래 신균주 BCF12에서, 상기 Fe-S 융합단백질은 전자전달의 통로 역할을 하는 전자전달 체인의 기능이 있으므로, 산화환원반응을 직접적으로 매개할 수 있다. 따라서, 상기 CO 탈수소효소에서 생성된 전자가 포름산 탈수소효소(fomrate dehydrogenase, Fdh)로 직접 전달되는데, 상기 포름산 탈수소효소(fomrate dehydrogenase, Fdh)가 숙신산 탈수소효소(succinate dehydrogenase), DMSO 환원효소(dimethyl sulfoxide(DMSO) reductase), 수소화효소(hydrogenase) 등으로 대체될 경우에도 전자전달 기능이 유지되는 효과가 있으며, 이 경우 대체되는 숙신산 탈수소효소(succinate dehydrogenase), DMSO 환원효소(dimethyl sulfoxide(DMSO) reductase), 수소화효소(hydrogenase)의 효소 종류에 따라 숙신산 생산, DMSO 환원, 및 수소 생산의 기능이 새롭게 부여되는 효과가 있다. In addition, in the thermococcus-derived strain BCF12 of the present invention, since the Fe-S fusion protein has a function of an electron transport chain that serves as a pathway for electron transport, it can directly mediate an oxidation-reduction reaction. Accordingly, electrons generated from the CO dehydrogenase are directly transferred to formic acid dehydrogenase (Fdh), wherein the formic acid dehydrogenase (Fdh) is succinic dehydrogenase, DMSO reductase (dimethyl sulfoxide) (DMSO) Reductase), when replaced with hydrogenase (hydrogenase), etc., has the effect of maintaining the electron transport function. In this case, the substituted succinic dehydrogenase, DMSO reductase (dimethyl sulfoxide (DMSO) reductase) , Depending on the type of enzyme of the hydrogenase (hydrogenase), there is an effect that the functions of succinic acid production, DMSO reduction, and hydrogen production are newly imparted.

또한, 본 발명의 서모코커스 유래 신균주 BCF12에서, 상기 일산화탄소:포름산 산화·환원효소(carbon monoxide:formate oxidoreductase, CFOR)는 분리 및 정제를 용이하게 위하여 추가적으로 "택(tag)"을 더 포함할 수 있다. 본 발명의 융합 단백질은 다양한 검출 가능한 표지 인자(tag)로 태깅될 수 있으며, 상기 택은 His(n), 플랙(flag), c-Myc, HA, V5, VSV-G 및 HSV을 포함하지만, 이에 한정되는 것은 아니다. "택(tag)"은 3개 내지 40개의 아미노산 서열을 가지는 폴리펩타이드 서열을 의미하며, 본 발명의 융합 단백질, 펩타이드, 단백질 리간드(예컨대, 본 발명의 융합 단백질) 또는 비-펩타이드 리간드에 특이적인 결합 친화성(affinity)을 부여한다. 또한, 본 발명에서 이용될 수 있는 택은 형광(fluorescent) 택, 발광(luminescent) 택 및 발색(chromogenic) 택을 포함할 수 있다. In addition, in the thermococcus-derived strain BCF12 of the present invention, the carbon monoxide:formate oxidoreductase (CFOR) may further include an additional "tag" to facilitate separation and purification. have. The fusion proteins of the invention can be tagged with a variety of detectable labeling factors, the tag including His(n), flag, c-Myc, HA, V5, VSV-G and HSV, It is not limited to this. “Tag” means a polypeptide sequence having 3 to 40 amino acid sequences, and is specific for a fusion protein, peptide, protein ligand (eg, fusion protein of the invention) or non-peptide ligand of the invention It imparts binding affinity. In addition, the tags that can be used in the present invention may include a fluorescent tag, a luminescent tag, and a chromogenic tag.

본 발명의 서모코커스 유래 신균주 BCF12에서, 상기 일산화탄소:포름산 산화·환원효소(carbon monoxide:formate oxidoreductase, CFOR)는 서열번호 12의 CO 탈수소효소(CO dehydrogenase, CODH), 서열번호 13의 Fe-S 융합단백질, 및 서열번호 14의 포름산 탈수소효소(fomrate dehydrogenase, Fdh)가 작동가능하게 연결된 서열번호 15의 아미노산 서열을 갖는 것을 특징으로 한다. In the new strain BCF12 derived from Thermococcus of the present invention, the carbon monoxide:formate oxidoreductase (CFOR) is CO dehydrogenase (CO dehydrogenase, CODH) of SEQ ID NO: 12, Fe-S of SEQ ID NO: 13 The fusion protein and formic acid dehydrogenase (Fdh) of SEQ ID NO: 14 are characterized by having an amino acid sequence of SEQ ID NO: 15 operably linked thereto.

본 발명은 서열번호 15의 아미노산 서열을 포함하는 단백질과 실질적으로 동일한 아미노산 서열을 갖는 단백질 및 이의 변이체 또는 이의 활성 단편을 포함한다. 상기 실질적으로 동일한 단백질이란 80% 이상, 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 아미노산 서열의 상동성을 갖는 것들을 의미하나 이에 한정되지 않으며, 80% 이상의 아미노산 서열의 상동성을 가지며 동일한 효소 활성을 가진다면 본 발명의 범위에 포함된다.The present invention includes proteins having an amino acid sequence substantially identical to a protein comprising the amino acid sequence of SEQ ID NO: 15 and variants or active fragments thereof. The substantially identical protein means, but is not limited to, those having 80% or more, preferably 90% or more, and most preferably 95% or more of amino acid sequence homology, and having 80% or more amino acid sequence homology and identical If it has enzyme activity, it is included in the scope of the present invention.

본 발명의 서모코커스 유래 신균주 BCF12에서, 상기 일산화탄소:포름산 산화·환원효소(carbon monoxide:formate oxidoreductase, CFOR)를 인코딩 하는 16의 뉴클레오타이드 서열로 예시할 수 있지만, 이에 한정되는 것은 아니고, 상기 일산화탄소:포름산 산화·환원효소 단백질을 인코딩하는 뉴클레오타이드 서열이라면 어떠한 것도 이용될 수 있다는 것은 당업자에게 자명하다. In the new strain BCF12 derived from Thermococcus of the present invention, the carbon monoxide may be exemplified by 16 nucleotide sequences encoding the carbon monoxide:formate oxidoreductase (CFOR), but is not limited thereto. It is apparent to those skilled in the art that any nucleotide sequence encoding formic acid redox protein can be used.

본 발명의 상기 일산화탄소:포름산 산화·환원효소(carbon monoxide:formate oxidoreductase, CFOR) 및 이들의 변이체 또는 이의 활성 단편을 암호화하는 유전자는 암호화 영역으로부터 발현되는 단백질의 아미노산 서열을 변화시키지 않는 범위 내에서 암호화 영역에 대한 다양한 변형이 이루어질 수 있고, 암호화 영역을 제외한 부분에서도 유전자의 발현에 영향을 미치지 않는 범위 내에서 치환, 결실, 삽입 또는 이들의 조합에 의한 다양한 변이가 이루어질 수 있으며, 이러한 변이 유전자 역시 본 발명의 범위에 포함된다. 따라서 본 발명은 상기 일산화탄소:포름산 산화·환원효소(carbon monoxide:formate oxidoreductase, CFOR)를 인코딩하는 뉴클레오타이드 서열과 실질적으로 동일한 뉴클레오타이드 서열과 이의 단편을 포함한다. 상기 실질적으로 동일한 뉴클레오타이드 서열은 80% 이상, 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 서열 상동성을 갖는 것들을 의미하나, 이에 한정되는 것은 아니며, 80% 이상의 서열 상동성을 가지며 암호화된 단백질이 동일한 효소 활성을 가진다면 본 발명에 포함된다. Genes encoding the carbon monoxide:formate oxidoreductase (CFOR) and variants or active fragments thereof of the present invention are encoded within a range that does not change the amino acid sequence of the protein expressed from the coding region Various modifications can be made to the region, and various mutations can be made by substitution, deletion, insertion, or a combination thereof within a range that does not affect the expression of the gene even in areas other than the coding region. It is included in the scope of the invention. Accordingly, the present invention includes a nucleotide sequence substantially identical to a nucleotide sequence encoding the carbon monoxide:formate oxidoreductase (CFOR) and a fragment thereof. The substantially identical nucleotide sequence means those having sequence homology of 80% or more, preferably 90% or more, and most preferably 95% or more, but is not limited thereto, and has 80% or more sequence homology and is encoded. If the protein has the same enzyme activity, it is included in the present invention.

본 발명의 서모코커스 유래 신균주 BCF12는 (a) 상기 일산화탄소:포름산 산화·환원효소(carbon monoxide:formate oxidoreductase, CFOR)를 인코딩하는 뉴클레오타이드 서열; 및 (b) 상기 뉴클레오타이드 서열에 작동가능하게 연결된(operatively linked) 프로모터를 포함하는 재조합 벡터가 세포 내로 도입되어 형질전환된 것을 특징으로 한다. 본 명세서에서 사용되는 용어 "프로모터"는 코딩 서열 또는 기능적 RNA의 발현을 조절하는 DNA 서열을 의미한다. 본 발명의 재조합 발현벡터에서 발현대상물질(즉, 일산화탄소:포름산 산화·환원효소)-인코딩 뉴클레오타이드 서열은 상기 프로모터에 작동가능하게 연결된다.The thermococcus-derived strain BCF12 of the present invention includes (a) a nucleotide sequence encoding the carbon monoxide:formate oxidoreductase (CFOR); And (b) a recombinant vector comprising a promoter operatively linked to the nucleotide sequence is introduced into a cell and transformed. The term "promoter" as used herein refers to a DNA sequence that regulates the expression of a coding sequence or functional RNA. In the recombinant expression vector of the present invention, an expression target material (ie, carbon monoxide: formic acid oxidation/reductase)-encoding nucleotide sequence is operably linked to the promoter.

본 발명의 벡터 시스템은 당업계에 공지된 다양한 방법을 통해 구축될 수 있으며, 이에 대한 구체적인 방법은 Sambrook et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, 2001)에 개시되어 있으며, 이 문헌은 본 명세서에 참조로서 삽입된다.The vector system of the present invention can be constructed through various methods known in the art, and specific methods thereof are disclosed in Sambrook et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, 2001), This document is incorporated herein by reference.

본 발명의 발현 벡터가 원핵 세포를 숙주로 하는 경우에는, 전사를 진행시킬 수 있는 강력한 프로모터(예컨대, tac 프로모터, lac 프로모터, lacUV5 프로모터, lpp 프로모터, pL프로모터, pR프로모터, rac5 프로모터, amp 프로모터, recA 프로모터, SP6 프로머터, trp 프로모터 및 T7 프로모터 등), 해독의 개시를 위한 라이보좀 결합 자리 및 전사/해독 종결 서열을 포함하는 것이 일반적이다. 이때, 박테리아 복제 개시점은 긴 DNA 삽입물(inserts)의 안정적인 박테리아 복제에 유용한 당업계에 잘 알려진 복제 개시점들로부터 선택될 수 있으며, ColE1, F-인자(F-factor) 및 P1 레플리콘(replicon)을 포함하지만, 이에 한정되는 것은 아니다. 본 발명의 박테리아 선택마커는 당업계에 알려진 박테리아 선택마커 유전자를 이용할 수 있다. 예를 들어, 박테리아 선택마커 유전자는 암피실린, 카나마이신, 테트라사이클린, 제오신, 네오마이신, 하이그로마이신 및 클로람페니콜 같은 항생제에 대한 저항성을 부여하는 유전자들을 포함하지만, 이에 한정되는 것은 아니다. 숙주 세포로서 E. coli가 이용되는 경우, E. coli 트립토판 생합성 경로의 프로모터 및 오퍼레이터 부위(Yanofsky, C., J. Bacteriol., 158:1018-1024, 1984) 그리고 파아지 λ의 좌향 프로모터(pLλ프로모터, Herskowitz, I. and Hagen, D., Ann. Rev. Genet., 14:399-445 (1980))가 조절 부위로써 이용될 수 있다.When the expression vector of the present invention is a prokaryotic cell as a host, strong promoters (eg, tac promoter, lac promoter, lacUV5 promoter, lpp promoter, pL promoter, pR promoter, rac5 promoter, amp promoter, which can progress transcription) It is common to include the recA promoter, SP6 promoter, trp promoter and T7 promoter, etc.), ribosome binding sites for initiation of translation, and transcription/detox termination sequences. At this time, the bacterial replication starting point may be selected from replication starting points well known in the art useful for stable bacterial replication of long DNA inserts, ColE1, F-factor and P1 replicon ( replicon). The bacterial selection marker of the present invention can use a bacterial selection marker gene known in the art. For example, bacterial selection marker genes include, but are not limited to, genes that confer resistance to antibiotics such as ampicillin, kanamycin, tetracycline, zeocin, neomycin, hygromycin and chloramphenicol. When E. coli is used as a host cell, the promoter and operator site of the E. coli tryptophan biosynthetic pathway (Yanofsky, C., J. Bacteriol., 158:1018-1024, 1984) and the phage λ leftward promoter (pLλ promoter) , Herskowitz, I. and Hagen, D., Ann. Rev. Genet., 14:399-445 (1980)) can be used as regulatory sites.

또한, 본 발명의 재조합 벡터가 진핵세포에 적용되는 경우에 이용될 수 있는 프로모터는 본 발명의 발현대상물질의 전사를 조절할 수 있는 것으로서, 포유동물 바이러스로부터 유래된 프로모터 및 포유동물 세포의 게놈(genome)으로부터 유래된 프로모터를 포함하며, 예컨대, CMV(cytomegalo virus) 프로모터, 아데노바이러스 후기 프로모터, 백시니아 바이러스 7.5K 프로모터, SV40 프로모터, HSV의 tk 프로모터, RSV 프로모터, EF1 알파 프로모터, 메탈로티오닌 프로모터, 베타-액틴 프로모터, 인간 IL-2 유전자의 프로모터, 인간 IFN 유전자의 프로모터, 인간 IL-4 유전자의 프로모터, 인간 림포톡신 유전자의 프로모터 및 인간 GM-CSF 유전자의 프로모터를 포함하나, 이에 한정되는 것은 아니다.In addition, a promoter that can be used when the recombinant vector of the present invention is applied to eukaryotic cells can regulate the transcription of the expression target material of the present invention, a promoter derived from a mammalian virus and a genome of a mammalian cell ), for example, CMV (cytomegalo virus) promoter, adenovirus late promoter, vaccinia virus 7.5K promoter, SV40 promoter, HSV tk promoter, RSV promoter, EF1 alpha promoter, metallothionine promoter , Beta-actin promoter, promoter of human IL-2 gene, promoter of human IFN gene, promoter of human IL-4 gene, promoter of human lymphotoxin gene and promoter of human GM-CSF gene, but is not limited to this no.

바람직하게는, 본 발명에 이용되는 재조합 벡터는 폴리 아데닐화 서열을 포함한다(예: 소 성장 호르몬 터미네이터 또는 SV40 유래 폴리 아데닐화 서열).Preferably, the recombinant vector used in the present invention includes a poly adenylation sequence (eg, a bovine growth hormone terminator or a polyadenylation sequence derived from SV40).

상기 벡터는 벡터를 함유하는 숙주 세포를 선택하기 위한 선택성 마커를 포함할 수 있다. 선택마커는 벡터로 형질전환된 세포를 선별하기 위한 것으로, 약물 내성, 영양 요구성, 세포 독성제에 대한 내성 또는 표면 단백질의 발현과 같은 선택가능 표현형을 부여하는 마커들이 사용될 수 있다. 선택제(selective agent)가 처리된 환경에서 선별 마커를 발현하는 세포만 생존하므로 형질전환된 세포가 선별 가능하다. 또한, 벡터는 복제가능한 발현벡터인 경우, 복제가 개시되는 특정 핵산 서열인 복제원점(replication origin)을 포함할 수 있다. The vector can include a selectable marker for selecting a host cell containing the vector. The selection marker is for selecting cells transformed with a vector, and markers conferring a selectable phenotype such as drug resistance, nutritional demand, resistance to cytotoxic agents, or expression of surface proteins can be used. In the environment where the selective agent is treated, only the cells expressing the selection marker survive, so that the transformed cells can be selected. In addition, in the case of a replicable expression vector, the vector may include a replication origin, which is a specific nucleic acid sequence in which replication is initiated.

세균 숙주에 사용할 수 있는 발현 벡터에는 pET, pRSET, pBluescript, pGEX2T, pUC 벡터, col E1, pCR1, pBR322, pMB9 및 이들의 유도체와 같이 대장균(Escherichia coli)에서 얻어지는 세균성 플라스미드, RP4와 같이 보다 넓은 숙주 범위를 갖는 플라스미드, λgt10과 λgt11, NM989와 같은 매우 다양한 파지 람다(phage lambda) 유도체로 예시될 수 있는 파지 DNA, 및 M13과 필라멘트성 단일가닥의 DNA 파지와 같은 기타 다른 DNA 파지가 포함된다. 특히, 대장균에서의 발현을 위해서는 안트라닐레이트 합성효소(TrpE) 및 카르복시 말단의 폴리링커를 코딩하는 DNA 서열을 포함할 수 있으며, 다른 발현 벡터 시스템은 베타-갈락토시다제(pEX); 람다 PL 말토스 결합 단백질(pMAL); 및 글루타치온 S-트랜스퍼레이즈(pGST)에 기초한다(Gene 67:31, 1988; Peptide Research 3:167, 1990).Expression vectors that can be used for bacterial hosts include bacterial plasmids obtained from Escherichia coli, such as pET, pRSET, pBluescript, pGEX2T, pUC vectors, col E1, pCR1, pBR322, pMB9, and derivatives thereof, and broader hosts such as RP4 Plasmids with a range, λgt10 and λgt11, phage DNA that can be exemplified by a wide variety of phage lambda derivatives such as NM989, and other DNA phages such as M13 and filamentous single-stranded DNA phage. In particular, for expression in E. coli, an anthranylate synthase (TrpE) and a carboxy terminus may include a DNA sequence encoding a polylinker, and other expression vector systems include beta-galactosidase (pEX); Lambda PL maltose binding protein (pMAL); And glutathione S-transferase (pGST) (Gene 67:31, 1988; Peptide Research 3:167, 1990).

본 발명의 벡터를 숙주 세포 내로 운반하는 방법은 당업계에 공지된 다양한 방법들을 이용할 수 있으며, 예를 들어 숙주 세포가 원핵세포인 경우, CaCl2 방법(Cohen, S.N. et al., Proc. Natl. Acac. Sci. USA, 9:2110-2114 (1973)), 하나한 방법(Cohen, S.N. et al., Proc. Natl. Acac. Sci. USA, 9:2110-2114 (1973); 및 Hanahan, D., J. Mol. Biol., 166:557-580 (1983)) 및 전기천공 방법(Dower, W.J. et al., Nucleic. Acids Res., 16:6127-6145 (1988)) 등에 의해 실시될 수 있으며, 진핵세포인 경우, 트랜스덕션(transduction), 전기천공법(electroporation), 리포펙션(lipofection), 마이크로인젝션, 유전자총(particle bombardment), YAC에서 이용되는 효모 구형질체/세포 융합, 식물세포에서 이용되는 아그로박테리움-매개된 형질전환 등을 이용하여 실시할 수 있다.The method for transporting the vector of the present invention into a host cell may use various methods known in the art, for example, when the host cell is a prokaryotic cell, the CaCl 2 method (Cohen, SN et al., Proc. Natl. Acac. Sci. USA, 9:2110-2114 (1973)), one method (Cohen, SN et al., Proc. Natl. Acac. Sci. USA, 9:2110-2114 (1973); and Hanahan, D ., J. Mol. Biol., 166:557-580 (1983)) and electroporation methods (Dower, WJ et al., Nucleic. Acids Res., 16:6127-6145 (1988)). In the case of eukaryotic cells, in transduction, electroporation, lipofection, microinjection, particle bombardment, yeast spheroid/cell fusion used in YAC, in plant cells Agrobacterium-mediated transformation can be used.

