KR102093994B1 - Preparation method of low basicity coagulant using strong acid hypochlorite water and water treatment method using same - Google Patents

Preparation method of low basicity coagulant using strong acid hypochlorite water and water treatment method using same Download PDF

Info

Publication number
KR102093994B1
KR102093994B1 KR1020190125419A KR20190125419A KR102093994B1 KR 102093994 B1 KR102093994 B1 KR 102093994B1 KR 1020190125419 A KR1020190125419 A KR 1020190125419A KR 20190125419 A KR20190125419 A KR 20190125419A KR 102093994 B1 KR102093994 B1 KR 102093994B1
Authority
KR
South Korea
Prior art keywords
basicity
water
coagulant
pac
low
Prior art date
Application number
KR1020190125419A
Other languages
Korean (ko)
Inventor
정석관
권영준
엄윤섭
Original Assignee
고도화학(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고도화학(주) filed Critical 고도화학(주)
Priority to KR1020190125419A priority Critical patent/KR102093994B1/en
Application granted granted Critical
Publication of KR102093994B1 publication Critical patent/KR102093994B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron

Abstract

The present invention relates to a coagulant for water purification and sewage·wastewater treatment and, more specifically, to a method for manufacturing a water treatment coagulant with oxidizing power of low basicity using strong acid hypochlorite water, and a water treatment method using the same. According to the present invention, the method for manufacturing a low basicity coagulant using strong acid hypochlorite water comprises: a first step of generating polyaluminum chloride (PAC) containing 15 to 20 wt% of aluminum oxide (Al_2O_3) generated by reacting aluminum hydroxide (Al(OH)_3) with hydrochloric acid (HCl); and a second step of adding and reacting aluminum sulfate, which is a first basicity modifier, to and with the PAC, and adding and reacting strong acid hypochlorite water, which is a second basicity modifier, to and with the mixture to manufacture a hypochlorous polyaluminum chlorosulfate (HCPACS) coagulant having the basicity of 5 to 25% and the remaining chlorine of 0.02 to 2 mg/L, represented by Al_2(OH)_aCl_b(SO_4)_c(OCl)_d.

Description

강산성 차염소산수를 사용한 저염기도 응집제의 제조방법 및 이를 이용한 수처리 방법{Preparation method of low basicity coagulant using strong acid hypochlorite water and water treatment method using same}Preparation method of low basicity coagulant using strong acidic hypochlorous acid water and water treatment method using the same {Preparation method of low basicity coagulant using strong acid hypochlorite water and water treatment method using same}

본 발명은 정수 및 하ㆍ폐수처리용 응집제의 제조방법에 관한 것으로, 상세하게는 강산성 차염소산수를 사용한 저염기도의 산화력을 겸비한 수처리 응집제의 제조방법 및 이를 이용한 수처리 방법에 관한 것이다.The present invention relates to a method for producing a coagulant for water purification and sewage and wastewater treatment, and more particularly, to a method for preparing a water treatment coagulant having oxidizing power of a low basic airway using strong acidic hypochlorous acid water and a water treatment method using the same.

정수 및 하ㆍ폐수처리에 있어서 부유물의 응집 침전처리는 가장 기본적인 공정으로, 이때 원수에 포함된 유기물들을 함께 침전시켜 물속의 화학적산소요구량(COD) 또는 생물학적산소요구량(BOD)을 낮추는 화학적인 처리공정에서 응집제 사용은 필수적이며, 이때 사용되는 응집제로는 단량체인 황산알루미늄(Aluminium sulfate, 이하‘Alum’)과 폴리머인 폴리염화알루미늄(Poly aluminium chloride, 이하‘PAC’)이 대표적인 무기계 응집제라 할 수 있다.In the treatment of purified water and sewage and waste water, the flocculation and precipitation treatment is the most basic process. At this time, the organic substances contained in the raw water are precipitated together to reduce the chemical oxygen demand (COD) or biological oxygen demand (BOD) in the water. The use of coagulants is essential, and the coagulants used at this time are aluminum sulfate (hereinafter referred to as 'Alum') and polymer polyaluminium chloride (hereinafter referred to as 'PAC'). .

최근 무기계 응집제인 Alum과 PAC에 첨가제 및 염기도 조절제를 첨가한 여러 형태의 제품들이 개발되어 시중에 판매되고 있으나 지금도 Alum과 PAC가 정수, 하수, 폐수처리에 가장 많이 사용되고 있다.Recently, several types of products with additives and basicity modifiers added to inorganic coagulants Alum and PAC have been developed and sold on the market, but Alum and PAC are still the most used for water purification, sewage, and wastewater treatment.

특히 최근 하수처리장에서 PAC 사용량이 급격하게 증가되고 있지만 ‘먹는 물 관리법’에 의한 상수도용 PAC는 염기도가 높아 저탁도와 저수온에는 탁월한 효과가 있지만 하수나 폐수처럼 고탁도와 고농도 COD의 경우에는 처리에 한계가 있어 최근 저염기도 PAC의 개발이 늘어나고 있다.In particular, PAC usage has been rapidly increasing in sewage treatment plants in recent years, but PAC for tap water by the 'drinking water management method' has high basicity, so it has an excellent effect on low turbidity and low water temperature, but it is effective in treating high turbidity and high concentration COD like sewage and wastewater. Due to its limitations, the development of low-base PACs is increasing.

저탁도 저수온인 상수 원수를 정수하는 전국의 정수장에서 최근 고염기도 PAC 제품으로 바뀌고 있는 실정이지만, 낙동강 원수나 하수 등은 알칼리성 금속염에 의한 높은 전하중화에 의하여 부유물과 입자성 물질에 대한 응집력은 높으나, 원수 속에 용존하는 유기물과의 반응성이 약하여 COD 제거에 어려움이 있다. 또한 과량 투입시는 침전물의 역전현상으로 잔류알루미늄 농도가 높아진다. 여기에 반하여 저염기 PAC는 미세플록 생성에 의한 유기물을 흡착 공침함으로서 높은 COD 감소 효과를 거둘 수 있다.Although high water bases have recently been changed to PAC products in water purification plants across the country that purify water with low turbidity and low water temperature, Nakdong River raw water and sewage water have high cohesive properties for suspended solids and particulate matter due to high charge neutralization by alkaline metal salts. It is difficult to remove COD due to weak reactivity with organic substances dissolved in raw water. In addition, when the excess amount is added, the residual aluminum concentration increases due to the reversal of the precipitate. On the contrary, the low-base PAC can achieve a high COD reduction effect by adsorbing and co-precipitating organic matter by microfloc production.

COD 농도가 높을수록 무기계 응집제의 투입량도 많아짐에 따라 미세플록의 양도 증가하므로 충분한 침강시간을 주지 못할 경우 처리수의 탁도가 증가한다. 따라서 COD 감소효율과 침강성 및 미세 부유무질의 제거가 뛰어난 새로운 응집제의 개발이 필요하다.As the COD concentration increases, the amount of the fine floc increases as the amount of the inorganic flocculant increases, so the turbidity of the treated water increases when a sufficient sedimentation time is not given. Therefore, there is a need to develop a new coagulant with excellent COD reduction efficiency, sedimentation and removal of fine floating matter.

수처리 응집제는 환경부고시 제2017-190호(2017. 10. 23.) “수처리제의 기준과 규격 및 표시기준”에서 산화알루미늄 함량에 따라 1종(10.0~12.0%), 2종(12.0~15.0%), 3종(15.0~18.0%)으로 구분하고 염기도는 35% 이상으로 규정하고 있으며, 정부조달을 통하여 상수도 및 하수처리장에 사용되고 있다.Water treatment flocculants are 1 (10.0 to 12.0%), 2 (12.0 to 15.0%) depending on the aluminum oxide content in the “Standards and Specifications and Labeling Standards for Water Treatment Agents” No. 2017-190 (2017. 10. 23.) ), 3 types (15.0 ~ 18.0%), and basicity is defined as more than 35%. It is used for waterworks and sewage treatment plants through government procurement.

