KR102078387B1 - Reduction facility of non-point pollutants using filter of fibrous filtration type - Google Patents

Reduction facility of non-point pollutants using filter of fibrous filtration type Download PDF

Info

Publication number
KR102078387B1
KR102078387B1 KR1020180166710A KR20180166710A KR102078387B1 KR 102078387 B1 KR102078387 B1 KR 102078387B1 KR 1020180166710 A KR1020180166710 A KR 1020180166710A KR 20180166710 A KR20180166710 A KR 20180166710A KR 102078387 B1 KR102078387 B1 KR 102078387B1
Authority
KR
South Korea
Prior art keywords
tank
filter
filtration
fibrous
media
Prior art date
Application number
KR1020180166710A
Other languages
Korean (ko)
Inventor
김영준
Original Assignee
김영준
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영준 filed Critical 김영준
Priority to KR1020180166710A priority Critical patent/KR102078387B1/en
Application granted granted Critical
Publication of KR102078387B1 publication Critical patent/KR102078387B1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F5/00Sewerage structures
    • E03F5/10Collecting-tanks; Equalising-tanks for regulating the run-off; Laying-up basins
    • E03F5/101Dedicated additional structures, interposed or parallel to the sewer system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/02Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed stationary during the filtration
    • B01D24/10Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed stationary during the filtration the filtering material being held in a closed container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D27/00Cartridge filters of the throw-away type
    • B01D27/02Cartridge filters of the throw-away type with cartridges made from a mass of loose granular or fibrous material
    • B01D29/0027
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/02Filters adapted for location in special places, e.g. pipe-lines, pumps, stop-cocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F5/00Sewerage structures
    • E03F5/10Collecting-tanks; Equalising-tanks for regulating the run-off; Laying-up basins
    • E03F5/105Accessories, e.g. flow regulators or cleaning devices
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F5/00Sewerage structures
    • E03F5/14Devices for separating liquid or solid substances from sewage, e.g. sand or sludge traps, rakes or grates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2221/00Applications of separation devices
    • B01D2221/12Separation devices for treating rain or storm water

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Toxicology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Filtration Of Liquid (AREA)

Abstract

The present invention relates to a non-point pollution treatment facility using a fibrous filtration type filter. The non-point pollution treatment facility using the fibrous filtration type filter includes: a pretreatment tank having a screen tank in the upper part in one side and divided into the screen tank and an overflow unit by having a dead water transfer pump in the lower part of the inside, wherein a treated water inflow pipe is connected outside in the upper part of the screen tank across a first opening and closing valve; a filter tank having an acid radical pipe and multiple fibrous filters enclosed by mesh inside, wherein one side of the filter tank is divided into the pretreatment tank and the overflow unit and the pretreatment tank and the overflow unit are connected across a second opening and closing valve in the lower part; an ultraviolet sterilization device connected from the outside of the filtration tank to the inside of the filter tank; and a reverse water tank connected to the filter tank across a third opening and closing valve on one side of the upper part and including a reverse water pump in the lower part, wherein a discharge pipe is connected to the outside across a fourth opening and closing valve on the other side of the upper part. The non-point pollution treatment facility is formed in order of the screen tank, the pretreatment tank, the filter tank, and the reverse water tank. The non-point pollution treatment facility uses bark from a palm tree having excellent filtration effect as a fibrous filter in the filter tank and installs the fibrous filter in the mesh at the same time. So, the non-point pollution treatment facility can prevent a loss and a blockage of the filter and obtain excellent filtration efficiency of treated water such as polluted rainwater.

Description

섬유상 여과형 여재를 이용한 비점오염 저감시설{Reduction facility of non-point pollutants using filter of fibrous filtration type}Reduction facility of non-point pollutants using filter of fibrous filtration type}

본 발명은 섬유상 여과형 여재를 이용한 비점오염 저감시설에 관한 것으로서, 보다 상세하게는 전처리조와 여과조 및 역세수조로 이루어진 비점오염 저감시설의 상기 여과조 내에 여과효율의 향상을 위해 금속망으로 둘러싸인 복수의 섬유상 여재를 설치한 섬유상 여과형 여재를 이용한 비점오염 저감시설에 관한 것이다.The present invention relates to a non-point pollution reduction facility using fibrous filtration media, and more particularly, to a plurality of fibrous layers enclosed by a metal network in order to improve filtration efficiency in the filtration tank of a non-point pollution reduction facility consisting of a pretreatment tank, a filtration tank, and a backwash water tank. The present invention relates to a non-point pollution reduction facility using fibrous filtration media with media installed.

비점오염원은 도시, 도로, 농지, 공사장 등의 불특정한 장소로부터 불특정하게 수계에 오염물질을 배출하는 오염원이다, 대부분이 강우 시 지표수와 함께 흘러 수계로 유입된다. 광범위한 장소에서 불특정하게 발생하며 시기에 따른 배출량의 편차가 심한편이다.Nonpoint source is a source of pollutants unspecified from an unspecified place such as a city, road, farmland, construction site, etc. Most of it flows into surface water with surface water during rainfall. It occurs unspecified in a wide range of places and fluctuates with time.

최근 이러한 비점오염 관리에 관한 관심이 높아지면서, 환경부 등 관련기관에서는 강우유출수를 포함한 비점오염원 현황조사 및 처리방안 수립에 노력하고 있다. 비점오염이 수계로 유입되는 것을 방지하기 위한 비점오염 저감시설에는 저류지, 식생수로, 침투도랑, 여과시설 등이 있으며, 오랜 기간 동안 가장 널리 이용되어 온 공정은 입상여과재를 이용한 여과형 처리시설이다.Recently, as interest in non-point pollution management has increased, related organizations such as the Ministry of Environment have been making efforts to investigate the current state of non-point pollution sources including rainfall runoff and establish treatment plans. Non-point pollution reduction facilities to prevent the ingress of non-point pollution into the water system include reservoirs, vegetation waterways, infiltration ditches, and filtration facilities. The most widely used process for a long time is a filtration treatment facility using granular filter materials. .

구체적으로 비점오염 저감시설은 “수질 및 수생태계 보전에 관한 법률 시행 규칙” 별표 6에 규정된 바와 같이 비점오염원으로부터 배출되는 수질오염 유발물질을 제거 혹은 감소시키는 시설을 말한다. 비점오염원 저감시설은 세가지로 나뉘며 저영향개발 기법, 자연형, 장치형이 있다. 자연형의 종류로는 저류시설, 침투시설, 인공습지, 식생시설이 있으며 장치형의 종류로는 여과형, 화류형, 스크린형, 응집, 생물학적 처리 시설이 있다.Specifically, non-point pollution abatement facilities are facilities that remove or reduce water pollution-causing substances emitted from nonpoint sources as provided in Table 6 of the Enforcement Regulations on the Act on the Conservation of Water Quality and Ecosystems. Non-point source reduction facilities are divided into three types, low impact development techniques, natural type and device type. Types of natural types include storage facilities, infiltration facilities, artificial wetlands, and vegetation facilities. Types of device types include filtration type, fire type, screen type, flocculation, and biological treatment facilities.

이중 여과형 비점오염 저감시설의 여과는 도시화가 고도로 진행되어 불투수성이 높고, 부지가 제한적일 때 가장 많이 이용된다. 여과는 효율이 높으나, 운전 중에 여재층이 폐색되어 손실수두가 증가함과 동시에 집중강우 시에 고형물이 재유출되는 문제점이 있다. 이것은 여재의 역세척, 여재 교체 등의 유지관리 비용이 증가의 문제점을 초래할 수 있다. 따라서 요즘은 상향류식 여과시설을 많이 사용되고 있으며, 적합한 여재의 선정, 적합한 시스템의 구성 및 적절한 성능평가가 있어야 비점오염원의 저감을 달성할 수 있을 것이다.Filtration in dual filtration non-point pollution abatement facilities is most often used when urbanization is highly advanced and impermeable, and the site is limited. Filtration is high, but there is a problem that the solid material is re-spilled during heavy rainfall at the same time the loss head increases due to the blockage of the filter media during operation. This may cause a problem of increased maintenance costs such as backwashing of media and replacement of media. Therefore, nowadays, many up-flow filtration facilities are used, and the selection of suitable media, the configuration of the appropriate system, and the proper performance evaluation can achieve the reduction of nonpoint source.

비점오염저감시설의 처리 규모는 강우량을 누적유출고로 환산하며 최소 5mm의 강우량을 처리할 수 있어야 한다. 이 때, 누적유출고는 우수의 지하침투 및 증발산량을 제외한 실제 우수 유출량을 말한다.The treatment scale of nonpoint pollution abatement facilities should be able to convert rainfall to cumulative runoff and be able to handle at least 5mm of rainfall. At this time, the cumulative runoff refers to the actual storm runoff, excluding the subterranean penetration and the amount of evapotranspiration.