또한, 본 발명의 재조합 발현벡터를 이용하여 형질전환된 동물세포의 제조는 당업계에 통상적으로 공지된 유전자 전이방법에 의해 실시될 수 있다. 예를 들어, 전기동공법(electroporation), 리포좀-매개 전이방법(Wong, 등, 1980) 및 레트로바이러스-매개 전이방법(Chen, H.Y., et al., (1990), J. Reprod. Fert. 41: 173-182; Kopchick, J.J. et al., (1991) Methods for the introduction of recombinant DNA into chicken embryos. In Transgenic Animals, ed. N.L. First & F.P. Haseltine, pp.275-293, Boston; Butterworth-Heinemann; Lee, M.-R. and Shuman, R. (1990) Proc. 4th World Congr. Genet. Appl. Livestock Prod. 16, 107-110)을 포함하지만, 이에 한정되는 것은 아니다.In addition, the production of animal cells transformed with the recombinant expression vector of the present invention can be carried out by gene transfer methods commonly known in the art. For example, electroporation, liposome-mediated transfer (Wong, et al., 1980) and retrovirus-mediated transfer (Chen, HY, et al., (1990), J. Reprod. Fert. 41: 173-182; Kopchick, JJ et al., (1991) Methods for the introduction of recombinant DNA into chicken embryos.In Transgenic Animals, ed.NL First & FP Haseltine, pp.275-293, Boston; Butterworth-Heinemann; Lee , M.-R. and Shuman, R. (1990) Proc. 4th World Congr. Genet. Appl. Livestock Prod. 16, 107-110).

또한, 본 발명의 다른 양태에 따르면, 본 발명은 상기 본 발명의 서모코커스 유래 신균주 BCF12(수탁번호: KCTC 13649BP)를 배양하여 일산화탄소:포름산 산화·환원효소(carbon monoxide:formate oxidoreductase, CFOR)를 발현시키는 단계를 포함하는 일산화탄소:포름산 산화·환원효소(carbon monoxide:formate oxidoreductase, CFOR)의 제조방법을 제공한다.In addition, according to another aspect of the present invention, the present invention is to cultivate a new strain BCF12 derived from Thermococcus of the present invention (Accession No.: KCTC 13649BP) to carbon monoxide: formic acid oxidoreductase (CFOR). It provides a method for producing carbon monoxide:formate oxidoreductase (CFOR), which includes the step of expressing.

아울러, 본 발명의 다른 양태에 따르면, 본 발명은 (a) 상기 서모코커스 유래 신균주 BCF12(수탁번호: KCTC 13649BP) 균주 또는 상기 일산화탄소:포름산 산화·환원효소(carbon monoxide:formate oxidoreductase, CFOR)의 존재 하에 CO 가스를 공급하여, CO 가스로부터 포름산을 합성하는 단계; 및 (b) 상기 합성된 포름산을 회수하는 단계를 포함하는 포름산의 제조방법을 제공한다.In addition, according to another aspect of the present invention, the present invention is (a) the strain of the strain BCF12 derived from the thermococcus (Accession No.: KCTC 13649BP) or the carbon monoxide: formic acid oxidation and reduction enzyme (carbon monoxide:formate oxidoreductase, CFOR) Supplying CO gas in the presence to synthesize formic acid from the CO gas; And (b) recovering the synthesized formic acid.

이상 설명한 바와 같이, 본 발명의 서모코커스 유래 신균주 BCF12는 Fe-S 단백질 유래 Fe-S 융합단백질을 매개로 하여 CO 탈수소효소(CO dehydrogenase, CODH)와 포름산 탈수소효소(formate dehydrogenase)를 물리적으로 직접 결합하여 CO 탈수소효소에서 생성된 전자가 Fe-S 융합단백질의 Fe-S 클러스터를 통해 포름산 탈수소효소에 직접적으로 전달되는 일산화탄소:포름산 산화·환원효소(carbon monoxide:formate oxidoreductase, CFOR)가 형질전환된 균주로, 기존에 없던 새로운 일산화탄소:포름산 산화·환원효소(carbon monoxide:formate oxidoreductase, CFOR) 반응을 이용해 포름산 생성의 반응속도 및 수율을 획기적으로 개선할 수 있는 장점이 있다. As described above, the thermococcus-derived strain BCF12 of the present invention physically directly directs CO dehydrogenase (CODH) and formic acid dehydrogenase via a Fe-S fusion protein derived from Fe-S protein. Carbon monoxide:formate oxidoreductase (CFOR) transformed by electrons generated from CO dehydrogenase and directly transferred to formic acid dehydrogenase through Fe-S cluster of Fe-S fusion protein As a strain, it has the advantage of dramatically improving the reaction rate and yield of formic acid production by using a new carbon monoxide:formate oxidoreductase (CFOR) reaction that was not previously available.

또한, 세포 내에서 효소들이 물리적으로 고정된 상태로 존재할 수 있도록 함으로써, 각 효소들의 안정성 또한 확보할 수 있다.In addition, by allowing enzymes to exist in a physically fixed state in a cell, stability of each enzyme can also be secured.

도 1은 본 발명 균주에 도입된 일산화탄소:포름산 산화·환원효소(carbon monoxide:formate oxidoreductase, CFOR)의 구조를 설명하는 그림으로, CO 탈수소효소(CO dehydrogenase, CODH)에 의해 CO 가스가 산화되며 발생한 전자가 전자전달 체인인 Fe-S 융합단백질에 존재하는 Fe-S cluster(◇)를 통해 이동하여 CO2 환원효소(CO2 reductase)인 포름산 탈수소효소(formate dehydrogenase, FDH)에 전달됨으로써 효소 반응에 의해 이산화탄소(CO2)가 포름산으로 전환되는 일련의 과정을 설명하는 그림이다.
도 2는 일반적으로 Fe-S 단백질(Iron-sulfur protein)에 존재하는 Fe-S 클러스터의 종류를 설명하는 모식도이다.
도 3은 Fe-S 클러스터를 포함하고 있는 페레독신(ferredoxin)(A)과 포름산 탈수소효소(formate dehydrogenase, FDH)의 단백질 구조를 나타내는 그림이다.
도 4는 CO 탈수소효소(CO dehydrogenase, CODH) 및 포름산 탈수소효소(formate dehydrogenase)를 재조합하여 일산화탄소:포름산 산화·환원효소(carbon monoxide:formate oxidoreductase, CFOR)의 유전자를 생성하는 과정을 나타내는 그림이다.
도 5는 일산화탄소:포름산 산화·환원효소(carbon monoxide:formate oxidoreductase, CFOR)의 유전자가 숙주세포의 유전체에 삽입되어 제조된 각각의 형질전환체가 갖는 유전자 구조를 설명하는 그림이다[(A) T. onnurineus NA1 게놈에 존재하는 fdh3codh 유전자 군집 모식도와 클로닝에 사용한 타겟 유전자; (B) TON_0541과 TON_1017 간의 융합단백질 제작. Flexible linker인 ‘GGGGS’ 아미노산이 1개(T. onnurineus BCF01), 2개(T. onnurineus BCF02), 및 3개(T. onnurineus BCF03) 적용된 균주의 클로닝 모식도; (C) TON_0540과 TON_1017 간의 융합단백질 제작. Flexible linker인 ‘GGGGS’ 아미노산이 1개(T. onnurineus BCF12) 적용된 균주의 클로닝 모식도].
도 6은 CO 조건 하에서, 일산화탄소:포름산 산화·환원효소(carbon monoxide:formate oxidoreductase, CFOR)가 도입된 형질전환체(T. onnurineus BCF01, BCF02, BCF03, 및 BCF12)들의 세포 성장(A) 및 포름산 생산(B) 변화를 측정한 그래프이다.
도 7은 본 발명의 서모코커스 유래 신균주 BCF12의 Resting cell 실험을 통한 CO 가스의 포름산으로의 생전환 성능을 분석한 결과를 나타내는 그래프이다.
도 8은 본 발명의 서모코커스 유래 신균주 BCF12에서 합성된 일산화탄소:포름산 산화·환원효소(carbon monoxide:formate oxidoreductase, CFOR)의 PAGE 결과 사진이다.
도 9는 버퍼의 종류를 달리한 일산화탄소:포름산 산화·환원효소(carbon monoxide:formate oxidoreductase, CFOR)의 CO 가스-포름산 생전환 효소활성을 분석한 결과를 나타내는 그래프이다.
도 10은 일산화탄소:포름산 산화·환원효소(carbon monoxide:formate oxidoreductase, CFOR)를 도입한 본 발명의 서모코커스 유래 신균주 BCF12 균주의 생물반응기 운전 결과를 나타내는 그래프이다.
1 is a diagram illustrating the structure of carbon monoxide:formate oxidoreductase (CFOR) introduced into a strain of the present invention, and CO gas is oxidized by CO dehydrogenase (CODH). the enzymatic reaction whereby electrons are transferred to the electron transport chain of Fe-S cluster (◇) by the movement through CO 2 reduction enzyme formate dehydrogenase (formate dehydrogenase, FDH) (CO 2 reductase) present in the Fe-S fusion protein It is a picture explaining the process by which carbon dioxide (CO 2 ) is converted to formic acid.
FIG. 2 is a schematic diagram illustrating the types of Fe-S clusters present in Fe-S protein (Iron-sulfur protein).
Figure 3 is a diagram showing the protein structure of ferredoxin (ferredoxin) (A) and formic acid dehydrogenase (formate dehydrogenase, FDH) containing Fe-S cluster.
FIG. 4 is a diagram showing a process of generating a gene of carbon monoxide:formate oxidoreductase (CFOR) by recombining CO dehydrogenase (CODH) and formic acid dehydrogenase.
5 is a diagram illustrating the gene structure of each transformant prepared by inserting a gene of carbon monoxide:formate oxidoreductase (CFOR) into the genome of a host cell [(A) T. the target gene used for the gene cluster fdh3 and codh schematic view and cloned present in onnurineus NA1 genome; (B) Production of a fusion protein between TON_0541 and TON_1017. Flexible linker'GGGGS' amino acid 1 ( T. onnurineus BCF01), 2 ( T. onnurineus BCF02), and 3 ( T. onnurineus BCF03) cloning schematic diagram of the applied strain; (C) Production of a fusion protein between TON_0540 and TON_1017. Flexible linker'GGGGS' amino acid 1 ( T. onnurineus BCF12) applied cloning schematic].
FIG. 6 shows cell growth (A) and formic acid of transformants ( T. onnurineus BCF01, BCF02, BCF03, and BCF12) introduced with carbon monoxide:formate oxidoreductase (CFOR) under CO conditions. It is a graph measuring changes in production (B).
7 is a graph showing the results of analyzing the bioconversion performance of CO gas to formic acid through the Resting cell experiment of the thermococcus-derived strain BCF12 of the present invention.
8 is a photo of PAGE results of carbon monoxide:formate oxidoreductase (CFOR) synthesized from thermococcus-derived strain BCF12 of the present invention.
9 is a graph showing the results of analyzing the CO gas-formic acid bioconversion enzyme activity of carbon monoxide:formate oxidoreductase (CFOR) with different buffer types.
10 is a graph showing the results of the operation of the bioreactor of the strain BCF12 of the mycobacteria derived from thermococcus of the present invention in which carbon monoxide:formate oxidoreductase (CFOR) is introduced.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것이므로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다.Hereinafter, the present invention will be described in more detail through examples. Since these examples are only for illustrating the present invention, it should not be construed that the scope of the present invention is limited by these examples.

실시예Example 1. One. 일산화탄소:포름산Carbon monoxide: Formic acid 산화·환원효소 융합 단백질의 Of oxidative and reductase fusion proteins 클로닝Cloning

일산화탄소:포름산 산화·환원효소(carbon monoxide:formate oxidoreductase, CFOR)의 발현벡터로는 fosmid vector pCC1FOS로부터 유래된 pNA1comFosC1096이 사용되었다. As the expression vector of carbon monoxide:formate oxidoreductase (CFOR), pNA1comFosC1096 derived from fosmid vector pCC1FOS was used.

pNA1comFosC1096은 pCC1FOS으로부터 숙주세포로 사용되는 써모코커스 온누리누스(Thermococcus onnurineus) NA1의 TON_1126 및 TON_1127 사이에 insert DNA가 삽입될 수 있도록 1kb의 측부영역을 가지며 제작되었다. pNA1comFosC1096 was constructed with a side region of 1 kb so that insert DNA could be inserted between TON_1126 and TON_1127 of Thermococcus onnurineus NA1 used as a host cell from pCC1FOS.

Insert DNA는 스트롱 프로모터(strong promoter)인 P0157 프로모터와 심바스타틴(simvastatin)에 저항성을 가지도록 HMG-CoA 환원효소(reductase)와 함께 삽입되도록 하였다.Insert DNA was inserted with HMG-CoA reductase to be resistant to the strong promoter P 0157 promoter and simvastatin.

써모코커스 온누리누스(Thermococcus onnurineus) NA1의 fdh3 영역(TON_0539-0541)과 codh 영역(TON_1017-1020)을 PCR을 통해 증폭하였으며, pFd3CoL1C1118, pFd3CoL2C1119, 및 pFd3CoL1C1120의 재조합 플라스미드는 각각 Fe-S 단백질인 TON_0541과 TON_1017이 linker (GGGGS)1, (GGGGS)2, 및 (GGGGS)3를 통해 융합되도록 제작하였다. 재조합 플라스미드 pFd3NHisCoL1C1128은 pFd3CoL1C1118과 동일한 구조를 가지고 있으며, Fdh3 N-말단에 His6-tag을 삽입하여 His-tag affinity chromatography를 통해 분리가 가능하도록 하였다. Thermococcus onnurineus ) The fdh3 region (TON_0539-0541) and codh region (TON_1017-1020) of NA1 were amplified through PCR, and the recombinant plasmids of pFd3CoL1C1118, pFd3CoL2C1119, and pFd3CoL1C1120 were Fe-S proteins, respectively, TON_0541 and TON_1017 linker (GG) It was constructed to be fused through 1 , (GGGGS) 2 , and (GGGGS) 3 . The recombinant plasmid pFd3NHisCoL1C1128 has the same structure as pFd3CoL1C1118, and His 6 -tag is inserted into the Fdh3 N-terminus to allow separation through His-tag affinity chromatography.

재조합 플라스미드 pFd3NHisCoL1C1132는 CFOR의 구조를 단순화하고 CO로부터 포름산으로의 전환 효율을 증대시키기 위하여 제작하였다. fdh3 영역의 TON_0540과 TON_0541은 모두 Fe-S 단백질로서 전자전달에 관여하는 소단위이다. 앞서 TON_0541과 TON_1017이 linker를 통해 융합되도록 제작한 반면, pFd3NHisCoL1C1132는 TON_0540과 TON_1017이 직접 연결되도록 제작하였다. 또한, Fdh3 N-말단에 His6-tag을 삽입하여 CFOR 단백질의 분리가 가능하도록 하였다.The recombinant plasmid pFd3NHisCoL1C1132 was constructed to simplify the structure of CFOR and increase the conversion efficiency of CO to formic acid. TON_0540 and TON_0541 of the fdh3 region are both Fe-S proteins and are small units involved in electron transport. Previously, TON_0541 and TON_1017 were manufactured to be fused through a linker, whereas pFd3NHisCoL1C1132 was manufactured to directly connect TON_0540 and TON_1017. In addition, a His 6- tag was inserted into the Fdh3 N-terminus to allow separation of the CFOR protein.

돌연변이주 D04의 제작을 위하여 fdh3 유전자 영역이 유전체상에서 제거되도록 하였는데, 이를 위하여 pUC118 vector로부터 유래된 재조합 플라스미드 pldFdh3clusterA를 제작하였다. pldFdh3clusterA는 선택 마커(selection marker)로서 심바스타틴(simvastatin) 저항성 유전자인 HMG-CoA 환원효소(reductase)를 가지고 있으며, 제거하고자 하는 유전자 fdh3 영역(TON_0539-0542)의 측부영역 1kb를 각각 Right arm(RA), Left arm(LA)으로 삽입하였다. Fdh3 for construction of mutant D04 The gene region was removed from the genome, and for this purpose, a recombinant plasmid pldFdh3clusterA derived from the pUC118 vector was constructed. pldFdh3clusterA is a selection marker, and it has the simvastatin resistance gene HMG-CoA reductase, and the side region 1kb of the gene fdh3 region (TON_0539-0542) to be removed is a right arm (RA). , Left arm (LA) was inserted.

각각의 재조합 플라스미드에 삽입된 프라이머 서열은 하기 표 3에 나타내었다. Primer sequences inserted into each recombinant plasmid are shown in Table 3 below.

[표 3][Table 3]

Figure 112018112283774-pat00003
Figure 112018112283774-pat00003

실시예 2. 돌연변이주의 제작Example 2. Construction of mutant strains

써모코커스 온누리누스(Thermococcus onnurineus)의 돌연변이주 D01은 fdh2C(TON_1563-1564)와 fdh3(TON_0539)을 각각 유전체 상에서 제거한 돌연변이 균주이다. 돌연변이주 D02는 D01을 모균주로 하여 fdh1C(TON_0280-0281)를 유전체 상에서 제거하였으며, 돌연변이주 D04는 D02를 모균주로 하여 fdh3C(TON_0539-0542)가 모두 제거되도록 제작하였다. The mutant strain D01 of Thermococcus onnurineus is a mutant strain in which fdh2C ( TON_1563-1564) and fdh3 (TON_0539) are removed from the genome, respectively. The mutant D02 was made to remove fdh1C (TON_0280-0281) from the genome with D01 as the parent strain, and the mutant D04 was constructed to remove all fdh3 C (TON_0539-0542) with D02 as the parent strain.

써모코커스 온누리누스(Thermococcus onnurineus)의 형질전환을 위하여 말토덱스트린(maltodextrin)이 첨가된 MM1(modified medium 1) 배지에서 전배양하여 써모코커스 온누리누스(Thermococcus onnurineus)의 배양체를 확보하였다. 이를 0.8X Artificial Sea Water(ASW)에 재부유(resuspension) 한 후, 실시예 1의 재조합 플라스미드 5μg을 첨가하여, 이를 80℃에서 열 충격(heat shock)을 통해 세포 내로 도입하였다. 그 후 소량의 배지를 첨가하여 80℃에서 2시간 동안 안정화시켰다. 안정화된 형질전환 세포를 심바스타틴(simvastatin)이 10μM이 포함된 배지에 접종하여 배양하고 2회 계대하여 충분히 농후 배양되도록 하였다. 이후 단일 콜로니(single colony)를 얻어 PCR을 통해 유전자형을 확인하였다.For the transformation of a thermodynamic Lactococcus Onnuri Taunus (Thermococcus onnurineus) and preincubated in a maltodextrin (maltodextrin) is added to the MM1 (modified medium 1) medium was secured cultures of Lactococcus Thermo Onnuri Taunus (Thermococcus onnurineus). After resuspension of it in 0.8X Artificial Sea Water (ASW), 5 μg of the recombinant plasmid of Example 1 was added, and this was introduced into the cell through heat shock at 80°C. Then, a small amount of medium was added to stabilize at 80° C. for 2 hours. The stabilized transformed cells were inoculated into a medium containing 10 μM of simvastatin and cultured, and then passaged twice to ensure sufficient enrichment. After that, a single colony was obtained and genotype was confirmed by PCR.