종래기술인 특허 문헌1은, 저염기도 폴리염화알루미늄계 응집제를 안정적으로 제조하는 방법에 있어서, 수산화알루미늄과 산의 반응에 의해 얻어진 극저염기도(0~3%)의 알루미늄염화물을 제조하고 다시 염기도 상승제로서 수산화마그네슘 및 수산화칼슘의 혼합물과 반응시켜 저염기도(5~25%) 수준의 폴리염화알루미늄계 응집제를 제조하는 구성에 대해 개시하고 있으며, 저염기 PAC를 제조함에 있어 과량의 염산을 투입하여 저염기 PAC를 제조하는 1단계 반응의 특징을 가진다.In the prior art, Patent Document 1, in a method for stably producing a low-aluminum polyaluminum chloride-based coagulant, prepares an aluminum chloride having an extremely low-aqueous base (0 to 3%) obtained by the reaction of aluminum hydroxide and an acid, and again increases the basicity. As a zero agent, it discloses a configuration for preparing a polyaluminum chloride-based flocculant having a low basicity (5-25%) level by reacting with a mixture of magnesium hydroxide and calcium hydroxide, and adding low hydrochloric acid to produce a low-base PAC. It has the characteristics of a one-step reaction to prepare a base PAC.

또한, 특허 문헌2는 수산화알루미늄과 염산을 투입하여 120~170℃ 의 온도로 5~10시간 동안 반응시켜 Al2O3 함량이 15~18%로 조절된 폴리염화알루미늄(PAC)인 1차 반응물을 생성하는 단계와, 1차 반응물과 염기도 조절제로 염산을 반응시키는 단계로 이루어진 저염기도 폴리염화알루미늄(PACB)을 제조하는 것에 관한 것으로, 저염기 PAC를 제조함에 있어 일반 PAC를 제조한 다음 염산을 추가하여 반응하는 2단계 반응을 특징으로 한다. In addition, Patent Document 2 is a primary reactant that is polyaluminum chloride (PAC) whose Al 2 O 3 content is adjusted to 15-18% by reacting for 5-10 hours at a temperature of 120-170 ° C. by adding aluminum hydroxide and hydrochloric acid. It relates to producing a low-base polyaluminum chloride (PACB) consisting of a step of reacting hydrochloric acid with a primary reactant and a basicity modifier, and in the production of low-base PAC, general PAC is prepared and then hydrochloric acid is produced. It is characterized by a two-step reaction that reacts in addition.

특허 문헌1. 대한민국 등록특허공보 제10-1752777호Patent Document 1. Republic of Korea Registered Patent Publication No. 10-1752777 특허 문헌2. 대한민국 등록특허공보 제10-1159236호Patent Document 2. Republic of Korea Registered Patent Publication No. 10-1159236

상기와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 본 발명은, 저염기도를 유지하는 응집제인 Al2O3 함량이 10.0~16.0중량%, 염기도가 5~25%, 잔류염소가 0.02~2mg/ℓ인 차아염소산폴리염화황산알루미늄(HCPACS) 응집제를 제조하는 것을 목적으로 한다.The present invention devised to solve the problems of the prior art as described above, the content of Al 2 O 3 as a flocculant that maintains a low salt airway is 10.0 to 16.0 wt%, basicity is 5 to 25%, residual chlorine is 0.02 to 2 mg / It is an object to prepare a polyaluminum hypochlorite (HCPACS) coagulant which is ℓ.

즉, 기존의 일반적인 PAC 및 저염기, 고염기 PAC 보다 부유물질(현탁입자)에 대한 응집제거 효율과 산화력에 의한 COD 저감효율이 개선된 무기응집제를 Alum과 강산성 차염소산수를 이용하여, 저장안정성을 가지는 저염기도의 차아염소산폴리염화황산알루미늄 응집제를 제조하는 것을 목적으로 한다.That is, the inorganic coagulant with improved COD reduction efficiency by coagulation removal efficiency and oxidizing power for suspended solids (suspension particles) than conventional PAC, low-base, and high-base PAC using Alum and strong acidic hypochlorous acid water, storage stability It is an object of the present invention to produce a polyaluminum hypochlorite flocculant having a low basicity.

상기한 과제를 달성하기 위하여 본 발명의 강산성 차염소산수를 사용한 저염기도 응집제의 제조방법은, 수산화알루미늄(Al(OH)3)과 염산(Hcl)을 반응시켜 생성되는 산화알루미늄 (Al2O3) 함량이 15~20중량%의 폴리염화알루미늄(PAC)을 생성하는 제1 단계; 상기 폴리염화알루미늄에 1차 염기도 조절제인 황산알루미늄(Aluminium sulfate)을 첨가하여 반응시킨 후, 2차 염기도 조절제인 강산성 차염소산수를 투입하여 반응시켜, 산화알루미늄(Al2O3) 함량이 10.0~16.0중량%, 염기도가 5~25%, 잔류염소가 0.02~2mg/ℓ인, 아래의 [화학식 1]으로 표현되는 차아염소산폴리염화황산알루미늄((Hypochlorous PolyAluminium Chloro Sulfate, HCPACS) 응집제를 제조하는 제2 단계; [화학식 1] Al2(OH)aclb(SO4)c(Ocl)d 를 포함하여 구성되는 것을 특징으로 한다.In order to achieve the above object, a method of preparing a low-base air cohesive agent using strong acidic hypochlorous acid water of the present invention, aluminum oxide (Al 2 O 3 ) produced by reacting aluminum hydroxide (Al (OH) 3 ) with hydrochloric acid (Hcl) ) The first step of producing a polyaluminum chloride (PAC) content of 15 to 20% by weight; After the reaction by the addition of a primary basicity adjusting agent is aluminum sulfate (Aluminium sulfate) to said poly aluminum chloride, secondary basicity adjusting agent is to put the reaction the number of strong acid difference chlorate, aluminum (Al 2 O 3) content of 10.0 to oxidation 16.0% by weight, basicity of 5 to 25%, residual chlorine is 0.02 to 2mg / ℓ, hypochlorous acid polyaluminum sulfate represented by [Formula 1] ((Hypochlorous PolyAluminium Chloro Sulfate, HCPACS) flocculant preparation agent Step 2: Al 2 (OH) a cl b (SO4) c (Ocl) It comprises a d .

또한, 상기 [화학식 1]에서 a+b+c+d=6 으로, 그 범위는 0.3≤a≤1.5, 4.2≤b≤5.6, 0.1≤c≤0.3, 0.000002≤d≤0.0002)인 것을 특징으로 한다.In addition, in [Formula 1], a + b + c + d = 6, and the range is 0.3≤a≤1.5, 4.2≤b≤5.6, 0.1≤c≤0.3, 0.000002≤d≤0.0002) do.

또한, 상기 제1 단계의 상기 폴리염화알루미늄은 고체 수산화알루미늄(순도 99.5% 이상, 건조상) 2몰과 염산(Hcl 30~35%) 3.6몰을 58~120rpm으로 교반하면서 150~160℃에서 3~6시간 반응시켜 생성되는 Al2O3 함량이 18~20중량%의 PAC를 제조한 후, 여기에 희석용수를 투입하여 Al2O3 함량이 16.10중량% 염기도 35.0~45.0%인 것을 특징으로 한다.In addition, the polyaluminum chloride in the first step is stirred at 150 to 160 ° C. while stirring 2 mol of solid aluminum hydroxide (purity of 99.5% or more, and 3.6 mol of hydrochloric acid (Hcl 30 to 35%)) at 58 to 120 rpm. After producing PAC having an Al 2 O 3 content of 18 to 20% by weight by reacting for ~ 6 hours, dilution water was added thereto, and the Al 2 O 3 content was 16.10% by weight and the basicity was 35.0 to 45.0%. do.

또한, 상기 제2 단계의 상기 1차 염기도 조절제는 고체 수산화알루미늄(순도 99.5% 이상, 건조상) 2몰과 황산(H2SO4 98%) 3몰을 58~120rpm으로 교반하면서 100~130℃에서 1~3시간 반응시켜 생성되는 산화알루미늄 함량이 8.0중량%, 염기도 0%인 황산알루미늄인 것을 특징으로 한다.In addition, the primary basicity regulator of the second step is 100 to 130 ° C. while stirring 2 moles of solid aluminum hydroxide (purity of 99.5% or more, 3 moles of sulfuric acid (H 2 SO 4 98%)) at 58 to 120 rpm. It is characterized in that the aluminum oxide content produced by reacting at 1 to 3 hours is 8.0% by weight and the basicity is 0% aluminum sulfate.