비점오염저감시설에 대한 기준은 “비점오염저감시설 설치 및 관리, 운영 매뉴얼 (환경부, 2014)에 의해 정의되며 여과조의 선 속도를 20m/hr이하, 여재층의 두께 60cm 내외, 부유성 발포 섬유상 여재의 경우 30cm 내외를 권장하고 있으며 여재의 경우 역세척이 가능하며 역세척 후 손실수두가 최초의 값으로 환원될 수 있어야 한다. 또한 연간 SS제거 효율을 80%를 달성해야하며 손실수두는 10cm를 초과하지 않고 투수능이 선속도의 1.5∼2배 일 것, 고형물 부하 최대 8kg/m2의 경우에서도 막힘과 손실수두가 거의 없어야 한다. 역세척의 경우, 강우 종료 후 48시간 이내에 실시되어야 하며 누적강우량이 10mm인 경우에도 역세척이 실시되어야 한다. 방법으로는 공기세척+처리수 방식을 일반적으로 사용한다.(참고 비점오염저감시설 관련 기준 및 기술동향(2017), 한국수자원학회)The criteria for nonpoint pollution abatement facilities are defined by the “Installation and Management of Nonpoint Pollution Abatement Facilities, Operation Manual (Ministry of Environment, 2014)”, and the linear velocity of the filter tank is less than 20m / hr, the median layer thickness is about 60cm, and the foamed fibrous media In the case of, it is recommended to be around 30cm. In case of filter media, backwashing is possible, and the head of loss should be reduced to the initial value after backwashing. In addition, the annual SS removal efficiency should be 80%, and the head of loss should not exceed 10cm, the permeability should be 1.5 ~ 2 times the linear speed, and there should be almost no blockage and head of loss even in the case of solid load up to 8kg / m 2 . do. In the case of backwashing, the backwashing should be carried out within 48 hours after the end of the rainfall, even if the cumulative rainfall is 10mm. The air cleaning + treated water method is generally used. (Reference criteria and technology trends related to non-point pollution reduction facilities (2017), Korea Water Resources Association)

여과형 비점오염 저감시설은 장치형 시설의 한 종류로써 여과형 시설의 설계에는 시설의 제거효율, 공사비용 및 유지관리비용에 의해 저장용량과 체류시간, 여과재를 결정해야 한다. 또한 여과재의 통과수량을 고려해서 여과 면적 및 깊이(높이)를 설계한다. 그러나 세부 설계기준이 명확하지 않아 현장에서 적용하기에 쉽지 않은 실정이다. (참고 : Treatment Efficient of Non-Point Source Pollutants Using Modified Filtration System, 2011, 한국습지학회지, 강희만, 최지연, 김이형, 배우근)Filtered non-point pollution abatement facilities are a type of equipment, and the design of the filter facility should determine the storage capacity, residence time, and filter media based on the removal efficiency, construction cost and maintenance cost of the facility. In addition, the filter area and depth (height) are designed in consideration of the amount of water passed through the filter medium. However, it is not easy to apply in the field because detailed design criteria are not clear. (Reference: Treatment Efficient of Non-Point Source Pollutants Using Modified Filtration System, 2011, Korean Journal of Wetlands, Kang Hee Man, Choi Ji Yeon, Kim Hyung Kim, Actor Geun)

2014년 “비점오염원 저감시설의 설치 및 관리, 운영 매뉴얼”이 개정됨에 따라 여과형 시설의 역세척 설비의 부착이 의무화되었다. 이에 따라 강우 종료 후 48시간 이내에 역세척을 실시해야 하며 역세척 후 폐수는 관 또는 합류식 관거와 연계처리를 실시한다. (참고 비점오염저감시설 관련 기준 및 기술동향(2017), 한국수자원학회)In 2014, the “Installation, Management, and Operation Manual of Non-point Pollution Reduction Facilities” was revised, requiring the installation of backwash facilities for filtration facilities. Therefore, backwashing should be carried out within 48 hours after the end of the rainfall, and after the backwashing, the wastewater should be treated in conjunction with pipe or conduit. (Reference Criteria and Technology Trends for Non-point Pollution Reduction Facilities (2017), Korea Water Resources Association)

비점오염 관련 연구는 주로, 다양한 여재를 이용하여 이루어져 왔다. 비점오염 저감을 위한 여과 장치의 설계 및 운전에 있어서 가장 큰 고려사항은 여재 폐색으로 인해 장치의 여과선속도가 현저히 감소하는 것이다 (Warnaars 등, 1999; Bouwer, 2002). 여재층의 폐색은 동력을 이용한 역세척이 곤란할 때, 여재의 수명을 결정하는 중요한 인자라고 할 수 있다 (Siriwardene 등, 2007). 또한, 손실수두의 증가는 처리하려는 SS의 양과 크기, 그리고 여재의 크기와 직접적으로 관계가 있다.(Boller와 Kavanaugh, 1995)Non-point pollution related research has mainly been carried out using various media. The biggest consideration in the design and operation of filtration devices for non-point pollution reduction is that the filter line velocity of the device is significantly reduced due to median blockage (Warnaars et al., 1999; Bouwer, 2002). Occlusion of media layers is an important factor in determining the life of media when backwashing by power is difficult (Siriwardene et al., 2007). In addition, the increase in head loss is directly related to the amount and size of SS to be treated and the size of the media (Boller and Kavanaugh, 1995).

이에 따라, Jusoh 등(2007)은 여재층이 폐색되어 손실수두가 일정 수준 (240-300mm)까지 증가하는 시간 또는 유출수 탁도가 일정 수준 (1.00 NTU) 이상으로 증가하는 시간을 여과시설의 수명으로 판단하였다.Accordingly, Jusoh et al. (2007) judged the time when the head layer was blocked and the loss head increased to a certain level (240-300 mm), or the time when the runoff turbidity increased above a certain level (1.00 NTU) as the life of the filtration facility. It was.

여과형 비점오염 저감시설의 여재로는 모래가 가장 많이 연구되었으며, 최근에는 다른 여재들도 시도되고 있다. 미국의 Northern filter media (www.northern filtermedia.com)에서는 sand, quartz, Mn green sand, zeolite 등의 여재를 비점오염 여과시설에 이용하고 있으며, 김태균 등(2009)은 Perlite와 Resin을, Ping 과 Yajun(2010)은 sand soil, slag, ceramsite 등을 여재로 하여 연구를 수행한 바 있다.Sand has been the most studied media for filtration nonpoint pollution abatement facilities, and other media have recently been tried. Northern filter media (www.northern filtermedia.com) in the US uses sand, quartz, Mn green sand, zeolite, etc. for non-point pollution filtration facilities, and Kim Tae-kyun (2009) uses Perlite and Resin, Ping and Yajun. (2010) conducted research on sand soil, slag, ceramsite, etc.

본 발명은 상기한 바와 같은 제반 문제점을 개선하기 위해 안출된 것으로서, 그 목적은 전처리조와 여과조 및 역세수조 등으로 비점오염 저감시설을 구성하여, 상기 전처리조로부터 유입되어 처리되는 처리수를 여과하고 역세수하는 과정을 거쳐 비점오염원 및 악취가 제거된 제거수를 방류하되, 상기 여과조 내에 금속망으로 둘러싸인 섬유상 여재를 설치함으로써 더욱 효율적으로 처리수의 여과가 이루어지도록 한 섬유상 여과형 여재를 이용한 비점오염 저감시설을 제공함에 있다.The present invention has been made to improve the above-mentioned problems, the purpose is to construct a non-point pollution reduction facility, such as pre-treatment tank, filtration tank and backwash water tank, to filter the treated water flowed in from the pretreatment tank and treated Discharges non-point source and odor-free removal water through the process of washing, and reduces the non-point pollution using fibrous filtration media which makes the treatment of filtration more efficient by installing a fibrous media surrounded by metal mesh in the filtration tank. In providing facilities.

상기한 바와 같은 목적을 달성하기 위해 본 발명의 섬유상 여과형 여재를 이용한 비점오염 저감시설은, 한쪽 내부의 상부에 스크린조가 설치되고, 상기 스크린조의 위쪽으로 처리수 유입관이 제1 개폐밸브를 사이에 두고 외부에서 연결되며, 내부의 하부에 정체수 이송펌프가 설치되어 상기 스크린조와 오버플로워로 구획된 전처리조; 내부에 금속망으로 둘러싸인 복수의 섬유상 여재와 산기관이 설치되어 한쪽에서 상기 전처리조와 오버플로워로 구획되면서 하부에서 제2 개폐밸브를 사이에 두고 연결된 여과조; 상기 여과조의 외부에서 여과조 내부로 연결되어 설치된 자외선 살균장치; 및 상부의 한쪽에서 상기 여과조와 제3 개폐밸브를 사이에 두고 연결되고, 내부의 하부에 역세수펌프가 설치되며, 상부의 다른 쪽에서 방류관이 제4 개폐밸브를 사이에 두고 외부로 연결된 역세수조;를 포함하여 이루어지는 것을 특징으로 하고 있다.In order to achieve the object as described above, in the non-point pollution reduction facility using the fibrous filtration media of the present invention, a screen tank is installed at an upper portion of one inside, and a treatment water inlet pipe is disposed between the first on / off valves above the screen tank. A pretreatment tank connected to the outside and placed in the lower portion, and having a stagnant water transfer pump installed in the lower portion of the inner space; A filtration tank having a plurality of fibrous media and an diffuser surrounded by a metal mesh therein and partitioned into one of the pretreatment tank and the overflow at one side thereof and connected to each other with a second on / off valve interposed therebetween; An ultraviolet sterilizer connected to the filter tank from the outside of the filter tank; And a back washing pump connected to the filtration tank and a third opening / closing valve between one side of an upper portion, and a backwash pump installed on a lower portion of the inner portion, and a backwash tank connected to the outside with a discharge pipe interposed between the fourth opening and closing valves on the other side of the upper portion. It is characterized by including;

또 상기 섬유상 여재는 야자수 껍질로 구성하는 것이 바람직하다.In addition, the fibrous media is preferably composed of palm bark.

또 상기 전처리조는 제1 전처리조와 제2 전처리조의 2개로 분할구획되어, 상기 제1 전처리조와 제2 전처리조는 제5 개폐밸브를 사이에 두고 연결되고, 상기 제2 전처리조가 여과조와 오버플로워로 구획되면서 하부에서 제2 개폐밸브를 사이에 두고 연결되는 것이 바람직하다.In addition, the pretreatment tank is divided into two sections, a first pretreatment tank and a second pretreatment tank, and the first pretreatment tank and the second pretreatment tank are connected with a fifth open / close valve interposed therebetween, and the second pretreatment tank is divided into a filtration tank and an overflow. It is preferable that the lower opening and closing valve is connected to each other.

본 발명의 섬유상 여과형 여재를 이용한 비점오염 저감시설에 의하면, 스크린조, 전처리조, 여과조 및 역세수조의 순서로 구성된 비점오염 저감시설에서 상기 여과조 내의 섬유상 여재를 여과의 효과가 탁월한 야자수 껍질을 사용함과 동시에, 상기 섬유상 여재를 금속망 내에 설치함으써 여재의 손실과 폐색을 방지하여 오염된 우수 등과 같은 처리수의 여과의 효율성이 아주 좋아지는 효과가 있다.According to the non-point pollution reduction facility using the fibrous filtration media of the present invention, the palm tree bark having excellent effect of filtering the fibrous media in the filtration tank in the non-point pollution reduction facility consisting of a screen tank, a pretreatment tank, a filtration tank, and a backwash tank is used. At the same time, by installing the fibrous media in the metal mesh, the efficiency of filtration of treated water such as rainwater that is contaminated by preventing the media and the loss of media is prevented.

