KR102110438B1 - 마스크의 제조 방법 - Google Patents

마스크의 제조 방법 Download PDF

Info

Publication number
KR102110438B1
KR102110438B1 KR1020190158567A KR20190158567A KR102110438B1 KR 102110438 B1 KR102110438 B1 KR 102110438B1 KR 1020190158567 A KR1020190158567 A KR 1020190158567A KR 20190158567 A KR20190158567 A KR 20190158567A KR 102110438 B1 KR102110438 B1 KR 102110438B1
Authority
KR
South Korea
Prior art keywords
mask
pattern
film
manufacturing
mother plate
Prior art date
Application number
KR1020190158567A
Other languages
English (en)
Other versions
KR20190137743A (ko
Inventor
이유진
장택용
Original Assignee
주식회사 오럼머티리얼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 오럼머티리얼 filed Critical 주식회사 오럼머티리얼
Priority to KR1020190158567A priority Critical patent/KR102110438B1/ko
Publication of KR20190137743A publication Critical patent/KR20190137743A/ko
Application granted granted Critical
Publication of KR102110438B1 publication Critical patent/KR102110438B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • C25D7/0671Selective plating
    • C25D7/0678Selective plating using masks
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • C25D5/022Electroplating of selected surface areas using masking means
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • H01L51/0011
    • H01L51/56
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

본 발명은 마스크의 제조 방법에 관한 것이다. 본 발명에 따른 마스크의 제조 방법은, 전주 도금(Electroforming)으로 마스크를 제조하는 방법으로서, (a) 전도성 기재를 제공하는 단계; (b) 전도성 기재의 일면 상에 배리어막을 형성하는 단계; (c) 배리어막의 일면 상에 패턴화된 절연부를 형성하여 모판(Mother Plate)을 제조하는 단계; (d) 모판을 음극체(Cathode Body)로 사용하고, 전주 도금(Electroforming)으로 모판 상에 도금막을 형성하는 단계; (e) 도금막을 열처리하는 단계; 및 (f) 모판으로부터 도금막을 분리하는 단계를 포함하는 것을 특징으로 한다.