또한, 상기 제2 단계의 상기 2차 염기도 조절제는 차염소산나트륨과 물의 혼합용액에 염산(Hcl 35%)을 교반 반응하여 제조되거나, 물과 염산(Hcl 35%)을 혼합한 용액에 불용성전극으로 구성된 전해조에서 직류전압(1.6V)과 전류(1A)를 인가하여 잔류염소량이 0.5~150mg/ℓ 농도로 제조되는 차염소산수인 것을 특징으로 한다.In addition, the secondary basicity regulator of the second step is prepared by stirring and reacting hydrochloric acid (Hcl 35%) in a mixed solution of sodium hypochlorite and water, or as an insoluble electrode in a solution of water and hydrochloric acid (Hcl 35%). It is characterized in that the residual chlorine amount is 0.5 to 150 mg / L concentration by applying a DC voltage (1.6 V) and a current (1 A) in the configured electrolyzer.

또한, 상기 제1 단계는, 수산화알루미늄(Al(OH)3)과 염산(Hcl)을 고온 고압 반응기에서 교반하면서 150~160℃에서 3~6시간 반응시켜 생성되는 Al2O3 함량이 15~20중량%, 염기도 35.0~45.0%의 폴리염화알루미늄을 제조하는 단계이며, 상기 제2 단계는, 상기 1차 염기도 조절제인 염기도 0%인 황산알루미늄을 첨가하여 교반하면서 60~100℃ 온도조건으로 0.1~1시간 동안 반응시킨 후, 상기 2차 염기도 조절제인 염기도 0%인 상기 강산성 차염소산수를 투입하여 60~100℃ 온도조건에서 0.1~1시간 동안 반응시켜, Al2O3 함량이 10.0~16.0중량%, 염기도가 5~25%, 잔류염소가 0.02~2mg/ℓ인 차아염소산폴리염화황산알루미늄을 제조하는 단계인 것을 특징으로 하는, 강산성 차염소산수를 사용한 저염기도 응집제의 제조방법.In addition, in the first step, the content of Al 2 O 3 generated by reacting aluminum hydroxide (Al (OH) 3 ) and hydrochloric acid (Hcl) in a high-temperature high-pressure reactor at 150 to 160 ° C. for 3 to 6 hours is 15 ~. 20 weight%, a step of preparing polyaluminum chloride having a basicity of 35.0 to 45.0%, and in the second step, 0.1 to 60 to 100 ° C temperature condition while stirring by adding aluminum sulfate having 0% basicity as the primary basicity regulator. After reacting for ~ 1 hour, the strong acidic hypochlorous acid water having 0% basicity, which is the secondary basicity regulator, was added to react for 0.1 to 1 hour at a temperature condition of 60 to 100 ° C, and the Al 2 O 3 content was 10.0 to 16.0. A method for producing a low-base flocculant using strong acidic hypochlorous acid water, which is characterized in that it is a step for preparing polyaluminum hypochlorite having a weight%, basicity of 5 to 25%, and residual chlorine of 0.02 to 2 mg / l.

또한, 본 발명의 상기 강산성 차염소산수를 사용한 저염기도 응집제를 이용하여 정수 또는 하수, 폐수를 처리하는 방법을 특징으로 한다.In addition, it characterized by a method for treating purified water or sewage, wastewater by using a coagulant with a low base also using the strong acidic hypochlorous acid water of the present invention.

무기응집제의 염기도는 OH-이온과 Al3+이온에 대한 몰 농도비,‘[OH]/[Al]*3)*100’로 염기도 값은 0~100%로 나타낸다.The basicity of the inorganic coagulant is a molar concentration ratio of OH - ions to Al 3+ ions, '[OH] / [Al] * 3) * 100', and the basicity value is 0 to 100%.

상기 본 발명에 따른 1차 염기도 조절제는 황산염에 의한 PAC 저장안정성과 염기도 조절에 이용되며, Alum뿐만 아니라 나트륨, 마그네슘, 철, 희토류금속 등의 황산염을 사용할 수 있으며, 특히 황산나트륨, 황산마그네슘, 황산철, 황산란탄 등의 하나 또는 그 이상을 선택하는 것도 가능하다.The primary basicity adjusting agent according to the present invention is used to control the storage stability and basicity of PAC by sulfates, and may use sulfates such as sodium, magnesium, iron, and rare earth metals as well as Alum, especially sodium sulfate, magnesium sulfate, and iron sulfate , It is also possible to select one or more, such as lanthanum sulfate.

따라서 본 발명의 강산성 차염소산수를 사용한 저염기도 응집제의 제조방법 및 이를 이용한 수 처리방법에 따르면, 기존의 일반적인 PAC 및 저염기, 고염기 PAC 보다 부유물질(현탁입자)에 대한 응집제거 효율과 산화력에 의한 COD 저감효율이 개선된 무기응집제를 제조함에 있어 Alum과 강산성 차염소산수를 이용하였고. 따라서 저장안정성을 가지는 저염기도의 차아염소산폴리염화황산알루미늄 응집제를 제조할 수 있게 된다.Therefore, according to the method for preparing a low-base coagulant using strong acidic hypochlorous acid water and the water treatment method using the same, the efficiency and oxidizing power of flocculation for suspended substances (suspension particles) than conventional PAC, low-base, and high-base PAC Alum and strong acidic hypochlorous acid water were used in manufacturing the inorganic coagulant with improved COD reduction efficiency. Therefore, it is possible to prepare a polyaluminum hypochlorite coagulant of low basicity with storage stability.

본 발명의 제조방법에 따라 제조된 HCPACS는 저염기도와 산화력을 겸비한 무기응집제로서 우수한 부유물제거 및 침강성과 가지며, 장기보관 시 해리하여 수산화물이 발생하지 않는 제품안정성을 유지하는 효과가 있다.The HCPACS manufactured according to the manufacturing method of the present invention is an inorganic coagulant having both a low basicity and an oxidizing power, and has excellent floating material removal and sedimentation properties, and has the effect of maintaining product stability that does not generate hydroxide by dissociating during long-term storage.

더불어 정수 및 하ㆍ폐수 처리 시 사용량 감소에 따른 슬러지의 발생량 감소와 물속의 부유물질과 유기물(COD) 등의 제거에 우수한 특성을 가진다. In addition, it has excellent characteristics in reducing the amount of sludge generated due to the reduction in the amount of water used in the treatment of purified water and sewage and waste water, and removing suspended matter and organic matter (COD) in water.

본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The effects obtainable in the present invention are not limited to the above-mentioned effects, and other effects not mentioned will be clearly understood by those skilled in the art from the following description. .

본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시 예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 정수장 원수를 기준으로 본 발명의 응집제 투입량에 따른 탁도 변화를 나타낸 그래프이다.
도 2는 정수장 원수를 기준으로 본 발명의 응집제 투입량에 따른 UV254 변화를 나타낸 그래프이다.
도 3은 정수장 원수를 기준으로 본 발명의 응집제 투입량에 따른 COD 변화를 나타낸 그래프이다.
도 4는 하수 원수를 기준으로 본 발명의 응집제 투입량에 따른 탁도 변화를 나타낸 그래프이다.
도 5는 하수 원수를 기준으로 본 발명의 응집제 투입량에 따른 UV254 변화를 나타낸 그래프이다.
도 6은 하수 원수를 기준으로 본 발명의 응집제 투입량에 따른 COD 변화를 나타낸 그래프이다.
Included as part of the detailed description to aid understanding of the present invention, the accompanying drawings provide embodiments of the present invention and describe the technical features of the present invention together with the detailed description.
1 is a graph showing a change in turbidity according to the amount of coagulant input of the present invention based on the number of raw water in a water treatment plant.
Figure 2 is a graph showing the change in UV254 according to the amount of coagulant input of the present invention based on the number of raw water.
Figure 3 is a graph showing the change in COD according to the amount of coagulant input of the present invention based on the number of raw water.
4 is a graph showing the change in turbidity according to the amount of coagulant input of the present invention based on raw sewage.
5 is a graph showing UV254 change according to the amount of coagulant input of the present invention based on raw sewage.
6 is a graph showing the change in COD according to the amount of coagulant input of the present invention based on raw sewage.