돌연변이주 BCF01, BCF02, BCF03은 D02를 모균주로 하여 fdh3 영역(TON_0538-0541)과 codh 영역(TON_1017-1020)이 각각 linker (GGGGS)1, (GGGGS)2, 및 (GGGGS)3로 융합되도록 제작하였다. Mutant strains BCF01, BCF02, and BCF03 are D02 as a parent strain so that the fdh3 region (TON_0538-0541) and the codh region (TON_1017-1020) are fused to linker (GGGGS) 1 , (GGGGS) 2 , and (GGGGS) 3 , respectively. It was produced.

돌연변이주 BCF01, BCF02, BCF03은 각각 pFd3CoL1C1118, pFd3CoL2C1119, 및 pFd3CoL3C1120의 재조합 플라스미드에 의하여 형질전환 되었으며, 재조합 플라스미드에 도입된 일산화탄소:포름산 산화·환원효소(carbon monoxide:formate oxidoreductase, CFOR)는 써모코커스 온누리누스(Thermococcus onnurineus)의 TON_1126과 TON_1127 사이에 삽입되었다. The mutant strains BCF01, BCF02, and BCF03 were transformed with recombinant plasmids of pFd3CoL1C1118, pFd3CoL2C1119, and pFd3CoL3C1120, respectively. ( Thermococcus onnurineus ) was inserted between TON_1126 and TON_1127.

또한, 돌연변이주 BCF09는 D02를 모균주로 하여 pFd3NHisCoL1C1128의 재조합 플라스미드에 의해 형질전환되어 BCF01과 동일한 CFOR 단백질이 도입되었으며, Fdh3의 N-말단에 ‘His6-tag’을 부가하였다. In addition, the mutant BCF09 was transformed with a recombinant plasmid of pFd3NHisCoL1C1128 using D02 as a parent strain, and the same CFOR protein as BCF01 was introduced, and'His 6 -tag' was added to the N-terminus of Fdh3.

그리고, 돌연변이주 BCF12는 D04를 모균주로 하여 pFd3NHisCoL1C1132의 재조합 플라스미드에 의해 형질전환되어, fdh3 영역(TON_0538-0540)과 codh 영역(TON_1017-1020)이 링커(linker) (GGGGS)1로 융합되도록 제작하였으며, Fdh3(TON_0539) N-말단에 His6-tag을 삽입하였다. In addition, the mutant BCF12 was transformed with the recombinant plasmid of pFd3NHisCoL1C1132 using D04 as a parent strain, so that the fdh3 region (TON_0538-0540) and the codh region (TON_1017-1020) were fused with a linker (GGGGS) 1 And His 6 -tag was inserted into the N-terminus of Fdh3 (TON_0539).

실험에 사용된 균주와 플라스미드의 종류는 아래 [표 4]에 정리하였다.The types of strains and plasmids used in the experiment are summarized in [Table 4] below.

[표 4][Table 4]

Figure 112018112283774-pat00004
Figure 112018112283774-pat00004

실시예 3. 형질전환체의 배양 및 포름산 생산량의 측정Example 3. Culture of transformants and measurement of formic acid production

상기 실시예 2에서 제조된 형질전환체는 4g/L yeast extract, 35g/L NaCl, 0.7g/L KCl, 3.9g/L MgSO4, 0.4g/L CaCl2·H2O, 0.3g/L NH4Cl, 0.15g/L Na2HPO4, 0.03g/L NaSiO3, 0.5g/L NaHCO3, 0.5g/L cysteine-HCl, 1 ml/L Holden’s trace element, 2ml/L Fe-EDTA solution, 1ml/L Balch’s vitamin solution, 및 0.05g/L Na2S·9H2O를 포함하는 MM1(modified medium 1) 배지에서 배양하였다. Fe-EDTA solution은 1.54g/L FeSO4·9H2O, 2.06g/L Na2·EDTA를 포함하고 있다. 제작된 배지는 멸균된 후 혐기챔버에서 보관되어 혐기적 조건을 유지하였다. 돌연변이주 D02, D04, BCF01, BCF02, BCF03, 및 BCF12는 160ml serum vial에서 80ml의 배지와 head space가 3bar의 CO로 치환되어 80℃ 조건에서 배양되었다. The transformant prepared in Example 2, 4g / L yeast extract, 35g / L NaCl, 0.7g / L KCl, 3.9g / L MgSO 4, 0.4g / L CaCl 2 · H 2 O, 0.3g / L NH 4 Cl, 0.15 g/L Na 2 HPO 4 , 0.03 g/L NaSiO 3 , 0.5 g/L NaHCO 3 , 0.5 g/L cysteine-HCl, 1 ml/L Holden's trace element, 2 ml/L Fe-EDTA solution , 1ml/L Balch's vitamin solution, and cultured in a modified medium 1 (MM1) medium containing 0.05 g/L Na 2 S·9H 2 O. Fe-EDTA solution contains 1.54g/L FeSO 4 ·9H 2 O, 2.06g/L Na 2 ·EDTA. The produced medium was sterilized and stored in an anaerobic chamber to maintain anaerobic conditions. Mutants D02, D04, BCF01, BCF02, BCF03, and BCF12 were cultured at 80° C. by replacing 80 ml of medium and head space with 3 bar of CO in 160 ml serum vial.

성장 곡선을 관찰하기 위하여 Optical density는 UV-Vis spectrophotometer(Shimadzu, UV-2600)를 이용하여 측정하였다. 포름산의 농도는 High performance liquid chromatography(YL instrument, YL9100)의 Ion exclusion chromatography column(Shodex, RSpak, KC-811)을 이용하여 분석하였고, UV detector를 이용하여 측정하였다. 이동상으로는 0.1% phosphoric acid 수용액을 사용하였다. 최종 head space의 gas 조성을 분석하기 위해 Gas chromatography(YL instrument, YL6100)의 Molsieve 5A column(Supelco, Bellefonte, PA)과 Porapack N column(Supelco)을 사용하였으며, 이동상으로는 Argon gas를 이용하였다.To observe the growth curve, the optical density was measured using a UV-Vis spectrophotometer (Shimadzu, UV-2600). The concentration of formic acid was analyzed using Ion exclusion chromatography column (Shodex, RSpak, KC-811) of High performance liquid chromatography (YL instrument, YL9100), and was measured using a UV detector. A 0.1% phosphoric acid aqueous solution was used as the mobile phase. To analyze the gas composition in the final head space, the Molsieve 5A column (Supelco, Bellefonte, PA) and Porapack N column (Supelco) of gas chromatography (YL instrument, YL6100) were used, and Argon gas was used as the mobile phase.

그 결과, 도 6을 참조하면, 재조합 플라스미드가 도입된 형질전환체의 최고성장이 숙주 균주인 써모코커스 온누리누스(Thermococcus onnurineus) D02 균주와 비교하여 비교적 낮은 수준에서 저해를 보이는 것이 관찰되었다(도 6A). 또한, 숙주 균주인 써모코커스 온누리누스(Thermococcus onnurineus) D02 균주에서는 포름산 생산이 없는 반면 재조합 플라스미드가 도입된 BCF01, BCF02, BCF03, 및 BCF12 균주 모두에서 포름산 생산이 확인되었다(도 6B). 이러한 결과를 통해, 두 개 이상의 Fe-S 단백질을 ‘GGGGS’의 플랙서블 링커 1개 내지 3개를 통해 공유결합된 Fe-S 융합단백질을 포함하여 합성된 본 발명의 일산화탄소:포름산 산화·환원효소(carbon monoxide:formate oxidoreductase, CFOR)는 모두 전자전달이 가능한 것을 확인할 수 있었다. 또한 (GGGGS)1 플랙서블 링커로 제작된 BCF12 균주의 포름산 생산이 19mM 농도로 가장 높게 나타난 것으로 확인되었다.As a result, referring to FIG. 6, the highest growth of the transformant into which the recombinant plasmid has been introduced is Thermococcus , which is a host strain. onnurineus ) It was observed to show inhibition at a relatively low level compared to the D02 strain (FIG. 6A ). In addition, the host strain Thermococcus onnurineus ) There was no formic acid production in the D02 strain, whereas formic acid production was confirmed in all of the BCF01, BCF02, BCF03, and BCF12 strains into which the recombinant plasmid was introduced (FIG. 6B). Through these results, carbon monoxide: formic acid oxidase/reductase of the present invention synthesized by including two or more Fe-S proteins, including Fe-S fusion proteins covalently linked through 1 to 3 flexible linkers of'GGGGS' (carbon monoxide:formate oxidoreductase, CFOR) was confirmed to be capable of electron transfer. In addition, it was confirmed that the production of formic acid of the BCF12 strain produced by the (GGGGS) 1 flexible linker was highest at a concentration of 19 mM.

실시예 4. Resting cell 실험을 통한 CO 가스의 포름산 생전환 성능 분석Example 4. Analysis of formic acid bioconversion performance of CO gas through Resting cell experiment

Resting cell 실험에 사용할 균주혼탁액(cell suspension)은 생물배양기로 5L 균주 배양을 실시하였으며, CO를 연속 공급하여 OD 0.9에서 균주를 회수하고 6000rpm에서 30분간 원심분리하여 균주만을 분리하여 회수하였다. 확보한 균주를 영양성분이 없는 MM1 base(yeast extract 제외)에서 세척하여 균주를 제외한 나머지 성분들을 제거하는 wash step을 3회 반복하였다. 최종적으로 MM1 base로 현탁한 OD600 0.5 균주를 사용하여 resting cell 실험을 진행하였다.The cell suspension used for the Resting cell experiment was cultured with a 5L strain using a bio-cultivator, and the CO was continuously supplied to recover the strain at OD 0.9, and centrifuged at 6000 rpm for 30 minutes to isolate and recover only the strain. The wash step was repeated 3 times to remove the remaining components except the strain by washing the obtained strain in the MM1 base (excluding yeast extract) without nutrients. Finally, resting cell experiments were performed using OD 600 0.5 strain suspended as MM1 base.

Resting cell 실험은 OD600 0.5인 균주 현탁액 6ml를 20 ml serum vial에 넣은 후 밀봉하고, headspace에 100% CO 가스를 2bar 압력으로 채워준 다음 80℃에서 배양하면서 진행하였으며, 시간에 따른 포름산 생산성과 CO 소모량 및 수소 생산성을 확인하였다.Resting cell experiment was carried out while putting 6 ml of the OD 600 0.5 strain suspension in 20 ml serum vial, sealing it, filling the headspace with 100% CO gas at 2 bar pressure, and culturing at 80°C, and formic acid productivity and CO consumption over time. And hydrogen productivity.

그 결과, 48시간 경과 시점까지 포름산의 생산량이 지속적으로 증가하고, CO 가스의 소모 및 수소의 생산이 지속해서 유지됨을 확인할 수 있었다. 48시간 경과 시점에서 stoichiometry 분석 결과, CO 소모량의 약 10%가 포름산으로 전환되고 약 90%가 바이오 수소로 전환되었음을 확인할 수 있었다. As a result, it was confirmed that the production of formic acid continued to increase until 48 hours, and CO gas consumption and hydrogen production were continuously maintained. As a result of stoichiometry analysis at the time of 48 hours, it was confirmed that about 10% of CO consumption was converted to formic acid and about 90% was converted to biohydrogen.

실시예 5. 단백질의 분리 및 정제Example 5. Isolation and purification of proteins

모든 단백질 분리 정제 과정은 혐기조건 하에서 진행하였다. CO를 포름산으로 전환하는지 여부를 단백질 수준에서 확인하기 위해 일산화탄소:포름산 산화·환원효소(carbon monoxide:formate oxidoreductase, CFOR)의 CODH C-term. his-tag 균주인 nadFd3CoHisL1C1127 균주로부터 affinity coloumn purification 방법을 사용하여 해당 융합단백질의 분리를 진행하였다. 융합단백질을 포함하고 있는 돌연변이주 nadFd3CoHisL1C1127 균주를 MMC(bis-Tris pH 6.5) 배지 350 ml로 배양하였으며 이를 생물 배양기에 접종하였다.All protein separation and purification processes were performed under anaerobic conditions. CODH C-term of carbon monoxide:formate oxidoreductase (CFOR) to determine whether CO is converted to formic acid at the protein level. The fusion protein was separated from the his-tag strain nadFd3CoHisL1C1127 using affinity coloumn purification. The mutant nadFd3CoHisL1C1127 strain containing the fusion protein was cultured in 350 ml of MMC (bis-Tris pH 6.5) medium and inoculated in a biological incubator.

생물 배양기로 5L 균주 배양을 실시하였으며, CO를 연속 공급하여 OD 0.9에서 균주를 회수하고 6000rpm에서 30분간 원심분리하여 균주만 따로 회수하였다. 확보한 균주는 talon buffer[50mM Tris-HCl(Ph 8.0), 0.1M KCl, 10% glycerol]에 잘 풀어준 후, 소니케이터(sonicator)를 사용하여 균주를 균일하게 파쇄한 다음 Talon affinity column을 사용하여 일산화탄소:포름산 산화·환원효소(carbon monoxide:formate oxidoreductase, CFOR)를 분리하였다.5L strain culture was performed with a bio-incubator, and CO was continuously supplied to recover the strain at OD 0.9, and centrifuged at 6000 rpm for 30 minutes to recover only the strain. After securing the strain well in the talon buffer [50mM Tris-HCl (Ph 8.0), 0.1M KCl, 10% glycerol], use a sonicator to crush the strain uniformly and then Talon affinity column. Carbon monoxide:formate oxidoreductase (CFOR) was isolated by using.

단백질은 최종 300mM 이미다졸(imidazol)이 포함된 탈론 버퍼(talon buffer)를 사용하여 talon resin으로부터 분리하였으며, 브래드포드 어세이(Bradford assay) 방법으로 단백질 농도를 정량하고, 12% SDS-PAGE로 분리·정제한 단백질을 확인하였다.Proteins were separated from talon resin using a talon buffer containing final 300 mM imidazol, protein concentration was quantified by Bradford assay, and separated by 12% SDS-PAGE. · The purified protein was confirmed.

그 결과, CO 탈수소효소(CO dehydrogenase, CODH)와 포름산 탈수소효소(fomrate dehydrogenase, Fdh)가 일산화탄소:포름산 산화·환원효소(carbon monoxide:formate oxidoreductase, CFOR)인 TON_0540-TON_1017 단백질과 함께 분리되는 것을 관찰할 수 있었다. 이러한 결과를 통하여 따라서 CO 탈수소효소(CO dehydrogenase, CODH)와 포름산 탈수소효소(formate dehydrogenase, FDH3)가 Fe-S 융합단백질을 매개로 하여 하나의 새로운 융합단백질을 형성하고 있음을 확인할 수 있었다(도 8 참조).As a result, it was observed that CO dehydrogenase (CODH) and formic acid dehydrogenase (Fdh) were separated together with the TON_0540-TON_1017 protein, carbon monoxide:formate oxidoreductase (CFOR). Could. Through these results, it was confirmed that CO dehydrogenase (CO dehydrogenase, CODH) and formic acid dehydrogenase (FDH3) form one new fusion protein through the Fe-S fusion protein (FIG. 8). Reference).

실시예 6. 효소 활성 측정Example 6. Measurement of enzyme activity

상기 실시예 5에서 분리된 일산화탄소:포름산 산화·환원효소(carbon monoxide:formate oxidoreductase, CFOR)의 CODH 효소 활성과 Fdh 효소 활성, 그리고 CO 가스의 포름산 전환 능을 확인하였으며, 모든 단백질 활성측정 실험은 혐기 조건에서 진행하였다.CODH enzyme activity and Fdh enzyme activity of carbon monoxide:formate oxidoreductase (CFOR) isolated in Example 5 were confirmed, and formic acid conversion ability of CO gas was performed. Proceeded under conditions.

CODH 효소 활성은 CO를 전자공여자로 주었을 때 환원되는 methylviologen(MV)의 농도를 정량하는 Methylviologen 방법을 사용하여 측정하였다.CODH enzyme activity was measured using the Methylviologen method that quantifies the concentration of methylviologen (MV) that is reduced when CO is given as an electron donor.

활성측정은 스크류 캡(screw-cap)으로 밀봉되는 큐벳에 50mM Tris-Hcl(pH 8.0) buffer 1ml에 2mM DTT, 10mM MV와 0.5ug CFOR 단백질을 첨가한 후, 뚜껑을 닫아 밀봉한 다음, headspace를 CO 가스로 purging 하고, 최종적으로 1bar CO 가스로 충진하여 반응을 준비하였다.To measure activity, add 2 mM DTT, 10 mM MV and 0.5 ug CFOR protein to 1 ml of 50 mM Tris-Hcl (pH 8.0) buffer in a cuvette sealed with a screw-cap, close the lid, and then seal the headspace. Purging with CO gas, finally filled with 1 bar CO gas to prepare the reaction.

혼합액이 담긴 큐벳을 80℃ heat block에 정치하여 반응을 실시한 다음, 1분간 반응 후, 얼음으로 옮겨 반응을 종료하고, spectrophotometer를 사용하여 578nm 파장에서 흡광도를 측정하였다.The reaction was carried out by placing the cuvette containing the mixed solution on an 80° C. heat block, and after reacting for 1 minute, the reaction was terminated by transfer to ice, and absorbance was measured at a wavelength of 578 nm using a spectrophotometer.

포름산 탈수소효소(formate dehydrogenase, FDH)의 활성측정은 CODH 효소 활성측정과 동일한 방법으로 진행하되, 50mM photassium phosphate(pH 7.6) buffer를 사용하였고, CO 대신 포름산을 전자공여자로 사용한 것을 달리하였으며, 또한 효소반응은 80℃ heat block에서 5분간 진행하였다.Measurement of the activity of formic acid dehydrogenase (FDH) was performed in the same way as the activity measurement of CODH enzyme, but 50mM photassium phosphate (pH 7.6) buffer was used, and formic acid was used as an electron donor instead of CO. The reaction was carried out in an 80° C. heat block for 5 minutes.

CODH 효소와 Fdh 효소의 활성은 2mmol의 메틸비올로겐(methylviologen)이 환원되는 양으로 계산하였는데, 이는 1mmol의 CO 또는 포름산이 산화되는 양과 동일하다. 이때 흡광 계수(extinction coefficient) 값은 ε578 = 9.7mM-1·cm-1 이다.The activity of the CODH and Fdh enzymes was calculated as the amount of reduction of 2 mmol of methylviologen, which is the same as the amount of oxidation of 1 mmol of CO or formic acid. At this time, the extinction coefficient value is ε 578 = 9.7mM -1 ·cm -1 .

분리·정제한 융합 단백질의 CO 전환/포름산 생산 활성은 5 종류의 buffer(50 mM Bis-Tris pH 6.5, 150 mM HEPES pH 7.5, 50 mM potassium phosphate pH 7.6, 100 mM Tris pH 8.0, 및 200 mM Bicine-KOH pH 8.5)에서 분리된 융합단백질을 최종 100ug/ml 농도로 사용하여 25ml 시럼 바이알(serum vial)에 2ml의 혼합액으로 실험하였다. 23ml head space에 CO-CO2 혼합가스(CO:CO2=53.5:46.5, vol./vol.)를 주입한 후, 80℃에서 인큐베이션하여 반응을 진행하였다. 5시간 동안 반응시킨 후, 생성된 포름산의 농도를 LC로 측정하였다.The CO conversion/formic acid production activity of the separated and purified fusion protein is 5 kinds of buffer (50 mM Bis-Tris pH 6.5, 150 mM HEPES pH 7.5, 50 mM potassium phosphate pH 7.6, 100 mM Tris pH 8.0, and 200 mM Bicine -KOH pH 8.5) was used as a final 100 ug / ml concentration of the fusion protein was tested in a mixture of 2ml in a 25ml serum vial (serum vial). After injecting CO-CO 2 mixed gas (CO:CO 2 =53.5:46.5, vol./vol.) into the 23ml head space, the reaction was performed by incubating at 80°C. After reacting for 5 hours, the concentration of the resulting formic acid was measured by LC.