Description

마스크의 제조 방법{PRODUCING METHOD OF MASK}
본 발명은 마스크의 제조 방법에 관한 것이다. 보다 상세하게는, 전주 도금 방식을 이용하여 패턴을 가지는 마스크를 형성함과 동시에 마스크의 변형을 방지하고 얼라인(align)을 명확하게 할 수 있는 마스크의 제조 방법에 관한 것이다.
최근에 박판 제조에 있어서 전주 도금(Electroforming) 방법에 대한 연구가 진행되고 있다. 전주 도금 방법은 전해액에 양극체, 음극체를 침지하고, 전원을 인가하여 음극체의 표면상에 금속박판을 전착시키므로, 극박판을 제조할 수 있으며, 대량 생산을 기대할 수 있는 방법이다.
한편, OLED 제조 공정에서 화소를 형성하는 기술로, 박막의 금속 마스크(Shadow Mask)를 기판에 밀착시켜서 원하는 위치에 유기물을 증착하는 FMM(Fine Metal Mask) 법이 주로 사용된다.
도 1 및 도 2는 종래의 FMM(Fine Metal Mask) 제조 과정을 나타내는 개략도이다.
도 1을 참조하면, 기존의 마스크 제조 방법은, 마스크로 사용될 금속 박판(1)을 마련하고[도 1의 (a)], 금속 박판(1) 상에 PR(Photoresist; 2) 코팅 후 패터닝을 하거나, 패턴을 가지도록 PR(2) 코팅한 후[도 1의 (b)], 식각을 통해 패턴(P)을 가지는 마스크(3)를 제조하였다.
도 2를 참조하면, 도금을 이용한 기존의 마스크 제조 방법은, 기판(4)[도 2의 (a)]을 준비하고, 기판(4) 상에 소정의 패턴을 가지는 PR(2)을 코팅한다[도 2의 (b)]. 이어서, 기판(4) 상에 도금을 수행하여 금속 박판(3)을 형성한다[도 2의 (c)]. 이어서, PR(2)을 제거하고[도 2의 (d)], 기판(4)으로부터 패턴(P)이 형성된 마스크(3)[또는, 금속 박판(3)]을 분리한다[도 2의 (e)].
위와 같은 종래의 FMM 제조 과정은, 매번 기판에 PR을 코팅하고, 식각하는 공정이 수반되므로, 공정 시간, 비용이 증가하고, 생산성이 낮아지는 문제점이 있었다.
초고화질의 OLED 제조 공정에서는 수 ㎛의 미세한 정렬의 오차도 화소 증착의 실패로 이어 질 수 있으므로, 화소 증착 공정에서 열에 의한 변형을 방지할 수 있도록, 열팽창계수가 낮은 FMM을 제조하는 기술이 필요한 실정이다.
따라서, 본 발명은 상기와 같은 종래 기술의 제반 문제점을 해결하기 위하여 안출된 것으로서, 도금 공정만으로 패턴을 가지는 마스크를 제조할 수 있는 마스크의 제조 방법을 제공하는 것을 그 목적으로 한다.
또한, 본 발명은 열처리를 통해 낮은 열팽창계수를 가지는 마스크를 제조할 수 있고, 열처리 과정에서 마스크 패턴의 변형을 방지할 수 있는 마스크의 제조 방법을 제공하는 것을 그 목적으로 한다.
본 발명의 상기의 목적은, 전주 도금(Electroforming)으로 마스크를 제조하는 방법으로서, (a) 전도성 기재를 제공하는 단계; (b) 전도성 기재의 일면 상에 배리어막을 형성하는 단계; (c) 배리어막의 일면 상에 패턴화된 절연부를 형성하여 모판(Mother Plate)을 제조하는 단계; (d) 모판을 음극체(Cathode Body)로 사용하고, 전주 도금(Electroforming)으로 모판 상에 도금막을 형성하는 단계; (e) 도금막을 열처리하는 단계; 및 (f) 모판으로부터 도금막을 분리하는 단계를 포함하는, 마스크의 제조 방법에 의해 달성된다.
그리고, 본 발명의 상기의 목적은, 전주 도금(Electroforming)으로 마스크를 제조하는 방법으로서, (a) 음각 패턴이 형성된 전도성 기재를 제공하는 단계; (b) 전도성 기재의 일면 상에 배리어막을 형성하는 단계; (c) 음각 패턴의 하부면을 제외한, 배리어막의 표면 상에 절연부를 형성하여 모판(Mother Plate)을 제조하는 단계; (d) 모판을 음극체(Cathode Body)로 사용하고, 전주 도금(Electroforming)으로 음각 패턴 하부면에 노출된 배리어막의 표면으로부터 도금막을 형성하는 단계; (e) 도금막을 열처리하는 단계; 및 (f) 모판으로부터 도금막을 분리하는 단계를 포함하는, 마스크의 제조 방법에 의해 달성된다.
전도성 기재는 도핑된 단결정 실리콘 재질일 수 있다.
열처리는 300℃ 내지 800℃로 수행할 수 있다.
배리어막은 전도성을 가지고, 질화티탄(TiN), 텅스텐카바이드(WC), 티타늄텅스텐(WTi) 중 어느 하나의 재질일 수 있다.
상기와 같이 구성된 본 발명에 따르면, 도금 공정만으로 패턴을 가지는 마스크를 제조할 수 있는 효과가 있다.
또한, 본 발명에 따르면, 열처리를 통해 낮은 열팽창계수를 가지는 마스크를 제조할 수 있고, 열처리 과정에서 마스크 패턴의 변형을 방지할 수 있는 효과가 있다.
도 1 및 도 2는 종래의 FMM(Fine Metal Mask) 제조 과정을 나타내는 개략도이다.
도 3은 본 발명의 일 실시 예에 따른 FMM을 이용한 OLED 화소 증착 장치를 나타내는 개략도이다.
도 4는 본 발명의 일 실시 예에 따른 전주 도금 장치를 나타내는 개략도이다.
도 5는 본 발명의 일 실시 예에 따른 마스크를 나타내는 개략도이다.
도 6은 본 발명의 일 실시 예에 따른 마스크의 제조 과정을 나타내는 개략도이다.
도 7은 본 발명의 일 실시 예에 따른 열처리 후의 마스크의 열팽창계수(coefficient of expansion, CTE)을 나타내는 그래프이다.
도 8 내지 도 10은 본 발명의 다른 여러 실시 예에 따른 마스크 제조 과정을 나타내는 개략도이다.
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭하며, 길이 및 면적, 두께 등과 그 형태는 편의를 하여 과장되어 표현될 수도 있다.
이하에서는, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시예들에 관하여 첨부된 도면을 참조하여 상세히 설명하기로 한다.
도 3은 본 발명의 일 실시 예에 따른 FMM(100)을 이용한 OLED 화소 증착 장치(200)를 나타내는 개략도이다.
도 3을 참조하면, 일반적으로 OLED 화소 증착 장치(200)는, 마그넷(310)이 수용되고, 냉각수 라인(350)이 배설된 마그넷 플레이트(300)와, 마그넷 플레이트(300)의 하부로부터 유기물 소스(600)를 공급하는 증착 소스 공급부(500)를 포함한다.
마그넷 플레이트(300)와 소스 증착부(500) 사이에는 유기물 소스(600)가 증착되는 유리 등의 대상 기판(900)이 개재될 수 있다. 대상 기판(900)에는 유기물 소스(600)가 화소별로 증착되게 하는 FMM(100)이 밀착되거나 매우 근접하도록 배치될 수 있다. 마그넷(310)이 자기장을 발생시키고 자기장에 의한 인력으로 FMM(100)이 대상 기판(900)에 밀착될 수 있다.
스틱형(Stick-Type) 마스크[도 5의 (a) 참조], 플레이트형(Plate-Type) 마스크[도 5의 (b) 참조]는 대상 기판(900)에 밀착되기 전에 얼라인(align)이 필요하다. 하나의 마스크 또는 복수의 마스크는 프레임(800)에 결합될 수 있다. 프레임(800)은 OLED 화소 증착 장치(200) 내에 고정 설치되고, 마스크는 별도의 부착, 용접 공정을 거쳐 프레임(800)에 결합될 수 있다.