또 상기 구성의 비점오염 저감시설에서 전처리조 내에 스크린조를 설치함으로써 여과조에서의 여과 전에 처리수의 전처리 효과를 극대화 한 효과가 있다.In addition, by installing the screen tank in the pretreatment tank in the non-point pollution reduction facility having the above configuration, there is an effect of maximizing the pretreatment effect of the treated water before filtration in the filtration tank.

또한 여과조에서 처리수의 여과 중에 자외선 살균장치를 사용함으로써 여과된 처리수가 하수관로에 방류될 때에는 악취가 효율적으로 제거되어 방류되는 효과가 있다.In addition, when the filtered treated water is discharged into the sewer pipe by using an ultraviolet sterilizer during the filtration of the treated water in the filtration tank, the odor is effectively removed and discharged.

도 1은 본 발명에 따른 섬유상 여과형 여재를 이용한 비점오염 저감시설의 정면 단면도
도 2는 본 발명에 따른 섬유상 여과형 여재를 이용한 비점오염 저감시설의 평면 단면도
도 3은 본 발명에 따른 섬유상 여과형 여재를 이용한 비점오염 저감시설 중 여과조의 측면 단면도
도 4는 본 발명에 따른 섬유상 여과형 여재를 이용한 비점오염 저감시설을 위한 실험장치의 모식도
도 5는 상기 도 4의 실험장치의 각 부분 실물사진
도 6은 여과선속도에 따른 여재층 깊이별 손실수두의 그래프
도 7은 여과시간에 따른 수두(여과선속도 10m/hr)의 그래프
도 8은 여과시간에 따른 손실수두(여과선속도 10m/hr)의 그래프
도 9는 여과시간에 따른 SS 제거율, 누적 SS 제거율, 여재층 누적 SS 부하 및 손실수두(여과선속도 10m/hr)의 그래프
도 10은 여과시간에 따른 수두(여과선속도 15m/hr)의 그래프
도 11은 여과시간에 따른 손실수두(여과선속도 15m/hr)의 그래프
도 12는 여과시간에 따른 SS 제거율, 누적 SS 제거율, 여재층 누적 SS 부하 및 손실수두(여과선속도 15m/hr)의 그래프
도 13은 여과시간에 따른 수두(여과선속도 20m/hr)의 그래프
도 14는 여과시간에 따른 손실수두(여과선속도 20m/hr)의 그래프
도 15는 여과시간에 따른 SS 제거율, 누적 SS 제거율, 여재층 누적 SS 부하 및 손실수두(여과선속도 20m/hr)의 그래프
도 16은 역세척 전·후 시간에 따른 수두 및 손실수두(여과선속도 40m/hr, 역세척 여과수 20m/hr)
도 17은 역세척 전·후 시간에 따른 수두 및 손실수두(여과선속도 40m/hr, 역세척 공기(3회-1분) 10m/hr+여과수 10m/hr)
1 is a front cross-sectional view of a non-point pollution reduction facility using a fibrous filter medium according to the present invention.
2 is a cross-sectional plan view of a non-point pollution reduction facility using a fibrous filter medium according to the present invention.
Figure 3 is a cross-sectional side view of the filtration tank of the non-point pollution reduction facility using a fibrous filter medium according to the present invention
Figure 4 is a schematic diagram of an experimental apparatus for a non-point pollution reducing facility using a fibrous filter medium according to the present invention
5 is a real photograph of each part of the experimental apparatus of FIG.
6 is a graph of the loss head by the depth of the filter media according to the filter line velocity
7 is a graph of the head (filtration line speed 10m / hr) according to the filtration time
8 is a graph of the loss head (filtration line speed 10m / hr) according to the filtration time
9 is a graph of SS removal rate, cumulative SS removal rate, filter bed cumulative SS load and loss head (filtration line speed 10m / hr) according to the filtration time
10 is a graph of the head (filtration line speed 15m / hr) according to the filtration time
11 is a graph of the loss head (filtration line speed 15m / hr) according to the filtration time
12 is a graph of SS removal rate, cumulative SS removal rate, filter bed cumulative SS load and head loss (filtration line speed 15m / hr) according to the filtration time
13 is a graph of the head (filtration line speed 20m / hr) according to the filtration time
14 is a graph of the loss head (filtration line speed 20m / hr) according to the filtration time
15 is a graph of SS removal rate, cumulative SS removal rate, filter bed cumulative SS load and loss head (filtration line speed 20m / hr) according to the filtration time
Figure 16 shows the head and loss head according to the time before and after backwashing (filtration line speed 40m / hr, backwashing filtered water 20m / hr)
17 shows the head and loss head according to the time before and after backwashing (filtration line speed 40m / hr, backwashing air (3 times-1minute) 10m / hr + filtration water 10m / hr)

이하, 본 발명에 따른 섬유상 여과형 여재를 이용한 비점오염 저감시설의 바람직한 실시예를 첨부한 도면을 참조로 하여 상세히 설명한다. 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하며 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위하여 제공되는 것이다.Hereinafter, with reference to the accompanying drawings, a preferred embodiment of a non-point pollution reducing facility using a fibrous filter medium according to the present invention will be described in detail. The present invention is not limited to the embodiments disclosed below, but can be implemented in various different forms, only this embodiment to complete the scope of the invention to those skilled in the art and complete the scope of the invention to those skilled in the art It is provided to inform you.

도 1은 본 발명에 따른 섬유상 여과형 여재를 이용한 비점오염 저감시설의 정면 단면도이고, 도 2는 본 발명에 따른 섬유상 여과형 여재를 이용한 비점오염 저감시설의 평면 단면도이며, 도 3은 본 발명에 따른 섬유상 여과형 여재를 이용한 비점오염 저감시설 중 여과조의 측면 단면도를 도시한 것이다.1 is a front cross-sectional view of a non-point pollution reduction facility using a fibrous filtration media according to the present invention, Figure 2 is a plan sectional view of a non-point pollution reduction facility using a fibrous filtration media according to the present invention, Figure 3 is Side cross-sectional view of the filtration tank in a non-point pollution reduction facility using the fibrous filter media according to the present invention.

도 1 내지 도 3에 도시한 바와 같이, 본 발명에 따른 섬유상 여과형 여재를 이용한 비점오염 저감시설은 스크린조(1)를 포함하는 전처리조(2)와 여과조(3) 및 역세수조(4)를 차례로 배치하여 일렬로 연결한 것이며, 상기 여과조(3)에는 자외선 살균장치(5)가 별도로 연결되어 있다.1 to 3, the non-point pollution reduction facility using the fibrous filtration media according to the present invention is a pre-treatment tank (2) including the screen tank (1), filtration tank (3) and backwash tank (4) Are arranged in a row and connected in series, and the ultraviolet sterilizer 5 is separately connected to the filtration tank 3.

상기 전처리조(2)에는 내부의 한쪽 벽에 별도의 공간으로 스크린조(1)가 설치되며, 상기 스크린조(1) 위에는 제1 개폐밸브(7a)를 사이에 두고 유입관(6)이 외부에서 전처리조(2)의 한쪽 벽에 연결되어 오염된 우수 등과 같은 처리수가 스크린조(1)로 일단 유입되고, 유입된 처리수는 전처리조(2)와 오버플로워로 구획되어 상기 전처리조(2)로 넘어간다. 또한 상기 전처리조(2) 내부의 바닥에는 정체수 이송펌프(8)가 설치되어, 상기 정체수 이송펌프(8)에 의해 처리수가 더 이상 유입되지 않아 전처리조(2)에 남아있는 정체수를 외부로 이송하여 임시저장조(15)에 보관하거나 하수관로(16)로 방출하게 된다.The pretreatment tank 2 is provided with a screen tank 1 as a separate space on one wall of the inside, and the inlet pipe 6 is externally provided on the screen tank 1 with a first opening / closing valve 7a interposed therebetween. The treated water, such as rainwater contaminated by being connected to one wall of the pretreatment tank 2, is introduced into the screen tank 1 once, and the introduced treated water is divided into the pretreatment tank 2 and the overflow and the pretreatment tank 2 Go to). In addition, a stagnant water transfer pump 8 is installed at the bottom of the pretreatment tank 2 to treat stagnant water remaining in the pretreatment tank 2 because the stagnant water transfer pump 8 is no longer introduced into the treated water. Transfer to the outside is stored in the temporary storage tank 15 or discharged to the sewage pipe (16).

또한 상기 전처리조(2)는 전처리의 효율성을 높이기 위해 중간에 벽을 세워 2개의 제1 전처리(2a) 및 제2 전처리조(2b)로 분할구획되어 있고, 분할하는 구획벽의 상부에 제2 개폐밸브(7b)를 설치하여, 상기 제1 전처리(2a) 및 제2 전처리조(2b) 사이를 처리수가 이동할 수 있도록 하며, 이 경우 제1 전처리조(2a)의 바닥에 정체수 이송펌프(8)가 설치되면, 제2 전처리조(2b) 바닥에도 다른 정체수 이송펌프(9)가 설치된다.In addition, the pretreatment tank 2 is divided into two first pretreatments 2a and a second pretreatment tank 2b with a wall in the middle in order to increase the efficiency of the pretreatment. The on-off valve 7b is installed to allow the treated water to move between the first pretreatment 2a and the second pretreatment tank 2b. In this case, the stagnant water transfer pump (at the bottom of the first pretreatment tank 2a) is provided. If 8) is installed, another stagnant water transfer pump 9 is installed at the bottom of the second pretreatment tank 2b.

이와 같이 전처리조(2)는 여과조(3)와 오버플로워로 구획되며, 상기 전처리조(2)가 제1 전처리(2a) 및 제2 전처리조(2b)로 분할구획되는 경우 상기 여과조(3)는 제2 전처리조(2b)와 오버플로워로 구획된다. 이러한 상기 제2 전처리조(2b)와 여과조(3)를 구획하는 구획벽의 하부에 제5 개폐밸브(7e)가 설치된다.In this way, the pretreatment tank 2 is divided into the filtration tank 3 and the overflow, and the filtration tank 3 when the pretreatment tank 2 is divided into a first pretreatment 2a and a second pretreatment tank 2b. Is divided into a second pretreatment tank 2b and an overflow. The fifth opening / closing valve 7e is provided at the lower portion of the partition wall partitioning the second pretreatment tank 2b and the filtration tank 3.