본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in the specification and claims should not be interpreted as being limited to ordinary or lexical meanings, and the inventor can appropriately define the concept of terms in order to explain his or her invention in the best way. Based on the principle that it should be interpreted as meanings and concepts consistent with the technical spirit of the present invention.

따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원 시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments shown in the embodiments and the drawings described in this specification are only the most preferred embodiments of the present invention and do not represent all of the technical spirit of the present invention. It should be understood that there may be equivalents and variations.

다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.Unless otherwise defined, all terms (including technical and scientific terms) used in the present specification may be used as meanings commonly understood by those skilled in the art to which the present invention pertains. In addition, terms defined in the commonly used dictionary are not ideally or excessively interpreted unless specifically defined.

본 명세서에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In this specification, the terms "comprises" or "have" are intended to indicate the presence of features, numbers, steps, actions, components, parts or combinations thereof described in the specification, one or more other features. It should be understood that the existence or addition possibilities of fields or numbers, steps, operations, components, parts or combinations thereof are not excluded in advance.

이하 첨부된 도면을 참조하여 본 발명의 강산성 차아염소산수를 사용한 저염기도 응집제의 제조방법 및 이를 이용한 수 처리방법의 일 실시예를 상세히 설명하기로 한다. 본 발명을 설명함에 있어, 관련된 공지 기능 혹은 구성에 관한 구체적인 설명은 본 발명의 요지를 모호하지 않게 하기 위하여 생략한다.With reference to the accompanying drawings will be described in detail an embodiment of a method for producing a low-base coagulant and a water treatment method using the strong acidic hypochlorous acid water of the present invention. In describing the present invention, detailed descriptions of related known functions or configurations are omitted so as not to obscure the subject matter of the present invention.

이하에서는 실시예 와 비교예를 통하여 본 발명을 보다 구체적으로 설명하고자 하며, 하기의 실시예가 본 발명을 한정하는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples and comparative examples, and the following examples are not intended to limit the present invention.

<실시예1><Example 1>

(a) Al2O3 함량 16% PAC 제조(a) Al 2 O 3 content 16% PAC production

60rpm으로 교반하는 유리 반응기에 고체 수산화알루미늄(Al(OH)3, 순도 99.5% 이상, 건조상) 3,936Kg과 염산(Hcl 35%) 9,792Kg을 투입 후 약 155℃에서 4시간 반응시켜 산화알루미늄 Al2O3 함량이 18.6중량% PAC를 제조한 후, 여기에 희석용수 2,272Kg을 투입하여 Al2O3 함량이 16.10중량%, 염기도 38.5%인 PAC 16,000Kg을 제조하였다.3,936Kg of solid aluminum hydroxide (Al (OH) 3 , purity 99.5% or higher, dry phase) and 9,792Kg of hydrochloric acid (Hcl 35%) were added to a glass reactor stirred at 60 rpm, and reacted at about 155 ° C for 4 hours to produce aluminum oxide Al After 2 O 3 content of 18.6 wt% PAC was prepared, 2,272 Kg of dilution water was added thereto to prepare 16,000 Kg of PAC having an Al 2 O 3 content of 16.10 wt% and basicity of 38.5%.

(b) Al2O3 함량 8% Alum 제조(b) Al 2 O 3 content 8% Alum production

100rpm으로 교반하는 유리 반응기에 고체 수산화알루미늄(Al(OH)3, 순도 99.5% 이상, 건조상) 120g을 물 200g과 혼합한 다음 황산(H2SO4 98%) 240g을 투입후 약 105℃에서 2시간 반응시킨 후 투명해지면 물 440g을 투입하여 Al2O3 함량이 8.0중량%, 염기도 0%인 Alum 1000g을 제조하였다.120 g of solid aluminum hydroxide (Al (OH) 3 , purity 99.5% or higher, dry phase) was mixed with 200 g of water in a glass reactor stirred at 100 rpm, and then 240 g of sulfuric acid (H 2 SO 4 98%) was added and then at about 105 ° C. After reacting for 2 hours, when it became transparent, 440 g of water was added to prepare 1000 g of Alum having an Al 2 O 3 content of 8.0% by weight and 0% basicity.

(c1) 강산성 차염소산수 제조(c1) Preparation of strongly acidic hypochlorous acid water

차염소산나트륨(유효염소 12%) 1g을 물 387g에 혼합한 용액에 염산(Hcl, 35%) 612g을 100rpm으로 교반하면서 0.5시간 반응시켜 Hcl 21%, 잔류염소 130mg/ℓ의 강산성 차아염소산수 1000g을 제조하였다.1 g of sodium hypochlorite (12% of effective chlorine) was mixed with 387 g of water and 612 g of hydrochloric acid (Hcl, 35%) was reacted at 100 rpm for 0.5 hour to react for 0.5 hour with Hcl 21%, residual chlorine 130 mg / L and strong acidic hypochlorous acid 1000 g Was prepared.

(c2) 강산성 차염소산수 제조(c2) Preparation of strongly acidic hypochlorous acid water

물 338g과 염산(Hcl, 35%) 612g을 혼합한 용액에 불용성전극으로 구성된 전해조에서 직류전압(1.6V)과 전류(1A)를 15분간 인가하여 잔류염소량이 Hcl 21%, 잔류염소 0.76mg/ℓ 농도의 강산성 차염소산수 1000g을 제조하였다.In the electrolytic cell composed of an insoluble electrode in a solution of 612 g of water and 612 g of hydrochloric acid (Hcl, 35%), DC voltage (1.6 V) and current (1 A) were applied for 15 minutes in the electrolytic cell, and the residual chlorine content was Hcl 21% and residual chlorine 0.76 mg / 1000 g of strong acidic hypochlorous acid at a concentration of ℓ was prepared.

[A] PAC(시료1) 제조[A] Manufacture of PAC (Sample 1)

상기 (a)에서 만든 Al2O3 함량 16.1% PAC 600g과 상기 (b)에서 만든 Al2O3 함량 8% Alum 100g을 70℃와 120rpm의 혼합조건에서 1시간 동안 반응시킨 후 물 300g을 투입하여 0.5시간 반응시켜 Al2O3 함량이 10.46중량%, 염기도가 35.36%인 PAC 1000g을 제조하였다(시료1, 수처리규격 PAC 제1종).The Al 2 O 3 content 16.1% PAC 600g made in (a) and the Al 2 O 3 content 8% Alum 100g made in (b) were reacted for 1 hour under mixing conditions of 70 ° C and 120 rpm, and then 300g of water was added. By reacting for 0.5 hour, 1000 g of PAC having an Al 2 O 3 content of 10.46% by weight and a basicity of 35.36% was prepared (sample 1, water treatment standard PAC type 1).

[B] 저염기 PAC(시료2) 제조[B] Manufacture of low-base PAC (Sample 2)

상기 (a)에서 만든 Al2O3 함량 16.1% PAC 650g에 염산35% 180g과 물 170g의 혼합액을 70℃와 120rpm의 혼합조건에서 1시간 동안 반응시켜 Al2O3 함량이 10.58중량%, 염기도가 10.58%인 저염기 PAC 1000g을 제조하였다(시료2).Al 2 O 3 content made in (a) 16.1% PAC 650 g of hydrochloric acid 35% 180 g and water 170 g of the mixed solution was reacted for 1 hour at a mixing condition of 70 ℃ and 120 rpm Al 2 O 3 content is 10.58% by weight, basicity A low base PAC of 10.58% was prepared 1000g (sample 2).

[C1] HCPACS(시료3-1) 제조[C1] HCPACS (Sample 3-1) Preparation

상기 (a)에서 만든 Al2O3 함량 16.1% PAC 600g과 상기 (b)에서 만든 Al2O3 함량 8% Alum 100g을 90℃와 120rpm의 혼합조건에서 1시간 동안 반응시킨 후 상기 (c1)에서 만든 강산성 차염소산수 300g을 투입하여 1시간 반응시켜 Al2O3 함량이 10.54중량%, 염기도가 7.81%, 잔류염소 0.07mg/ℓ인 PAC 1000g을 제조하였다(시료3-1).The Al 2 O 3 content 16.1% PAC 600g made in (a) and the Al 2 O 3 content 8% Alum 100g made in (b) were reacted for 1 hour at a mixing condition of 90 ° C and 120 rpm, and then (c1). 300 g of strong acidic hypochlorous acid was added to react for 1 hour to prepare 1000 g of PAC having an Al 2 O 3 content of 10.54% by weight, a basicity of 7.81%, and residual chlorine of 0.07 mg / L (Sample 3-1).