증착 소스 공급부(500)는 좌우 경로를 왕복하며 유기물 소스(600)를 공급할 수 있고, 증착 소스 공급부(500)에서 공급되는 유기물 소스(600)들은 FMM 마스크(100)에 형성된 패턴(PP)을 통과하여 대상 기판(900)의 일측에 증착될 수 있다. FMM 마스크(100)의 패턴을 통과한 증착된 유기물 소스(600)는 OLED의 화소(700)로서 작용할 수 있다.
새도우 이펙트(Shadow Effect)에 의한 화소(700)의 불균일 증착을 방지하기 위해, FMM 마스크(100)의 패턴(PP)은 경사지게 형성(S)[또는, 테이퍼 형상(S)으로 형성]될 수 있다. 경사진 면을 따라서 대각선 방향으로 패턴(PP)을 통과하는 유기물 소스(600)들도 화소(700)의 형성에 기여할 수 있으므로, 화소(700)는 전체적으로 두께가 균일하게 증착될 수 있다.
도 4는 본 발명의 일 실시 예에 따른 전주 도금 장치(10)를 나타내는 개략도이다. 도 4에는 평면 전주 도금 장치(10)를 도시하였지만, 본 발명은 도 4에 도시된 형태에 제한되지는 않으며 평면 전주 도금 장치, 연속 전주 도금 장치 등 공지의 전주 도금 장치에 모두 적용될 수 있음을 밝혀둔다.
도 4를 참조하면, 본 발명의 일 실시 예에 따른 전주 도금 장치(10)는, 도금조(11), 음극체(Cathode Body; 20), 양극체(Anode Body; 30), 전원공급부(40)를 포함한다. 이 외에, 음극체(20)를 이동시키기 위한 수단, 마스크(100)로 사용될 도금막(100)[또는, 금속 박판(100)]을 음극체(20)로부터 분리시키기 위한 수단, 커팅하기 위한 수단 등(미도시)을 더 포함할 수 있다.
도금조(11) 내에는 도금액(12)이 수용된다. 도금액(12)은 전해액으로서, 마스크(100)로 사용될 도금막(100)의 재료가 될 수 있다. 일 실시 예로, 철니켈합금인 인바(Invar) 박판을 도금막(100)으로서 제조하는 경우, Ni 이온을 포함하는 용액 및 Fe 이온을 포함하는 용액의 혼합액을 도금액(12)으로 사용할 수 있다. 다른 실시 예로, 철니켈코발트합금인 슈퍼 인바(Super Invar) 박판을 도금막(100)으로 제조하는 경우, 일 예로, Ni 이온을 포함하는 용액, Fe 이온을 포함하는 용액 및 Co 이온을 포함하는 용액의 혼합액을 도금액(12)으로 사용할 수도 있다. 인바 박판, 슈퍼 인바 박판은 OLED의 제조에 있어서 FMM(Fine Metal Mask), 새도우 마스크(Shadow Mask)로 사용되며, 전자빔을 형광체에 정확하게 유도할 수 있는 역할을 한다. 그리고, 인바 박판은 열팽창계수가 약 약 1.0 X 10-6/℃, 슈퍼 인바 박판은 열팽창계수가 약 1.0 X 10-7/℃ 정도로 매우 낮기 때문에 열에너지에 의해 마스크의 패턴 형상이 변형될 우려가 적어 고해상도 OLED 제조에서 주로 사용된다. 이 외에도 목적하는 도금막(100)에 대한 도금액(12)을 제한없이 사용할 수 있으며, 본 명세서에서는 인바 박판(100)[또는, 인바 마스크(100)]을 제조하는 것을 주된 예로 상정하여 설명한다.
도금액(12)이 외부의 도금액 공급수단(미도시)으로부터 도금조(11)로 공급될 수 있으며, 도금조(11) 내에는 도금액(12)을 순환시키는 순환 펌프(미도시), 도금액(12)의 불순물을 제거하는 필터(미도시) 등이 더 구비될 수 있다.
음극체(20)는 일측이 평평한 평판 형상 등을 가지며, 도금액(12) 내에 음극체(20)의 전부가 침지될 수 있다. 도 4에는 음극체(20) 및 양극체(30)가 수직으로 배치되는 형태가 도시되어 있으나, 수평으로 배치될 수도 있으며, 이 경우에는 도금액(12) 내에 음극체(20)의 적어도 일부 또는 전부가 침지될 수 있다.
음극체(20)의 표면 상에 도금막(100)이 전착되고, 도금막(100)에 음극체(20)의 절연부(25)와 대응하는 패턴이 형성될 수 있다. 본 발명의 음극체(20)는 도금막(100)의 생성 과정에서 패턴까지 형성할 수 있으므로, 음극체(20)를 "모판"(Mother Plate; 20) 또는 "몰드"라고 표현하고 병기하여 사용한다. 모판(20)[또는, 음극체(20)] 표면의 구체적인 구성은 후술한다.
양극체(30)는 음극체(20)와 대향하도록 소정 간격 이격 설치되고, 음극체(20)에 대응하는 일측이 평평한 평판 형상 등을 가지며, 도금액(12) 내에 양극체(30)의 전체가 침지될 수 있다. 양극체(30)는 티타늄(Ti), 이리듐(Ir), 루테늄(Ru) 등과 같은 불용성 재료로 구성될 수 있다. 음극체(20)와 양극체(30)는 수cm 정도로 이격 설치될 수 있다.
전원공급부(40)는 음극체(20)와 양극체(30)에 전기 도금에 필요한 전류를 공급할 수 있다. 전원공급부(40)의 (-) 단자는 음극체(20), (+) 단자는 양극체(30)에 연결될 수 있다.
도 5는 본 발명의 일 실시 예에 따른 마스크(100: 100a, 100b)를 나타내는 개략도이다.
도 5를 참조하면, 본 발명의 모판(20)[또는, 음극체(20)]을 포함하는 전주 도금 장치(10)를 사용하여 제조된 마스크(100: 100a, 100b)가 도시되어 있다. 도 5의 (a)에 도시된 마스크(100a)는 스틱형(Stick-Type) 마스크로서, 스틱의 양측을 OLED 화소 증착 프레임(800)에 용접 고정시켜 사용할 수 있다. 도 5의 (b)에 도시된 마스크(100b)는 판형(Plate-Type) 마스크로서, 넓은 면적의 화소 형성 공정에서 사용할 수 있고, 플레이트의 테두리를 OLED 화소 증착 프레임(800)에 용접 고정시켜 사용할 수 있다. 도 5의 (c)는 도 5의 (a) 및 (b)의 A-A' 확대 측단면도이다.
마스크(100: 100a, 100b)의 바디(Body)에는 복수의 디스플레이 패턴(DP)이 형성될 수 있다. 디스플레이 패턴(DP)은 스마트폰 등의 디스플레이 하나에 대응하는 패턴이다. 디스플레이 패턴(DP)을 확대하면 R, G, B에 대응하는 복수의 화소 패턴(PP)을 확인할 수 있다. 화소 패턴(PP)들은 측부가 기울어진 형상, 테이퍼(Taper) 형상을 가질 수 있다[도 5의 (c) 참조]. 수많은 화소 패턴(PP)들은 군집을 이루어 디스플레이 패턴(DP) 하나를 구성하며, 복수의 디스플레이 패턴(DP)이 마스크(100: 100a, 100b)에 형성될 수 있다.
본 발명의 마스크(100)는 별도의 패터닝 공정을 거칠 필요 없이, 곧바로 복수의 디스플레이 패턴(DP) 및 화소 패턴(PP)을 가지며 제조되는 것을 특징으로 한다. 다시 말해, 전주 도금 장치에서 모판(20)[또는, 음극체(20)]의 표면에 전착되는 도금막(100)은 디스플레이 패턴(DP) 및 화소 패턴(PP)이 형성되면서 전착될 수 있다. 이하에서, 디스플레이 패턴(DP) 및 화소 패턴(PP)은 마스크 패턴으로 혼용되어 사용될 수 있다.
마스크 패턴(PP)은 상부에서 하부로 갈수록 폭이 점점 넓어지거나, 점점 좁아지는 형상을 가지는, 대략 테이퍼 형상을 가지는 것이 바람직하며, 마스크(100)의 상부면이 대상 기판(900)[도 3 참조]에 밀착되므로, 마스크 패턴(PP)은 상부에서 하부로 갈수록 폭이 점점 넓어지는 형상인 것이 더 바람직하다.
패턴 폭은 수 내지 수십㎛의 크기, 바람직하게는 30㎛보다 작은 크기로 형성될 수 있다. 마스크 패턴(PP)은 절연부(25)에 의해 도금막(20)의 생성이 방지됨에 따라 형성될 수 있다. 구체적인 형성 과정은 도 6을 통해 후술한다.
도 6은 본 발명의 일 실시 예에 따른 마스크의 제조 과정을 나타내는 개략도이다.
도 6의 (a)를 참조하면, 전도성 기재(21)를 준비한다. 전주 도금(electroforming)을 수행할 수 있도록, 모판(20)의 기재(21)는 전도성 재질일 수 있다. 모판(20)은 전주 도금에서 음극체(cathode) 전극으로 사용될 수 있다.
전도성 재질로서, 메탈의 경우에는 표면에 메탈 옥사이드들이 생성되어 있을 수 있고, 메탈 제조 과정에서 불순물이 유입될 수 있으며, 다결정 실리콘 기재의 경우에는 개재물 또는 결정립계(Grain Boundary)가 존재할 수 있으며, 전도성 고분자 기재의 경우에는 불순물이 함유될 가능성이 높고, 강도. 내산성 등이 취약할 수 있다. 메탈 옥사이드, 불순물, 개재물, 결정립계 등과 같이 모판(20)[또는, 기재(21)]의 표면에 전기장이 균일하게 형성되는 것을 방해하는 요소를 "결함"(Defect)으로 지칭한다. 결함(Defect)에 의해, 상술한 재질의 음극체에는 균일한 전기장이 인가되지 못하여 도금막(100)의 일부가 불균일하게 형성될 수 있다.
UHD 급 이상의 초고화질 화소를 구현하는데 있어서 도금막(100) 및 도금막 패턴(PP)의 불균일은 화소의 형성에 악영향을 미칠 수 있다. FMM, 새도우 마스크의 패턴 폭은 수 내지 수십㎛의 크기, 바람직하게는 30㎛보다 작은 크기로 형성될 수 있으므로, 수㎛ 크기의 결함조차 마스크의 패턴 사이즈에서 큰 비중을 차지할 정도의 크기이다.
또한, 상술한 재질의 음극체에서의 결함을 제거하기 위해서는 메탈 옥사이드, 불순물 등을 제거하기 위한 추가적인 공정이 수행될 수 있으며, 이 과정에서 음극체 재료가 식각되는 등의 또 다른 결함이 유발될 수도 있다.
따라서, 본 발명은 단결정 실리콘 재질의 기재(21)를 사용할 수 있다. 전도성을 가지도록, 기재(21)는 1019 이상의 고농도 도핑이 수행될 수 있다. 도핑은 기재(21)의 전체에 수행될 수도 있으며, 기재(21)의 표면 부분에만 수행될 수도 있다.
도핑된 단결정 실리콘의 경우는 결함이 없기 때문에, 전주 도금 시에 표면 전부에서 균일한 전기장 형성으로 인한 균일한 도금막(100)[또는, 마스크(100)]이 생성될 수 있는 이점이 있다. 균일한 도금막(100)을 통해 제조하는 FMM(100)은 OLED 화소의 화질 수준을 더욱 개선할 수 있다. 그리고, 결함을 제거, 해소하는 추가 공정이 수행될 필요가 없으므로, 공정비용이 감축되고, 생산성이 향상되는 이점이 있다.
또한, 실리콘 재질의 기재(21)를 사용함에 따라서, 필요에 따라 기재(21)의 표면을 산화(Oxidation), 질화(Nitridation)하는 과정만으로 절연부(25)를 형성할 수 있는 이점이 있다. 절연부(25)는 도금막(100)의 전착을 방지하는 역할을 하여 도금막(100)의 패턴(PP)을 형성할 수 있다.
다음으로, 도 6의 (b)를 참조하면, 전도성 기재(21)의 적어도 일면 상에 패턴화(26)된 절연부(25)를 형성할 수 있다. 절연부(25)는 기재(21)의 일면 상에 돌출되도록(양각으로) 형성한 부분으로서, 도금막(100)의 생성을 방지하도록, 절연 특성을 가질 수 있다. 이에 따라, 절연부(25)는 포토레지스트, 실리콘 산화물, 실리콘 질화물 중 어느 하나의 재질로 형성될 수 있다. 절연부(25)는 기재(21) 상에 증착 등의 방법으로 실리콘 산화물, 실리콘 질화물을 형성할 수 있고, 기재(21)를 베이스로 하여 산화(Thermal Oxidation), 열 질화(Thermal Nitiridation) 방법을 사용할 수도 있다. 프린팅 법 등을 이용하여 포토레지스트를 형성할 수도 있다. 절연부(25)는 후술할 도금막(100)보다는 두껍도록 약 5㎛ ~ 20㎛의 두께를 가질 수 있다.
절연부(25)는 테이퍼 형상을 가지는 것이 바람직하다. 포토레지스트를 사용하여 테이퍼 형상의 패턴을 형성할 때에는 다중 노광 방법, 영역마다 노광 강도를 다르게 하는 방법 등을 사용할 수 있다.
후술할 전주 도금 과정에서 기재(21)의 노출된 표면으로부터 도금막(100)이 형성되고, 절연부(25)가 배치된 영역에서는 도금막(100)의 생성이 방지되어 패턴(PP)이 형성될 수 있다. 전도성 기재(21) 및 패턴화(26)된 절연부(25)를 포함하는 모판(20)은 도금막(100)의 생성 과정에서 패턴까지 형성할 수 있으므로, 몰드, 음극체로 병기될 수 있다.
다음으로, 도 6의 (c)를 참조하면, 모판(20) 상에 도금막(100)을 형성할 수 있다. 모판(20)을 음극체로서 사용하고, 이에 대향하는 양극체(미도시)를 준비한다. 양극체(미도시)는 도금액(미도시)에 침지되어 있고, 모판(20)은 전부 또는 일부가 도금액(미도시)에 침지되어 있을 수 있다.
절연부(25)가 절연 특성을 가지므로, 절연부(25)와 양극체 사이에서는 전기장이 형성되지 않거나, 도금이 수행되기 어려운 정도의 미약한 전기장만이 형성된다. 따라서, 모판(20)에서 도금막(100)이 생성되지 않는, 절연부(25)에 대응하는 부분은 도금막(100)의 패턴, 홀(Hole) 등을 구성한다. 다시 말해, 패턴화(26)된 절연부(25) 각각은 마스크(100)의 R, G, B에 대응하는 마스크 패턴(PP)을 형성할 수 있다.
기재(21)의 노출된 표면으로부터 도금막(100)이 전착되면서 두꺼워지기 때문에, 절연부(25)의 상단을 넘기 전까지만 도금막(100)을 형성하는 것이 바람직하다. 즉, 절연부(25)의 두께보다 도금막(100)의 두께가 더 작을 수 있다. 도금막(100)은 절연부(25)의 패턴(26) 내의 공간에 채워지며 전착되므로, 마스크 패턴(PP)의 측단면의 형상은 대략 테이퍼 형상으로 기울어지게 형성될 수 있고, 기울어진 각도는 약 45° 내지 65°일 수 있다.
다음으로, 도 6의 (d)를 참조하면, 도금막(100)[또는, 마스크(100)]을 모판(20)으로부터 분리하기 전에, 열처리(H)를 수행할 수 있다. 본 발명은 마스크(100)의 열팽창계수를 낮춤과 동시에 마스크(100) 및 마스크 패턴(PP)의 열에 의한 변형을 방지하기 위해, 모판(20)으로부터 분리 전에 열처리(H)를 수행하는 것을 특징으로 한다. 열처리는 300℃ 내지 800℃의 온도로 수행할 수 있다[도 7 참조].
일반적으로 압연으로 생성한 인바 박판에 비해, 전주 도금으로 생성한 인바 박판이 열팽창계수가 높다. 그리하여 인바 박판에 열처리를 수행함으로써 열팽창계수를 낮출 수 있는데, 이 열처리 과정에서 인바 박판에 약간의 변형이 생길 수 있다. 만약, 마스크(100)와 모판(20)을 분리한 후, 마스크 패턴(PP)을 가지는 마스크(100)에 열처리를 수행한다면 마스크 패턴(PP)에 일부 변형이 생길 수도 있다. 따라서, 모판(20)과 마스크(100)가 부착된 상태에서 열처리를 수행하면, 모판(20)의 절연부(25)가 차지하는 공간 부분에 형성된 마스크 패턴(PP)의 형태가 일정하게 유지되고, 열처리로 인한 미세한 변형을 방지할 수 있는 이점이 있다.
도 7은 본 발명의 일 실시 예에 따른 열처리 후의 마스크의 열팽창계수(coefficient of expansion, CTE)를 나타내는 그래프이다. 80 X 200mm의 샘플에 대해서, 300℃, 350℃, 400℃, 450℃, 500℃, 550℃, 800℃의 7가지의 온도 구간에서 열처리를 수행한 인바 박판의 열팽창계수를 측정하였다. 도 7의 (a)는 상온(25℃)에서 약 240℃까지 온도를 올리면서 각 샘플의 열팽창계수를 측정한 결과를 나타내고, 도 7의 (b)는 약 240℃에서 상온(25℃)까지 온도를 하강하면서 각 샘플의 열팽창계수를 측정한 결과를 나타낸다. 도 7의 (a) 및 도 7의 (b)를 참조하면, 열처리 온도에 따라 전주 도금으로 생성한 인바박판[또는, 마스크(100)]의 열팽창계수가 변화하며, 특히, 800℃의 열처리에서 가장 열팽창계수가 낮게 나타남을 확인할 수 있다.
따라서, 마스크(100)의 열팽창계수를 더 낮춤에 따라, ㎛ 스케일의 패턴(PP)의 변형을 방지하고, 초고화질의 OLED 화소를 증착할 수 있는 마스크(100)를 제조할 수 있는 이점이 있다.
다음으로, 도 6의 (e)를 참조하면, 도금막(100)을 모판(20)으로부터 분리할 수 있다. 도금막(100)과 모판(20)을 분리하면, 도금막(100)이 생성된 부분은 마스크(100)[또는, 마스크 바디]를 구성하고, 도금막(100)이 생성되지 않은 부분은 디스플레이 패턴(DP), 화소 패턴(PP)[또는, 마스크 패턴]을 구성할 수 있다[도 5 참조].
도 8내지 도 10은 본 발명의 다른 여러 실시 예에 따른 마스크의 제조 과정을 나타내는 개략도이다. 이하에서는, 도 6의 마스크 제조 과정과 동일한 부분에 대해서는 설명을 생략하고 차이점에 대해서만 설명한다.
먼저, 도 8의 (a)를 참조하면, 전도성 기재(21)를 준비한다. 기재(21)는 단결정 실리콘 재질을 사용할 수 있고, 고농도 도핑이 수행될 수 있음은 상술한 바 있다.
이어서, 전도성 기재(21) 상에 배리어막(22)을 형성할 수 있다.
단결정 실리콘 기재(21) 상에 인바 도금막(100)을 형성하고, 도금막(100)이 기재(21)와 접촉된 상태에서 열처리(H)를 하게 되면, 인바의 니켈 또는 철이 실리콘 기재(21)에 침투하여 니켈 실리사이드(silicide) 또는 철 실리사이드가 형성될 가능성이 있다. 또한, 단결정 실리콘 기재(21) 상에 슈퍼인바 도금막(100)을 형성하고, 도금막(100)이 기재(21)와 접촉된 상태에서 열처리(H)를 하게 되면, 슈퍼인바의 니켈, 철 또는 코발트가 실리콘 기재(21)에 침투하여 니켈 실리사이드(silicide), 철 실리사이드 또는 코발트 실리사이드가 형성될 가능성이 있다. 니켈 실리사이드, 철 실리사이드, 코발트 실리사이드 등이 모판(20)의 표면에 형성되면 전주 도금시에 전기장이 균일하게 작용하는 것에 대해 장애 요소가 될 수 있다. 또한, 니켈 실리사이드, 철 실리사이드, 코발트 실리사이드 등이 열에 의해 더 성장하게 되면, 전주 도금의 장애가 되는 면적이 더 커지게 되어 모판(20) 전체를 교체해야 하고, 재사용을 할 수 없는 문제점이 발생한다.
따라서, 배리어막(22)을 전도성 기재(21) 상에 형성하여, 인바/슈퍼인바 도금막(100)의 니켈/철/코발트 성분이 기재(21)로 침투하는 것을 막을 수 있다.
배리어막(22)은 도금막(100)의 성분[일 예로, 니켈]이 기재(21)로 침투하는 것을 막으면서, 동시에 표면에서 전주 도금이 수행될 수 있도록 전도성을 가지는 것이 바람직하다. 이를 고려하여 배리어막(22)은 질화티탄(TiN), 텅스텐카바이드(WC), 티타늄텅스텐(WTi), 그래핀(graphene) 중 어느 하나의 재질을 포함할 수 있다. 배리어막(22)은 증착 등의 박막 형성 공정을 제한없이 사용할 수 있다.
하지만, 반드시 배리어막(22)이 전도성을 가질 필요는 없다. 절연성을 가지는 알루미늄 산화물, 실리콘 산화물, 실리콘 질화물 중 어느 하나의 재질을 포함할 수도 있다. 다만, 배리어막(22)은 전주 도금이 수행될 수 있는 전기장을 표면에서 발생시키기 위해 충분히 얇은 두께를 가져야 할 필요가 있다. 두께는 수십 Å 이하, 또는, 1Å 내지 99Å 로 형성될 수 있다.
절연성을 가지는 배리어막(22)이 위처럼 충분히 얇은 두께를 가지면, 전도성 기재(21) 내의 전자가 배리어막(22)을 통과할 수 있게 된다. 파동 형태로 진행하는 전자는 터널링 효과(Tunneling Effect)에 의해 배리어막(22)을 통과하여, 배리어막(22)의 표면 상에 전주도금을 수행될 수 있는 전기장을 생성할 수 있게 된다.
다음으로, 도 8의 (b)를 참조하면, 배리어막(22)의 일면[기재(21)와 접하는 반대측 면] 상에 패턴화(26)된 절연부(25)를 형성할 수 있다. 절연부(25)를 형성하는 방법, 형태, 재질 등은 도 6의 (b)에서 상술한 바와 같다. 도 8의 실시예에서는 전도성 기재(21), 배리어막(22) 및 패턴화(26)된 절연부(25)를 포함하여 모판(20')을 구성한다.
다음으로, 도 8의 (c)를 참조하면, 모판(20') 상에 도금막(100)을 형성할 수 있다. 이 과정은 도 6의 (c)에서 상술한 바와 같다.
다음으로, 도 8의 (d)를 참조하면, 도금막(100)[또는, 마스크(100)]을 모판(20')으로부터 분리하기 전에, 열처리(H)를 수행할 수 있다. 도 6의 (d) 및 도 7에서 상술한 바와 같이, 열처리(H)를 수행하여 도금막(100)의 열팽창계수를 낮출 수 있고, 모판(20')과 마스크(100)가 부착된 상태에서 열처리(H)를 수행하기 때문에, 모판(20')의 절연부(25)가 차지하는 공간 부분에 형성된 마스크 패턴(PP)의 형태가 일정하게 유지되고, 열처리로 인한 미세한 변형을 방지할 수 있는 이점이 있다.
또한, 도금막(100)이 기재(21)와 직접 접촉되지 않고 배리어막(22)이 개재되어 있으므로, 열처리(H) 과정에서 도금막(100)의 성분(니켈 등)이 기재(21)에 침투되지 않고, 모판(20')의 내구성을 증진시켜 재활용 횟수를 더 늘릴 수 있는 이점이 있다.
다음으로, 도 8의 (e)를 참조하면, 도금막(100)을 모판(20')으로부터 분리할 수 있다. 도금막(100)과 모판(20')을 분리하면, 도금막(100)이 생성된 부분은 마스크(100)[또는, 마스크 바디]를 구성하고, 도금막(100)이 생성되지 않은 부분은 디스플레이 패턴(DP), 화소 패턴(PP)[또는, 마스크 패턴]을 구성할 수 있다[도 5 참조].
다른 실시 예로, 도 9의 (a)를 참조하면, 전도성 기재(21)를 준비한다. 기재(21)는 단결정 실리콘 재질을 사용할 수 있고, 고농도 도핑이 수행될 수 있음은 상술한 바 있다.
다음으로, 도 9의 (b)를 참조하면, 전도성 기재(21)의 일면(상부면)에 음각 패턴(28)을 형성할 수 있다. 음각 패턴(28)은 상부에서 하부로 갈수록 폭이 작아지는 형상을 가질 수 있다. 일 예로, 음각 패턴(28)의 측단면 형상은 역 테이퍼(Taper) 형상일 수 있으며, 상부에서 하부로 갈수록 폭이 작아지도록 음각 패턴(28)의 측면이 기울어진 형상을 가질 수 있다. 또한, 음각 패턴(28)은 상부에서 하부로 갈수록 폭이 작아지는 것을 만족한다면, 측면이 라운딩지게 형성되거나, 단차가 형성될 수도 있다.
전도성 기재(21)의 형성 방향과 음각 패턴(28)의 측면과의 각도, 즉, 전도성 기재(21)에 평행한 방향과 음각 패턴(28) 측면 방향이 이루는 각도(테이퍼 각도)는 약 45° 내지 65°일 수 있다. 음각 패턴(28)이 형성되는 깊이는 약 5㎛ 내지 20㎛ 일 수 있지만, 이에 제한되지는 않는다. 음각 패턴(28)은 공지의 식각 방법을 사용하여 형성할 수 있으며, 습식 식각을 수행할 시 도핑된 단결정 실리콘 기재(21)에서 (111)면에 평행하게 식각이 수행될 수 있고, 건식 식각을 수행할 시 식각 각도에 따라서 음각 패턴(28)의 테이퍼 각도를 조절할 수 있다.
다음으로, 도 9의 (c)를 참조하면, 전도성 기재(21)의 표면 상에 절연부(27: 27a, 27b)를 형성할 수 있다. 절연부(27)는 음각 패턴(28)이 형성된 기재(21)의 표면(상부면)(27a) 및 음각 패턴(28)의 측면(27b) 상에 형성될 수 있다. 즉, 음각 패턴(28)의 하부면(21a)을 제외한 나머지 부분에 절연부(27: 27a, 27b)가 형성될 수 있다. 음각 패턴(28)의 하부면(21a)에는 절연부(27)가 형성되지 않고, 기재(21)의 일부(21a)가 노출될 수 있다. 그리고, 도금막(100)이 형성될 필요가 있는, 디스플레이 패턴(DP)과 이웃하는 디스플레이 패턴(DP) 사이에는 절연부(27)가 형성되지 않고 기재(21)가 노출될 수 있다.
절연부(27)는 포토레지스트, 실리콘 산화물, 실리콘 질화물 중 어느 하나의 재질로 형성될 수 있다. 절연부(27)는 기재(21) 상에 증착 등의 방법으로 실리콘 산화물, 실리콘 질화물을 형성할 수 있고, 기재(21)를 베이스로 하여 산화(Thermal Oxidation), 열 질화(Thermal Nitiridation) 방법을 사용할 수도 있다. 프린팅 법 등을 이용하여 포토레지스트를 형성할 수도 있다. 음각 패턴(28)의 하부면(21a)[또는, 전도성 기재(21)의 노출면(21a)]만을 노출시키기 위해 소정의 식각 공정이 더 수행될 수도 있다.
후술할 전주 도금 과정에서 기재(21)의 노출된 표면(21a)으로부터 도금막(100)이 형성되고, 절연부(27)가 배치된 영역에서는 도금막(100)의 생성이 방지되어 패턴(PP)이 형성될 수 있다. 음각 패턴(28)이 형성된 전도성 기재(21) 및 절연부(27)를 포함하는 모판(20")은 도금막(100)의 생성 과정에서 패턴까지 형성할 수 있으므로, 몰드, 음극체로 병기될 수 있다.
다음으로, 도 9의 (d)를 참조하면, 모판(20") 상에 도금막(100)을 형성할 수 있다. 모판(20")을 음극체로서 사용하고, 이에 대향하는 양극체(미도시)를 준비한다. 양극체(미도시)는 도금액(미도시)에 침지되어 있고, 모판(20")은 전부 또는 일부가 도금액(미도시)에 침지되어 있을 수 있다.
절연부(27)가 절연 특성을 가지므로, 절연부(27)와 양극체 사이에서는 전기장이 형성되지 않거나, 도금이 수행되기 어려운 정도의 미약한 전기장만이 형성된다. 모판(20")에서 절연부(27)에 대응하는 부분은, 도금막(100)의 화소 패턴(PP)을 구성할 수 있다. 그리고, 음각 패턴(28)의 하부면에 노출된 기재(21)의 표면(21a)으로부터 도금막(100)이 형성되어, 상부에서 하부로 갈수록 폭이 작아지는 형상, 역 테이퍼 형상 등을 가지도록 형성될 수 있다.
다음으로, 도 9의 (e)를 참조하면, 도금막(100)[또는, 마스크(100)]을 모판(20")으로부터 분리하기 전에, 열처리(H)를 수행할 수 있다. 도 6의 (d) 및 도 7에서 상술한 바와 같이, 열처리(H)를 수행하여 도금막(100)의 열팽창계수를 낮출 수 있고, 모판(20")과 마스크(100)가 부착된 상태에서 열처리(H)를 수행하기 때문에, 모판(20")의 절연부(27)가 차지하는 공간 부분에 형성된 마스크 패턴(PP)의 형태가 일정하게 유지되고, 열처리로 인한 미세한 변형을 방지할 수 있는 이점이 있다.
다음으로, 도 9의 (f)를 참조하면, 도금막(100)을 모판(20")으로부터 분리할 수 있다. 도금막(100)과 모판(20")을 분리하면, 도금막(100)이 생성된 부분은 마스크(100)[또는, 마스크 바디]를 구성하고, 도금막(100)이 생성되지 않은 부분은 디스플레이 패턴(DP), 화소 패턴(PP)[또는, 마스크 패턴]을 구성할 수 있다[도 5 참조].
또 다른 실시 예로, 도 10을 참조하면, 음각 패턴(28)이 형성된 전도성 기재(21) 상에 배리어막(23)을 형성할 수 있다. 배리어막(23)의 특징은 도 8에서 상술한 바와 동일하며, 배리어막(23)을 제외한 마스크 제조 과정은 도 9와 동일하므로 구체적인 설명은 생략한다.
도금막(100)이 기재(21)와 직접 접촉되지 않고 배리어막(23)이 개재되어 있으므로, 열처리(H) 과정에서 도금막(100)의 성분(니켈 등)이 기재(21)에 침투되지 않고, 모판(20''')의 내구성을 증진시켜 재활용 횟수를 더 늘릴 수 있는 이점이 있다.
위와 같이, 본 발명은 전주 도금 공정에서 도금막(100)을 형성하는 공정만으로 패턴(PP)을 가지는 마스크(100)를 제조할 수 있는 효과가 있다. 또한, 열처리(H)를 통해 낮은 열팽창계수(CTE)를 가지는 마스크(100)를 제조할 수 있고, 열처리(H) 과정에서 마스크 패턴(PP)의 변형을 방지할 수 있는 효과가 있다. 또한, 절연부(25, 27)를 포함하는 모판(20)[또는, 음극체(20)]를 한번 제조하면, 이후에 반복적으로 재사용 할 수 있어 공정 시간, 비용을 감축시키고, 생산성을 향상시킬 수 있는 효과가 있다. 또한, 모판(20)의 절연부(25, 27) 패턴을 미세하게 형성할 수 있으므로, OLED의 FMM의 패턴을 미세하게 형성할 수 있는 효과가 있다.
본 발명은 상술한 바와 같이 바람직한 실시예를 들어 도시하고 설명하였으나, 상기 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형과 변경이 가능하다. 그러한 변형예 및 변경예는 본 발명과 첨부된 특허청구범위의 범위 내에 속하는 것으로 보아야 한다.
10: 전주 도금 장치
20, 20', 20", 20''': 모판
21: 전도성 기재
22. 23: 배리어막
25, 27: 절연부
28: 음각 패턴
100: 마스크, 새도우 마스크, FMM(Fine Metal Mask)
200: OLED 화소 증착 장치
DP: 디스플레이 패턴
PP: 화소 패턴, 마스크 패턴

Claims (5)

  1. 전주 도금(Electroforming)으로 마스크를 제조하는 방법으로서,
    (a) 도핑된 단결정 실리콘 재질인 전도성 기재를 제공하는 단계;
    (b) 전도성 기재의 일면 상에 배리어막을 형성하는 단계;
    (c) 배리어막의 일면 상에 패턴화된 절연부를 형성하여 모판(Mother Plate)을 제조하는 단계;
    (d) 모판을 음극체(Cathode Body)로 사용하고, 전주 도금(Electroforming)으로 모판 상에 도금막을 형성하는 단계;
    (e) 도금막을 열처리하는 단계; 및
    (f) 모판으로부터 도금막을 분리하는 단계
    를 포함하며,
    배리어막은 전도성을 가지고, 질화티탄(TiN), 텅스텐카바이드(WC), 티타늄텅스텐(WTi) 중 어느 하나의 재질인, 마스크의 제조 방법.
  2. 전주 도금(Electroforming)으로 마스크를 제조하는 방법으로서,
    (a) 음각 패턴이 형성된 도핑된 단결정 실리콘 재질인 전도성 기재를 제공하는 단계;
    (b) 전도성 기재의 일면 상에 배리어막을 형성하는 단계;
    (c) 음각 패턴의 하부면을 제외한, 배리어막의 표면 상에 절연부를 형성하여 모판(Mother Plate)을 제조하는 단계;
    (d) 모판을 음극체(Cathode Body)로 사용하고, 전주 도금(Electroforming)으로 음각 패턴 하부면에 노출된 배리어막의 표면으로부터 도금막을 형성하는 단계;
    (e) 도금막을 열처리하는 단계; 및
    (f) 모판으로부터 도금막을 분리하는 단계
    를 포함하며,
    배리어막은 전도성을 가지고, 질화티탄(TiN), 텅스텐카바이드(WC), 티타늄텅스텐(WTi) 중 어느 하나의 재질인, 마스크의 제조 방법.
  3. 삭제
  4. 제1항 또는 제2항에 있어서,
    열처리는 300℃ 내지 800℃로 수행하는, 마스크의 제조 방법.
  5. 삭제
KR1020190158567A 2019-12-02 2019-12-02 마스크의 제조 방법 KR102110438B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190158567A KR102110438B1 (ko) 2019-12-02 2019-12-02 마스크의 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190158567A KR102110438B1 (ko) 2019-12-02 2019-12-02 마스크의 제조 방법

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020170001433A Division KR102054179B1 (ko) 2017-01-04 2017-01-04 마스크의 제조 방법 및 이에 사용되는 모판

Publications (2)

Publication Number Publication Date
KR20190137743A KR20190137743A (ko) 2019-12-11
KR102110438B1 true KR102110438B1 (ko) 2020-05-13

Family

ID=69003734

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190158567A KR102110438B1 (ko) 2019-12-02 2019-12-02 마스크의 제조 방법

Country Status (1)

Country Link
KR (1) KR102110438B1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015229774A (ja) * 2014-06-03 2015-12-21 Nltテクノロジー株式会社 メタルマスク及びメタルマスクの製造方法並びにメタルマスクを用いた成膜方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101010583B1 (ko) * 2008-07-21 2011-01-24 (주)우리정도 이음매 없는 메탈슬리브의 제조 방법
KR20120105292A (ko) * 2011-03-15 2012-09-25 삼성디스플레이 주식회사 증착 마스크 및 증착 마스크 제조 방법
KR101377210B1 (ko) * 2012-02-22 2014-03-21 엘에스엠트론 주식회사 전기 도금을 이용한 다공성 박막의 제조방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015229774A (ja) * 2014-06-03 2015-12-21 Nltテクノロジー株式会社 メタルマスク及びメタルマスクの製造方法並びにメタルマスクを用いた成膜方法

Also Published As

Publication number Publication date
KR20190137743A (ko) 2019-12-11

Similar Documents

Publication Publication Date Title
KR102054179B1 (ko) 마스크의 제조 방법 및 이에 사용되는 모판
KR101870820B1 (ko) 프레임 일체형 마스크의 제조 방법
US20190252614A1 (en) Mother plate, method for manufacturing mother plate, method for manufacturing mask, and oled pixel deposition method
TW201833389A (zh) 母板、母板的製造方法及遮罩的製造方法
KR102010001B1 (ko) Oled 화소 형성 마스크의 제조에 사용되는 전주도금 모판
KR101907490B1 (ko) 모판 및 마스크의 제조방법
KR102266249B1 (ko) 모판, 마스크 및 마스크의 제조방법
KR102110438B1 (ko) 마스크의 제조 방법
KR101832988B1 (ko) 모판, 모판의 제조 방법, 및 마스크의 제조 방법
KR101894443B1 (ko) 전주 도금 시트의 제조 방법 및 전주 도금 장치
KR102254376B1 (ko) 마스크의 제조 방법
KR101860013B1 (ko) 마스크
KR101861702B1 (ko) 모판, 모판의 제조 방법, 및 마스크의 제조 방법
KR102301331B1 (ko) 마스크의 제조 방법
KR102246536B1 (ko) 마스크 및 마스크의 제조 방법
KR102377775B1 (ko) 전력 공급용 지그
KR20190122482A (ko) 마스크의 제조 방법 및 이에 사용되는 모판
KR102055405B1 (ko) 모판 및 모판의 제조 방법
KR20190004478A (ko) 마스크의 제조 방법
KR20210064146A (ko) 모판 및 마스크의 제조방법
KR20200040472A (ko) 마스크의 제조 방법
KR20190011100A (ko) 전주 도금 마스크 제조용 모판
KR20190011099A (ko) 전주 도금 마스크 제조용 모판
KR20180130319A (ko) 마스크의 분리 방법
KR20190011098A (ko) 마스크의 제조 방법

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right