상기 여과조(3)는 상부에 2줄로 나란히 금속망(10)으로 둘러싸인 복수개의 섬유상 여재(11)를 설치하고 있어, 상기 섬유상 여재(11)와 모양을 유지하면서 손실되는 일 없도록 하며, 전처리조(2)로부터 넘어오는 처리수는 복수개의 상기 섬유상 여재(11)를 통해 여과된 후에 여과조(3)에 저장된다. 이와 같이 여과 후에 오염물질이 제거되어 저장되는 처리수는 외부에서 상기 여과조(3)의 바닥으로 연결되어 산기관(12)으로부터 공급되는 기포공기에 의해 추가적으로 여과된다. 즉 상기 산기관(12)은 여과조(3)의 하부에서 기포형태로 공기를 발생시켜 상기 여과조(3)에 저장된 처리수의 추가여과 및 흡착된 오염물질을 탈리시키고, 이를 상기 여과조(3)의 상부로 부유시킨다. 상기 금속망(10)은 철망 또는 알루미늄망으로 구성하게 된다.The filtration tank (3) is provided with a plurality of fibrous media (11) surrounded by a metal mesh 10 side by side in two rows at the top, so as not to be lost while maintaining the shape with the fibrous media (11), pretreatment tank ( The treated water from 2) is filtered through the plurality of fibrous media 11 and then stored in the filtration tank 3. In this way, the treated water stored after removing the contaminants after filtration is additionally filtered by bubble air connected to the bottom of the filtration tank 3 and supplied from the diffuser 12. That is, the diffuser 12 generates air in the form of bubbles in the lower part of the filtration tank 3 to desorb additional filtered and adsorbed contaminants of the treated water stored in the filtration tank 3, Float to the top. The metal mesh 10 is composed of a wire mesh or an aluminum mesh.

또한 상기 여과조(3)의 내부로는 외부에 설치된 자외선 살균장치(5)가 연결되어 있어, 섬유상 여재(11)에 의해 여과되어 여과조(3)에 저장되는 처리수의 악취 등을 자외선으로 제거하게 된다.In addition, an ultraviolet sterilizer 5 installed outside is connected to the inside of the filtration tank 3 to remove odors and the like of the treated water stored in the filtration tank 3 by being filtered by the fibrous media 11. do.

상기 역세수조(4)는 여과조(3)와 구획되는 한쪽의 구획벽에 설치된 제3 개폐밸브(7c)를 사이에 두고 연결되며, 반대쪽의 역세수조(4) 벽에는 제4 개폐밸브(7d)를 사이에 두고 방류관(14)이 연결되어, 상기 방류관(14)을 통해 오염원이 제거된 처리수를 최종적으로 하수관로(16)에 흘려 보낸다. 이러한 역세수조(4)의 바닥에는 여과조(3)에서 여과되어 넘어온 처리수의 역세수를 위한 역세수펌프(13)가 설치되어 있다.The backwash tank (4) is connected to the filtration tank (3) with a third open / close valve (7c) provided on one partition wall partitioned therebetween, and a fourth open / close valve (7d) on the opposite backwash tank (4) wall. The discharge pipe 14 is connected with the gap therebetween, and finally, the treated water from which the pollutant is removed through the discharge pipe 14 flows into the sewer pipe 16. At the bottom of the backwashing tank 4, a backwashing pump 13 for backwashing the treated water which has been filtered out of the filtration tank 3 is provided.

다음은 상기한 바와 같이 구성되는 본 발명의 섬유상 여과형 여재를 이용한 비점오염 저감시설의 비점오염 여과과정에 대해 설명하도록 한다.Next, the non-point pollution filtration process of the non-point pollution reduction facility using the fibrous filtration media of the present invention configured as described above will be described.

먼저 우천 시에 비점오염원인 오염물질이 포함된 우수 등의 처리수가 유입관(6)을 통해 스크린조(1)로 유입되면, 모래 등의 무거운 오염물질이 1차로 침전되어 제거된 처리수가 오버플로워에 의해 전처리조(2)의 제1 전처리조(2a)로 넘어간다.First, when rainwater, such as rainwater containing contaminants as a non-point pollutant, flows into the screen tank 1 through the inlet pipe 6, heavy pollutants such as sand are first precipitated and the treated water overflows. The process proceeds to the first pretreatment tank 2a of the pretreatment tank 2.

이후 제1 전처리조(2a)로 넘어온 처리수는 한번 더 오염물질을 2차로 침전시켜 제거하고, 오염물질이 제거된 처리수는 제2 침전조(2b)로 제2 개폐밸브(7b)를 통해 넘어간다.Then, the treated water which has passed to the first pretreatment tank 2a is once again removed by sedimenting the pollutants secondly, and the treated water from which the pollutants have been removed is passed through the second opening / closing valve 7b to the second settling tank 2b. Goes.

이후 제2 침전조(2b)에서 다시 한번 더 오염물질을 3차로 침전시켜 제거하고, 오염물질이 제거된 처리수는 오버플로워에 의해 여과조(3)로 넘어간다.Thereafter, the second settling tank 2b once again removes contaminants by tertiary again, and the treated water from which the contaminants are removed is passed to the filtration tank 3 by an overflow.

여기서 상기 제2 전처리조(2b)에 처리수가 남아 정체된 정체수는 정체수 이송펌프(9)에 의해 제1 전처리조(2a)로 이송되고, 상기 제1 전처리조(2a)에 처리수가 남아 정체된 정체수는 정체수 이송펌프(8)에 의해 이송되어 임시저장소(15)에 저장되거나 하구관로(16)를 통해 방류되는 것은 상기한 바와 같다.Here, the treated water remaining in the second pretreatment tank 2b is transferred to the first pretreatment tank 2a by the stagnant water transfer pump 9, and the treated water remains in the first pretreatment tank 2a. The stagnant stagnant water is transported by the stagnant water transfer pump 8 and stored in the temporary storage 15 or discharged through the inlet pipe 16 as described above.

이후 여과조(3)로 넘어온 처리수는 금속망(10)으로 둘러싸인 복수개의 섬유상 여재(11)에서 오염물질이 1차적으로 여과되어 제거되고 산기관(12)에서 공급되는 공기기포에 의해 2차적으로 제거되어, 거의 오염물질이 없는 처리수로 된 상태에서 제3 개폐밸브(7c)를 통해 역세수조(4)로 넘어간다. 이때 오염물질이 거의 제거된 처리수에 남아있는 악취는 상기 여과조(3)와 연결된 자외선 살균장치(5)에 의해 추가적으로 제거된다.After that, the treated water passed to the filtration tank 3 is secondarily filtered by the air bubbles supplied from the diffuser 12 by removing the contaminants from the plurality of fibrous media 11 surrounded by the metal mesh 10. It is removed and is passed to the backwash water tank 4 through the 3rd opening / closing valve 7c in the state which became the treated water with almost no pollutants. At this time, the odor remaining in the treated water is almost eliminated by the ultraviolet sterilizer (5) connected to the filter tank (3).

이후 역세수조(4)로 넘어온 처리수는 역세수펌프(13)에 의해 다시 여과조(3)로 넘어가 다시 한번 더 완벽하게 오염물질을 제거한 상태에서 상기 역세수조(4)로 다시 넘어오면, 최종적으로 오염물질이 거의 완벽히 제거된 처리수는 제4 개폐밸브(7d)를 열어 방류관(14)을 통해 하수관로(16)로 흘려보낸다.Then, the treated water which has passed to the backwash tank 4 is transferred to the filtration tank 3 again by the backwash water pump 13, and once again returned to the backwash tank 4 in the state of completely removing contaminants, The treated water from which the pollutants are almost completely removed flows into the sewer pipe 16 through the discharge pipe 14 by opening the fourth on / off valve 7d.

한편 전처리조(2)에 남아있는 정체수는 물론 여과조(3)나 역세수조(4)에도 정체수가 남아있는 경우, 상기 역세수조(4)는 역세수펌프(13)와 제3 개폐밸브(7c), 상기 여과조(3)는 제2 전처리조(2b)와 여과조(3) 사이의 제5 개폐밸브(7e)를 통해 전처리조(2)로 돌려보내, 상기한 바와 같이 정체수 이송펌프(8)(9)에 의해 임시저장조(15)와 하수관로(16)로 이송한다.On the other hand, if stagnant water remains in the filtration tank 3 or the backwash tank 4 as well as the stagnant water remaining in the pretreatment tank 2, the backwash tank 4 is a backwash pump 13 and a third open / close valve 7c. ), The filtration tank (3) is returned to the pretreatment tank (2) through the fifth opening and closing valve (7e) between the second pretreatment tank (2b) and the filtration tank (3), the stagnant water transfer pump (8) as described above (9) is transferred to the temporary storage tank 15 and the sewer pipe (16).

다음은 본 발명의 섬유상 여과형 여재를 이용한 비점오염 저감시설를 이용하여, 특히 금속망으로 둘러싸인 야자수 껍질 섬유를 이용한 섬유상 여재를 적용한 비점오염 저감시설을 이용하여 우수와 같은 처리수를 여과한 결과를 보여주는 실시예를 설명하도록 한다.The following shows the results of filtering the treated water, such as rainwater, using a non-point pollution reduction facility using a fibrous filter material using palm tree fibers surrounded by metal mesh, using a non-point pollution reduction facility using a fibrous filtration media of the present invention. An embodiment will be described.

먼저 본 발명에서 사용된 여재는 섬유상 여재를 사용하여 테스트를 하였다. 섬유상여재는 부유성 섬유여재로 야자수 껍질의 섬유를 이용하여 시트(Sheet)로 제작한 여재이다.First, the media used in the present invention was tested using fibrous media. Fibrous media is a fibrous media that is made of sheets using palm fiber.

여재의 설계 물리적 특성은 다음과 같다.The design physical properties of the media are as follows.