포름산 측정결과 모든 buffer 조건에서 포름산의 생성이 관찰되었으며, 150mM HEPES(pH 7.5)에서 가장 많은 약 5mmol/L의 포름산이 측정되었다. In vitro 조건에서 CO와 CO2 가스만으로 포름산 생성이 최종 확인되었다(도 9 참조).As a result of formic acid measurement, formation of formic acid was observed under all buffer conditions, and the highest of about 5 mmol/L of formic acid was measured in 150 mM HEPES (pH 7.5). In vitro conditions, final production of formic acid was confirmed only with CO and CO 2 gas (see FIG. 9 ).

[표 5][Table 5]

Figure 112018112283774-pat00005
Figure 112018112283774-pat00005

상기와 같은 결과를 통하여, 전자전달 역할을 하는 Fe-S 단백질의 융합을 통해 CO 탈수소효소(CO dehydrogenase, CODH)와 포름산 탈수소효소(formate dehydrogenase, FDH)가 복합체를 이루는 새로운 형태의 융합 단백질이 제작되었고, Fe-S 단백질을 통해 전자전달이 이루어져 효소반응에 의해 CO2가 포름산으로 전환되는 기능이 실제 작동함을 최종적으로 확인할 수 있었다.Through the above results, a new type of fusion protein is formed by fusion of Fe-S protein, which acts as an electron transporter, to form a complex of CO dehydrogenase (CODH) and formic acid dehydrogenase (FDH). It was finally confirmed that the function of converting CO 2 into formic acid by an enzymatic reaction by electron transfer through Fe-S protein actually works.

실시예Example 7. 포름산 생산 활성 측정 7. Measurement of formic acid production activity

MMC 배지 1.5L에 균주를 접종한 후 100% CO 가스를 퍼징하고, 80℃에서 회분식(batch culture) 생물반응기 운전하였으며, 혐기조건에서 균주배양을 실시하였다. 체크 밸브(check valve)는 가스 아울렛(outlet) 부분에 설치하여 반응기 내 가스 압력을 가압하고 조절하였다. After inoculating the strain in 1.5 L of MMC medium, 100% CO gas was purged, a batch culture bioreactor was operated at 80° C., and strain culture was performed under anaerobic conditions. A check valve was installed in the gas outlet part to pressurize and regulate the gas pressure in the reactor.

9시간 동안 운전한 결과, 포름산 생산성은 150mmol/L, 비특이적 포름산 생산성(specific formate production rate)은 22 mmol/g-DCW/hr로 확인되었다(도 10 참조). As a result of operating for 9 hours, formic acid productivity was confirmed to be 150 mmol/L and specific formate production rate was 22 mmol/g-DCW/hr (see FIG. 10).

상기 실시예를 통해 포름산 생성능이 우수한 것으로 나타난 신균주 서모코커스 온누리누스 BCF12 균주를 2018년 9월 21일자로 한국생명공학연구원 생물자원센터에 기탁하여 수탁번호 KCTC 13649BP를 부여받았다.Through the above example, a strain of New Coliform Thermococcus Onnurinus BCF12, which was shown to have excellent formic acid production ability, was deposited with the Korea Research Institute of Bioscience and Biotechnology Biological Resource Center on September 21, 2018, and was assigned an accession number KCTC 13649BP.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Since the specific parts of the present invention have been described in detail above, for those skilled in the art, this specific technique is only a preferred embodiment, and it is obvious that the scope of the present invention is not limited thereby. something to do. Therefore, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

[수탁번호][Accession Number]

기탁기관명 : 한국생명공학연구원 생물자원센터Depository Name: Korea Research Institute of Bioscience and Biotechnology, Biological Resource Center