[C2] HCPACS(시료3-2) 제조[C2] HCPACS (Sample 3-2) Preparation

상기 (a)에서 만든 Al2O3 함량 16.1% PAC 600g과 상기 (b)에서 만든 Al2O3 함량 8% Alum 100g을 90℃와 120rpm의 혼합조건에서 1시간 동안 반응시킨 후 상기 (c2)에서 만든 강산성 차염소산수 300g을 투입하여 1시간 반응시켜 Al2O3 함량이 10.55중량%, 염기도가 7.80%, 잔류염소 0.07mg/ℓ인 PAC 1000g을 제조하였다(시료3-2).The Al 2 O 3 content 16.1% PAC 600g made in (a) and the Al 2 O 3 content 8% Alum 100g made in (b) were reacted for 1 hour at a mixing condition of 90 ° C and 120 rpm. 300 g of strongly acidic hypochlorous acid water prepared in (c2) was added and reacted for 1 hour to prepare 1000 g of PAC having an Al 2 O 3 content of 10.55% by weight, basicity of 7.80%, and residual chlorine of 0.07 mg / L (sample 3-2). .

<시험예 1><Test Example 1>

상기 <실시예 1>에서 제조한 시료들의 안정성 시험을 위하여 동결온도 및 저장안전성에 대한 결과를 아래 [표 1]에 나타내었다.For the stability test of the samples prepared in <Example 1>, the results for freezing temperature and storage safety are shown in Table 1 below.

동결온도 및 저장안정성 비교 결과Comparison of freezing temperature and storage stability 항목Item PAC(시료1)PAC (sample 1) 저염기 PAC(시료2)Low base PAC (sample 2) HCPAC(시료3-1)HCPAC (sample 3-1) HCPAC(시료3-2)HCPAC (sample 3-2) 동결온도(℃)Freezing temperature (℃) -31-31 -31-31 -33-33 -33-33 저장안정성(6개월)Storage stability (6 months) 물성 변화없음No change in properties 물성 변화없음No change in properties 물성 변화없음No change in properties 물성 변화없음No change in properties

상기 <실시예 1>에서 제조한 HCPACS의 정수 및 하수처리 응집특성을 시험하기 위하여, 부산화명정수장 취수원수인 낙동강원수(이하‘낙동강원수’)와 울산온산하수처리장의 하수(이하 '온산하수')를 채수하여 Jar-test를 이용한 응집실험을 실시하였다.In order to test the coagulation characteristics of HCPACS prepared in <Example 1> for water purification and sewage treatment, Nakdong Gangwonsu (hereinafter referred to as 'Nakdong Gangwonsu') and Ulsan Onsan Sewage Treatment Plant (hereinafter referred to as 'Onsan Sewage') ) Was collected and a cohesion experiment was conducted using a Jar-test.

응집테스터에 사용된 Jar-tester는 6개의 교반장치를 갖춘 것으로 paddle의 크기는 20mmH × 76mmL이고, 교반속도의 조절이 가능한 장치이다. 또한 응집실험에 사용된 Jar는 1ℓ 비이커를 사용하였다.The Jar-tester used in the cohesive tester is equipped with six stirring devices. The size of the paddle is 20mmH × 76mmL, and it is a device that can control the stirring speed. In addition, the Jar used for the coagulation experiment used a 1 liter beaker.

Jar-Test조건은 교반속도 및 교반시간은 급속 및 완속의 교반조건에서 각각 150rpm과 50rpm, 교반시간은 각각 1min과 30min으로 설정하여 실시하였다. 정치 30분후 수표면 아래 10㎝ 지점에서 채취하여 처리수의 분석을 실시하였다.In the Jar-Test conditions, the stirring speed and the stirring time were set to 150 rpm and 50 rpm, respectively, and the stirring time was set to 1 min and 30 min, respectively under rapid and slow stirring conditions. After 30 minutes of standing, it was collected at a point 10 cm below the surface of the water to analyze the treated water.

수중에 존재하는 유기물의 농도는 COD와 유기물질의 변화 상태를 간접적으로 측정하는데 많이 이용되는 UV-254nm 측정값으로 확인하였으며, 응집실험에서의 수질분석은 Standard methods (AWWA, 2005), 제조된 물질의 분석방법은 환경부고시 제2017-190호(2017. 10. 23.) “수처리제의 기준과 규격 및 표시기준”에 따랐으며, 사용된 분석기기는 아래 [표 2]에 나타내었다.The concentration of organic substances present in water was confirmed by the UV-254nm measurement value, which is commonly used to indirectly measure the state of change of COD and organic substances, and the water quality analysis in the aggregation test was performed using standard methods (AWWA, 2005), manufactured substances. The analysis method of was in accordance with the Ministry of Environment Notice No. 2017-190 (October 23, 2017) “Standards and standards for water treatment and labeling standards”, and the analyzers used are shown in [Table 2] below.

분석에 사용한 기기Instrument used for analysis 항목Item 단위unit 분석기기명Analyzer name Jar-testJar-test   Jar-tester(chang shin scientific, Model C-JT)Jar-tester (chang shin scientific, Model C-JT) pHpH   pH Meter(Toa, Model HM-31P)pH Meter (Toa, Model HM-31P) 탁도Turbidity NTUNTU Tubidity meter(Humas, Model Tubby 1000)Tubidity meter (Humas, Model Tubby 1000) CODCOD ppmppm Water quality analyzer(Humas, Model HS2300 plus)Water quality analyzer (Humas, Model HS2300 plus) UV254UV254 cm-1 cm -1 UV-VIS Spectrometer(PG instruments, Model T60)UV-VIS Spectrometer (PG instruments, Model T60) Chlorine Chlorine ppmppm Colorimeter(Lamotte, Model 1200-CL)Colorimeter (Lamotte, Model 1200-CL)

그리고 응집실험에서 사용된 응집제는 본 발명에 따른 상기 <실시예 1>에서 제조한 PAC(시료1) 및 저염기 PAC(시료2)와 HCPAC(시료3-1, 시료3-2)를 사용하였고, 정수장의 원수 및 하수처리장의 원수를 처리하기 위하여 통상적으로 많이 사용되는 수 처리제는 PAC(시료1), 저염기 PAC(시료2) 이므로 이것을 기준으로 본 발명의 HCPAC(시료3-1, 시료3-2)와 비교하여 각각의 투입량에 따른 응집특성으로 응집효율의 결과를 아래 [표 3], [표 4]에 나타내었다.And the coagulant used in the coagulation experiment was used in the <Example 1> PAC (Sample 1) and low base PAC (Sample 2) and HCPAC (Sample 3-1, Sample 3-2) prepared according to the present invention. , Water treatment agents commonly used to treat raw water from water purification plants and raw water from sewage treatment plants are PAC (sample 1) and low-base PAC (sample 2), so HCPAC (sample 3-1, sample 3) of the present invention is based on this. Compared to -2), the results of the cohesive efficiency are shown in [Table 3] and [Table 4] below as a cohesive characteristic according to each input amount.

[표 3], [표 4]의 응집실험에서 사용된 응집제 각각의 응집제 투입량에 따른 응집효율을 나타낸 바와 같이, 본 발명에 따른 HCPAC(시료3-1, 시료3-2)의 경우, PAC(10%)와 저염기 PAC(10%)에 비해서 수중의 부유물질과 유기물(COD) 제거에 우수한 효과를 나타내었다.As shown in the flocculation efficiency according to the flocculant input amount of each flocculant used in the flocculation experiments of [Table 3] and [Table 4], in the case of HCPAC (Sample 3-1, Sample 3-2) according to the present invention, PAC ( 10%) and low-base PAC (10%), it showed excellent effect in removing suspended matter and organic matter (COD) in water.

정수장 원수(낙동강원수) 비교테스트 결과Water Purification Plant Raw Water (Nakdong River Raw Water) Comparison Test Results 응집제 종류Coagulant type 투입량
(ppm)
input
(ppm)
탁도
(NTU)
Turbidity
(NTU)
UV254
(cm-1)
UV254
(cm -1 )
COD
(ppm)
COD
(ppm)
pHpH ORP
(mV)
ORP
(mV)
낙동강원수Nakdong Gangwon-su 00 16.716.7 0.0840.084 3.283.28 7.727.72 182182 PAC
(시료1)
PAC
(Sample 1)
1010 12.812.8 0.0790.079 2.422.42 7.647.64 213213
1515 7.27.2 0.0580.058 1.581.58 7.547.54 223223 2020 0.70.7 0.0360.036 0.730.73 7.457.45 234234 2525 0.50.5 0.0340.034 0.680.68 7.357.35 221221 3030 0.40.4 0.0320.032 0.640.64 7.247.24 207207 3535 0.20.2 0.0300.030 0.590.59 7.147.14 194194 저염기 PAC
(시료2)
Low base PAC
(Sample 2)
1010 12.412.4 0.0780.078 2.022.02 7.627.62 213213
1515 6.86.8 0.0570.057 1.351.35 7.547.54 222222 2020 0.60.6 0.0350.035 0.690.69 7.437.43 232232 2525 0.50.5 0.0340.034 0.650.65 7.307.30 219219 3030 0.40.4 0.0320.032 0.620.62 7.167.16 206206 3535 0.30.3 0.0300.030 0.580.58 7.027.02 194194 HCPAC
(시료3-1)
HCPAC
(Sample 3-1)
1010 11.111.1 0.0760.076 1.881.88 7.627.62 217217
1515 5.75.7 0.0540.054 1.241.24 7.537.53 227227 2020 0.40.4 0.0320.032 0.610.61 7.427.42 237237 2525 0.40.4 0.0310.031 0.590.59 7.297.29 224224 3030 0.30.3 0.0300.030 0.580.58 7.157.15 212212 3535 0.20.2 0.0290.029 0.560.56 7.027.02 199199 HCPAC
(시료3-2)
HCPAC
(Sample 3-2)
1010 11.211.2 0.0760.076 1.891.89 7.627.62 195195
1515 5.75.7 0.0540.054 1.261.26 7.527.52 218218 2020 0.40.4 0.0320.032 0.620.62 7.437.43 227227 2525 0.40.4 0.0310.031 0.590.59 7.307.30 238238 3030 0.30.3 0.0300.030 0.580.58 7.167.16 225225 3535 0.20.2 0.0290.029 0.570.57 7.037.03 211211

도 1 내지 3은 <시험예 1>에 관한 정수장 원수인 낙동강원수를 기준으로 테스트한 결과인 [표 3]에서 본 발명의 응집제 투입량에 따른 탁도 변화, UV254 변화, COD 변화를 각각 그래프로 나타낸 것이다.1 to 3 is a graph showing the change in turbidity, UV254, and COD according to the amount of the coagulant in the present invention in [Table 3], which is a test result based on the raw water of the water purification plant according to <Test Example 1>. .

하수처리장 원수(온산하수) 테스트결과Sewage treatment plant raw water (onsan sewage) test results 응집제 종류Coagulant type 투입량
(ppm)
input
(ppm)
탁도
(NTU)
Turbidity
(NTU)
UV254
(cm-1)
UV254
(cm -1 )
COD
(ppm)
COD
(ppm)
pHpH ORP
(mV)
ORP
(mV)
온산하수Onsan Sewage 00 3.93.9 0.2150.215 38.0138.01 7.617.61 8181 PAC
(시료1)
PAC
(Sample 1)
1010 1.41.4 0.2140.214 30.6730.67 7.587.58 9797
2020 1.31.3 0.2040.204 27.5827.58 7.567.56 9898 4040 1.21.2 0.1840.184 21.4021.40 7.527.52 102102 6060 1.11.1 0.1810.181 20.8820.88 7.477.47 106106 8080 1.11.1 0.1780.178 20.3520.35 7.447.44 109109 100100 1.01.0 0.1750.175 19.8419.84 7.377.37 113113 저염기 PAC
(시료2)
Low base PAC
(Sample 2)
1010 1.41.4 0.2130.213 28.9728.97 7.557.55 100100
2020 1.31.3 0.2030.203 26.3026.30 7.527.52 102102 4040 1.11.1 0.1820.182 21.0121.01 7.477.47 106106 6060 1.01.0 0.1790.179 20.3320.33 7.417.41 111111 8080 1.01.0 0.1760.176 19.6819.68 7.347.34 117117 100100 1.01.0 0.1730.173 19.0119.01 7.287.28 122122 HCPAC
(시료3-1)
HCPAC
(Sample 3-1)
1010 1.31.3 0.2130.213 27.8327.83 7.547.54 102102
2020 1.21.2 0.2010.201 24.2824.28 7.517.51 105105 4040 1.01.0 0.1780.178 20.2720.27 7.467.46 110110 6060 1.01.0 0.1750.175 19.6519.65 7.407.40 115115 8080 0.90.9 0.1740.174 18.9918.99 7.337.33 119119 100100 0.90.9 0.1730.173 18.7018.70 7.277.27 124124 HCPAC
(시료3-2)
HCPAC
(Sample 3-2)
1010 1.31.3 0.2130.213 27.7927.79 7.547.54 103103
2020 1.21.2 0.2010.201 24.2524.25 7.507.50 105105 4040 1.01.0 0.1780.178 20.2620.26 7.457.45 110110 6060 1.01.0 0.1760.176 19.6319.63 7.407.40 114114 8080 0.90.9 0.1740.174 18.9818.98 7.327.32 118118 100100 0.90.9 0.1730.173 18.7118.71 7.277.27 124124

도 4 내지 6은 <시험예 1>에 관한 하수처리장 원수인 온산하수를 기준으로 테스트한 결과인 [표 4]에서, 본 발명의 응집제 투입량에 따른 탁도 변화, UV254 변화, COD 변화를 각각 그래프로 나타낸 것이다.4 to 6 is a result of testing based on Onsan Sewage, which is the raw water of a sewage treatment plant according to <Test Example 1>, in Table 4, turbidity change, UV254 change, and COD change according to the coagulant input amount of the present invention, respectively. It is shown.

<시험예 2><Test Example 2>

HCPAC의 반응 온도특성을 살펴보기 위하여, 동일조건에서 반응온도만 다르게 제조한 결과물의 응집성능 테스트 결과를 [표 5]에 나타내었다.In order to examine the reaction temperature characteristics of HCPAC, the results of cohesive performance test of the results prepared by different reaction temperatures under the same conditions are shown in [Table 5].

상기 [표 5]의 응집실험에서 사용된 응집제 각각의 응집제 투입량에 따른 응집효율을 나타낸바와 같이 100℃에서 반응시키는 것이 가장 우수한 효과를 나타내었다.As shown in the flocculation efficiency according to the flocculant input amount of each flocculant used in the flocculation experiment of [Table 5], reacting at 100 ° C showed the best effect.

본 발명의 응집제의 반응온도에 따른 응집성능 테스트결과Cohesion performance test results according to the reaction temperature of the coagulant of the present invention 응집제 종류Coagulant type 반응온도
(℃)
Reaction temperature
(℃)
투입량
(ppm)
input
(ppm)
탁도
(NTU)
Turbidity
(NTU)
UV254
(cm-1)
UV254
(cm -1 )
COD
(ppm)
COD
(ppm)
pHpH ORP
(mV)
ORP
(mV)
화명정수장 원수Hwamyeong Water Purification Plant -- 00 16.716.7 0.0840.084 3.283.28 7.727.72 182182 HCPAC
(시료3-1)
HCPAC
(Sample 3-1)
2525 2020 0.6040.604 0.0440.044 0.720.72 7.447.44 235235
5050 2020 0.5120.512 0.0400.040 0.670.67 7.437.43 236236 7575 2020 0.4640.464 0.0370.037 0.650.65 7.437.43 236236 100100 2020 0.3820.382 0.0320.032 0.610.61 7.427.42 237237 HCPAC
(시료3-2)
HCPAC
(Sample 3-2)
2525 2020 0.6010.601 0.0440.044 0.740.74 7.447.44 236236
5050 2020 0.5110.511 0.0400.040 0.680.68 7.447.44 236236 7575 2020 0.4620.462 0.0370.037 0.670.67 7.437.43 237237 100100 2020 0.3780.378 0.0320.032 0.620.62 7.427.42 238238 응집제 종류Coagulant type 반응온도
(℃)
Reaction temperature
(℃)
투입량
(ppm)
input
(ppm)
탁도
(NTU)
Turbidity
(NTU)
UV254
(cm-1)
UV254
(cm -1 )
COD
(ppm)
COD
(ppm)
pHpH ORP
(mV)
ORP
(mV)
온산하수 원수Onsan sewage raw water -- 00 3.9423.942 0.2150.215 38.0138.01 7.617.61 8181 HCPAC
(시료3-1)
HCPAC
(Sample 3-1)
2525 4040 1.1221.122 0.1820.182 22.1322.13 7.487.48 108108
5050 4040 1.0771.077 0.1810.181 21.8421.84 7.487.48 109109 7575 4040 1.0421.042 0.1790.179 21.1721.17 7.477.47 109109 100100 4040 0.9810.981 0.1780.178 20.2720.27 7.467.46 110110 HCPAC
(시료3-2)
HCPAC
(Sample 3-2)
2525 4040 1.1181.118 0.1820.182 22.1222.12 7.487.48 108108
5050 4040 1.0741.074 0.1810.181 21.8121.81 7.487.48 109109 7575 4040 1.0371.037 0.1790.179 21.1421.14 7.467.46 109109 100100 4040 0.9790.979 0.1780.178 20.2620.26 7.457.45 110110

본 발명에 있어 저염기 조절과정에 있어 반응온도는 100℃가 가장바람직하며, 응집테스트에서 본발명의 HCPAC(시료3-1, 시료3-2)가 PAC(시료1)와 저염기 PAC(시료2)에 비해서 수중의 부유물질과 유기물(COD) 제거에 우수한 효과를 나타내었다.In the process of adjusting the low base in the present invention, the reaction temperature is preferably 100 ° C., and the HCPAC (Sample 3-1, Sample 3-2) of the present invention in the aggregation test is the PAC (Sample 1) and the low base PAC (Sample). Compared to 2), it showed excellent effect in removing suspended matter and organic matter (COD) in water.

본 발명은 이상에서 살펴본 바와 같이 바람직한 실시예를 들어 도시하고 설명하였으나, 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.The present invention has been shown and described with reference to preferred embodiments as described above, but is not limited to the above-described embodiments and is within the scope of the present invention to those skilled in the art to which the present invention pertains. By doing so, various changes and modifications will be possible.

Claims (7)

수산화알루미늄(Al(OH)3)과 염산(HCl)을 반응시켜 생성되는 산화알루미늄 (Al2O3) 함량이 15~20중량%의 폴리염화알루미늄(PAC)을 생성하는 제1 단계; 및
상기 폴리염화알루미늄에 1차 염기도 조절제인 황산알루미늄(Aluminium sulfate)을 첨가하여 반응시킨 후, 2차 염기도 조절제인 강산성 차염소산수를 투입하여 반응시켜, 산화알루미늄(Al2O3) 함량이 10.0~16.0중량%, 염기도가 5~25%, 잔류염소가 0.02~2mg/ℓ인, 아래의 [화학식 1]으로 표현되는 차아염소산폴리염화황산알루미늄((Hypochlorous PolyAluminium Chloro Sulfate, HCPACS) 응집제를 제조하는 제2 단계;
[화학식 1] Al2(OH)aClb(SO4)c(OCl)d
를 포함하여 구성되며,
상기 [화학식 1]에서 a+b+c+d=6 으로, 그 범위는 0.3≤a≤1.5, 4.2≤b≤5.6, 0.1≤c≤0.3, 0.000002≤d≤0.0002)인 것을 특징으로 하는, 강산성 차염소산수를 사용한 저염기도 응집제의 제조방법.
A first step of producing polyaluminum chloride (PAC) having an aluminum oxide (Al 2 O 3 ) content of 15 to 20% by weight by reacting aluminum hydroxide (Al (OH) 3 ) with hydrochloric acid (HCl); And
After the reaction by the addition of a primary basicity adjusting agent is aluminum sulfate (Aluminium sulfate) to said poly aluminum chloride, secondary basicity adjusting agent is to put the reaction the number of strong acid difference chlorate, aluminum (Al 2 O 3) content of 10.0 to oxidation 16.0% by weight, basicity of 5 to 25%, residual chlorine is 0.02 to 2mg / ℓ, hypochlorous acid polyaluminum sulfate represented by [Formula 1] ((Hypochlorous PolyAluminium Chloro Sulfate, HCPACS) flocculant preparation agent Stage 2;
[Formula 1] Al 2 (OH) a Cl b (SO4) c (OCl) d
It comprises,
In [Formula 1] a + b + c + d = 6, the range is 0.3≤a≤1.5, 4.2≤b≤5.6, characterized in that 0.1≤c≤0.3, 0.000002≤d≤0.0002), A method for preparing a low-base coagulant using strong acidic hypochlorous acid water.
삭제delete 청구항 1에 있어서,
상기 제2 단계의 상기 1차 염기도 조절제는 고체 수산화알루미늄(순도 99.5% 이상, 건조상) 2몰과 황산(H2SO4 98%) 3몰을 58~120rpm으로 교반하면서 100~130℃에서 1~3시간 반응시켜 생성되는 산화알루미늄 함량이 8.0중량%, 염기도 0%인 황산알루미늄인 것을 특징으로 하는, 강산성 차염소산수를 사용한 저염기도 응집제의 제조방법.
The method according to claim 1,
The primary basicity adjusting agent in the second step is 1 at 100 to 130 ° C. while stirring 2 mol of solid aluminum hydroxide (purity of 99.5% or more, 3 mol of sulfuric acid (H 2 SO 4 98%)) at 58 to 120 rpm. A method for preparing a low-base coagulant using strong acidic hypochlorous acid water, characterized in that the aluminum oxide content produced by reacting for 3 hours is 8.0% by weight and 0% basicity of aluminum sulfate.
청구항 1에 있어서,
상기 제1 단계의 상기 폴리염화알루미늄은 고체 수산화알루미늄(순도 99.5% 이상, 건조상) 2몰과 염산(HCl 30~35%) 3.6몰을 58~120rpm으로 교반하면서 150~160℃에서 3~6시간 반응시켜 생성되는 Al2O3 함량이 18~20중량%의 PAC를 제조한 후, 여기에 희석용수를 투입하여 Al2O3 함량이 16.10중량%, 염기도 35.0~45.0%인 것을 특징으로 하는, 강산성 차염소산수를 사용한 저염기도 응집제의 제조방법.
The method according to claim 1,
The polyaluminum chloride in the first step is 3 to 6 at 150 to 160 ° C. while stirring 2 mol of solid aluminum hydroxide (purity of 99.5% or more, dry phase) and 3.6 mol of hydrochloric acid (HCl 30 to 35%) at 58 to 120 rpm. After producing a PAC having an Al 2 O 3 content of 18 to 20% by weight by reacting with time, Al 2 O 3 content is 16.10% by weight, and a basicity of 35.0 to 45.0% by adding dilution water to the PAC. , A method of preparing a low-base coagulant using strong acidic hypochlorous acid water.
청구항 1에 있어서,
상기 제2 단계의 상기 2차 염기도 조절제는 차염소산나트륨과 물의 혼합용액에 염산(HCl 35%)을 교반 반응하여 제조되거나, 물과 염산(HCl 35%)을 혼합한 용액에 불용성전극으로 구성된 전해조에서 직류전압(1.6V)과 전류(1A)를 인가하여 잔류염소량이 0.5~150mg/ℓ 농도로 제조되는 차염소산수인 것을 특징으로 하는, 강산성 차염소산수를 사용한 저염기도 응집제의 제조방법.
The method according to claim 1,
The secondary basicity regulator of the second step is prepared by stirring and reacting hydrochloric acid (HCl 35%) in a mixed solution of sodium hypochlorite and water, or an electrolytic cell composed of an insoluble electrode in a solution of water and hydrochloric acid (HCl 35%). Method for producing a low-base coagulant using strong acidic hypochlorous acid water, characterized in that the residual chlorine amount is 0.5 to 150 mg / ℓ concentration by applying a direct current voltage (1.6 V) and a current (1 A).
청구항 1에 있어서,
상기 제1 단계는, 수산화알루미늄(Al(OH)3)과 염산(HCl)을 고온 고압 반응기에서 교반하면서 150~160℃에서 3~6시간 반응시켜 생성되는 Al2O3 함량이 15~20중량%, 염기도 35.0~45.0%의 폴리염화알루미늄을 제조하는 단계이며,
상기 제2 단계는, 상기 1차 염기도 조절제인 염기도 0%인 황산알루미늄을 첨가하여 교반하면서 60~100℃ 온도조건으로 0.1~1시간 동안 반응시킨 후, 상기 2차 염기도 조절제인 염기도 0%인 상기 강산성 차염소산수를 투입하여 60~100℃ 온도조건에서 0.1~1시간 동안 반응시켜, Al2O3 함량이 10.0~16.0중량%, 염기도가 5~25%, 잔류염소가 0.02~2mg/ℓ인 차아염소산폴리염화황산알루미늄을 제조하는 단계인 것을 특징으로 하는, 강산성 차염소산수를 사용한 저염기도 응집제의 제조방법.
The method according to claim 1,
In the first step, the Al 2 O 3 content generated by reacting aluminum hydroxide (Al (OH) 3 ) and hydrochloric acid (HCl) in a high temperature and high pressure reactor at 150 to 160 ° C. for 3 to 6 hours is 15 to 20 weight. %, Is a step of preparing polyaluminum chloride having a basicity of 35.0 to 45.0%,
In the second step, after reacting for 0.1 to 1 hour at a temperature condition of 60 to 100 ° C while stirring by adding aluminum sulfate having a basicity of 0%, which is the primary basicity adjusting agent, the basicity of the secondary basicity adjusting agent is 0%. Strong acidic hypochlorous acid was added to react for 0.1 to 1 hour at a temperature condition of 60 to 100 ℃, Al 2 O 3 content of 10.0 to 16.0% by weight, basicity of 5 to 25%, residual chlorine of 0.02 to 2mg / ℓ A method for producing a low-base coagulant using strong acidic hypochlorous acid water, which is characterized in that it is a step of producing polyaluminum hypochlorite.
청구항 1, 3 내지 6의 어느 한 항에 따른 강산성 차염소산수를 사용한 저염기도 응집제를 이용하여 정수 또는 하수, 폐수를 처리하는 수처리 방법.
A method for treating water or sewage and wastewater using a low-base coagulant using strong acidic hypochlorous acid water according to any one of claims 1 to 3 to 6.
KR1020190125419A 2019-10-10 2019-10-10 Preparation method of low basicity coagulant using strong acid hypochlorite water and water treatment method using same KR102093994B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190125419A KR102093994B1 (en) 2019-10-10 2019-10-10 Preparation method of low basicity coagulant using strong acid hypochlorite water and water treatment method using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190125419A KR102093994B1 (en) 2019-10-10 2019-10-10 Preparation method of low basicity coagulant using strong acid hypochlorite water and water treatment method using same

Publications (1)

Publication Number Publication Date
KR102093994B1 true KR102093994B1 (en) 2020-05-26

Family

ID=70914808

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190125419A KR102093994B1 (en) 2019-10-10 2019-10-10 Preparation method of low basicity coagulant using strong acid hypochlorite water and water treatment method using same

Country Status (1)

Country Link
KR (1) KR102093994B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100735540B1 (en) * 2005-10-24 2007-07-04 고도화학(주) Process for preparing polyalumium hydroxy chloro sulfate as a flocculant for treating water
CN101327976A (en) * 2008-07-15 2008-12-24 南通立源水处理技术有限公司 Efficient water treatment flocculant
KR101159236B1 (en) 2012-03-07 2012-06-25 주식회사 이에프티 Method of preparation for low basicity polyaluminum chloride coagulant and treating method of water/wastewater using the same
KR20150091929A (en) * 2014-02-04 2015-08-12 삼구화학공업 주식회사 Improved ability to remove fluoride method of producing a coagulant for water treatment and its preparation method of manufacturing a coagulant for water treatment
KR101752777B1 (en) 2017-03-31 2017-06-30 대경폴리켐 주식회사 Preparing method of poly aluminum chloride inorganic coagulant with low basicity for waste water treatment and purification method of waste water using the inorganic coagulant prepared by the same
KR101775551B1 (en) * 2014-11-04 2017-09-07 주식회사 한 수 Oxidative Coagulant for Removing Suspended Solid
KR102016722B1 (en) * 2018-12-07 2019-09-02 삼구화학공업 주식회사 Preparation method for flocculant composition for treating wastewater with improved water treatment efficiency

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100735540B1 (en) * 2005-10-24 2007-07-04 고도화학(주) Process for preparing polyalumium hydroxy chloro sulfate as a flocculant for treating water
CN101327976A (en) * 2008-07-15 2008-12-24 南通立源水处理技术有限公司 Efficient water treatment flocculant
KR101159236B1 (en) 2012-03-07 2012-06-25 주식회사 이에프티 Method of preparation for low basicity polyaluminum chloride coagulant and treating method of water/wastewater using the same
KR20150091929A (en) * 2014-02-04 2015-08-12 삼구화학공업 주식회사 Improved ability to remove fluoride method of producing a coagulant for water treatment and its preparation method of manufacturing a coagulant for water treatment
KR101775551B1 (en) * 2014-11-04 2017-09-07 주식회사 한 수 Oxidative Coagulant for Removing Suspended Solid
KR101752777B1 (en) 2017-03-31 2017-06-30 대경폴리켐 주식회사 Preparing method of poly aluminum chloride inorganic coagulant with low basicity for waste water treatment and purification method of waste water using the inorganic coagulant prepared by the same
KR102016722B1 (en) * 2018-12-07 2019-09-02 삼구화학공업 주식회사 Preparation method for flocculant composition for treating wastewater with improved water treatment efficiency

Similar Documents

Publication Publication Date Title
Ramakrishnaiah et al. Hexavalent chromium removal from industrial wastewater by chemical precipitation method
Zouboulis et al. Polyferric sulphate: Preparation, characterisation and application in coagulation experiments
KR101409870B1 (en) Method of Preparation for High basicity polyaluminum chloride coagulant and Treating Method of water/wastewater using the same
KR101159236B1 (en) Method of preparation for low basicity polyaluminum chloride coagulant and treating method of water/wastewater using the same
CN102010045B (en) Preparation method for polysilicate-metal flocculant containing titanium
KR101640368B1 (en) Method of preparation for coagulant contains low basicity and treating method of water/wastewater using the same
Sun et al. Effective treatment of high phosphorus pharmaceutical wastewater by chemical precipitation
KR102263203B1 (en) Method of manufacturing coagulant composition for water treatment
CN108585146B (en) Preparation method of titanium-containing composite ferric polysulfate flocculant
White et al. A preliminary investigation into the use of sodium ferrate in water treatment
Kajjumba et al. Application of cerium and lanthanum coagulants in wastewater treatment—A comparative assessment to magnesium, aluminum, and iron coagulants
CN103754999B (en) A kind of preparation method of polyaluminum ferric sulfochloride flocculant
CN113955873A (en) Water treatment defluorinating agent suitable for micro-polluted raw water and preparation and use methods thereof
Mohammed et al. Phosphorus removal from water and waste water by chemical precipitation using alum and calcium chloride
KR102093994B1 (en) Preparation method of low basicity coagulant using strong acid hypochlorite water and water treatment method using same
CN103964554B (en) Polyaluminum sulfate titanium-polydimethyldiallylachloride chloride composite coagulant and preparation and application method thereof
Liu et al. Effects of organic matter removal from a wastewater secondary effluent by aluminum sulfate coagulation on haloacetic acids formation
KR20120043832A (en) Inorganic coagulants for water treatment method
KR101719707B1 (en) method for recovering metal oxide coagulants
Ramakrishnaiah et al. Hexavalent chromium removal by chemical precipitation method: a comparative study
CN113582372A (en) Method for treating high-temperature environment-friendly scarlet pigment cadmium-containing or/and fluorine-containing wastewater
KR100318661B1 (en) Wastewater treatment agent and its treatment method
JP2002079003A (en) Inorganic flocculant using highly purified ferric salt and manufacturing method thereof and processing apparatus in water-purification processing
KR101887412B1 (en) Method of preparation for Alkaline coagulant and treating method of water/wastewater using the same
KR101293283B1 (en) Method for removing fluoride from waste water containing fluoroboric acid