- Bulk Density : 222334.8g/㎡Bulk Density: 222334.8g / ㎡

- 투수계수 : 61.82m/hrPermeability: 61.82m / hr

또한 본 발명의 비점오염 저감시설을 위한 실험장치는 도 4 및 도 5에 도시한 바와 같이 sampling port와 piezometer가 설치된 아크릴 column(50×50×300mm, 150×50×800mm)을 이용하였다. Column은 유입유출 단차를 유지하기 위하여 유입 column과 여과 column으로 나누어 설치하였다. 기타 부대장치로 sampling port, piezometer, 유입 pump, 역세척 pump, 원수 tank(200L) 및 교반기, 역세척수 tank(200L) 등을 이용하였다.In addition, the experimental apparatus for the non-point pollution reduction facility of the present invention used an acrylic column (50 × 50 × 300mm, 150 × 50 × 800mm) provided with a sampling port and a piezometer as shown in FIGS. 4 and 5. The column is divided into an inflow column and a filtration column to maintain the inflow and outflow steps. Sampling port, piezometer, inflow pump, backwash pump, raw water tank (200L) and stirrer, backwash water tank (200L) were used as other accessories.

처리수를 정해진 여과선속도로 유입 column에 주입하고, 섬유상여재는 30cm 깊이로 충진되어 있고, 여과 column의 하부로 처리수를 유입시킨 후, 여과 column의 여재층 상부에서 유출수를 배출시켰다. 이때, 유입 column의 수위와 여과 column의 유출 수위를 일정하게 유지하였다. 운전중에 정해진 시간에 따라 여재층 깊이별로 piezometer 수위를 기록하였다. 여과선속도 10, 15 그리고 20m/hr에서 각각 50분간 동일한 실험을 반복하여, 여과선속도에 따른 무부하 손실수두를 구하였다.The treated water was injected into the inflow column at a predetermined filtration line speed, and the fibrous material was filled to a depth of 30 cm, and the treated water was introduced into the lower part of the filtration column, and then the effluent was discharged from the top of the filter bed of the filtration column. At this time, the level of the inflow column and the outflow level of the filtration column were kept constant. The piezometer level was recorded for each depth of the media layer during the operation. The same experiment was repeated for 50 minutes at 10, 15 and 20m / hr, respectively, and the no-load loss head was calculated according to the filter line velocity.

본 발명의 비점오염 저감시설을 위한 실험장치를 이용하여 처리수의 여과실험의 결과는 다음과 같다.The results of the filtration experiment of the treated water using the experimental apparatus for the non-point pollution reduction facility of the present invention are as follows.

분석결과, 섬유상 여재의 투수계수는 61.82m/hr(1.717cm/sec)이었다.As a result, the permeability coefficient of the fibrous media was 61.82 m / hr (1.717 cm / sec).

도 6에 도시한 바와 같이, 섬유상여재의 초기 여과선속도를 10, 15 그리고 20m/hr로 설정하여, 각각 50분 간 운전하였다. 여과선속도가 10, 15 그리고 20m/hr 일 때, 섬유사여재의 경우 여재층 깊이 30cm 에서의 손실수두는 각각 0.1, 0.2 그리고 0.2cm 이었고, 여과선속도가 증가함에 따라 손실수두가 증가하였다.As shown in Fig. 6, the initial filtration line speeds of the fibrous material were set to 10, 15 and 20 m / hr, and each was operated for 50 minutes. At the filter line velocities of 10, 15 and 20m / hr, the loss heads at the depth of 30 cm of the filter media were 0.1, 0.2 and 0.2 cm, respectively.

다음은 본 발명의 비점오염 저감시설을 위한 실험장치를 이용한 운전조건에 따른 손실수두 및 SS제거율를 설명하도록 한다.Next will be described the loss head and SS removal rate according to the operating conditions using the experimental apparatus for the non-point pollution reduction facility of the present invention.

퇴적물은 인근의 강우유출수 배수로에서 채취하여 150μm 이하의 입자를 선별하여 이용하였다.Sediments were collected from nearby rainfall runoff drainage and used to screen particles up to 150μm.

본 발명의 비점오염 저감시설을 위한 실험장치는 도 5에 도시한 것과 같은 동일한 장치를 이용하였다. 유입수 tank에 준비된 퇴적물 을 SS 농도 150mg/L가 되도록 시상수와 혼합하고, 이를 정해진 여과선속도로 유입 column에 주입하여, 여재가 충진된 여과 column의 하부로 유입시킨 후, 여과 column의 여재층 상부에서 유출수를 배출시켰다. 이 때, 유입 column의 수위와 여과 column의 유출 수위를 일정하게 유지하였다. 조건에 따라, 총 600분간 운전하였으며, 정해진 시간에 따라 여재층 깊이별로 piezometer 수위를 기록하고, 유출유량을 측정하였으며, 유입수 및 유출수 시료를 채취하여 SS 농도를 수질오염공정시험기준(환경부, 2011)에 따라 분석하였다.Experimental apparatus for a non-point pollution reduction facility of the present invention used the same apparatus as shown in FIG. The sediment prepared in the influent tank is mixed with the time constant so that the SS concentration is 150 mg / L, injected into the inlet column at a predetermined filtration linear velocity, introduced into the lower part of the filtration column filled with the filter medium, and then at the top of the filter bed of the filtration column. The effluent was discharged. At this time, the level of the inflow column and the outflow level of the filtration column were kept constant. Depending on the conditions, a total of 600 minutes of operation, the piezometer level was recorded for each depth of the media layer according to the specified time, the flow rate was measured, and the SS concentration was measured by collecting influent and effluent samples (Ministry of Environment, 2011). According to the analysis.

적용된 실험 조건은 <환경부, 2014> 비점오염저감시설 설치 및 관리·운영 매뉴얼에서 권고사항인 섬유상여재의 경우 여재층의 깊이 30cm로 여재층의 깊이 조건을 제시하였고 각각의 여재 조건에서 여과선속도 10, 15,과 20m/hr를 실험 조건으로 제시했다.The experimental conditions applied were the depth of the filter bed with a depth of 30 cm of the filter bed for the fibrous filter material recommended in <Installation, Management, and Operation Manual of the Non-point Pollution Reduction Facility, 2014>. , 15, and 20 m / hr were presented as experimental conditions.

SS 제거율은 다음 수학식 1에 의해 산정하였다.SS removal rate was calculated by the following equation (1).

Figure 112019112889430-pat00001
Figure 112019112889430-pat00001

여기서, Rt는 여과시간 t에서의 SS 제거율(%), Co는 여과시간 동안의 평균 유입 SS 농도(mg/L), 그리고 Ct는 여과시간 t에서의 유출 SS 농도(mg/L)를 나타낸다.Where Rt is the SS removal rate (%) at filtration time t, Co is the average inflow SS concentration (mg / L) during filtration time, and Ct is the outflow SS concentration (mg / L) at filtration time t.

유출유량과 유출수 SS 농도를 검토하면, 여재의 폐색 여부를 파악할 수 있다. 여재층에 포획된 SS가 증가하면 여재층이 폐색되어 손실수두가 증가하고 유출유량이 감소하게 된다. 또한, 일반적으로 여재층 내부에 SS가 축적되면서 이들이 여재 역할을 하여 SS 제거효율이 높아진다. 그러나, 축적된 SS 양이 여재층의 SS 포획 용량 이상으로 증가하면, 유입 SS와 포획되었던 SS가 유출수와 함께 유출되는 파과점 (breakthrough)에 도달하여, 여재층을 역세척하거나 교체해야 한다.Examination of the runoff flow rate and runoff SS concentration can determine whether the media is blocked. As the SS trapped in the media increases, the media is blocked, resulting in increased head loss and reduced outflow. In addition, in general, as SS accumulates inside the media layer, they play a role of media, thereby increasing the SS removal efficiency. However, if the amount of accumulated SS increases above the SS capture capacity of the media layer, the inflow SS and the captured SS reach breakthrough through which the outflow SS and the effluent flow out, requiring backwashing or replacement of the media layer.

실험결과는 다음과 같다.The experimental results are as follows.

-손실수두 및 SS제거율(여과선속도 10m/hr)Loss head and SS removal rate (filtration line speed 10m / hr)

600 분의 운전기간 동안, 여재층의 수두는 도 7에 도시한 바와 같이, 여재층 전반에서 약간 변화하였다. 전체 손실수두는 도 8에 도시한 바와 같이, 0.1cm에서 180분 후 0.2cm로 약간 증가하였다가, 360분 이후 0.4cm로 지속되다가 600분에 0.6cm로 변화하였다.During 600 minutes of operation, the head of the media layer slightly changed throughout the media layer, as shown in FIG. As shown in FIG. 8, the total head loss slightly increased from 0.1 cm to 0.2 cm after 180 minutes, continued to 0.4 cm after 360 minutes, and then changed to 0.6 cm at 600 minutes.

운전시간에 따라 유출 SS 농도는 초기 높은 농도로 유출되다가 곧바로 낮아져 지속적으로 낮아지는 경향을 보였다<도 9(a)>. 운전기간 동안 유입 SS 농도는 151.8±1.8mg/L이었고, 유출 SS 농도는 평균 22.1mg/L(표준편차 11.5, 최고 53.0mg/L, 최소 10.0mg/L)를 나타내었다. SS 제거율은 평균 85.5%(표준편차 7.5, 최고 93.3%, 최소 65.8%)이었다.According to the operating time, the outflow SS concentration was discharged to the initial high concentration and then immediately decreased, and tended to be continuously lowered (Fig. 9 (a)). During operation, the inflow SS concentration was 151.8 ± 1.8 mg / L and the outflow SS concentration was 22.1 mg / L on average (standard deviation 11.5, maximum 53.0 mg / L, minimum 10.0 mg / L). The SS removal rate averaged 85.5% (standard deviation 7.5, highest 93.3%, minimum 65.8%).

운전시간 240분일 때, 단위 여과면적당 누적 유입 SS 부하는 6.0kg/㎡이었으며, 이 때 누적 SS 제거율은 82.27% 이었다<도 9(b)>.At 240 minutes of operation time, the cumulative inflow SS load per unit filter area was 6.0 kg / m2, at which the cumulative SS removal rate was 82.27% (Fig. 9 (b)).

운전 종료 후(600분) 여재층에 포획된 총 누적 SS는 13.2kg/㎡이었으며, 이 때의 여재층 전체 손실수두는 0.6cm이었다 <도 9(c)>.After operation (600 minutes), the total cumulative SS captured in the median layer was 13.2 kg / m2, and the total head of the median layer at this time was 0.6 cm (Fig. 9 (c)).