수탁번호 : KCTC 13649BPAccession number: KCTC 13649BP

수탁일자 : 2018. 9. 21Date of Deposit: September 21, 2018

<110> KOREA OCEAN RESEARCH AND DEVELOPMENT INSTITUTE <120> Noble Fe-S Fusion Protein Acting as an Electron Transfer Chain, Carbon Monoxide:Formate Oxidoreductase Comprising the Fe-S Fusion Protein, Strain from Thermococcus BCF12 Transformed by the Carbon Monoxide:Formate Oxidoreductase, and Use thereof <130> PP180018AN <150> KR 10-2018-0138475 <151> 2018-11-12 <150> KR 10-2018-0138467 <151> 2018-11-12 <150> KR 10-2018-0138462 <151> 2018-11-12 <160> 17 <170> KoPatentIn 3.0 <210> 1 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> flexible linker of Fe-S Fusion Protein <400> 1 Gly Gly Gly Gly Ser 1 5 <210> 2 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> flexible linker of Fe-S Fusion Protein <400> 2 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser 1 5 10 <210> 3 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> flexible linker of Fe-S Fusion Protein <400> 3 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser 1 5 10 15 <210> 4 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> flexible linker of Fe-S Fusion Protein <400> 4 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly 1 5 10 15 Gly Gly Gly Ser 20 <210> 5 <211> 6 <212> PRT <213> Artificial Sequence <220> <223> flexible linker of Fe-S Fusion Protein <400> 5 Gly Gly Gly Gly Gly Gly 1 5 <210> 6 <211> 8 <212> PRT <213> Artificial Sequence <220> <223> flexible linker of Fe-S Fusion Protein <400> 6 Gly Gly Gly Gly Gly Gly Gly Gly 1 5 <210> 7 <211> 13 <212> PRT <213> Artificial Sequence <220> <223> cystein motif of Fe-S cluster <400> 7 Cys Xaa Xaa Cys Xaa Xaa Xaa Xaa Cys Xaa Xaa Xaa Cys 1 5 10 <210> 8 <211> 11 <212> PRT <213> Artificial Sequence <220> <223> cystein motif of Fe-S cluster <400> 8 Cys Xaa Xaa Cys Xaa Xaa Cys Xaa Xaa Xaa Cys 1 5 10 <210> 9 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> cystein motif of Fe-S cluster <400> 9 Cys Xaa Xaa Cys Xaa Xaa Cys Xaa Xaa Xaa Xaa Cys 1 5 10 <210> 10 <211> 4 <212> PRT <213> Artificial Sequence <220> <223> cystein motif of Fe-S cluster <400> 10 Cys Xaa Xaa Cys 1 <210> 11 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> cystein motif of Fe-S cluster <400> 11 Cys Xaa Xaa Xaa Cys 1 5 <210> 12 <211> 630 <212> PRT <213> Artificial Sequence <220> <223> CO dehydrogenase part of Noble Carbon Monoxide:Formate Oxidoreductase <400> 12 Met Ala Gly Lys Lys Val Pro Ser Lys Gln Val Ser Ile Thr Pro Gly 1 5 10 15 Val Gly Lys Leu Ile Glu Lys Ala Glu Glu Asp Gly Val Lys Thr Ala 20 25 30 Trp His Arg Phe Leu Glu Gln Gln Pro Gln Cys Gly Phe Gly Leu Leu 35 40 45 Gly Val Cys Cys Lys Asn Cys Thr Met Gly Pro Cys Arg Ile Asp Pro 50 55 60 Phe Gly Val Gly Pro Thr Lys Gly Val Cys Gly Ala Asp Ala Asp Thr 65 70 75 80 Ile Val Ala Arg Asn Ile Val Arg Met Ile Ala Ala Gly Thr Ala Gly 85 90 95 His Ser Asp His Ser Arg Asp Val Val His Val Phe Lys Gly Ile Ala 100 105 110 Glu Gly Lys Phe Lys Asp Tyr Lys Leu Thr Asp Val Glu Lys Leu Lys 115 120 125 Glu Leu Ala Lys Ile Leu Gly Val Glu Thr Glu Gly Lys Ser Glu Asn 130 135 140 Glu Ile Ala Leu Glu Val Ala His Ile Leu Glu Met Glu Phe Gly Lys 145 150 155 160 Gln Asp Glu Glu Pro Val Arg Leu Leu Ala Ala Thr Ala Pro Lys Lys 165 170 175 Arg Ile Lys Val Trp Glu Lys Leu Gly Val Leu Pro Arg Ala Ile Asp 180 185 190 Arg Glu Ile Cys Leu Ser Met His Arg Thr His Ile Gly Cys Asp Ala 195 200 205 Asp Pro Ala Ser Leu Leu Leu His Gly Val Arg Thr Ala Leu Ala Asp 210 215 220 Gly Trp Cys Gly Ser Met Met Ala Thr Tyr Leu Ser Asp Ile Leu Phe 225 230 235 240 Gly Thr Pro Lys Pro Ile Lys Ser Leu Ala Asn Leu Gly Val Leu Lys 245 250 255 Glu Asp Met Val Asn Ile Ile Val His Gly His Asn Pro Ile Leu Ser 260 265 270 Met Lys Ile Ala Glu Ile Ala Gln Ser Glu Glu Met Gln Lys Leu Ala 275 280 285 Glu Gln Tyr Gly Ala Lys Gly Ile Asn Val Ala Gly Met Cys Cys Thr 290 295 300 Gly Asn Glu Val Leu Ser Arg Met Gly Val Gln Val Ala Gly Asn Phe 305 310 315 320 Leu Met Gln Glu Leu Ala Ile Ile Thr Gly Ala Val Glu Ala Val Ile 325 330 335 Val Asp Tyr Gln Cys Leu Met Pro Ser Leu Val Asp Val Ala Ser Cys 340 345 350 Tyr His Thr Lys Ile Ile Thr Thr Glu Pro Lys Ala Arg Ile Pro Gly 355 360 365 Ala Ile His Val Glu Phe Glu Pro Glu Lys Ala Asp Glu Ile Ala Lys 370 375 380 Glu Ile Ile Lys Ile Ala Ile Glu Asn Tyr Lys Asn Arg Val Pro Ala 385 390 395 400 Lys Val Tyr Ile Pro Glu His Lys Met Glu Leu Val Ala Gly Phe Ser 405 410 415 Val Glu Ala Ile Leu Glu Ala Leu Gly Gly Thr Leu Glu Pro Leu Ile 420 425 430 Lys Ala Leu Gln Asp Gly Thr Ile Lys Gly Ile Val Gly Ile Val Gly 435 440 445 Cys Asn Asn Pro Arg Val Lys Gln Asn Tyr Gly His Val Thr Leu Ala 450 455 460 Lys Glu Leu Ile Lys Arg Asp Ile Leu Val Val Gly Thr Gly Cys Trp 465 470 475 480 Gly Ile Ala Ala Ala Met His Gly Leu Leu Thr Pro Glu Ala Ala Glu 485 490 495 Met Ala Gly Pro Gly Leu Lys Ala Val Cys Glu Ala Leu Gly Ile Pro 500 505 510 Pro Cys Leu His Met Gly Ser Cys Val Asp Cys Ser Arg Ile Leu Leu 515 520 525 Val Leu Ser Ala Leu Ala Asn Ala Leu Asn Val Asp Ile Ser Asp Leu 530 535 540 Pro Val Ala Gly Ser Ala Pro Glu Trp Met Ser Glu Lys Ala Val Ala 545 550 555 560 Ile Gly Thr Tyr Phe Val Ala Ser Gly Val Phe Thr His Leu Gly Val 565 570 575 Ile Pro Pro Val Leu Gly Ser Gln Lys Val Thr Lys Leu Leu Thr Asp 580 585 590 Asp Ile Glu Asp Leu Leu Gly Gly Lys Phe Tyr Val Glu Thr Asp Pro 595 600 605 Val Lys Ala Ala Glu Thr Ile Tyr Asn Val Ile Ile Glu Lys Arg Lys 610 615 620 Lys Leu Gly Trp Pro Ile 625 630 <210> 13 <211> 379 <212> PRT <213> Artificial Sequence <220> <223> Fe-S Fusion Protein part of Noble Carbon Monoxide:Formate Oxidoreductase <400> 13 Met Glu Lys Lys Leu Phe Ile Asn Leu Gly Arg Cys Ile Ala Cys Arg 1 5 10 15 Ala Cys Glu Val Ala Cys Glu Lys Glu His Gly Ile Ser Phe Ile Thr 20 25 30 Val Tyr Glu Phe Arg Asp Ile Ala Val Pro Leu Asn Cys Arg His Cys 35 40 45 Glu Lys Ala Pro Cys Ile Glu Val Cys Pro Thr Lys Ala Ile Tyr Arg 50 55 60 Asp Glu Asp Gly Ala Val Val Ile Asp Glu Ser Lys Cys Ile Gly Cys 65 70 75 80 Tyr Met Cys Ser Ala Val Cys Pro Tyr Ala Ile Pro Ile Val Asp Pro 85 90 95 Ile Lys Glu Leu Ala Val Lys Cys Asp Leu Cys Ala Glu Arg Arg Lys 100 105 110 Glu Gly Arg Asp Pro Leu Cys Ala Ala Val Cys Pro Thr Asp Ala Ile 115 120 125 Ile Tyr Ala Asp Leu Asn Glu Leu Met Glu Glu Lys Arg Arg Arg Lys 130 135 140 Ala Glu Arg Ile Val Glu Ala Gln Arg Lys Ala Val Glu Thr Leu Ala 145 150 155 160 Tyr Phe Gly Gly Gly Gly Gly Ser Pro Ala Phe Ser Gly Ser Asn Met 165 170 175 Glu Lys Leu Thr Ile Tyr Ile Asn Pro Glu Arg Cys Thr Gly Cys Arg 180 185 190 Ala Cys Glu Ile Ala Cys Ala Val Glu His Ser Met Ser Lys Asn Leu 195 200 205 Phe Gly Ala Ile Phe Glu Lys Pro Thr Pro Lys Pro Arg Leu Gln Val 210 215 220 Val Val Ala Asp Phe Phe Asn Val Pro Met Arg Cys Gln His Cys Glu 225 230 235 240 Asp Ala Pro Cys Met Glu Ala Cys Pro Thr Gly Ala Ile Ser Arg Thr 245 250 255 Lys Glu Gly Phe Val Val Leu Asn Ala Asn Lys Cys Ile Gly Cys Leu 260 265 270 Met Cys Val Met Ala Cys Pro Phe Gly His Pro Lys Phe Glu Pro Glu 275 280 285 Tyr Lys Ala Val Ile Lys Cys Asp Ser Cys Val Asp Arg Val Arg Glu 290 295 300 Gly Lys Glu Pro Ala Cys Val Glu Ala Cys Pro Thr Arg Ala Leu Lys 305 310 315 320 Phe Gly Thr Leu Gly Glu Ile Leu Glu Glu Val Arg Lys Glu Lys Ala 325 330 335 Glu Ser Leu Ile Ser Gly Leu Lys Ser Gln Gly Met Val Tyr Met Lys 340 345 350 Pro Val Ser Glu Ser Lys Lys Lys Glu Asp Leu Val Arg Pro Met Asp 355 360 365 Leu Tyr Leu Ala Tyr Ser Asn Val Val Trp Tyr 370 375 <210> 14 <211> 680 <212> PRT <213> Artificial Sequence <220> <223> Fomrate dehydrogenase part of Noble Carbon Monoxide:Formate Oxidoreductase <400> 14 Met Glu Glu Phe Lys Ile Gly Leu Cys Pro Tyr Cys Gly Met Gly Cys 1 5 10 15 Arg Phe Tyr Ile Lys Thr Leu Asn Gly Gln Pro Ile Gly Ile Glu Pro 20 25 30 Tyr Pro Gly Gly Val Asn Glu Gly Lys Leu Cys Pro Lys Gly Val Ala 35 40 45 Ala Val Asp Phe Leu Arg His Lys Asp Arg Leu Lys Lys Pro Leu Lys 50 55 60 Arg Thr Glu Asn Gly Phe Val Glu Ile Ser Trp Glu Gln Ala Ile Lys 65 70 75 80 Glu Ile Ala Glu Lys Leu Leu Glu Ile Arg Glu Lys Tyr Gly Pro Asp 85 90 95 Thr Leu Gly Phe Phe Ser Ser Ala Arg Cys Ser Asn Glu Glu Asn Tyr 100 105 110 Leu Leu Gln Lys Ile Ala Arg Leu Leu Gly Thr Asn Asn Val Asp His 115 120 125 Cys Ala Arg Leu Cys His Ala Ser Thr Val Val Gly Leu Ala Gln Thr 130 135 140 Val Gly Ala Ala Ala Gln Ser Gly Ser Tyr Thr Asp Ile Pro Lys Ala 145 150 155 160 Lys Val Leu Leu Ile Trp Gly Tyr Asn Pro Ser Glu Thr His Pro Val 165 170 175 Leu Met Arg Tyr Ile Leu Arg Ala Arg Asp Asn Gly Ala Lys Ile Ile 180 185 190 Val Val Asp Pro Arg Lys Thr Arg Thr Val Trp Phe Ala Asp Met His 195 200 205 Leu Gln Leu Lys Pro Gly Thr Asp Ile Val Leu Ala Asn Ala Met Met 210 215 220 His Val Ile Ile Glu Glu Arg Leu Tyr Asp Arg Glu Phe Ile Met Asn 225 230 235 240 Arg Thr Lys Gly Phe Glu Lys Leu Ile Ala Ala Val Gln Lys Tyr Thr 245 250 255 Pro Glu Tyr Ala Glu Glu Ile Thr Gly Val Pro Ala Lys Leu Ile Arg 260 265 270 Glu Ala Ala Ile Thr Phe Ala Thr Ala Gly Arg Gly Ile Val Met Trp 275 280 285 Ala Met Gly Leu Thr Gln His Val Thr Gly Ala Ala Asn Val Lys Ala 290 295 300 Leu Ala Asp Leu Ala Leu Ile Cys Gly Tyr Val Gly Arg Glu Gly Thr 305 310 315 320 Gly Leu Phe Pro Met Arg Gly Gln Asn Asn Val Gln Gly Ala Cys Asp 325 330 335 Met Ala Ala Leu Pro Asn Val Phe Pro Gly Tyr Gln Lys Val Thr Asp 340 345 350 Asp Glu Lys Arg Lys His Val Ala Glu Ile Trp Gly Val Glu Asp Leu 355 360 365 Pro Ser Lys Pro Gly Leu Thr Ile Pro Glu Met Ile Asp Ala Ala Ala 370 375 380 Lys Gly Glu Leu Lys Ala Leu Tyr Ile Met Gly Glu Asn Pro Val Met 385 390 395 400 Ser Asp Pro Asn Thr Lys His Val Ile Glu Ala Leu Lys Asn Leu Glu 405 410 415 Leu Leu Val Val Gln Asp Ile Phe Leu Thr Glu Thr Ala Glu Leu Ala 420 425 430 His Tyr Val Leu Pro Ala Ala Ala Tyr Ala Glu Lys Glu Gly Ser Phe 435 440 445 Thr Ala Ser Glu Arg Arg Val Gln Trp Asn Phe Lys Ala Ile Glu Pro 450 455 460 Pro Gly Glu Ala Lys Pro Asp Trp Glu Ile Leu Thr Met Leu Gly Lys 465 470 475 480 Ala Leu Gly Leu Pro Lys Phe Asp Tyr Ser Asp Val Glu Asp Ile Thr 485 490 495 Arg Glu Ile Thr Leu Val Ala Pro Gln Tyr Arg Gly Ile Thr Pro Glu 500 505 510 Arg Leu Lys Arg Glu Val Met Gly Val Gln Trp Pro Cys Pro Ser Glu 515 520 525 Asp His Pro Gly Thr Pro Arg Leu His Val Glu Arg Phe Ala Thr Pro 530 535 540 Asp Gly Lys Ala Asn Ile Ile Pro Val Glu Phe Lys Pro Pro Ala Glu 545 550 555 560 Glu Pro Asp Glu Glu Tyr Pro Phe Ile Leu Thr Thr Phe Arg Ile Val 565 570 575 Gly Gln Tyr His Thr Leu Thr Met Ser Asn Arg Ser Glu Ser Leu Lys 580 585 590 Lys Arg Trp Ser Ser Pro Tyr Ala Gln Ile Ser Pro Glu Asp Ala Lys 595 600 605 Lys Leu Gly Ile Gln Asp Gly Glu Met Ile Arg Ile Val Thr Arg Arg 610 615 620 Gly Ser Tyr Thr Cys Arg Ala Val Val Thr Glu Asp Val Ser Glu Gly 625 630 635 640 Val Ile Ala Val Pro Trp His Trp Gly Ala Asn Ile Leu Thr Asn Asp 645 650 655 Val Leu Asp Pro Glu Ala Lys Ile Pro Glu Leu Lys Val Ala Ala Cys 660 665 670 Arg Val Glu Lys Ile Gly Gly Cys 675 680 <210> 15 <211> 1689 <212> PRT <213> Artificial Sequence <220> <223> Noble Carbon Monoxide:Formate Oxidoreductase <400> 15 Met Glu Glu Phe Lys Ile Gly Leu Cys Pro Tyr Cys Gly Met Gly Cys 1 5 10 15 Arg Phe Tyr Ile Lys Thr Leu Asn Gly Gln Pro Ile Gly Ile Glu Pro 20 25 30 Tyr Pro Gly Gly Val Asn Glu Gly Lys Leu Cys Pro Lys Gly Val Ala 35 40 45 Ala Val Asp Phe Leu Arg His Lys Asp Arg Leu Lys Lys Pro Leu Lys 50 55 60 Arg Thr Glu Asn Gly Phe Val Glu Ile Ser Trp Glu Gln Ala Ile Lys 65 70 75 80 Glu Ile Ala Glu Lys Leu Leu Glu Ile Arg Glu Lys Tyr Gly Pro Asp 85 90 95 Thr Leu Gly Phe Phe Ser Ser Ala Arg Cys Ser Asn Glu Glu Asn Tyr 100 105 110 Leu Leu Gln Lys Ile Ala Arg Leu Leu Gly Thr Asn Asn Val Asp His 115 120 125 Cys Ala Arg Leu Cys His Ala Ser Thr Val Val Gly Leu Ala Gln Thr 130 135 140 Val Gly Ala Ala Ala Gln Ser Gly Ser Tyr Thr Asp Ile Pro Lys Ala 145 150 155 160 Lys Val Leu Leu Ile Trp Gly Tyr Asn Pro Ser Glu Thr His Pro Val 165 170 175 Leu Met Arg Tyr Ile Leu Arg Ala Arg Asp Asn Gly Ala Lys Ile Ile 180 185 190 Val Val Asp Pro Arg Lys Thr Arg Thr Val Trp Phe Ala Asp Met His 195 200 205 Leu Gln Leu Lys Pro Gly Thr Asp Ile Val Leu Ala Asn Ala Met Met 210 215 220 His Val Ile Ile Glu Glu Arg Leu Tyr Asp Arg Glu Phe Ile Met Asn 225 230 235 240 Arg Thr Lys Gly Phe Glu Lys Leu Ile Ala Ala Val Gln Lys Tyr Thr 245 250 255 Pro Glu Tyr Ala Glu Glu Ile Thr Gly Val Pro Ala Lys Leu Ile Arg 260 265 270 Glu Ala Ala Ile Thr Phe Ala Thr Ala Gly Arg Gly Ile Val Met Trp 275 280 285 Ala Met Gly Leu Thr Gln His Val Thr Gly Ala Ala Asn Val Lys Ala 290 295 300 Leu Ala Asp Leu Ala Leu Ile Cys Gly Tyr Val Gly Arg Glu Gly Thr 305 310 315 320 Gly Leu Phe Pro Met Arg Gly Gln Asn Asn Val Gln Gly Ala Cys Asp 325 330 335 Met Ala Ala Leu Pro Asn Val Phe Pro Gly Tyr Gln Lys Val Thr Asp 340 345 350 Asp Glu Lys Arg Lys His Val Ala Glu Ile Trp Gly Val Glu Asp Leu 355 360 365 Pro Ser Lys Pro Gly Leu Thr Ile Pro Glu Met Ile Asp Ala Ala Ala 370 375 380 Lys Gly Glu Leu Lys Ala Leu Tyr Ile Met Gly Glu Asn Pro Val Met 385 390 395 400 Ser Asp Pro Asn Thr Lys His Val Ile Glu Ala Leu Lys Asn Leu Glu 405 410 415 Leu Leu Val Val Gln Asp Ile Phe Leu Thr Glu Thr Ala Glu Leu Ala 420 425 430 His Tyr Val Leu Pro Ala Ala Ala Tyr Ala Glu Lys Glu Gly Ser Phe 435 440 445 Thr Ala Ser Glu Arg Arg Val Gln Trp Asn Phe Lys Ala Ile Glu Pro 450 455 460 Pro Gly Glu Ala Lys Pro Asp Trp Glu Ile Leu Thr Met Leu Gly Lys 465 470 475 480 Ala Leu Gly Leu Pro Lys Phe Asp Tyr Ser Asp Val Glu Asp Ile Thr 485 490 495 Arg Glu Ile Thr Leu Val Ala Pro Gln Tyr Arg Gly Ile Thr Pro Glu 500 505 510 Arg Leu Lys Arg Glu Val Met Gly Val Gln Trp Pro Cys Pro Ser Glu 515 520 525 Asp His Pro Gly Thr Pro Arg Leu His Val Glu Arg Phe Ala Thr Pro 530 535 540 Asp Gly Lys Ala Asn Ile Ile Pro Val Glu Phe Lys Pro Pro Ala Glu 545 550 555 560 Glu Pro Asp Glu Glu Tyr Pro Phe Ile Leu Thr Thr Phe Arg Ile Val 565 570 575 Gly Gln Tyr His Thr Leu Thr Met Ser Asn Arg Ser Glu Ser Leu Lys 580 585 590 Lys Arg Trp Ser Ser Pro Tyr Ala Gln Ile Ser Pro Glu Asp Ala Lys 595 600 605 Lys Leu Gly Ile Gln Asp Gly Glu Met Ile Arg Ile Val Thr Arg Arg 610 615 620 Gly Ser Tyr Thr Cys Arg Ala Val Val Thr Glu Asp Val Ser Glu Gly 625 630 635 640 Val Ile Ala Val Pro Trp His Trp Gly Ala Asn Ile Leu Thr Asn Asp 645 650 655 Val Leu Asp Pro Glu Ala Lys Ile Pro Glu Leu Lys Val Ala Ala Cys 660 665 670 Arg Val Glu Lys Ile Gly Gly Cys Met Glu Lys Lys Leu Phe Ile Asn 675 680 685 Leu Gly Arg Cys Ile Ala Cys Arg Ala Cys Glu Val Ala Cys Glu Lys 690 695 700 Glu His Gly Ile Ser Phe Ile Thr Val Tyr Glu Phe Arg Asp Ile Ala 705 710 715 720 Val Pro Leu Asn Cys Arg His Cys Glu Lys Ala Pro Cys Ile Glu Val 725 730 735 Cys Pro Thr Lys Ala Ile Tyr Arg Asp Glu Asp Gly Ala Val Val Ile 740 745 750 Asp Glu Ser Lys Cys Ile Gly Cys Tyr Met Cys Ser Ala Val Cys Pro 755 760 765 Tyr Ala Ile Pro Ile Val Asp Pro Ile Lys Glu Leu Ala Val Lys Cys 770 775 780 Asp Leu Cys Ala Glu Arg Arg Lys Glu Gly Arg Asp Pro Leu Cys Ala 785 790 795 800 Ala Val Cys Pro Thr Asp Ala Ile Ile Tyr Ala Asp Leu Asn Glu Leu 805 810 815 Met Glu Glu Lys Arg Arg Arg Lys Ala Glu Arg Ile Val Glu Ala Gln 820 825 830 Arg Lys Ala Val Glu Thr Leu Ala Tyr Phe Gly Gly Gly Gly Gly Ser 835 840 845 Pro Ala Phe Ser Gly Ser Asn Met Glu Lys Leu Thr Ile Tyr Ile Asn 850 855 860 Pro Glu Arg Cys Thr Gly Cys Arg Ala Cys Glu Ile Ala Cys Ala Val 865 870 875 880 Glu His Ser Met Ser Lys Asn Leu Phe Gly Ala Ile Phe Glu Lys Pro 885 890 895 Thr Pro Lys Pro Arg Leu Gln Val Val Val Ala Asp Phe Phe Asn Val 900 905 910 Pro Met Arg Cys Gln His Cys Glu Asp Ala Pro Cys Met Glu Ala Cys 915 920 925 Pro Thr Gly Ala Ile Ser Arg Thr Lys Glu Gly Phe Val Val Leu Asn 930 935 940 Ala Asn Lys Cys Ile Gly Cys Leu Met Cys Val Met Ala Cys Pro Phe 945 950 955 960 Gly His Pro Lys Phe Glu Pro Glu Tyr Lys Ala Val Ile Lys Cys Asp 965 970 975 Ser Cys Val Asp Arg Val Arg Glu Gly Lys Glu Pro Ala Cys Val Glu 980 985 990 Ala Cys Pro Thr Arg Ala Leu Lys Phe Gly Thr Leu Gly Glu Ile Leu 995 1000 1005 Glu Glu Val Arg Lys Glu Lys Ala Glu Ser Leu Ile Ser Gly Leu Lys 1010 1015 1020 Ser Gln Gly Met Val Tyr Met Lys Pro Val Ser Glu Ser Lys Lys Lys 1025 1030 1035 1040 Glu Asp Leu Val Arg Pro Met Asp Leu Tyr Leu Ala Tyr Ser Asn Val 1045 1050 1055 Val Trp Tyr Met Ala Gly Lys Lys Val Pro Ser Lys Gln Val Ser Ile 1060 1065 1070 Thr Pro Gly Val Gly Lys Leu Ile Glu Lys Ala Glu Glu Asp Gly Val 1075 1080 1085 Lys Thr Ala Trp His Arg Phe Leu Glu Gln Gln Pro Gln Cys Gly Phe 1090 1095 1100 Gly Leu Leu Gly Val Cys Cys Lys Asn Cys Thr Met Gly Pro Cys Arg 1105 1110 1115 1120 Ile Asp Pro Phe Gly Val Gly Pro Thr Lys Gly Val Cys Gly Ala Asp 1125 1130 1135 Ala Asp Thr Ile Val Ala Arg Asn Ile Val Arg Met Ile Ala Ala Gly 1140 1145 1150 Thr Ala Gly His Ser Asp His Ser Arg Asp Val Val His Val Phe Lys 1155 1160 1165 Gly Ile Ala Glu Gly Lys Phe Lys Asp Tyr Lys Leu Thr Asp Val Glu 1170 1175 1180 Lys Leu Lys Glu Leu Ala Lys Ile Leu Gly Val Glu Thr Glu Gly Lys 1185 1190 1195 1200 Ser Glu Asn Glu Ile Ala Leu Glu Val Ala His Ile Leu Glu Met Glu 1205 1210 1215 Phe Gly Lys Gln Asp Glu Glu Pro Val Arg Leu Leu Ala Ala Thr Ala 1220 1225 1230 Pro Lys Lys Arg Ile Lys Val Trp Glu Lys Leu Gly Val Leu Pro Arg 1235 1240 1245 Ala Ile Asp Arg Glu Ile Cys Leu Ser Met His Arg Thr His Ile Gly 1250 1255 1260 Cys Asp Ala Asp Pro Ala Ser Leu Leu Leu His Gly Val Arg Thr Ala 1265 1270 1275 1280 Leu Ala Asp Gly Trp Cys Gly Ser Met Met Ala Thr Tyr Leu Ser Asp 1285 1290 1295 Ile Leu Phe Gly Thr Pro Lys Pro Ile Lys Ser Leu Ala Asn Leu Gly 1300 1305 1310 Val Leu Lys Glu Asp Met Val Asn Ile Ile Val His Gly His Asn Pro 1315 1320 1325 Ile Leu Ser Met Lys Ile Ala Glu Ile Ala Gln Ser Glu Glu Met Gln 1330 1335 1340 Lys Leu Ala Glu Gln Tyr Gly Ala Lys Gly Ile Asn Val Ala Gly Met 1345 1350 1355 1360 Cys Cys Thr Gly Asn Glu Val Leu Ser Arg Met Gly Val Gln Val Ala 1365 1370 1375 Gly Asn Phe Leu Met Gln Glu Leu Ala Ile Ile Thr Gly Ala Val Glu 1380 1385 1390 Ala Val Ile Val Asp Tyr Gln Cys Leu Met Pro Ser Leu Val Asp Val 1395 1400 1405 Ala Ser Cys Tyr His Thr Lys Ile Ile Thr Thr Glu Pro Lys Ala Arg 1410 1415 1420 Ile Pro Gly Ala Ile His Val Glu Phe Glu Pro Glu Lys Ala Asp Glu 1425 1430 1435 1440 Ile Ala Lys Glu Ile Ile Lys Ile Ala Ile Glu Asn Tyr Lys Asn Arg 1445 1450 1455 Val Pro Ala Lys Val Tyr Ile Pro Glu His Lys Met Glu Leu Val Ala 1460 1465 1470 Gly Phe Ser Val Glu Ala Ile Leu Glu Ala Leu Gly Gly Thr Leu Glu 1475 1480 1485 Pro Leu Ile Lys Ala Leu Gln Asp Gly Thr Ile Lys Gly Ile Val Gly 1490 1495 1500 Ile Val Gly Cys Asn Asn Pro Arg Val Lys Gln Asn Tyr Gly His Val 1505 1510 1515 1520 Thr Leu Ala Lys Glu Leu Ile Lys Arg Asp Ile Leu Val Val Gly Thr 1525 1530 1535 Gly Cys Trp Gly Ile Ala Ala Ala Met His Gly Leu Leu Thr Pro Glu 1540 1545 1550 Ala Ala Glu Met Ala Gly Pro Gly Leu Lys Ala Val Cys Glu Ala Leu 1555 1560 1565 Gly Ile Pro Pro Cys Leu His Met Gly Ser Cys Val Asp Cys Ser Arg 1570 1575 1580 Ile Leu Leu Val Leu Ser Ala Leu Ala Asn Ala Leu Asn Val Asp Ile 1585 1590 1595 1600 Ser Asp Leu Pro Val Ala Gly Ser Ala Pro Glu Trp Met Ser Glu Lys 1605 1610 1615 Ala Val Ala Ile Gly Thr Tyr Phe Val Ala Ser Gly Val Phe Thr His 1620 1625 1630 Leu Gly Val Ile Pro Pro Val Leu Gly Ser Gln Lys Val Thr Lys Leu 1635 1640 1645 Leu Thr Asp Asp Ile Glu Asp Leu Leu Gly Gly Lys Phe Tyr Val Glu 1650 1655 1660 Thr Asp Pro Val Lys Ala Ala Glu Thr Ile Tyr Asn Val Ile Ile Glu 1665 1670 1675 1680 Lys Arg Lys Lys Leu Gly Trp Pro Ile 1685 <210> 16 <211> 5076 <212> DNA <213> Artificial Sequence <220> <223> Noble Carbon Monoxide:Formate Oxidoreductase <400> 16 atggaggagt ttaagattgg cctgtgccca tactgtggga tggggtgcag gttttacata 60 aagactctta acgggcagcc cataggaata gagccgtatc ccggtggtgt taatgaagga 120 aagctctgtc caaagggtgt cgccgccgtt gacttcctca gacacaaaga taggctgaaa 180 aagccgctca agagaactga aaacggcttc gtcgagataa gctgggaaca ggcgataaag 240 gagattgctg aaaagcttct ggagatacgc gagaagtacg ggccggatac gttaggcttc 300 ttctcaagtg cccgttgttc caacgaggag aactacctcc tgcagaaaat agcccgcctt 360 ctgggcacca acaacgtcga ccactgcgcg aggctctgtc acgcctcaac ggtcgtcggt 420 cttgctcaga cggttggcgc tgccgctcag agcggctcct acacggacat acccaaggct 480 aaggtactcc tgatatgggg atacaacccg tcagaaaccc acccggttct catgcgctac 540 atcctccgcg cgagggacaa cggggccaag ataatcgtcg tagatccgag gaagacgagg 600 actgtctggt tcgccgatat gcacctccag cttaagcctg gaacggacat agtcctagcc 660 aacgccatga tgcacgtcat cattgaagaa aggctctatg acagggagtt catcatgaac 720 cggacgaagg gctttgagaa gctcatagca gctgtccaga agtacacgcc agaatacgcc 780 gaggaaataa ccggtgttcc cgccaagctc atcagagaag ccgctataac ctttgctact 840 gccggacggg gcatcgtgat gtgggcaatg ggactgacgc agcacgtcac tggggcggcc 900 aacgttaagg ccctcgctga tctggctctg atctgtggct acgtcggaag agaaggaaca 960 ggtctcttcc cgatgcgcgg tcagaacaat gttcagggag catgtgacat ggcagccttg 1020 ccaaacgtct ttccaggcta tcagaaggta actgacgacg agaagaggaa gcacgtggcg 1080 gaaatttggg gcgttgaaga tctgccctcg aagccgggcc ttactattcc agagatgatt 1140 gatgcggctg ctaaaggcga gttgaaggca ctctacataa tgggcgagaa tccggtcatg 1200 agcgatccga acacgaagca cgttatcgag gctctcaaga acctcgaact tctcgttgtt 1260 caggatatat tcctcaccga aacggccgag ctggctcact acgtgctccc agcagccgca 1320 tacgccgaga aggaaggatc attcaccgcg agcgagaggc gcgtccagtg gaacttcaag 1380 gcgattgagc cgccaggaga agccaaaccg gactgggaga tactgacgat gcttggaaag 1440 gctctcggcc tgccaaagtt cgactactca gacgttgaag atattacgag ggagataacc 1500 ctcgttgctc cgcagtaccg tgggataacc cccgagaggc tcaagcgaga ggttatgggt 1560 gtgcagtggc cgtgcccgag cgaggatcat cctggaacgc cgaggctgca cgtcgagcgc 1620 ttcgccaccc ccgacggaaa ggccaacata atccccgtag agttcaagcc acctgcagaa 1680 gagcccgatg aggagtaccc attcatactg acgacattcc gcatcgtcgg ccagtaccac 1740 acactcacga tgagtaacag gagtgaaagc ttgaagaagc gctggtccag cccgtacgcc 1800 cagataagtc cggaagatgc aaagaagctg ggtatacagg atggtgaaat gataaggata 1860 gttacgagac gtggaagcta cacctgcagg gcggtcgtta ctgaagatgt ctcggaaggg 1920 gtgatcgcag ttccgtggca ctggggggcc aatatactca cgaacgatgt cctcgatcca 1980 gaagcaaaga ttcccgagct gaaggtggcc gcatgtaggg tggagaagat tggggggtgc 2040 tgaatggaga aaaagctgtt cataaacctc gggcgctgca ttgcctgccg cgcctgcgag 2100 gtggcctgtg agaaggagca cggaatttca ttcatcacgg tctatgagtt cagggacata 2160 gcggttcccc tcaactgccg ccactgtgag aaggctccgt gtatcgaagt ctgcccgacg 2220 aaggccatct atcgcgacga agatggcgca gttgtgatag acgagtccaa gtgtatcggc 2280 tgctacatgt gttcggccgt ctgcccctac gcgattccga tagttgaccc gataaaggag 2340 ctggctgtga agtgtgacct atgtgccgaa agaaggaagg agggcagaga tccgctctgc 2400 gctgcggtct gtcccaccga tgcgataatc tacgctgacc tcaacgagct gatggaagag 2460 aagaggaggc gcaaggccga gcgcatcgtc gaagcccaga ggaaggcggt cgaaacgctc 2520 gcctacttcg ggggcggcgg aggcagccca gctttttccg gttccaacat ggagaagctt 2580 acaatttaca taaatccaga gagatgcacg gggtgcaggg cctgcgaaat tgcctgtgca 2640 gttgaacatt caatgagcaa aaacctcttt ggcgcaattt ttgaaaaacc aacccccaaa 2700 ccccgactcc aagttgttgt cgccgacttc tttaatgttc caatgagatg ccagcactgt 2760 gaggacgctc cctgtatgga ggcctgccca acaggagcga tctcaaggac caaagaaggc 2820 tttgttgtcc ttaacgccaa caagtgcata ggctgtctca tgtgtgtgat ggcctgtcca 2880 tttggccatc ccaagttcga gcccgaatac aaggctgtga taaaatgcga cagttgtgtt 2940 gatagggtca gagaaggcaa agagccagca tgtgtcgagg cctgtccaac tagagccctg 3000 aagttcggga ctctcggcga aatactggaa gaggttagaa aggagaaggc agagagtctc 3060 atatctgggc tgaaatcgca ggggatggtc tacatgaagc ccgtctccga gtcaaagaag 3120 aaagaggatc ttgttagacc tatggatctg tatcttgcct attcaaatgt agtgtggtat 3180 tgaatggccg gaaagaaggt tccctcaaag caagtctcca taactccagg tgttggaaag 3240 cttattgaga aagccgagga ggatggggtc aagactgcct ggcacagatt tttggagcag 3300 cagcctcagt gtggattcgg tctcttaggt gtctgctgta agaactgtac aatgggacca 3360 tgtagaatcg atccgtttgg ggttggccca actaagggag tttgtggtgc ggatgcagat 3420 acaatagtag caaggaacat tgtaagaatg atagcggctg gtactgccgg tcacagcgat 3480 cactcaagag atgtagtcca tgtattcaag ggcattgctg aaggaaagtt caaggactat 3540 aaactaacag atgttgaaaa gctcaaagag ctggctaaga ttctgggtgt cgaaacagag 3600 ggcaagagcg aaaatgaaat tgcattggaa gtcgcccaca ttcttgagat ggagttcgga 3660 aaacaggatg aggagccagt aagattactt gcagcaacag caccaaagaa gaggattaag 3720 gtctgggaga agctaggagt cttaccaaga gccatcgaca gggagatatg tctcagtatg 3780 cacagaaccc acataggctg tgatgcagac cctgcaagcc ttctactgca tggtgtgagg 3840 actgccctgg ccgacggctg gtgcggctca atgatggcca cttatctgag cgacattctc 3900 tttggaacac caaagccgat aaagtcgctg gcgaacctgg gagtcttgaa ggaagacatg 3960 gtcaacataa tcgttcacgg ccacaacccg attctctcca tgaaaatagc agagattgcc 4020 cagagtgaag agatgcagaa gcttgcagag cagtacggag caaagggaat taacgttgct 4080 ggaatgtgct gtaccggaaa cgaagttctc tcaagaatgg gagttcaggt cgctggaaac 4140 ttcctaatgc aagagctggc gattataact ggtgcagttg aggccgtgat agttgactac 4200 cagtgcctaa tgccctcatt agttgatgtc gcttcatgtt accacactaa gataataact 4260 actgagccaa aggctcgcat tccgggagca atacacgtcg aatttgaacc tgagaaagcg 4320 gacgagatcg ccaaagagat catcaagatt gcaattgaga actataagaa cagagttccg 4380 gcaaaagtct acattccaga gcacaagatg gaattggttg ctggatttag tgtcgaggca 4440 atacttgaag cccttggtgg aacactggag cccctcataa aagccctcca ggacggaaca 4500 ataaagggaa tcgtcggaat cgttggatgt aacaatccaa gggtcaagca gaactacggt 4560 cacgtcacct tggccaagga gctcatcaag agggacatcc tggttgttgg aactggttgc 4620 tggggaattg ctgcagcaat gcatggatta ctaacccccg aagcagctga aatggccggt 4680 ccagggctga aggcagtatg cgaagcgctc ggaattccac catgcctgca catgggaagc 4740 tgtgttgact gttcgagaat cctgctggtc ttgagtgccc ttgccaatgc tctgaatgtt 4800 gacatttcag acttgccagt tgctggctct gctccagaat ggatgagcga gaaggcagtg 4860 gcaataggaa cctacttcgt tgcaagcggc gtcttcacgc acttgggagt tatcccacca 4920 gtccttggaa gccagaaggt taccaaactc cttacggatg acatcgagga tctccttgga 4980 gggaagttct acgttgagac agatccagtg aaagcggcag aaacaatata caacgtgata 5040 attgagaaga ggaaaaaact tggatggccc atctaa 5076 <210> 17 <211> 1140 <212> DNA <213> Artificial Sequence <220> <223> Fe-S Fusion Protein <400> 17 atggagaaaa agctgttcat aaacctcggg cgctgcattg cctgccgcgc ctgcgaggtg 60 gcctgtgaga aggagcacgg aatttcattc atcacggtct atgagttcag ggacatagcg 120 gttcccctca actgccgcca ctgtgagaag gctccgtgta tcgaagtctg cccgacgaag 180 gccatctatc gcgacgaaga tggcgcagtt gtgatagacg agtccaagtg tatcggctgc 240 tacatgtgtt cggccgtctg cccctacgcg attccgatag ttgacccgat aaaggagctg 300 gctgtgaagt gtgacctatg tgccgaaaga aggaaggagg gcagagatcc gctctgcgct 360 gcggtctgtc ccaccgatgc gataatctac gctgacctca acgagctgat ggaagagaag 420 aggaggcgca aggccgagcg catcgtcgaa gcccagagga aggcggtcga aacgctcgcc 480 tacttcgggg gcggcggagg cagcccagct ttttccggtt ccaacatgga gaagcttaca 540 atttacataa atccagagag atgcacgggg tgcagggcct gcgaaattgc ctgtgcagtt 600 gaacattcaa tgagcaaaaa cctctttggc gcaatttttg aaaaaccaac ccccaaaccc 660 cgactccaag ttgttgtcgc cgacttcttt aatgttccaa tgagatgcca gcactgtgag 720 gacgctccct gtatggaggc ctgcccaaca ggagcgatct caaggaccaa agaaggcttt 780 gttgtcctta acgccaacaa gtgcataggc tgtctcatgt gtgtgatggc ctgtccattt 840 ggccatccca agttcgagcc cgaatacaag gctgtgataa aatgcgacag ttgtgttgat 900 agggtcagag aaggcaaaga gccagcatgt gtcgaggcct gtccaactag agccctgaag 960 ttcgggactc tcggcgaaat actggaagag gttagaaagg agaaggcaga gagtctcata 1020 tctgggctga aatcgcaggg gatggtctac atgaagcccg tctccgagtc aaagaagaaa 1080 gaggatcttg ttagacctat ggatctgtat cttgcctatt caaatgtagt gtggtattga 1140 1140 <110> KOREA OCEAN RESEARCH AND DEVELOPMENT INSTITUTE <120> Noble Fe-S Fusion Protein Acting as an Electron Transfer Chain, Carbon Monoxide:Formate Oxidoreductase Comprising the Fe-S Fusion Protein, Strain from Thermococcus BCF12 Transformed by the Carbon Monoxide:Formate Oxidoreductase, and Use thereof <130> PP180018AN <150> KR 10-2018-0138475 <151> 2018-11-12 <150> KR 10-2018-0138467 <151> 2018-11-12 <150> KR 10-2018-0138462 <151> 2018-11-12 <160> 17 <170> KoPatentIn 3.0 <210> 1 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> flexible linker of Fe-S Fusion Protein <400> 1 Gly Gly Gly Gly Ser 1 5 <210> 2 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> flexible linker of Fe-S Fusion Protein <400> 2 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser 1 5 10 <210> 3 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> flexible linker of Fe-S Fusion Protein <400> 3 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser 1 5 10 15 <210> 4 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> flexible linker of Fe-S Fusion Protein <400> 4 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Gly Ser Gly 1 5 10 15 Gly Gly Gly Ser 20 <210> 5 <211> 6 <212> PRT <213> Artificial Sequence <220> <223> flexible linker of Fe-S Fusion Protein <400> 5 Gly Gly Gly Gly Gly Gly 1 5 <210> 6 <211> 8 <212> PRT <213> Artificial Sequence <220> <223> flexible linker of Fe-S Fusion Protein <400> 6 Gly Gly Gly Gly Gly Gly Gly Gly 1 5 <210> 7 <211> 13 <212> PRT <213> Artificial Sequence <220> <223> cystein motif of Fe-S cluster <400> 7 Cys Xaa Xaa Cys Xaa Xaa Xaa Xaa Cys Xaa Xaa Xaa Cys 1 5 10 <210> 8 <211> 11 <212> PRT <213> Artificial Sequence <220> <223> cystein motif of Fe-S cluster <400> 8 Cys Xaa Xaa Cys Xaa Xaa Cys Xaa Xaa Xaa Cys 1 5 10 <210> 9 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> cystein motif of Fe-S cluster <400> 9 Cys Xaa Xaa Cys Xaa Xaa Cys Xaa Xaa Xaa Xaa Cys 1 5 10 <210> 10 <211> 4 <212> PRT <213> Artificial Sequence <220> <223> cystein motif of Fe-S cluster <400> 10 Cys Xaa Xaa Cys One <210> 11 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> cystein motif of Fe-S cluster <400> 11 Cys Xaa Xaa Xaa Cys 1 5 <210> 12 <211> 630 <212> PRT <213> Artificial Sequence <220> <223> CO dehydrogenase part of Noble Carbon Monoxide:Formate Oxidoreductase <400> 12 Met Ala Gly Lys Lys Val Pro Ser Lys Gln Val Ser Ile Thr Pro Gly 1 5 10 15 Val Gly Lys Leu Ile Glu Lys Ala Glu Glu Asp Gly Val Lys Thr Ala 20 25 30 Trp His Arg Phe Leu Glu Gln Gln Pro Gln Cys Gly Phe Gly Leu Leu 35 40 45 Gly Val Cys Cys Lys Asn Cys Thr Met Gly Pro Cys Arg Ile Asp Pro 50 55 60 Phe Gly Val Gly Pro Thr Lys Gly Val Cys Gly Ala Asp Ala Asp Thr 65 70 75 80 Ile Val Ala Arg Asn Ile Val Arg Met Ile Ala Ala Gly Thr Ala Gly 85 90 95 His Ser Asp His Ser Arg Asp Val Val His Val Phe Lys Gly Ile Ala 100 105 110 Glu Gly Lys Phe Lys Asp Tyr Lys Leu Thr Asp Val Glu Lys Leu Lys 115 120 125 Glu Leu Ala Lys Ile Leu Gly Val Glu Thr Glu Gly Lys Ser Glu Asn 130 135 140 Glu Ile Ala Leu Glu Val Ala His Ile Leu Glu Met Glu Phe Gly Lys 145 150 155 160 Gln Asp Glu Glu Pro Val Arg Leu Leu Ala Ala Thr Ala Pro Lys Lys 165 170 175 Arg Ile Lys Val Trp Glu Lys Leu Gly Val Leu Pro Arg Ala Ile Asp 180 185 190 Arg Glu Ile Cys Leu Ser Met His Arg Thr His Ile Gly Cys Asp Ala 195 200 205 Asp Pro Ala Ser Leu Leu Leu His Gly Val Arg Thr Ala Leu Ala Asp 210 215 220 Gly Trp Cys Gly Ser Met Met Ala Thr Tyr Leu Ser Asp Ile Leu Phe 225 230 235 240 Gly Thr Pro Lys Pro Ile Lys Ser Leu Ala Asn Leu Gly Val Leu Lys 245 250 255 Glu Asp Met Val Asn Ile Ile Val His Gly His Asn Pro Ile Leu Ser 260 265 270 Met Lys Ile Ala Glu Ile Ala Gln Ser Glu Glu Met Gln Lys Leu Ala 275 280 285 Glu Gln Tyr Gly Ala Lys Gly Ile Asn Val Ala Gly Met Cys Cys Thr 290 295 300 Gly Asn Glu Val Leu Ser Arg Met Gly Val Gln Val Ala Gly Asn Phe 305 310 315 320 Leu Met Gln Glu Leu Ala Ile Ile Thr Gly Ala Val Glu Ala Val Ile 325 330 335 Val Asp Tyr Gln Cys Leu Met Pro Ser Leu Val Asp Val Ala Ser Cys 340 345 350 Tyr His Thr Lys Ile Ile Thr Thr Glu Pro Lys Ala Arg Ile Pro Gly 355 360 365 Ala Ile His Val Glu Phe Glu Pro Glu Lys Ala Asp Glu Ile Ala Lys 370 375 380 Glu Ile Ile Lys Ile Ala Ile Glu Asn Tyr Lys Asn Arg Val Pro Ala 385 390 395 400 Lys Val Tyr Ile Pro Glu His Lys Met Glu Leu Val Ala Gly Phe Ser 405 410 415 Val Glu Ala Ile Leu Glu Ala Leu Gly Gly Thr Leu Glu Pro Leu Ile 420 425 430 Lys Ala Leu Gln Asp Gly Thr Ile Lys Gly Ile Val Gly Ile Val Gly 435 440 445 Cys Asn Asn Pro Arg Val Lys Gln Asn Tyr Gly His Val Thr Leu Ala 450 455 460 Lys Glu Leu Ile Lys Arg Asp Ile Leu Val Val Gly Thr Gly Cys Trp 465 470 475 480 Gly Ile Ala Ala Ala Met His Gly Leu Leu Thr Pro Glu Ala Ala Glu 485 490 495 Met Ala Gly Pro Gly Leu Lys Ala Val Cys Glu Ala Leu Gly Ile Pro 500 505 510 Pro Cys Leu His Met Gly Ser Cys Val Asp Cys Ser Arg Ile Leu Leu 515 520 525 Val Leu Ser Ala Leu Ala Asn Ala Leu Asn Val Asp Ile Ser Asp Leu 530 535 540 Pro Val Ala Gly Ser Ala Pro Glu Trp Met Ser Glu Lys Ala Val Ala 545 550 555 560 Ile Gly Thr Tyr Phe Val Ala Ser Gly Val Phe Thr His Leu Gly Val 565 570 575 Ile Pro Pro Val Leu Gly Ser Gln Lys Val Thr Lys Leu Leu Thr Asp 580 585 590 Asp Ile Glu Asp Leu Leu Gly Gly Lys Phe Tyr Val Glu Thr Asp Pro 595 600 605 Val Lys Ala Ala Glu Thr Ile Tyr Asn Val Ile Ile Glu Lys Arg Lys 610 615 620 Lys Leu Gly Trp Pro Ile 625 630 <210> 13 <211> 379 <212> PRT <213> Artificial Sequence <220> <223> Fe-S Fusion Protein part of Noble Carbon Monoxide:Formate Oxidoreductase <400> 13 Met Glu Lys Lys Leu Phe Ile Asn Leu Gly Arg Cys Ile Ala Cys Arg 1 5 10 15 Ala Cys Glu Val Ala Cys Glu Lys Glu His Gly Ile Ser Phe Ile Thr 20 25 30 Val Tyr Glu Phe Arg Asp Ile Ala Val Pro Leu Asn Cys Arg His Cys 35 40 45 Glu Lys Ala Pro Cys Ile Glu Val Cys Pro Thr Lys Ala Ile Tyr Arg 50 55 60 Asp Glu Asp Gly Ala Val Val Ile Asp Glu Ser Lys Cys Ile Gly Cys 65 70 75 80 Tyr Met Cys Ser Ala Val Cys Pro Tyr Ala Ile Pro Ile Val Asp Pro 85 90 95 Ile Lys Glu Leu Ala Val Lys Cys Asp Leu Cys Ala Glu Arg Arg Lys 100 105 110 Glu Gly Arg Asp Pro Leu Cys Ala Ala Val Cys Pro Thr Asp Ala Ile 115 120 125 Ile Tyr Ala Asp Leu Asn Glu Leu Met Glu Glu Lys Arg Arg Arg Lys 130 135 140 Ala Glu Arg Ile Val Glu Ala Gln Arg Lys Ala Val Glu Thr Leu Ala 145 150 155 160 Tyr Phe Gly Gly Gly Gly Gly Ser Pro Ala Phe Ser Gly Ser Asn Met 165 170 175 Glu Lys Leu Thr Ile Tyr Ile Asn Pro Glu Arg Cys Thr Gly Cys Arg 180 185 190 Ala Cys Glu Ile Ala Cys Ala Val Glu His Ser Met Ser Lys Asn Leu 195 200 205 Phe Gly Ala Ile Phe Glu Lys Pro Thr Pro Lys Pro Arg Leu Gln Val 210 215 220 Val Val Ala Asp Phe Phe Asn Val Pro Met Arg Cys Gln His Cys Glu 225 230 235 240 Asp Ala Pro Cys Met Glu Ala Cys Pro Thr Gly Ala Ile Ser Arg Thr 245 250 255 Lys Glu Gly Phe Val Val Leu Asn Ala Asn Lys Cys Ile Gly Cys Leu 260 265 270 Met Cys Val Met Ala Cys Pro Phe Gly His Pro Lys Phe Glu Pro Glu 275 280 285 Tyr Lys Ala Val Ile Lys Cys Asp Ser Cys Val Asp Arg Val Arg Glu 290 295 300 Gly Lys Glu Pro Ala Cys Val Glu Ala Cys Pro Thr Arg Ala Leu Lys 305 310 315 320 Phe Gly Thr Leu Gly Glu Ile Leu Glu Glu Val Arg Lys Glu Lys Ala 325 330 335 Glu Ser Leu Ile Ser Gly Leu Lys Ser Gln Gly Met Val Tyr Met Lys 340 345 350 Pro Val Ser Glu Ser Lys Lys Lys Glu Asp Leu Val Arg Pro Met Asp 355 360 365 Leu Tyr Leu Ala Tyr Ser Asn Val Val Trp Tyr 370 375 <210> 14 <211> 680 <212> PRT <213> Artificial Sequence <220> <223> Fomrate dehydrogenase part of Noble Carbon Monoxide:Formate Oxidoreductase <400> 14 Met Glu Glu Phe Lys Ile Gly Leu Cys Pro Tyr Cys Gly Met Gly Cys 1 5 10 15 Arg Phe Tyr Ile Lys Thr Leu Asn Gly Gln Pro Ile Gly Ile Glu Pro 20 25 30 Tyr Pro Gly Gly Val Asn Glu Gly Lys Leu Cys Pro Lys Gly Val Ala 35 40 45 Ala Val Asp Phe Leu Arg His Lys Asp Arg Leu Lys Lys Pro Leu Lys 50 55 60 Arg Thr Glu Asn Gly Phe Val Glu Ile Ser Trp Glu Gln Ala Ile Lys 65 70 75 80 Glu Ile Ala Glu Lys Leu Leu Glu Ile Arg Glu Lys Tyr Gly Pro Asp 85 90 95 Thr Leu Gly Phe Phe Ser Ser Ala Arg Cys Ser Asn Glu Glu Asn Tyr 100 105 110 Leu Leu Gln Lys Ile Ala Arg Leu Leu Gly Thr Asn Asn Val Asp His 115 120 125 Cys Ala Arg Leu Cys His Ala Ser Thr Val Val Gly Leu Ala Gln Thr 130 135 140 Val Gly Ala Ala Ala Gln Ser Gly Ser Tyr Thr Asp Ile Pro Lys Ala 145 150 155 160 Lys Val Leu Leu Ile Trp Gly Tyr Asn Pro Ser Glu Thr His Pro Val 165 170 175 Leu Met Arg Tyr Ile Leu Arg Ala Arg Asp Asn Gly Ala Lys Ile Ile 180 185 190 Val Val Asp Pro Arg Lys Thr Arg Thr Val Trp Phe Ala Asp Met His 195 200 205 Leu Gln Leu Lys Pro Gly Thr Asp Ile Val Leu Ala Asn Ala Met Met 210 215 220 His Val Ile Ile Glu Glu Arg Leu Tyr Asp Arg Glu Phe Ile Met Asn 225 230 235 240 Arg Thr Lys Gly Phe Glu Lys Leu Ile Ala Ala Val Gln Lys Tyr Thr 245 250 255 Pro Glu Tyr Ala Glu Glu Ile Thr Gly Val Pro Ala Lys Leu Ile Arg 260 265 270 Glu Ala Ala Ile Thr Phe Ala Thr Ala Gly Arg Gly Ile Val Met Trp 275 280 285 Ala Met Gly Leu Thr Gln His Val Thr Gly Ala Ala Asn Val Lys Ala 290 295 300 Leu Ala Asp Leu Ala Leu Ile Cys Gly Tyr Val Gly Arg Glu Gly Thr 305 310 315 320 Gly Leu Phe Pro Met Arg Gly Gln Asn Asn Val Gln Gly Ala Cys Asp 325 330 335 Met Ala Ala Leu Pro Asn Val Phe Pro Gly Tyr Gln Lys Val Thr Asp 340 345 350 Asp Glu Lys Arg Lys His Val Ala Glu Ile Trp Gly Val Glu Asp Leu 355 360 365 Pro Ser Lys Pro Gly Leu Thr Ile Pro Glu Met Ile Asp Ala Ala Ala 370 375 380 Lys Gly Glu Leu Lys Ala Leu Tyr Ile Met Gly Glu Asn Pro Val Met 385 390 395 400 Ser Asp Pro Asn Thr Lys His Val Ile Glu Ala Leu Lys Asn Leu Glu 405 410 415 Leu Leu Val Val Gln Asp Ile Phe Leu Thr Glu Thr Ala Glu Leu Ala 420 425 430 His Tyr Val Leu Pro Ala Ala Ala Tyr Ala Glu Lys Glu Gly Ser Phe 435 440 445 Thr Ala Ser Glu Arg Arg Val Gln Trp Asn Phe Lys Ala Ile Glu Pro 450 455 460 Pro Gly Glu Ala Lys Pro Asp Trp Glu Ile Leu Thr Met Leu Gly Lys 465 470 475 480 Ala Leu Gly Leu Pro Lys Phe Asp Tyr Ser Asp Val Glu Asp Ile Thr 485 490 495 Arg Glu Ile Thr Leu Val Ala Pro Gln Tyr Arg Gly Ile Thr Pro Glu 500 505 510 Arg Leu Lys Arg Glu Val Met Gly Val Gln Trp Pro Cys Pro Ser Glu 515 520 525 Asp His Pro Gly Thr Pro Arg Leu His Val Glu Arg Phe Ala Thr Pro 530 535 540 Asp Gly Lys Ala Asn Ile Ile Pro Val Glu Phe Lys Pro Pro Ala Glu 545 550 555 560 Glu Pro Asp Glu Glu Tyr Pro Phe Ile Leu Thr Thr Phe Arg Ile Val 565 570 575 Gly Gln Tyr His Thr Leu Thr Met Ser Asn Arg Ser Glu Ser Leu Lys 580 585 590 Lys Arg Trp Ser Ser Pro Tyr Ala Gln Ile Ser Pro Glu Asp Ala Lys 595 600 605 Lys Leu Gly Ile Gln Asp Gly Glu Met Ile Arg Ile Val Thr Arg Arg 610 615 620 Gly Ser Tyr Thr Cys Arg Ala Val Val Thr Glu Asp Val Ser Glu Gly 625 630 635 640 Val Ile Ala Val Pro Trp His Trp Gly Ala Asn Ile Leu Thr Asn Asp 645 650 655 Val Leu Asp Pro Glu Ala Lys Ile Pro Glu Leu Lys Val Ala Ala Cys 660 665 670 Arg Val Glu Lys Ile Gly Gly Cys 675 680 <210> 15 <211> 1689 <212> PRT <213> Artificial Sequence <220> <223> Noble Carbon Monoxide:Formate Oxidoreductase <400> 15 Met Glu Glu Phe Lys Ile Gly Leu Cys Pro Tyr Cys Gly Met Gly Cys 1 5 10 15 Arg Phe Tyr Ile Lys Thr Leu Asn Gly Gln Pro Ile Gly Ile Glu Pro 20 25 30 Tyr Pro Gly Gly Val Asn Glu Gly Lys Leu Cys Pro Lys Gly Val Ala 35 40 45 Ala Val Asp Phe Leu Arg His Lys Asp Arg Leu Lys Lys Pro Leu Lys 50 55 60 Arg Thr Glu Asn Gly Phe Val Glu Ile Ser Trp Glu Gln Ala Ile Lys 65 70 75 80 Glu Ile Ala Glu Lys Leu Leu Glu Ile Arg Glu Lys Tyr Gly Pro Asp 85 90 95 Thr Leu Gly Phe Phe Ser Ser Ala Arg Cys Ser Asn Glu Glu Asn Tyr 100 105 110 Leu Leu Gln Lys Ile Ala Arg Leu Leu Gly Thr Asn Asn Val Asp His 115 120 125 Cys Ala Arg Leu Cys His Ala Ser Thr Val Val Gly Leu Ala Gln Thr 130 135 140 Val Gly Ala Ala Ala Gln Ser Gly Ser Tyr Thr Asp Ile Pro Lys Ala 145 150 155 160 Lys Val Leu Leu Ile Trp Gly Tyr Asn Pro Ser Glu Thr His Pro Val 165 170 175 Leu Met Arg Tyr Ile Leu Arg Ala Arg Asp Asn Gly Ala Lys Ile Ile 180 185 190 Val Val Asp Pro Arg Lys Thr Arg Thr Val Trp Phe Ala Asp Met His 195 200 205 Leu Gln Leu Lys Pro Gly Thr Asp Ile Val Leu Ala Asn Ala Met Met 210 215 220 His Val Ile Ile Glu Glu Arg Leu Tyr Asp Arg Glu Phe Ile Met Asn 225 230 235 240 Arg Thr Lys Gly Phe Glu Lys Leu Ile Ala Ala Val Gln Lys Tyr Thr 245 250 255 Pro Glu Tyr Ala Glu Glu Ile Thr Gly Val Pro Ala Lys Leu Ile Arg 260 265 270 Glu Ala Ala Ile Thr Phe Ala Thr Ala Gly Arg Gly Ile Val Met Trp 275 280 285 Ala Met Gly Leu Thr Gln His Val Thr Gly Ala Ala Asn Val Lys Ala 290 295 300 Leu Ala Asp Leu Ala Leu Ile Cys Gly Tyr Val Gly Arg Glu Gly Thr 305 310 315 320 Gly Leu Phe Pro Met Arg Gly Gln Asn Asn Val Gln Gly Ala Cys Asp 325 330 335 Met Ala Ala Leu Pro Asn Val Phe Pro Gly Tyr Gln Lys Val Thr Asp 340 345 350 Asp Glu Lys Arg Lys His Val Ala Glu Ile Trp Gly Val Glu Asp Leu 355 360 365 Pro Ser Lys Pro Gly Leu Thr Ile Pro Glu Met Ile Asp Ala Ala Ala 370 375 380 Lys Gly Glu Leu Lys Ala Leu Tyr Ile Met Gly Glu Asn Pro Val Met 385 390 395 400 Ser Asp Pro Asn Thr Lys His Val Ile Glu Ala Leu Lys Asn Leu Glu 405 410 415 Leu Leu Val Val Gln Asp Ile Phe Leu Thr Glu Thr Ala Glu Leu Ala 420 425 430 His Tyr Val Leu Pro Ala Ala Ala Tyr Ala Glu Lys Glu Gly Ser Phe 435 440 445 Thr Ala Ser Glu Arg Arg Val Gln Trp Asn Phe Lys Ala Ile Glu Pro 450 455 460 Pro Gly Glu Ala Lys Pro Asp Trp Glu Ile Leu Thr Met Leu Gly Lys 465 470 475 480 Ala Leu Gly Leu Pro Lys Phe Asp Tyr Ser Asp Val Glu Asp Ile Thr 485 490 495 Arg Glu Ile Thr Leu Val Ala Pro Gln Tyr Arg Gly Ile Thr Pro Glu 500 505 510 Arg Leu Lys Arg Glu Val Met Gly Val Gln Trp Pro Cys Pro Ser Glu 515 520 525 Asp His Pro Gly Thr Pro Arg Leu His Val Glu Arg Phe Ala Thr Pro 530 535 540 Asp Gly Lys Ala Asn Ile Ile Pro Val Glu Phe Lys Pro Pro Ala Glu 545 550 555 560 Glu Pro Asp Glu Glu Tyr Pro Phe Ile Leu Thr Thr Phe Arg Ile Val 565 570 575 Gly Gln Tyr His Thr Leu Thr Met Ser Asn Arg Ser Glu Ser Leu Lys 580 585 590 Lys Arg Trp Ser Ser Pro Tyr Ala Gln Ile Ser Pro Glu Asp Ala Lys 595 600 605 Lys Leu Gly Ile Gln Asp Gly Glu Met Ile Arg Ile Val Thr Arg Arg 610 615 620 Gly Ser Tyr Thr Cys Arg Ala Val Val Thr Glu Asp Val Ser Glu Gly 625 630 635 640 Val Ile Ala Val Pro Trp His Trp Gly Ala Asn Ile Leu Thr Asn Asp 645 650 655 Val Leu Asp Pro Glu Ala Lys Ile Pro Glu Leu Lys Val Ala Ala Cys 660 665 670 Arg Val Glu Lys Ile Gly Gly Cys Met Glu Lys Lys Leu Phe Ile Asn 675 680 685 Leu Gly Arg Cys Ile Ala Cys Arg Ala Cys Glu Val Ala Cys Glu Lys 690 695 700 Glu His Gly Ile Ser Phe Ile Thr Val Tyr Glu Phe Arg Asp Ile Ala 705 710 715 720 Val Pro Leu Asn Cys Arg His Cys Glu Lys Ala Pro Cys Ile Glu Val 725 730 735 Cys Pro Thr Lys Ala Ile Tyr Arg Asp Glu Asp Gly Ala Val Val Ile 740 745 750 Asp Glu Ser Lys Cys Ile Gly Cys Tyr Met Cys Ser Ala Val Cys Pro 755 760 765 Tyr Ala Ile Pro Ile Val Asp Pro Ile Lys Glu Leu Ala Val Lys Cys 770 775 780 Asp Leu Cys Ala Glu Arg Arg Lys Glu Gly Arg Asp Pro Leu Cys Ala 785 790 795 800 Ala Val Cys Pro Thr Asp Ala Ile Ile Tyr Ala Asp Leu Asn Glu Leu 805 810 815 Met Glu Glu Lys Arg Arg Arg Lys Ala Glu Arg Ile Val Glu Ala Gln 820 825 830 Arg Lys Ala Val Glu Thr Leu Ala Tyr Phe Gly Gly Gly Gly Gly Ser 835 840 845 Pro Ala Phe Ser Gly Ser Asn Met Glu Lys Leu Thr Ile Tyr Ile Asn 850 855 860 Pro Glu Arg Cys Thr Gly Cys Arg Ala Cys Glu Ile Ala Cys Ala Val 865 870 875 880 Glu His Ser Met Ser Lys Asn Leu Phe Gly Ala Ile Phe Glu Lys Pro 885 890 895 Thr Pro Lys Pro Arg Leu Gln Val Val Val Ala Asp Phe Phe Asn Val 900 905 910 Pro Met Arg Cys Gln His Cys Glu Asp Ala Pro Cys Met Glu Ala Cys 915 920 925 Pro Thr Gly Ala Ile Ser Arg Thr Lys Glu Gly Phe Val Val Leu Asn 930 935 940 Ala Asn Lys Cys Ile Gly Cys Leu Met Cys Val Met Ala Cys Pro Phe 945 950 955 960 Gly His Pro Lys Phe Glu Pro Glu Tyr Lys Ala Val Ile Lys Cys Asp 965 970 975 Ser Cys Val Asp Arg Val Arg Glu Gly Lys Glu Pro Ala Cys Val Glu 980 985 990 Ala Cys Pro Thr Arg Ala Leu Lys Phe Gly Thr Leu Gly Glu Ile Leu 995 1000 1005 Glu Glu Val Arg Lys Glu Lys Ala Glu Ser Leu Ile Ser Gly Leu Lys 1010 1015 1020 Ser Gln Gly Met Val Tyr Met Lys Pro Val Ser Glu Ser Lys Lys Lys 1025 1030 1035 1040 Glu Asp Leu Val Arg Pro Met Asp Leu Tyr Leu Ala Tyr Ser Asn Val 1045 1050 1055 Val Trp Tyr Met Ala Gly Lys Lys Val Pro Ser Lys Gln Val Ser Ile 1060 1065 1070 Thr Pro Gly Val Gly Lys Leu Ile Glu Lys Ala Glu Glu Asp Gly Val 1075 1080 1085 Lys Thr Ala Trp His Arg Phe Leu Glu Gln Gln Pro Gln Cys Gly Phe 1090 1095 1100 Gly Leu Leu Gly Val Cys Cys Lys Asn Cys Thr Met Gly Pro Cys Arg 1105 1110 1115 1120 Ile Asp Pro Phe Gly Val Gly Pro Thr Lys Gly Val Cys Gly Ala Asp 1125 1130 1135 Ala Asp Thr Ile Val Ala Arg Asn Ile Val Arg Met Ile Ala Ala Gly 1140 1145 1150 Thr Ala Gly His Ser Asp His Ser Arg Asp Val Val His Val Phe Lys 1155 1160 1165 Gly Ile Ala Glu Gly Lys Phe Lys Asp Tyr Lys Leu Thr Asp Val Glu 1170 1175 1180 Lys Leu Lys Glu Leu Ala Lys Ile Leu Gly Val Glu Thr Glu Gly Lys 1185 1190 1195 1200 Ser Glu Asn Glu Ile Ala Leu Glu Val Ala His Ile Leu Glu Met Glu 1205 1210 1215 Phe Gly Lys Gln Asp Glu Glu Pro Val Arg Leu Leu Ala Ala Thr Ala 1220 1225 1230 Pro Lys Lys Arg Ile Lys Val Trp Glu Lys Leu Gly Val Leu Pro Arg 1235 1240 1245 Ala Ile Asp Arg Glu Ile Cys Leu Ser Met His Arg Thr His Ile Gly 1250 1255 1260 Cys Asp Ala Asp Pro Ala Ser Leu Leu Leu His Gly Val Arg Thr Ala 1265 1270 1275 1280 Leu Ala Asp Gly Trp Cys Gly Ser Met Met Ala Thr Tyr Leu Ser Asp 1285 1290 1295 Ile Leu Phe Gly Thr Pro Lys Pro Ile Lys Ser Leu Ala Asn Leu Gly 1300 1305 1310 Val Leu Lys Glu Asp Met Val Asn Ile Ile Val His Gly His Asn Pro 1315 1320 1325 Ile Leu Ser Met Lys Ile Ala Glu Ile Ala Gln Ser Glu Glu Met Gln 1330 1335 1340 Lys Leu Ala Glu Gln Tyr Gly Ala Lys Gly Ile Asn Val Ala Gly Met 1345 1350 1355 1360 Cys Cys Thr Gly Asn Glu Val Leu Ser Arg Met Gly Val Gln Val Ala 1365 1370 1375 Gly Asn Phe Leu Met Gln Glu Leu Ala Ile Ile Thr Gly Ala Val Glu 1380 1385 1390 Ala Val Ile Val Asp Tyr Gln Cys Leu Met Pro Ser Leu Val Asp Val 1395 1400 1405 Ala Ser Cys Tyr His Thr Lys Ile Ile Thr Thr Glu Pro Lys Ala Arg 1410 1415 1420 Ile Pro Gly Ala Ile His Val Glu Phe Glu Pro Glu Lys Ala Asp Glu 1425 1430 1435 1440 Ile Ala Lys Glu Ile Ile Lys Ile Ala Ile Glu Asn Tyr Lys Asn Arg 1445 1450 1455 Val Pro Ala Lys Val Tyr Ile Pro Glu His Lys Met Glu Leu Val Ala 1460 1465 1470 Gly Phe Ser Val Glu Ala Ile Leu Glu Ala Leu Gly Gly Thr Leu Glu 1475 1480 1485 Pro Leu Ile Lys Ala Leu Gln Asp Gly Thr Ile Lys Gly Ile Val Gly 1490 1495 1500 Ile Val Gly Cys Asn Asn Pro Arg Val Lys Gln Asn Tyr Gly His Val 1505 1510 1515 1520 Thr Leu Ala Lys Glu Leu Ile Lys Arg Asp Ile Leu Val Val Gly Thr 1525 1530 1535 Gly Cys Trp Gly Ile Ala Ala Ala Met His Gly Leu Leu Thr Pro Glu 1540 1545 1550 Ala Ala Glu Met Ala Gly Pro Gly Leu Lys Ala Val Cys Glu Ala Leu 1555 1560 1565 Gly Ile Pro Pro Cys Leu His Met Gly Ser Cys Val Asp Cys Ser Arg 1570 1575 1580 Ile Leu Leu Val Leu Ser Ala Leu Ala Asn Ala Leu Asn Val Asp Ile 1585 1590 1595 1600 Ser Asp Leu Pro Val Ala Gly Ser Ala Pro Glu Trp Met Ser Glu Lys 1605 1610 1615 Ala Val Ala Ile Gly Thr Tyr Phe Val Ala Ser Gly Val Phe Thr His 1620 1625 1630 Leu Gly Val Ile Pro Pro Val Leu Gly Ser Gln Lys Val Thr Lys Leu 1635 1640 1645 Leu Thr Asp Asp Ile Glu Asp Leu Leu Gly Gly Lys Phe Tyr Val Glu 1650 1655 1660 Thr Asp Pro Val Lys Ala Ala Glu Thr Ile Tyr Asn Val Ile Ile Glu 1665 1670 1675 1680 Lys Arg Lys Lys Leu Gly Trp Pro Ile 1685 <210> 16 <211> 5076 <212> DNA <213> Artificial Sequence <220> <223> Noble Carbon Monoxide:Formate Oxidoreductase <400> 16 atggaggagt ttaagattgg cctgtgccca tactgtggga tggggtgcag gttttacata 60 aagactctta acgggcagcc cataggaata gagccgtatc ccggtggtgt taatgaagga 120 aagctctgtc caaagggtgt cgccgccgtt gacttcctca gacacaaaga taggctgaaa 180 aagccgctca agagaactga aaacggcttc gtcgagataa gctgggaaca ggcgataaag 240 gagattgctg aaaagcttct ggagatacgc gagaagtacg ggccggatac gttaggcttc 300 ttctcaagtg cccgttgttc caacgaggag aactacctcc tgcagaaaat agcccgcctt 360 ctgggcacca acaacgtcga ccactgcgcg aggctctgtc acgcctcaac ggtcgtcggt 420 cttgctcaga cggttggcgc tgccgctcag agcggctcct acacggacat acccaaggct 480 aaggtactcc tgatatgggg atacaacccg tcagaaaccc acccggttct catgcgctac 540 atcctccgcg cgagggacaa cggggccaag ataatcgtcg tagatccgag gaagacgagg 600 actgtctggt tcgccgatat gcacctccag cttaagcctg gaacggacat agtcctagcc 660 aacgccatga tgcacgtcat cattgaagaa aggctctatg acagggagtt catcatgaac 720 cggacgaagg gctttgagaa gctcatagca gctgtccaga agtacacgcc agaatacgcc 780 gaggaaataa ccggtgttcc cgccaagctc atcagagaag ccgctataac ctttgctact 840 gccggacggg gcatcgtgat gtgggcaatg ggactgacgc agcacgtcac tggggcggcc 900 aacgttaagg ccctcgctga tctggctctg atctgtggct acgtcggaag agaaggaaca 960 ggtctcttcc cgatgcgcgg tcagaacaat gttcagggag catgtgacat ggcagccttg 1020 ccaaacgtct ttccaggcta tcagaaggta actgacgacg agaagaggaa gcacgtggcg 1080 gaaatttggg gcgttgaaga tctgccctcg aagccgggcc ttactattcc agagatgatt 1140 gatgcggctg ctaaaggcga gttgaaggca ctctacataa tgggcgagaa tccggtcatg 1200 agcgatccga acacgaagca cgttatcgag gctctcaaga acctcgaact tctcgttgtt 1260 caggatatat tcctcaccga aacggccgag ctggctcact acgtgctccc agcagccgca 1320 tacgccgaga aggaaggatc attcaccgcg agcgagaggc gcgtccagtg gaacttcaag 1380 gcgattgagc cgccaggaga agccaaaccg gactgggaga tactgacgat gcttggaaag 1440 gctctcggcc tgccaaagtt cgactactca gacgttgaag atattacgag ggagataacc 1500 ctcgttgctc cgcagtaccg tgggataacc cccgagaggc tcaagcgaga ggttatgggt 1560 gtgcagtggc cgtgcccgag cgaggatcat cctggaacgc cgaggctgca cgtcgagcgc 1620 ttcgccaccc ccgacggaaa ggccaacata atccccgtag agttcaagcc acctgcagaa 1680 gagcccgatg aggagtaccc attcatactg acgacattcc gcatcgtcgg ccagtaccac 1740 acactcacga tgagtaacag gagtgaaagc ttgaagaagc gctggtccag cccgtacgcc 1800 cagataagtc cggaagatgc aaagaagctg ggtatacagg atggtgaaat gataaggata 1860 gttacgagac gtggaagcta cacctgcagg gcggtcgtta ctgaagatgt ctcggaaggg 1920 gtgatcgcag ttccgtggca ctggggggcc aatatactca cgaacgatgt cctcgatcca 1980 gaagcaaaga ttcccgagct gaaggtggcc gcatgtaggg tggagaagat tggggggtgc 2040 tgaatggaga aaaagctgtt cataaacctc gggcgctgca ttgcctgccg cgcctgcgag 2100 gtggcctgtg agaaggagca cggaatttca ttcatcacgg tctatgagtt cagggacata 2160 gcggttcccc tcaactgccg ccactgtgag aaggctccgt gtatcgaagt ctgcccgacg 2220 aaggccatct atcgcgacga agatggcgca gttgtgatag acgagtccaa gtgtatcggc 2280 tgctacatgt gttcggccgt ctgcccctac gcgattccga tagttgaccc gataaaggag 2340 ctggctgtga agtgtgacct atgtgccgaa agaaggaagg agggcagaga tccgctctgc 2400 gctgcggtct gtcccaccga tgcgataatc tacgctgacc tcaacgagct gatggaagag 2460 aagaggaggc gcaaggccga gcgcatcgtc gaagcccaga ggaaggcggt cgaaacgctc 2520 gcctacttcg ggggcggcgg aggcagccca gctttttccg gttccaacat ggagaagctt 2580 acaatttaca taaatccaga gagatgcacg gggtgcaggg cctgcgaaat tgcctgtgca 2640 gttgaacatt caatgagcaa aaacctcttt ggcgcaattt ttgaaaaacc aacccccaaa 2700 ccccgactcc aagttgttgt cgccgacttc tttaatgttc caatgagatg ccagcactgt 2760 gaggacgctc cctgtatgga ggcctgccca acaggagcga tctcaaggac caaagaaggc 2820 tttgttgtcc ttaacgccaa caagtgcata ggctgtctca tgtgtgtgat ggcctgtcca 2880 tttggccatc ccaagttcga gcccgaatac aaggctgtga taaaatgcga cagttgtgtt 2940 gatagggtca gagaaggcaa agagccagca tgtgtcgagg cctgtccaac tagagccctg 3000 aagttcggga ctctcggcga aatactggaa gaggttagaa aggagaaggc agagagtctc 3060 atatctgggc tgaaatcgca ggggatggtc tacatgaagc ccgtctccga gtcaaagaag 3120 aaagaggatc ttgttagacc tatggatctg tatcttgcct attcaaatgt agtgtggtat 3180 tgaatggccg gaaagaaggt tccctcaaag caagtctcca taactccagg tgttggaaag 3240 cttattgaga aagccgagga ggatggggtc aagactgcct ggcacagatt tttggagcag 3300 cagcctcagt gtggattcgg tctcttaggt gtctgctgta agaactgtac aatgggacca 3360 tgtagaatcg atccgtttgg ggttggccca actaagggag tttgtggtgc ggatgcagat 3420 acaatagtag caaggaacat tgtaagaatg atagcggctg gtactgccgg tcacagcgat 3480 cactcaagag atgtagtcca tgtattcaag ggcattgctg aaggaaagtt caaggactat 3540 aaactaacag atgttgaaaa gctcaaagag ctggctaaga ttctgggtgt cgaaacagag 3600 ggcaagagcg aaaatgaaat tgcattggaa gtcgcccaca ttcttgagat ggagttcgga 3660 aaacaggatg aggagccagt aagattactt gcagcaacag caccaaagaa gaggattaag 3720 gtctgggaga agctaggagt cttaccaaga gccatcgaca gggagatatg tctcagtatg 3780 cacagaaccc acataggctg tgatgcagac cctgcaagcc ttctactgca tggtgtgagg 3840 actgccctgg ccgacggctg gtgcggctca atgatggcca cttatctgag cgacattctc 3900 tttggaacac caaagccgat aaagtcgctg gcgaacctgg gagtcttgaa ggaagacatg 3960 gtcaacataa tcgttcacgg ccacaacccg attctctcca tgaaaatagc agagattgcc 4020 cagagtgaag agatgcagaa gcttgcagag cagtacggag caaagggaat taacgttgct 4080 ggaatgtgct gtaccggaaa cgaagttctc tcaagaatgg gagttcaggt cgctggaaac 4140 ttcctaatgc aagagctggc gattataact ggtgcagttg aggccgtgat agttgactac 4200 cagtgcctaa tgccctcatt agttgatgtc gcttcatgtt accacactaa gataataact 4260 actgagccaa aggctcgcat tccgggagca atacacgtcg aatttgaacc tgagaaagcg 4320 gacgagatcg ccaaagagat catcaagatt gcaattgaga actataagaa cagagttccg 4380 gcaaaagtct acattccaga gcacaagatg gaattggttg ctggatttag tgtcgaggca 4440 atacttgaag cccttggtgg aacactggag cccctcataa aagccctcca ggacggaaca 4500 ataaagggaa tcgtcggaat cgttggatgt aacaatccaa gggtcaagca gaactacggt 4560 cacgtcacct tggccaagga gctcatcaag agggacatcc tggttgttgg aactggttgc 4620 tggggaattg ctgcagcaat gcatggatta ctaacccccg aagcagctga aatggccggt 4680 ccagggctga aggcagtatg cgaagcgctc ggaattccac catgcctgca catgggaagc 4740 tgtgttgact gttcgagaat cctgctggtc ttgagtgccc ttgccaatgc tctgaatgtt 4800 gacatttcag acttgccagt tgctggctct gctccagaat ggatgagcga gaaggcagtg 4860 gcaataggaa cctacttcgt tgcaagcggc gtcttcacgc acttgggagt tatcccacca 4920 gtccttggaa gccagaaggt taccaaactc cttacggatg acatcgagga tctccttgga 4980 gggaagttct acgttgagac agatccagtg aaagcggcag aaacaatata caacgtgata 5040 attgagaaga ggaaaaaact tggatggccc atctaa 5076 <210> 17 <211> 1140 <212> DNA <213> Artificial Sequence <220> <223> Fe-S Fusion Protein <400> 17 atggagaaaa agctgttcat aaacctcggg cgctgcattg cctgccgcgc ctgcgaggtg 60 gcctgtgaga aggagcacgg aatttcattc atcacggtct atgagttcag ggacatagcg 120 gttcccctca actgccgcca ctgtgagaag gctccgtgta tcgaagtctg cccgacgaag 180 gccatctatc gcgacgaaga tggcgcagtt gtgatagacg agtccaagtg tatcggctgc 240 tacatgtgtt cggccgtctg cccctacgcg attccgatag ttgacccgat aaaggagctg 300 gctgtgaagt gtgacctatg tgccgaaaga aggaaggagg gcagagatcc gctctgcgct 360 gcggtctgtc ccaccgatgc gataatctac gctgacctca acgagctgat ggaagagaag 420 aggaggcgca aggccgagcg catcgtcgaa gcccagagga aggcggtcga aacgctcgcc 480 tacttcgggg gcggcggagg cagcccagct ttttccggtt ccaacatgga gaagcttaca 540 atttacataa atccagagag atgcacgggg tgcagggcct gcgaaattgc ctgtgcagtt 600 gaacattcaa tgagcaaaaa cctctttggc gcaatttttg aaaaaccaac ccccaaaccc 660 cgactccaag ttgttgtcgc cgacttcttt aatgttccaa tgagatgcca gcactgtgag 720 gacgctccct gtatggaggc ctgcccaaca ggagcgatct caaggaccaa agaaggcttt 780 gttgtcctta acgccaacaa gtgcataggc tgtctcatgt gtgtgatggc ctgtccattt 840 ggccatccca agttcgagcc cgaatacaag gctgtgataa aatgcgacag ttgtgttgat 900 agggtcagag aaggcaaaga gccagcatgt gtcgaggcct gtccaactag agccctgaag 960 ttcgggactc tcggcgaaat actggaagag gttagaaagg agaaggcaga gagtctcata 1020 tctgggctga aatcgcaggg gatggtctac atgaagcccg tctccgagtc aaagaagaaa 1080 gaggatcttg ttagacctat ggatctgtat cttgcctatt caaatgtagt gtggtattga 1140 1140

Claims (6)

서모코커스 유래 신균주 BCF12(수탁번호: KCTC 13649BP).Thermococcus-derived strain BCF12 (Accession No.: KCTC 13649BP). 제1항에 있어서,
상기 균주는 일산화탄소:포름산 산화·환원효소(carbon monoxide:formate oxidoreductase, CFOR) 유전자가 형질전환된 것을 특징으로 하는 서모코커스 유래 신균주 BCF12(수탁번호: KCTC 13649BP).
According to claim 1,
The strain is a thermococcus-derived new strain BCF12, characterized in that the carbon monoxide:formate oxidoreductase (CFOR) gene has been transformed (Accession No.: KCTC 13649BP).
제2항에 있어서,
상기 일산화탄소:포름산 산화·환원효소(carbon monoxide:formate oxidoreductase, CFOR)는 전자가 이동하는 통로 역할을 하는 전자전달 체인으로 작동하고, 두 개 이상의 Fe-S 단백질이 서열번호 1 내지 6에서 선택된 어느 하나의 아미노산 서열을 갖는 플랙서블 링커를 통해 공유결합하여 형성된 Fe-S 융합단백질과, 상기 Fe-S 융합단백질의 C-말단에 작동가능하게 연결된 CO 탈수소효소(CO dehydrogenase, CODH), 및 상기 Fe-S 융합단백질의 N-말단에 작동가능하게 연결된 포름산 탈수소효소(fomrate dehydrogenase, Fdh)를 포함하고, 상기 CO 탈수소효소에서 생성된 전자가 상기 Fe-S 융합단백질을 통과하여 포름산 탈수소효소(fomrate dehydrogenase, Fdh)에 전달되는 것을 특징으로 하는 서모코커스 유래 신균주 BCF12(수탁번호: KCTC 13649BP).
According to claim 2,
The carbon monoxide: formic acid oxidoreductase (carbon monoxide: formate oxidoreductase, CFOR) acts as an electron transport chain that serves as a pathway through which electrons move, and two or more Fe-S proteins are selected from SEQ ID NOs: 1 to 6 Fe-S fusion protein formed by covalent bonding through a flexible linker having an amino acid sequence of, and CO dehydrogenase (CODH) operably linked to the C-terminus of the Fe-S fusion protein, and the Fe- It contains a formic acid dehydrogenase (Fdh) operably linked to the N-terminus of the S fusion protein, and electrons generated from the CO dehydrogenase pass through the Fe-S fusion protein to form formate dehydrogenase (fomrate dehydrogenase, Fdh), characterized by being delivered to Thermococcus strain BCF12 (Accession No.: KCTC 13649BP).
제2항에 있어서,
상기 일산화탄소:포름산 산화·환원효소(carbon monoxide:formate oxidoreductase, CFOR)는 서열번호 15의 아미노산 서열을 갖는 것을 특징으로 하는 서모코커스 유래 신균주 BCF12(수탁번호: KCTC 13649BP).
According to claim 2,
The carbon monoxide: formic acid oxidoreductase (carbon monoxide: formate oxidoreductase, CFOR) is a thermococcus-derived strain BCF12, characterized by having the amino acid sequence of SEQ ID NO: 15 (Accession No.: KCTC 13649BP).
제1항 내지 제4항 중 어느 한 항의 서모코커스 유래 신균주 BCF12(수탁번호: KCTC 13649BP)를 배양하여 일산화탄소:포름산 산화·환원효소(carbon monoxide:formate oxidoreductase, CFOR)를 발현시키는 단계를 포함하는 일산화탄소:포름산 산화·환원효소(carbon monoxide:formate oxidoreductase, CFOR)의 제조방법.Comprising the step of expressing a carbon monoxide: formic acid oxidoreductase (CFOR) by culturing the new strain BCF12 (Accession No.: KCTC 13649BP) from Thermococcus according to any one of claims 1 to 4 Manufacturing method of carbon monoxide:formate oxidoreductase (CFOR). 다음 단계를 포함하는 포름산의 제조방법:
(a) 제1항 내지 제4항 중 어느 한 항의 서모코커스 유래 신균주 BCF12(수탁번호: KCTC 13649BP) 균주 또는 제5항의 제조방법에 따른 일산화탄소:포름산 산화·환원효소(carbon monoxide:formate oxidoreductase, CFOR)의 존재 하에 CO 가스를 공급하여, CO 가스로부터 포름산을 합성하는 단계; 및
(b) 상기 합성된 포름산을 회수하는 단계.
Method of preparing formic acid comprising the following steps:
(a) Carbon monoxide according to the production method of any one of claims 1 to 4, wherein the thermococcus-derived strain BCF12 (Accession No.: KCTC 13649BP) or claim 5: carbon monoxide:formate oxidoreductase, Supplying CO gas in the presence of CFOR) to synthesize formic acid from the CO gas; And
(b) recovering the synthesized formic acid.
KR1020180138475A 2018-11-12 2018-11-12 Novel Strain from Thermococcus BCF12 and Method for Producing Formic Acid Using the Same KR102129282B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020180138475A KR102129282B1 (en) 2018-11-12 2018-11-12 Novel Strain from Thermococcus BCF12 and Method for Producing Formic Acid Using the Same
US17/292,967 US20220213463A1 (en) 2018-11-12 2018-11-28 Fe-s fusion protein acting as electron transfer chain, carbon monoxide formate redox enzyme mediated through fes fusion protein, strain bcf12 derived from thermococcus wherein enzyme is transformed, and use thereof
PCT/KR2018/014807 WO2020101100A1 (en) 2018-11-12 2018-11-28 Fe-s fusion protein acting as electron transfer chain, novel carbon monoxide formate redox enzyme mediated through fes fusion protein, novel strain bcf12 derived from thermococcus wherein enzyme is transformed, and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180138475A KR102129282B1 (en) 2018-11-12 2018-11-12 Novel Strain from Thermococcus BCF12 and Method for Producing Formic Acid Using the Same

Publications (2)

Publication Number Publication Date
KR20200054770A KR20200054770A (en) 2020-05-20
KR102129282B1 true KR102129282B1 (en) 2020-07-03

Family

ID=70919363

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180138475A KR102129282B1 (en) 2018-11-12 2018-11-12 Novel Strain from Thermococcus BCF12 and Method for Producing Formic Acid Using the Same

Country Status (1)

Country Link
KR (1) KR102129282B1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108603178A (en) * 2016-01-06 2018-09-28 株式会社西化学 CO hydrases and the method for generating formic acid using it

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
K.G. Hoff et al., Chemistry & Biology, 16, 1299-1308 (2009.12.24.)

Also Published As

Publication number Publication date
KR20200054770A (en) 2020-05-20

Similar Documents

Publication Publication Date Title
AU679861B2 (en) Customized proteases with altered transacylation activity
Murai et al. Construction of a starch-utilizing yeast by cell surface engineering
US7794979B2 (en) Solubility tags for the expression and purification of bioactive peptides
JP2008507970A (en) Alanine 2,3 aminomutase
JP2021052771A (en) Generation of acylamino acids
JPH07503853A (en) Increasing the trehalose content of an organism by transforming it with a combination of structural genes for trehalose synthase
Davey et al. Isolation and characterization of krp, a dibasic endopeptidase required for cell viability in the fission yeast Schizosaccharomyces pombe.
US5795738A (en) Engineered peptide synthetases and their use for the non-ribosomal production of peptides
EP2540826B1 (en) Method for producing glucuronic acid conjugate using saccharomyces cerevisiae
KR20150126839A (en) Host cells and methods of use
EP3289088B1 (en) Uncoupling growth and protein production
KR102129279B1 (en) Noble Carbon Monoxide:Formate Oxidoreductase Comprising Fe-S Fusion Protein, and Use thereof
Wu et al. Surface display of transglucosidase on Escherichia coli by using the ice nucleation protein of Xanthomonas campestris and its application in glucosylation of hydroquinone
EP3330282A1 (en) Cipa, cipb and pixa as scaffolds to organize proteins into crystalline inclusions
EP2707482B1 (en) Whole cell biocatalyst comprising a prenyltransferase
CN105377882B (en) Host cells and methods of use
KR102129282B1 (en) Novel Strain from Thermococcus BCF12 and Method for Producing Formic Acid Using the Same
KR102192800B1 (en) Noble Fe-S Fusion Protein Acting as an Electron Transfer Chain, and Use thereof
US20220213463A1 (en) Fe-s fusion protein acting as electron transfer chain, carbon monoxide formate redox enzyme mediated through fes fusion protein, strain bcf12 derived from thermococcus wherein enzyme is transformed, and use thereof
US20210292770A1 (en) Generation of acyl amino acids
KR101775226B1 (en) Fatty acid double bond hydratases acting in periplasm and process for producing hydroxy fatty acids using thereof
Croxen et al. Isolation of an Ustilago maydis gene encoding 3-hydroxy-3-methylglutaryl-coenzyme A reductase and expression of a C-terminal-truncated form in Escherichia coli
CN108117588B (en) Establishment of screening method of high-yield resveratrol mutant
DENIS‐DUPHIL et al. Yeast carbamoyl‐phosphate‐synthetase–aspartate‐transcarbamylase multidomain protein is phosphorylated in vitro by cAMP‐dependent protein kinase
AU2004276687B2 (en) Method of cleaving polypeptide by using OmpT protease mutant

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right