-운전시간에 따른 유입 누적 SS 부하, 여재층 누적 SS 부하 및 손실수두(여과선속도 10m/hr)Inflow cumulative SS load, filter layer cumulative SS load and loss head according to operating time (filter line speed 10m / hr) 항목Item 운전시간 (분)Driving time (minutes) 1010 2020 3030 6060 9090 120120 180180 240240 300300 360360 420420 480480 540540 600600 유입 누적 SS 부하 (kg/㎡)Inflow Cumulative SS Load (kg / ㎡) 0.10.1 0.40.4 0.60.6 1.41.4 2.12.1 2.92.9 4.44.4 6.06.0 7.57.5 9.09.0 10.510.5 12.012.0 13.513.5 15.015.0 여재층 누적 SS 부하 (kg/㎡)Cumulative SS Load (kg / ㎡) 0.10.1 0.30.3 0.50.5 1.21.2 1.71.7 2.32.3 3.63.6 4.94.9 6.36.3 7.77.7 9.19.1 10.410.4 11.811.8 13.213.2 손실수두 (cm)Head (cm) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.6 0.6

-손실수두 및 SS제거율(여과선속도 15m/hr)Loss head and SS removal rate (filtration line speed 15m / hr)

600 분의 운전기간 동안, 도 10에 도시한 바와 같이, 여재층의 수두는 여재층 전반에서 약간 변화하였다. 전체 손실수두는 도 11에 도시한 바와 같이, 0.1cm에서 420분 후 0.4cm로 약간 증가하였다가, 600분에 0.5cm로 변화하였다..During the operation of 600 minutes, as shown in FIG. 10, the head of the media layer slightly changed throughout the media layer. The total head loss was slightly increased from 0.1 cm to 0.4 cm after 420 minutes, and then changed to 0.5 cm at 600 minutes.

운전시간에 따라 유출 SS 농도는 90분에 높은 농도를 보이다가 낮아지고, 420분이 지나면서 조금씩 유출농도가 상승하는 경향을 보였다<도 12(a)>. 운전기간 동안 유입 SS 농도는 150.1±3.7mg/L 이었고, 유출 SS 농도는 평균 27.4mg/L(표준편차 7.6, 최고 44.0mg/L, 최소 11.0mg/L)를 나타내었다. SS 제거율은 평균 81.7%(표준편차 5.3, 최고 92.8%, 최소 70.1%)이었다.According to the operating time, the effluent SS concentration showed a high concentration at 90 minutes and then decreased, and after 420 minutes, the effluent concentration tended to increase little by little (Fig. 12 (a)>. During operation, the inflow SS concentration was 150.1 ± 3.7 mg / L and the outflow SS concentration was 27.4 mg / L on average (standard deviation of 7.6, maximum of 44.0 mg / L, minimum of 11.0 mg / L). The SS removal rate averaged 81.7% (standard deviation 5.3, highest 92.8%, minimum 70.1%).

운전시간 180분일 때, 단위 여과면적당 누적 유입 SS 부하는 6.5kg/㎡이었으며, 이 때 누적 SS 제거율은 79.4%이었다<도 12(b)>.At 180 minutes of operation time, the cumulative inflow SS load per unit filter area was 6.5 kg / m2, and the cumulative SS removal rate was 79.4% (Fig. 12 (b)).

운전 종료 후(600분) 여재층에 포획된 총 누적 SS는 18.5kg/㎡이었으며, 이 때의 여재층 전체 손실수두는 0.5cm이었다<도 12(c)>.After operation (600 minutes), the total cumulative SS captured in the median layer was 18.5kg / m2, and the total head of the median layer at this time was 0.5cm (Fig. 12 (c)>).

-운전시간에 따른 유입 누적 SS 부하, 여재층 누적 SS 부하 및 손실수두(여과선속도 15m/hr)Inflow cumulative SS load, filter layer cumulative SS load and loss head according to operating time (filtration line speed 15m / hr) 항목Item 운전시간 (분)Driving time (minutes) 1010 2020 3030 6060 9090 120120 180180 240240 300300 360360 420420 480480 540540 600600 유입 누적 SS 부하 (kg/㎡)Inflow Cumulative SS Load (kg / ㎡) 0.20.2 0.60.6 1.01.0 2.12.1 3.23.2 4.34.3 6.56.5 8.88.8 11.111.1 13.313.3 15.415.4 17.817.8 20.120.1 22.322.3 여재층 누적 SS 부하 (kg/㎡)Cumulative SS Load (kg / ㎡) 0.10.1 0.50.5 0.80.8 1.71.7 2.52.5 3.33.3 5.25.2 7.27.2 9.39.3 11.211.2 12.912.9 14.914.9 16.816.8 18.518.5 손실수두 (cm)Head (cm) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.5

-손실수두 및 SS제거율(여과선속도 20m/hr)Loss head and SS removal rate (filtration line speed 20m / hr)

600 분의 운전기간 동안, 여재층의 수두는 도 13에 도시한 바와 같이, 여재층 전반에서 상승하였다. 전체 손실수두는 도 14에 도시한 바와 같이, 0.6cm에서 300분 후 1.0cm로 증가하였다가, 600분에 1.1cm로 변화하였다.During the 600 minutes of operation, the head of the filter bed rose across the filter bed, as shown in FIG. The total head loss was increased from 0.6 cm to 1.0 cm after 300 minutes and then to 1.1 cm at 600 minutes, as shown in FIG. 14.

운전시간에 따라 유출 SS 농도는 초반 높은 농도에서 180분까지 조금씩 낮아지는 경향을 보이다가 그 이후부터 조금씩 상승하여 운전이 종료되는 600분일 때 가장 높은 농도를 보였다<도 15(a)>. 운전기간 동안 유입 SS 농도는 151.8±2.7mg/L이었고, 유출 SS 농도는 평균 28.6mg/L(표준편차 7.3, 최고 45.0mg/L, 최소 14.0mg/L)를 나타내었다. SS 제거율은 평균 81.2%(표준편차 4.9, 최고 91.0%, 최소 70.0%)이었다.According to the operating time, the outflow SS concentration tended to decrease gradually from the initial high concentration up to 180 minutes, and then increased gradually thereafter, showing the highest concentration at 600 minutes when the operation was completed (Fig. 15 (a)>). During operation, the inflow SS concentration was 151.8 ± 2.7 mg / L and the outflow SS concentration averaged 28.6 mg / L (standard deviation 7.3, maximum 45.0 mg / L, minimum 14.0 mg / L). The SS removal rate averaged 81.2% (standard deviation 4.9, highest 91.0%, minimum 70.0%).

운전시간 120분일 때, 단위 여과면적당 누적 유입 SS 부하는 5.8kg/㎡이었으며, 이 때 누적 SS 제거율은 81.8%이었다<도 15(b)>.At 120 minutes of operation time, the cumulative inflow SS load per filtration area was 5.8 kg / m2, and the cumulative SS removal rate was 81.8% (Fig. 15 (b)).

운전 종료 후(600분) 여재층에 포획된 총 누적 SS는 24.6kg/㎡이었으며, 이 때의 여재층 전체 손실수두는 1.1cm이었다<도 15(c)>.After operation (600 minutes), the total cumulative SS captured in the median layer was 24.6kg / m2, and the total head of the median layer at this time was 1.1cm (Fig. 15 (c)).

-운전시간에 따른 유입 누적 SS 부하, 여재층 누적 SS 부하 및 손실수두(여과선속도 20m/hr)Inflow cumulative SS load, filter layer cumulative SS load and loss head according to operating time (filter line speed 20m / hr) 항목Item 운전시간 (분)Driving time (minutes) 1010 2020 3030 6060 9090 120120 180180 240240 300300 360360 420420 480480 540540 600600 유입 누적 SS 부하 (kg/㎡)Inflow Cumulative SS Load (kg / ㎡) 0.30.3 0.80.8 1.31.3 2.82.8 4.24.2 5.85.8 8.98.9 12.012.0 15.015.0 17.917.9 21.021.0 24.124.1 27.127.1 30.130.1 여재층 누적 SS 부하 (kg/㎡)Cumulative SS Load (kg / ㎡) 0.20.2 0.60.6 1.01.0 2.22.2 3.43.4 4.74.7 7.67.6 10.210.2 12.712.7 15.215.2 17.717.7 20.120.1 22.522.5 24.624.6 손실수두 (cm)Head (cm) 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.8 0.8 0.9 0.9 1.0 1.0 0.9 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1

다음은 역세척 효율에 대해 설명하도록 한다.The following describes the backwashing efficiency.

본 발명의 비점오염 저감시설을 위한 실험장치는 상기 도 5에서와 같은 동일한 장치를 이용하였고, SS는 상기한 바와 같이 150μm 이하의 강우유출수 배수로 퇴적물을 이용하였다.Experimental apparatus for a non-point pollution reduction facility of the present invention was used the same apparatus as in Figure 5, SS was used as sediment in rainfall runoff drainage of less than 150μm as described above.

역세척을 위한 여재는 섬유여재를 사용하였다. 여재층의 폐색을 유도하기 위해, 유입수 tank에 준비된 퇴적물을 SS 농도 2,000mg/L가 되도록 시상수와 혼합하고, 이를 여과선속도 40m/hr로 섬유상여재를 30cm 충진되게 하고, 실험장치에 주입하여 3cm 이상의 손실수두가 증가할 때까지 운전하였다. 손실수두 발생을 확인한 후, 각각 공기 및 물세척, 여과수를 이용한 물세척 등으로 역세척을 진행하였다.Filtration media was used for backwashing media. In order to induce the blockage of the filter media, the sediment prepared in the influent tank was mixed with the time constant so that the SS concentration was 2,000 mg / L, and the fibrous media was filled with 30 cm at a filter linear velocity of 40 m / hr, and injected into the experimental apparatus 3 cm. The operation was continued until the above head was increased. After confirming the head loss, back washing was performed by air and water washing, and water washing using filtered water, respectively.

공기 및 물세척 시 공기를 1분간 3회, 10m/hr의 공기를 여과 column에 주입한 여재층을 각각 세척한 후 여과 column 내부의 정체수를 배수하고, 10m/hr의 처리수를 여재층 상부에서 살수하여 여재층을 세척하였다. 여과수를 이용한 물세척 시에는 여과 column 내부의 정체수를 배수하고, 20m/hr의 여과수를 여재층 상부에서 살수하여 여재층을 세척하였다. 이후, 다시 SS 농도 2,000mg/L의 유입수를 여과선속도 40m/hr로 실험장치에 주입하여 3cm 이상의 손실수두가 증가할 때 까지 운전하여 역세척 후 손실수두를 검토하였다.When washing air and water three times for 1 minute, the filter media layer in which 10m / hr of air is injected into the filtration column is washed, and the stagnant water in the filtration column is drained. The media layer was washed by sprinkling at. When washing with filtered water, the stagnant water in the filtration column was drained and 20m / hr of filtered water was sprinkled on top of the filter bed to wash the filter bed. Afterwards, the influent of 2,000 mg / L of SS concentration was injected into the experimental apparatus at a filter linear velocity of 40 m / hr, and operated until the loss head of 3 cm or more was increased, and the loss head after backwash was examined.

일반적으로, 여과 시스템의 역세척은 여재층이 물로 포화된 상태에서, 여재층 하부에서 고압의 공기를 주입하여 공기세척 후, 다시 고압의 물을 주입하는 수세척을 수행하여 이루어진다(환경부, 2014). 그러나, 본 발명의 비점오염 저감시설에서의 여과 시스템의 역세척은 공기세척 후 여재층의 물을 배수하고 여과수를 여재층 상부에서 하향류로 살수하여 수행된다. 이에 의해 고압펌프를 이용함에 따라 소요되는 전력비, 장비비 및 역세척 수량 등을 절감할 수 있다.In general, the backwashing of the filtration system is performed by injecting high pressure air from the bottom of the filter bed in the state where the filter bed is saturated with water, and then washing the air and injecting water of high pressure again (Ministry of Environment, 2014). . However, the backwashing of the filtration system in the non-point pollution reduction facility of the present invention is performed by draining the water of the filter bed after air washing and spraying the filtered water in a downward direction above the filter bed. As a result, it is possible to reduce the power cost, equipment cost and backwashing quantity required by using the high pressure pump.

실험결과는 다음과 같다.The experimental results are as follows.

-역세척 후 손실수두(여과수 20m/hr)-Head loss after backwashing (filter 20m / hr)

역세척 전, 운전시간 5분에서 전체 여재층(30cm)의 손실수두는 0.9cm이었고, 운전시간 900분에서의 손실수두는 4.5cm로 증가하였다. 이후, 여과수 20m/hr의 조건에서 역세척을 실시하였을 때, 역세척 후 운전시간 5분에서 전체 여재층의 손실수두는 1.0cm로, 역세척 전의 초기 손실수두를 모두 회복하였다. 역세척 후, 운전시간 900분에서의 손실수두는 도 16에 도시한 바와 같이, 4.7cm로 나타나서 역세척 전 운전시간 900분에서의 손실수두와 근사한 값을 나타냈다.Before backwashing, the head loss of the total media layer (30 cm) was 0.9 cm at 5 minutes of operation time, and the head of the head was increased to 4.5 cm at 900 minutes of operation time. Thereafter, when backwashing was performed under the condition of filtered water 20m / hr, the head loss of the entire media layer was 1.0 cm at 5 minutes of operation time after the backwashing, and all of the initial heads before the backwashing were recovered. After backwashing, the loss head at 900 minutes of operation time was 4.7 cm, representing an approximation to the loss head at 900 minutes of operation time before backwashing.

-역세척 후 손실수두 (공기(3회) 10m/hr+여과수 10m/hr)-Head loss after backwashing (air (3 times) 10m / hr + filtration water 10m / hr)

역세척 전, 운전시간 5분에서 전체 여재층(30cm)의 손실수두는 0.6cm이었고, 900분 후에는 3.1cm로 증가하였다. 이후, 공기 10m/hr을 1분간 3회 및 여과수 10m/hr의 조건에서 역세척을 실시한 후, 운전시간 5분에서 전체 여재층의 손실수두는 0.8cm로 역세척 전의 초기 손실수두를 거의 회복하였다. 역세척 후, 운전시간 900분에서의 손실수두는 도 17에 도시한 바와 같이, 3.5cm로 나타나서 역세척을 통하여 섬유상여재가 여과성능을 회복했음을 알 수 있었다.Before 5 minutes of backwashing, the head loss of the total media layer (30 cm) was 0.6 cm at 5 minutes of operation time and increased to 3.1 cm after 900 minutes. Then, after backwashing at 10m / hr for 3 minutes and 10m / hr of filtered water for 1 minute, the head loss of the entire filter bed was 0.8 cm at 5 minutes of operation time, and almost recovered the initial head before the backwashing. . After backwashing, the loss head at 900 minutes of operation time was 3.5 cm, as shown in FIG. 17, indicating that the fibrous material recovered the filtration performance through backwashing.

본 발명의 비점오염 저감시설을 위한 실험장치를 이용한 여과실험의 결론은 다음과 같다.The conclusion of the filtration experiment using the experimental apparatus for the non-point pollution reduction facility of the present invention is as follows.

-여재부 손실수두-Loss head of filter

유입수에 SS가 없을 때, 섬유상여재의 무부하 손실수두는 여과선속도 20m/hr에서, 각각 0.2cm이었다.When there was no SS in the influent, the no-load loss head of the fibrous material was 0.2 cm at 20 m / hr of filter wire velocity, respectively.

-설계유량 유입 시, 시설 전체 손실수두-Total loss head of facility when design flow rate flows in

설계유량 유입 시, 시설 전체 손실수두는 유입·유출관 및 여재층에 대한 손실수두의 합으로 산정하였다. 유입유속 0.3m/s 이하(‘비점오염저감시설의 설치 및 관리·운영 매뉴얼(환경부 2014.04)’의 여과형 시설 유입관 설계 기준)가 되도록 유입관을 설계할 경우 수리계산 결과 유입손실은 0.2cm이며, 유출관 또한 같은 관경으로 설계할 시 유출손실은 0.2cm가 된다. 여재층 손실수두는 실험결과 여과선속도 20m/hr일 경우 섬유상여재는 0.2cm 미만을 유지하였으므로 시설 전체 손실수두는 유입·유출관 및 여재층에 대한 손실수두의 합인 0.6cm로 예상할 수 있다.For the design flow inflow, the total head loss of the facility was calculated as the sum of the head losses for the inflow and outflow pipes and the media. If the inlet pipe is designed to be at an inflow velocity of 0.3 m / s or less (filter design facility inlet pipe design in the 'Installation, Management, and Operation Manual of Non-point Pollution Reduction Facilities' (Ministry of Environment, 2014.04)), the inflow loss is 0.2 cm When the outlet pipe is also designed with the same diameter, the outflow loss is 0.2cm. As the result of the filter head loss, the fibrous filter remained less than 0.2cm at the filter line velocity of 20m / hr, the total head loss of the facility could be expected to be 0.6cm, which is the sum of the loss heads for the inlet / outlet pipe and the filter bed.

-여재부 투수계수(투수속도)Permeability coefficient (filtration rate)

섬유상여재의 투수계수는 61.82m/hr로 설계 여과선속도가 20m/hr일 때의 3.09배이었다.The permeability coefficient of the fibrous material was 61.82 m / hr, which was 3.09 times that of the design filter wire velocity of 20 m / hr.

-고형물 부하별 여재부 손실수두-Head loss of filter media by solid load

본 여과 시스템의 섬유상여재 사용 시 여과선속도 10, 15, 20m/hr에서 누적 SS 부하량이 운전시간 600분에 각각 15.0, 22.3, 30.1kg/㎡일 때 손실수두는 0.6, 0.5, 1.1cm로 나타나서, 여과선속도가 증가할수록 손실수두가 비교적 크게 증가하였다.When using the fibrous material of this filtration system, the head loss is 0.6, 0.5 and 1.1 cm when the cumulative SS load is 15.0, 22.3 and 30.1 kg / m2 at 600 minutes of operation time, respectively. In addition, the head loss increased relatively as the line velocity increased.

-여과선속도별 SS 처리효율SS treatment efficiency according to filtration line speed

본 발명의 비점오염 저감시설에서의 여과 시스템은 섬유상 여재 사용 시 여과선속도 10, 15, 20m/hr에서 운전시간 600분에서 각각 누적 유입 SS 부하 15.0, 22.3, 30.1kg/㎡로 평균 SS 제거율이 각각 85.5, 81.7, 81.2%으로 81.2% 이상의 SS 제거율을 달성할 수 있었다. 본 결과로 판단할 때, 사용된 여재 모두 장시간의 사용이 가능 할 것으로 판단되며, 이를 통해 연간 처리효율 80% 이상을 달성할 수 있을 것으로 판단된다.The filtration system of the non-point pollution reduction facility of the present invention has an average SS removal rate of 15.0, 22.3 and 30.1 kg / m2 with cumulative inflow SS loads at 600 minutes of operation time at 10, 15 and 20 m / hr, respectively. 85.5%, 81.7% and 81.2%, respectively, could achieve more than 81.2% SS removal. Judging from the results, it is judged that all of the used media can be used for a long time, and through this, the annual treatment efficiency of 80% or more can be achieved.

-역세척 후 손실수두 환원-Reduce the lost head after backwashing

본 발명의 비점오염 저감시설에서의 여과 시스템은 여과수 20m/hr, 공기 1분간 3회 10m/hr+처리수 10m/hr의 2가지 조건의 역세척 시, 모든 조건에서 역세척 수행 후, 손실수두가 초기 손실수두로 환원되었다. 또한 역세척 후 운전시 역세척 전과 같은 오염물의 제거 효율 및 손실수두의 발생이 나타났다. 때문에 적절한 주기의 역세척이 이루어진다면, 연간 처리효율 80% 이상을 달성할 수 있을 것으로 판단된다.The filtration system of the non-point pollution reduction facility of the present invention has a loss head after performing backwashing under all conditions when backwashing under two conditions of 20m / hr filtered water and 10m / hr of treated water 10m / hr three times for 1 minute in air. Reduced to initial loss head. In addition, after the backwash operation, the removal efficiency and the loss head of pollutants such as before backwashing were generated. Therefore, if the proper cycle is backwashed, annual treatment efficiency of 80% or more can be achieved.

-최적 섬유상여과 시설의 설계 인자Design factors for optimal fiber filtration facilities

위의 본 발명에 따른 연구결과를 종합하면 섬유상여재시설의 적합한 여과 조건은 여과선속도 20m/hr, 여재층 두께는 30cm이다.Putting together the results of the above research according to the present invention, the suitable filtration conditions of the fibrous filter facility is the filter linear velocity of 20m / hr, the median layer thickness is 30cm.

섬유상 여재의 역세척 조건은 여과수 20m/hr를 3분간, 10m/hr의 공기 1분간 3회+10m/hr의 처리수 3분을 세척하는 것으로 모두 충분히 효과적인 역세척이 이루어질 수 있다. 그러나 안정적인 처리를 위해 여과선속도 20m/hr, 여재층 두께 30cm에서 운영비 등의 경제성을 고려하여 최적의 역세척 인자는 20m/hr의 처리수를 3분간 하는 것이 최적인 것으로 판단된다.The backwash conditions of the fibrous media can be sufficiently effective backwashing by washing the filtered water 20m / hr for 3 minutes and the 10m / hr of air 3 times + 10m / hr of treated water 3 minutes. However, considering the economic efficiency such as operating cost at 20m / hr filtration line speed and 30cm thickness of media for stable treatment, the optimal backwashing factor is 20m / hr for 3 minutes.

본 발명의 섬유상 여과형 여재를 이용한 비점오염 저감시설에 대해서 예시한 도면을 참조로 하여 설명하였으나, 본 명세서에 개시된 실시예와 도면에 의해 본발명이 한정되는 것은 아니며, 본 발명의 기술사상의 범위 내에서 당업자에 의해 다양한 변형이 이루어질 수 있음은 물론이다.Although the non-point pollution reduction facility using the fibrous filtration media of the present invention was described with reference to the drawings, the present invention is not limited by the embodiments and drawings disclosed herein, and the scope of the technical idea of the present invention. Of course, various modifications can be made by those skilled in the art.

1 : 스크린조 2 : 전처리조
2a : 제1 전처리조 2b : 제2 전처리조
3 : 여과조 4 : 역세수조
5 : 자외선 살균장치 6 : 유입관
7a : 제1 개폐밸브 7b : 제2 개폐밸브
7c : 제3 개폐밸브 7d : 제4 개폐밸브
7e : 제5 개폐밸브 8,9 : 정체수 이송펌프
10 : 금속망 11 : 섬유상 여재
12 : 산기관 13 : 역세수펌프
14 : 방류관 15 : 임시저장조
16 : 하수관로
1: Screen Tank 2: Pretreatment Tank
2a: first pretreatment tank 2b: second pretreatment tank
3: filtration tank 4: backwash tank
5: ultraviolet sterilizer 6: inlet tube
7a: 1st switching valve 7b: 2nd switching valve
7c: 3rd open / close valve 7d: 4th open / close valve
7e: 5th open / close valve 8,9: stagnant water transfer pump
10: metal mesh 11: fibrous media
12: diffuser 13: backwash pump
14: discharge pipe 15: temporary storage tank
16: sewage pipe

Claims (3)

한쪽 내부의 상부에 스크린조가 설치되고, 상기 스크린조의 위쪽으로 처리수 유입관이 제1 개폐밸브를 사이에 두고 외부에서 연결되며, 내부의 하부에 정체수 이송펌프가 설치되어 상기 스크린조와 오버플로워로 구획된 전처리조;
내부에 금속망으로 둘러싸인 복수의 섬유상 여재와 산기관이 설치되어 한쪽에서 상기 전처리조와 오버플로워로 구획되면서 하부에서 제2 개폐밸브를 사이에 두고 연결된 여과조;
상기 여과조의 외부에서 여과조 내부로 연결되어 설치된 자외선 살균장치; 및
상부의 한쪽에서 상기 여과조와 제3 개폐밸브를 사이에 두고 연결되고, 내부의 하부에 역세수펌프가 설치되며, 상부의 다른 쪽에서 방류관이 제4 개폐밸브를 사이에 두고 외부로 연결된 역세수조;
를 포함하여 이루어지며,
상기 섬유상 여재는 야자수 껍질로 구성되되, 부유성 섬유여재로 야자수 껍질의 섬유를 이용하여 제작한 시트로 되어 있으며,
상기 전처리조는 제1 전처리조와 제2 전처리조의 2개로 분할구획되어, 상기 제1 전처리조와 제2 전처리조는 제5 개폐밸브를 사이에 두고 연결되고, 상기 제2 전처리조가 여과조와 오버플로워로 구획되면서 하부에서 제2 개폐밸브를 사이에 두고 연결된 것을 특징으로 하는 섬유상 여과형 여재를 이용한 비점오염 저감시설.
A screen tank is installed at an upper portion of one inside, and a treatment water inflow pipe is connected to the outside of the screen tank with a first opening / closing valve interposed therebetween. Compartmentalized pretreatment tanks;
A filtration tank having a plurality of fibrous media and diffuser pipes surrounded by a metal mesh therein and partitioned into one of the pretreatment tank and the overflow at one side thereof and connected to each other with a second on / off valve interposed therebetween;
An ultraviolet sterilizer connected to the filter tank from the outside of the filter tank; And
A backwash water tank connected to the filtration tank and a third open / close valve at one side of an upper portion, and a backwash pump installed at a lower portion of the inner portion, and a backwash tank connected to the outside with a discharge pipe connected to a fourth open / close valve at the other side of the upper portion;
It is made, including,
The fibrous media is composed of palm bark, a floating fibrous media is made of a sheet made using the fiber of the palm bark,
The pretreatment tank is divided into two, a first pretreatment tank and a second pretreatment tank, and the first pretreatment tank and the second pretreatment tank are connected with a fifth open / close valve interposed therebetween, and the second pretreatment tank is divided into a filtration tank and an overflow, Non-point pollution reduction facility using a fibrous filter media, characterized in that connected via the second on-off valve.
삭제delete 삭제delete
KR1020180166710A 2018-12-20 2018-12-20 Reduction facility of non-point pollutants using filter of fibrous filtration type KR102078387B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180166710A KR102078387B1 (en) 2018-12-20 2018-12-20 Reduction facility of non-point pollutants using filter of fibrous filtration type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180166710A KR102078387B1 (en) 2018-12-20 2018-12-20 Reduction facility of non-point pollutants using filter of fibrous filtration type

Publications (1)

Publication Number Publication Date
KR102078387B1 true KR102078387B1 (en) 2020-02-18

Family

ID=69638788

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180166710A KR102078387B1 (en) 2018-12-20 2018-12-20 Reduction facility of non-point pollutants using filter of fibrous filtration type

Country Status (1)

Country Link
KR (1) KR102078387B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102217054B1 (en) * 2020-07-02 2021-02-18 김성걸 External exposure type apparatus for treating non-point pollution
KR102592848B1 (en) * 2022-07-21 2023-10-24 김대현 Filtration device for installation of rainwater treatment system
KR102684805B1 (en) * 2023-12-20 2024-07-12 푸른하늘환경주식회사 Rain-water treatment equipment
KR102687298B1 (en) * 2023-12-20 2024-07-22 푸른하늘환경주식회사 Nonpoint source pollution decrease and stormwater treatment Apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200354972Y1 (en) * 2004-04-09 2004-07-01 한라산업개발 주식회사 Rainwater collection and purification apparatus
KR20160107382A (en) * 2015-03-03 2016-09-19 알에스티이엔씨 주식회사 Apparatus for treating incipient rainwater
KR101899996B1 (en) * 2018-02-22 2018-09-18 주식회사 워터솔루션텍 Non-point pollution source treatment system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200354972Y1 (en) * 2004-04-09 2004-07-01 한라산업개발 주식회사 Rainwater collection and purification apparatus
KR20160107382A (en) * 2015-03-03 2016-09-19 알에스티이엔씨 주식회사 Apparatus for treating incipient rainwater
KR101899996B1 (en) * 2018-02-22 2018-09-18 주식회사 워터솔루션텍 Non-point pollution source treatment system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102217054B1 (en) * 2020-07-02 2021-02-18 김성걸 External exposure type apparatus for treating non-point pollution
KR102592848B1 (en) * 2022-07-21 2023-10-24 김대현 Filtration device for installation of rainwater treatment system
KR102684805B1 (en) * 2023-12-20 2024-07-12 푸른하늘환경주식회사 Rain-water treatment equipment
KR102687298B1 (en) * 2023-12-20 2024-07-22 푸른하늘환경주식회사 Nonpoint source pollution decrease and stormwater treatment Apparatus

Similar Documents

Publication Publication Date Title
KR102078387B1 (en) Reduction facility of non-point pollutants using filter of fibrous filtration type
US7470362B2 (en) In line wetland water treatment system and method
KR100706269B1 (en) A contaminant purification apparatuss of non-point sources by the early-stage storm runoff
US8771515B2 (en) Horizontal flow biofilter system and method of use thereof
EP0900175B1 (en) Apparatus and method for treating storm water runoff
US7425262B1 (en) In line wetland water treatment system
US7674378B2 (en) Wetland water treatment system
KR100911819B1 (en) Apparatus of reducing non-point pollution material
KR101741449B1 (en) Apparatus for treating rainwater and overflow water of confluent water drainage
KR200452222Y1 (en) Non-point pollution natural purification system
KR100794491B1 (en) The rain water drainage reuse system for non-point pollution load reduction
KR100978075B1 (en) Apparatus and method for filtering first run-off rain
WO2019061869A1 (en) Integrated rainwater treatment device
US10472815B1 (en) Hydro-variant baffle cartridge system
CN107806171A (en) A kind of enhanced Rain Garden of integration
KR20090033680A (en) System for treating rainwater and method using the same
KR102414675B1 (en) Sewage disposal systems
KR101202895B1 (en) Rainwater tank apparatus
JP2003136088A (en) Sewage treatment method and apparatus in confluent type sewerage
KR20110056600A (en) Rain-water recycling system
CN108314261A (en) Road drainage system
KR100424289B1 (en) nature equilibrium vertical flow type artificial swamp facility for purging contaminate matter away contaminated water
KR101888850B1 (en) Apparatus for Treatment Rainwater Using Buoyancy Member
CA2252441C (en) Apparatus and method for treating storm water runoff
KR20160148949A (en) Facilities for decreasing non-point source

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant