KR102045779B1 - TiO2 photocatalyst surface modified with both Pd nanoparticles and fluorides and its application for the degradation of urea - Google Patents

TiO2 photocatalyst surface modified with both Pd nanoparticles and fluorides and its application for the degradation of urea Download PDF

Info

Publication number
KR102045779B1
KR102045779B1 KR1020180076379A KR20180076379A KR102045779B1 KR 102045779 B1 KR102045779 B1 KR 102045779B1 KR 1020180076379 A KR1020180076379 A KR 1020180076379A KR 20180076379 A KR20180076379 A KR 20180076379A KR 102045779 B1 KR102045779 B1 KR 102045779B1
Authority
KR
South Korea
Prior art keywords
tio
urea
fluorine anion
photocatalyst
delete delete
Prior art date
Application number
KR1020180076379A
Other languages
Korean (ko)
Inventor
김정원
Original Assignee
한림대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한림대학교 산학협력단 filed Critical 한림대학교 산학협력단
Priority to KR1020180076379A priority Critical patent/KR102045779B1/en
Application granted granted Critical
Publication of KR102045779B1 publication Critical patent/KR102045779B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • B01J35/004
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)
  • Physical Water Treatments (AREA)

Abstract

The purpose of the present invention is to provide a more effective method of degrading urea. The method according to the present invention comprises synthesizing the titanium dioxide photocatalyst (F-TiO_2/Pd) of which surface is modified by palladium nanoparticle supporting and fluorine anion complexation, and applying the titanium dioxide photocatalyst (F-TiO_2/Pd) as a photocatalyst for urea degradation. The F-TiO_2/Pd exhibited the highest urea degradation activity among eight photocatalysts evaluated in the present invention, i.e., TiO_2, Pd/TiO_2, F-TiO_2, F-TiO_2/Pd, Au/TiO_2, F-TiO_2/Au, Pt/TiO_2 and F-TiO_2/Pt. Further, F-TiO_2/Pd had very excellent stability with respect to photocatalytic urea degradation.

Description

팔라듐 나노입자 담지와 불소 음이온 복합화로 표면을 개질한 이산화티타늄 광촉매 및 이를 이용하여 요소를 분해하는 방법 {TiO2 photocatalyst surface modified with both Pd nanoparticles and fluorides and its application for the degradation of urea}TiO2 photocatalyst surface modified with both Pd nanoparticles and fluorides and its application for the degradation of urea

본 발명은 팔라듐 나노입자 담지와 불소 음이온 복합화로 표면을 개질한 이산화티타늄 광촉매 (F-TiO2/Pd) 및 이를 이용하여 요소를 분해하는 방법에 관한 것이다. The present invention is titanium dioxide modified surface by the composite of palladium nanoparticles and fluorine anion A photocatalyst (F-TiO 2 / Pd) and a method of decomposing urea using the same.

본 발명자는 팔라듐 나노입자 담지와 불소 음이온 복합화로 표면을 개질한 이산화티타늄 (F-TiO2/Pd)을 합성하고, 이를 요소 분해를 위한 광촉매로 적용하였다. X-선 광전자 분광기, 고해상도 투과전자현미경 및 에너지 분산형 X-선 분광기를 포함하는 다양한 표면 분석기술을 이용하여 F-TiO2/Pd에서 TiO2 표면에 팔라듐 나노입자와 불소 음이온이 공존함을 밝혔다. F-TiO2/Pd는 TiO2 및 불소 음이온을 복합화한 TiO2 (F-TiO2)와 팔라듐 나노입자를 담지한 TiO2 (Pd/TiO2)처럼 한 가지 요소로 표면 개질된 TiO2 광촉매에 비해 높은 요소 분해 광촉매 활성을 나타냈다. 또한 F-TiO2/Pd는 금 (Au) 나노입자를 담지한 TiO2 광촉매 (Au/TiO2), 금 (Au) 나노입자 담지와 불소 음이온 복합화한 TiO2 광촉매 (F-TiO2/Au), 백금 (Pt) 나노입자를 담지한 TiO2 광촉매 (Pt/TiO2), 백금 (Pt) 나노입자 담지와 불소 음이온 복합화한 TiO2 광촉매 (F-TiO2/Pt)보다도 높은 요소 분해 광촉매 활성을 나타냈다.MEANS TO SOLVE THE PROBLEM The inventor modified the surface by carrying a palladium nanoparticle support and fluorine anion complex. (F-TiO 2 / Pd) was synthesized and applied as a photocatalyst for urea decomposition. X- ray photoelectron spectroscopy, high resolution transmission using a variety of surface analysis techniques including electron microscopy and energy dispersive X- ray spectrometer F-TiO 2 / Pd on the TiO 2 Palladium nanoparticles and fluorine anion coexist on the surface. The F-TiO 2 / Pd is TiO 2 and one element of TiO 2 photocatalyst modified surface as a TiO 2 (F-TiO 2) and carrying thereon a palladium nanoparticles TiO 2 (Pd / TiO 2) compounding the fluorine anion It showed a high urea decomposition photocatalytic activity. In addition, F-TiO 2 / Pd is TiO 2 supporting gold (Au) nanoparticles. Photocatalyst (Au / TiO 2), gold (Au) nanoparticles loaded with a fluorine-anion-complexed TiO 2 Photocatalyst (F-TiO 2 / Au) , platinum (Pt), a TiO 2 photocatalyst carrying nanoparticles (Pt / TiO 2), Platinum (Pt) nanoparticles loaded with a fluorine-anion-complexed TiO 2 Urea decomposition photocatalytic activity was higher than that of the photocatalyst (F-TiO 2 / Pt).

광촉매 반응 (Heterogeneous photocatalysis)은 수질 정화를 위한 친환경 기술로서 광범위하게 연구되어 왔다. 다양한 반도체 광촉매 중 이산화티타늄 (TiO2 , titanium dioxide)은 가장 실용성이 높은 광촉매 중 하나로 여겨지는데, 이는 강한 산화력, 낮은 합성 비용, 무독성 및 높은 화학적/광화학적 안정성에 기인한다. 물과 산소가 있는 조건에서 TiO2 에 자외선 (UV)을 조사하면 정공 (valence band hole), OH 라디칼 (OH), 수퍼옥사이드/하이드로퍼옥실 라디칼 (O2 ●-/HO2 ) 및 과산화수소 (H2O2)와 같은 다양한 산화종 (oxidizing species)이 생성된다. 이러한 산화종들 중 높은 산화력을 갖는 정공과 OH 라디칼이 수질 오염물질 분해에 주로 관여한다.Heterogeneous photocatalysis has been extensively studied as an environmentally friendly technique for water purification. Among various semiconductor photocatalysts , titanium dioxide (TiO 2 ) is considered one of the most practical photocatalysts due to its strong oxidation power, low synthesis cost, non-toxicity and high chemical / photochemical stability. When UV (UV) is irradiated on TiO 2 under water and oxygen (valence band hole), OH radical (● OH), superoxide / hydroperoxide oxyl radical (O 2 ● - / HO 2 ●) and hydrogen peroxide variety of oxidizing species (oxidizing species), such as (H 2 O 2) is generated . Among these oxidizing species, holes and OH radicals having high oxidizing power are mainly involved in water pollutant decomposition.

산화종 생성을 증대하고 이를 통해 수처리 적용 가능성을 향상시키기 위하여 TiO2 에 다양한 표면 개질을 시도하였다. 금속 담지 (특히 백금 (Pt) 담지)와 음이온 복합화 (특히 불소 음이온 (F-) 복합화)는 많이 사용되는 TiO2 표면 개질 방법이다. TiO2 표면에 담지된 금속 나노입자는 광조사에 의해 생성된 전자-정공 쌍의 재결합을 방지하고, TiO2 전도띠 (CB, conduction band)로부터 산소로 전자의 이동을 촉진함으로써 산화종의 생성을 증대시킨다. 또한, OH 라디칼의 생성 (특히 이동성 OH 라디칼의 생성)은 TiO2에 음이온 복합화에 의해 증가하는데, 이것은 TiO2 표면의 하이드록실기가 음이온에 의해 대체되면 (>Ti-OH + A- → >Ti-A + OH-) TiO2 의 전도띠 전자와 반응하기 쉬운 표면 결합 OH 라디칼의 생성은 감소하고 (>Ti-OH + hvb + → >Ti-OH), 전도띠 전자와 잘 반응하지 않는 이동성 OH 라디칼의 생성이 용이하게 되기 때문이다 (>Ti-A + hvb + + H2O → >Ti-A + mobile OH + H+). 이동성 OH 라디칼은 전도띠 전자와 반응하지 않고 TiO2 표면에서 확산함으로써 오랫동안 잔류할 수 있으며, 따라서 수중 오염물질과 잘 반응할 수 있다.Various surface modifications have been made to TiO 2 to increase oxidative species production and thereby improve water treatment applicability. Metal-supported (in particular platinum (Pt) supported) complexed with anions (especially fluorine anion (F -) complexed) is TiO 2 are commonly used Surface modification method. The metal nanoparticles supported on the TiO 2 surface prevent the recombination of electron-hole pairs generated by light irradiation and promote the transfer of electrons from the TiO 2 conduction band (CB) to oxygen to prevent the formation of oxidized species. Increase In addition, the generation of OH radicals (in particular the creation of mobility OH radicals) is to increase by the negative ion complexed to the TiO 2, this is when the hydroxyl groups of the TiO 2 surface replaced by an anion (> Ti-OH + A - →> Ti -A + OH -) generation of OH radicals and easy coupling surface to react with the electron conduction band of TiO 2 is decreased, and (> Ti-OH + h vb + →> Ti- ● OH), that do not respond well and the conduction band e because they facilitate the production of OH radicals mobility (> Ti-a + h vb + + H 2 O →> Ti-a + mobile ● OH + H +). The mobile OH radicals can remain for a long time by diffusing on the TiO 2 surface without reacting with the conduction band electrons, and thus can react well with pollutants in water.

비록 요소 자체의 독성은 낮지만, 요소는 수중 유기체와 인간에게 간접적으로 해로운 영향을 끼친다. 요소는 질소 영양분의 공급원으로서 강 및 하천에서 녹조현상을 일으키며, 염소 소독 과정에서 독성 질소 함유 화합물의 형성을 유도한다. 다량의 요소 함유 산업 폐수는 비료, 플라스틱, 사료 및 화약류 제조와 같이 화학 원료로서 요소를 사용하는 산업 활동에 의해 생성된다. 이뿐만 아니라, 사람 및 가축의 소변은 생활하수 및 축산폐수에서 요소의 주요 공급원으로 작용하고 있다. 최근, 요소는 수질 오염물질로서 연구자들의 많은 관심을 받고 있다. 국제 우주정거장에서 사람의 소변을 깨끗한 물로 리사이클함으로써 지구로부터 국제 우주정거장으로의 물 공급의 막대한 비용을 절감시킬 수 있다. 요소 분해는 국제 우주정거장에서 사람의 소변을 깨끗한 물로 리사이클하는 공정의 중요한 단계이다. 따라서, 생물학적 방법, 전기화학적 방법, 생물전기화학적 방법, 광전기화학적 방법 및 광촉매적 방법을 포함하여 다양한 요소 분해 기술들이 최근 개발되고 있다.Although the toxicity of urea itself is low, urea indirectly affects aquatic organisms and humans. Urea is a source of nitrogen nutrients, causing algae in rivers and streams, and inducing the formation of toxic nitrogen-containing compounds during chlorine disinfection. Industrial wastewater containing large quantities of urea is produced by industrial activities using urea as a chemical raw material, such as in the manufacture of fertilizers, plastics, feed and explosives. In addition, urine from humans and livestock is a major source of urea in domestic and livestock wastewater. Recently, urea has attracted much attention from researchers as water pollutants. By recycling human urine to clean water at the International Space Station, we can reduce the enormous cost of water supply from the Earth to the International Space Station. Urea decomposition is an important step in the process of recycling human urine to clean water at the International Space Station. Accordingly, various elemental decomposition techniques have recently been developed, including biological methods, electrochemical methods, bioelectrochemical methods, photoelectrochemical methods and photocatalytic methods.

비록 순수한 TiO2 및 백금 (Pt)이 담지된 TiO2 (Pt/TiO2) 광촉매를 이용한 요소 분해가 보고된 바 있지만, 좀 더 효과적인 요소 분해용 광촉매의 개발은 주요 연구 주제이다.Although urea degradation using pure TiO 2 and TiO 2 (Pt / TiO 2 ) photocatalysts loaded with platinum (Pt) has been reported, the development of more effective photocatalysts for urea decomposition is a major research topic.

K. Wenderich et al., Chem. Rev. 116 (2016) 14587-14619.K. Wenderich et al., Chem. Rev. 116 (2016) 14587-14619. W. Szeto et al., Chem. Eng. Sci. 177 (2018) 380-390.W. Szeto et al., Chem. Eng. Sci. 177 (2018) 380-390. L.B.B. Ndong et al., Chem. Eng. Sci. 123 (2015) 367-375.L.B.B. Ndong et al., Chem. Eng. Sci. 123 (2015) 367-375. K. Nakata et al., J. Photochem. Photobiol. C: Photochem. Rev. 13 (2012) 169-189.K. Nakata et al., J. Photochem. Photobiol. C: Photochem. Rev. 13 (2012) 169-189. A. Fujishima et al., Surf. Sci. Rep. 63 (2008) 515-582.A. Fujishima et al., Surf. Sci. Rep. 63 (2008) 515-582. J. Schneider et al., Chem. Rev. 114 (2014) 9919-9986.J. Schneider et al., Chem. Rev. 114 (2014) 9919-9986. H. Park et al., J. Photochem. Photobiol. C: Photochem. Rev. 15 (2013) 1-20.H. Park et al., J. Photochem. Photobiol. C: Photochem. Rev. 15 (2013) 1-20. J. Zhang et al., Mater. Chem. Front. 1 (2017) 231-250.J. Zhang et al., Mater. Chem. Front. 1 (2017) 231-250. M.G. Meμndez-Medrano et al., J. Phys. Chem. C 120 (2016) 5143-5154.M.G. Meμndez-Medrano et al., J. Phys. Chem. C 120 (2016) 5143-5154. W. Choi et al., Catal. Surv. Asia 10 (2006) 16-28.W. Choi et al., Catal. Surv. Asia 10 (2006) 16-28. A. Ayati et al., Sep. Purif. Technol. 171 (2016) 62-68.A. Ayati et al., Sep. Purif. Technol. 171 (2016) 62-68. L. Ling et al., Sep. Purif. Technol. 169 (2016) 273-278.L. Ling et al., Sep. Purif. Technol. 169 (2016) 273-278. W. Chen et al., Water Environ. Res. 86 (2014) 48-55.W. Chen et al., Water Environ. Res. 86 (2014) 48-55. A. Ofiarska et al., Chem. Eng. J. 285 (2016) 417-427.A. Ofiarska et al., Chem. Eng. J. 285 (2016) 417-427. I. Dobrosz-Gomez et al., C. R. Chim. 18 (2015) 1170-1182.I. Dobrosz-Gomez et al., C. R. Chim. 18 (2015) 1170-1182. D. Zhao et al., J. Phys. Chem. C 112 (2008) 5993-6001.D. Zhao et al., J. Phys. Chem. C 112 (2008) 5993-6001. Y. Wang et al., RSC Adv. 5 (2015) 34302-34313.Y. Wang et al., RSC Adv. 5 (2015) 34302-34313. G.W. Park et al., J. Photochem. Photobiol. B: Biol. 140 (2014) 315-320.G.W. Park et al., J. Photochem. Photobiol. B: Biol. 140 (2014) 315-320. A. Yamakata et al., J. Phys. Chem. B 105 (2001) 7258-7262.A. Yamakata et al., J. Phys. Chem. B 105 (2001) 7258-7262. H. Park et al., J. Phys. Chem. B 108 (2004) 4086-4093.H. Park et al., J. Phys. Chem. B 108 (2004) 4086-4093. J. Kim et al., Energy Environ. Sci. 3 (2010) 1042-1045.J. Kim et al., Energy Environ. Sci. 3 (2010) 1042-1045. J. Kim et al., Energy Environ. Sci. 5 (2012) 7647-7656.J. Kim et al., Energy Environ. Sci. 5 (2012) 7647-7656. S. Weon et al., Appl. Catal. B: Environ. 220 (2018) 1-8.S. Weon et al., Appl. Catal. B: Environ. 220 (2018) 1-8. P.M. Glibert et al., Biogeochemistry 77 (2006) 441-463.P.M. Glibert et al., Biogeochemistry 77 (2006) 441-463. E.R. Blatchley et al., Environ. Sci. Technol. 44 (2010) 8529-8534.E.R. Blatchley et al., Environ. Sci. Technol. 44 (2010) 8529-8534. A.N. Rollinson et al., Energy Environ. Sci. 4 (2011) 1216-1224.A.N. Rollinson et al., Energy Environ. Sci. 4 (2011) 1216-1224. C. Rose et al., Crit. Rev. Environ. Sci. Technol. 45 (2015) 1827-1879.C. Rose et al., Crit. Rev. Environ. Sci. Technol. 45 (2015) 1827-1879. L.S. Bobe et al., SAE Int. J. Aerosp. 4 (2011) 401-409.L.S. Bobe et al., SAE Int. J. Aerosp. 4 (2011) 401-409. B.B. Tolar et al., Environ. Microbiol. 19 (2017) 4838-4850.B.B. Tolar et al., Environ. Microbiol. 19 (2017) 4838-4850. H. Li et al., J. Electroanal. Chem. 738 (2015) 14-19.H. Li et al., J. Electroanal. Chem. 738 (2015) 14-19. H. Zollig et al., Environ. Sci. Technol. 49 (2015) 11062-11069.H. Zollig et al., Environ. Sci. Technol. 49 (2015) 11062-11069. E. Nicolau et al., Adv. Space Res. 44 (2009) 965-970.E. Nicolau et al., Adv. Space Res. 44 (2009) 965-970. E. Nicolau et al., ACS Sustain. Chem. Eng. 2 (2014) 749-754.E. Nicolau et al., ACS Sustain. Chem. Eng. 2 (2014) 749-754. S. Kim et al., Energy Environ. Sci. 11 (2018) 344-353.S. Kim et al., Energy Environ. Sci. 11 (2018) 344-353. S. Park et al., Environ. Sci. Pollut. Res. (2017) https://doi.org/10.1007/s11356-11017-18380-11353.S. Park et al., Environ. Sci. Pollut. Res. (2017) https://doi.org/10.1007/s11356-11017-18380-11353. E. Pelizzetti et al., Chem. Commun. (2004) 1504-1505.E. Pelizzetti et al., Chem. Commun. (2004) 1504-1505. X. Jiang et al., Catal. Today 300 (2018) 12-17.X. Jiang et al., Catal. Today 300 (2018) 12-17. J. Lee et al., Environ. Sci. Technol. 38 (2004) 4026-4033.J. Lee et al., Environ. Sci. Technol. 38 (2004) 4026-4033. C. Minero et al., Langmuir 16 (2000) 2632-2641.C. Minero et al., Langmuir 16 (2000) 2632-2641. M. Revilla et al., Limnol. Oceanogr. Meth. 3 (2005) 290-299.M. Revilla et al., Limnol. Oceanogr. Meth. 3 (2005) 290-299. K.-i. Ishibashi et al., Electrochem. Commun. 2 (2000) 207-210.K.-i. Ishibashi et al., Electrochem. Commun. 2 (2000) 207-210. N. Li et al., J. Phys. Chem. C 121 (2017) 2923-2932.N. Li et al., J. Phys. Chem. C 121 (2017) 2923-2932. J. Tang et al., Chem. Mater. 19 (2007) 116-122.J. Tang et al., Chem. Mater. 19 (2007) 116-122. J. Ryu et al., Catal. Today 282 (2017) 24-30.J. Ryu et al., Catal. Today 282 (2017) 24-30. L. Nie et al., J. Mol. Catal. A: Chem. 390 (2014) 7-13.L. Nie et al., J. Mol. Catal. A: Chem. 390 (2014) 7-13. F.J. Gracia et al., J. Catal. 209 (2002) 341-354.F.J. Gracia et al., J. Catal. 209 (2002) 341-354. X. Zhu et al., Appl. Surf. Sci. 364 (2016) 808-814.X. Zhu et al., Appl. Surf. Sci. 364 (2016) 808-814.

본 발명은 좀 더 효과적인 요소 분해용 광촉매를 제공하는 것을 목적으로 한다. The present invention aims to provide a more effective photocatalyst for urea decomposition.

본 발명에서는 팔라듐 나노입자 담지와 불소 음이온 복합화로 표면을 개질한 이산화티타늄 (F-TiO2/Pd)를 제조하여 요소 분해용 광촉매로 응용하였다. 본 발명자는 다양한 표면분석 방법으로 F-TiO2/Pd의 특성을 규명하였고, 자외선 조사하에서 F-TiO2/Pd의 광촉매적 요소 분해 성능을 평가하고 TiO2, 팔라듐 나노입자를 담지한 TiO2 (Pd/TiO2) 및 불소 음이온을 복합화한 TiO2 (F-TiO2)의 요소 분해 성능과 비교하였으며, 자외선 조사하 F-TiO2/Pd의 요소 분해 효율을 다양한 실험 조건에서 측정하였다. 나아가, 요소 분해 성능에 있어서 다른 종류의 금속이 담지된 TiO2 광촉매 및 이에 대한 불소 음이온 복합화 효과를 살펴보았으며, 이를 F-TiO2/Pd의 요소 분해 성능과 비교하였다.In the present invention, titanium dioxide modified surface by the composite of palladium nanoparticles and fluorine anion (F-TiO 2 / Pd) was prepared and applied as a photocatalyst for urea decomposition. The present inventors have characterized the characteristics of F-TiO 2 / Pd by various surface analysis methods, and evaluated the photocatalytic element decomposition performance of F-TiO 2 / Pd under ultraviolet irradiation, and TiO 2 (TiO 2 (supporting TiO 2 , palladium nanoparticles) Pd / TiO 2 ) and fluorine anion complexes were compared with urea decomposition performance of TiO 2 (F-TiO 2 ), and the urea decomposition efficiency of F-TiO 2 / Pd under UV irradiation was measured under various experimental conditions. Furthermore, the effects of fluorine anion complexation on TiO 2 photocatalysts carrying different metals and their fluorine anion complexes were examined in terms of urea decomposition and compared with urea decomposition in F-TiO 2 / Pd.

본 발명자는 팔라듐 나노입자 담지와 불소 음이온 복합화로 표면을 개질한 이산화티타늄 (F-TiO2/Pd)을 합성하고, 이를 요소 분해를 위한 광촉매로 적용하였다. X-선 광전자 분광기, 고해상도 투과전자현미경 및 에너지 분산형 X-선 분광기를 포함하는 다양한 표면 분석기술을 이용하여 F-TiO2/Pd에서 TiO2 표면에 팔라듐 나노입자와 불소 음이온이 공존함을 밝혔다. F-TiO2/Pd는 TiO2 및 F-TiO2와 Pd/TiO2처럼 한 가지 요소로 표면 개질된 TiO2 광촉매에 비해 높은 요소 분해 광촉매 활성을 나타냈다.The present inventors synthesized titanium dioxide (F-TiO 2 / Pd) whose surface was modified by complexing palladium nanoparticles and fluorine anion, and applying it as a photocatalyst for urea decomposition. Various surface analysis techniques, including X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and energy dispersive X-ray spectroscopy, revealed that palladium nanoparticles and fluorine anions coexist on TiO 2 surfaces in F-TiO 2 / Pd. . F-TiO 2 / Pd showed higher urea decomposition photocatalytic activity than TiO 2 photocatalyst surface-modified with one element such as TiO 2 and F-TiO 2 and Pd / TiO 2 .

F-TiO2/Pd의 높은 요소 분해 성능은 표면 팔라듐 나노입자와 불소 음이온의 시너지 효과에 의해 OH 라디칼 생성이 증가하였기 때문이다. 팔라듐 나노입자와 불소 음이온은 각각 정공의 표면으로의 이동 및 정공과 물의 반응을 용이하게 하여 OH 라디칼 생성을 증대시킨다. 불소 음이온이 복합화된 TiO2 표면의 비율이 증가할수록 요소 분해에 대한 F-TiO2/Pd의 광촉매 활성은 증가하는데, 불소 음이온이 복합화된 TiO2 표면의 비율은 불소 음이온의 농도가 높을수록, 그리고 pH가 낮을수록 높아진다. 비록 요소 분해에서 Pt/TiO2가 Pd/TiO2 및 Au/TiO2보다 더 높은 광촉매 활성을 나타냈지만, 불소 음이온 복합화의 긍정적 효과는 Pd/TiO2 에서 가장 크게 나타났다. Au/TiO2 및 Pt/TiO2에서는 각각 약간의 긍정적 효과와 부정적 효과가 관찰되었다. 그 결과, 요소의 분해는 여러 광촉매 (즉, TiO2, Pd/TiO2, F-TiO2, F-TiO2/Pd, Au/TiO2, F-TiO2/Au, Pt/TiO2 및 F-TiO2/Pt)를 동일한 조건에서 비교하였을 때 F-TiO2/Pd를 사용한 경우 가장 빠르게 진행되었다. 이뿐만 아니라, F-TiO2/Pd는 반복적 요소 분해에서도 매우 안정적임이 입증되었다.The high urea decomposition performance of F-TiO 2 / Pd is due to the increased OH radical generation due to the synergistic effect of surface palladium nanoparticles and fluorine anions. Palladium nanoparticles and fluorine anions, respectively, facilitate the movement of holes to the surface of the holes and the reaction of holes and water to increase OH radical production. To the more the ratio of the TiO 2 surface of the fluorine anion complexed growth increased F-TiO photocatalytic activity of the 2 / Pd to the element degradation, the proportion of the TiO 2 surface of the fluorine anion complexed is the higher the concentration of fluorine anion, and The lower the pH, the higher. Although Pt / TiO 2 showed higher photocatalytic activity than Pd / TiO 2 and Au / TiO 2 in urea decomposition, the positive effect of fluorine anion complexation was greatest in Pd / TiO 2 . Some positive and negative effects were observed in Au / TiO 2 and Pt / TiO 2 , respectively. As a result, the decomposition of urea is carried out with several photocatalysts (ie TiO 2 , Pd / TiO 2 , F-TiO 2 , F-TiO 2 / Pd, Au / TiO 2 , F-TiO 2 / Au, Pt / TiO 2 and F -TiO 2 / Pt) was the fastest when using F-TiO 2 / Pd when compared under the same conditions. In addition, F-TiO 2 / Pd has proved to be very stable even with repeated elemental decomposition.

본 발명은The present invention

a) 팔라듐 이온과 유기용매 존재하 TiO2 현탁액을 광조사하여 팔라듐 나노입자가 담지된 TiO2 (Pd/TiO2) 분말을 얻고 현탁액으로 만드는 단계; a) a palladium ion and the light irradiation in an organic solvent the presence of TiO 2 suspension of palladium nanoparticles supported TiO 2 Obtaining (Pd / TiO 2 ) powder and making a suspension;

b) 불소 음이온을 팔라듐 나노입자가 담지된 TiO2 현탁액에 가하여 불소 음이온과 TiO2 표면의 하이드록실기 사이의 리간드 교환을 유도하여 팔라듐 나노입자가 담지된 TiO2 에 불소 음이온을 복합화하는 단계;를 포함하는 팔라듐 나노입자 담지와 불소 음이온 복합화로 표면을 개질한 이산화티타늄 광촉매 (F-TiO2/Pd) 제조방법에 관한 것이다.a; b) the method comprising compounding a fluorine anion to the hydroxyl of the inducing ligand exchange between the group of palladium nanoparticles supported TiO 2 of the fluorine anion and the TiO 2 surface by applying a fluorine-anion-palladium nanoparticles in carrying the TiO 2 suspension The present invention relates to a method for preparing titanium dioxide photocatalyst (F-TiO 2 / Pd) having a surface modified with a composite containing palladium nanoparticles and a fluorine anion complex.

또한, 본 발명은 상기 a) 단계에서 팔라듐 이온은 염화팔라듐 (PdCl2) 형태로 가하는 것을 특징으로 하는 팔라듐 나노입자 담지와 불소 음이온 복합화로 표면을 개질한 이산화티타늄 광촉매 (F-TiO2/Pd) 제조방법에 관한 것이다.In addition, the present invention is the palladium ion in the step a) is palladium chloride (PdCl 2 ) The present invention relates to a method for producing titanium dioxide photocatalyst (F-TiO 2 / Pd) having a surface modified by palladium nanoparticle loading and fluorine anion complexation, which is added in a form.

또한, 본 발명은 상기 a) 단계에서 유기용매는 메탄올, 에탄올 등 다양한 유기용매를 사용할 수 있으나, 좀 더 바람직하게는 메탄올을 사용하는 것을 특징으로 하는 팔라듐 나노입자 담지와 불소 음이온 복합화로 표면을 개질한 이산화티타늄 광촉매 (F-TiO2/Pd) 제조방법에 관한 것이다.In addition, the present invention may use a variety of organic solvents, such as methanol, ethanol, the organic solvent in the step a), more preferably modified surface by complex with palladium nanoparticles and fluorine anion, characterized in that using methanol A method for preparing a titanium dioxide photocatalyst (F-TiO 2 / Pd) is disclosed.

또한, 본 발명은 상기 a) 단계에서 광조사는 수은 램프로 하는 것을 특징으로 하는 팔라듐 나노입자 담지와 불소 음이온 복합화로 표면을 개질한 이산화티타늄 광촉매 (F-TiO2/Pd) 제조방법에 관한 것이다.In addition, the present invention relates to a method for producing titanium dioxide photocatalyst (F-TiO 2 / Pd) surface modified by the composite of palladium nanoparticles and fluorine anion, characterized in that the light irradiation in step a) is a mercury lamp. .

또한, 본 발명은 상기 a) 단계에서 팔라듐 나노입자가 담지된 TiO2 (Pd/TiO2)는 TiO2에 대한 Pd의 질량비가 TiO2:Pd = 100:0.1~100:3임을 특징으로 하는 팔라듐 나노입자 담지와 불소 음이온 복합화로 표면을 개질한 이산화티타늄 광촉매 (F-TiO2/Pd) 제조방법에 관한 것이다. TiO2에 대한 팔라듐의 질량비가 TiO2:Pd = 100:0.1~100:3 범위일 때 요소의 분해 효율이 가장 좋다.In addition, the present invention step a) the palladium nanoparticles in a step bearing TiO 2 (Pd / TiO 2) is the mass ratio of Pd on the TiO 2 TiO 2: palladium, characterized in that the 3: Pd = 100: 0.1 ~ 100 The present invention relates to a method for producing titanium dioxide photocatalyst (F-TiO 2 / Pd) whose surface is modified by complexing nanoparticles with fluorine anion. The mass ratio of the palladium to the TiO 2 TiO 2: Pd = 100 : 0.1 ~ 100: 3 decomposition efficiency of the element when the range is best.

또한, 본 발명은 상기 b) 단계에서 불소 음이온은 불화나트륨 (NaF) 형태로 가하는 것을 특징으로 하는 팔라듐 나노입자 담지와 불소 음이온 복합화로 표면을 개질한 이산화티타늄 광촉매 (F-TiO2/Pd) 제조방법에 관한 것이다.In addition, the present invention is a titanium dioxide photocatalyst (F-TiO 2 / Pd) prepared by modifying the surface of palladium nanoparticles and fluorine anion complex, characterized in that the fluorine anion is added in the form of sodium fluoride (NaF) in step b) It is about a method.

또한, 본 발명은 상기 b) 단계에서 불소 음이온의 농도는 0.1 mM ~ 5 mM임을 특징으로 하는 팔라듐 나노입자 담지와 불소 음이온 복합화로 표면을 개질한 이산화티타늄 광촉매 (F-TiO2/Pd) 제조방법에 관한 것이다.In addition, the present invention is a method for producing titanium dioxide photocatalyst (F-TiO 2 / Pd) modified surface by the palladium nanoparticle support and fluorine anion complex, characterized in that the concentration of the fluorine anion in step b) is 0.1 mM ~ 5 mM It is about.

또한, 본 발명은 상기 b) 단계에서 팔라듐 나노입자가 담지된 TiO2 현탁액의 pH를 3~5로 조절함을 특징으로 하는 팔라듐 나노입자 담지와 불소 음이온 복합화로 표면을 개질한 이산화티타늄 광촉매 (F-TiO2/Pd) 제조방법에 관한 것이다.In addition, the present invention is a titanium dioxide photocatalyst (F) modified surface by palladium nanoparticle support and fluorine anion complex, characterized in that in step b) the pH of the TiO 2 suspension on which the palladium nanoparticles are loaded is adjusted to 3-5. -TiO 2 / Pd).

또한, 본 발명은 팔라듐 나노입자 담지와 불소 음이온 복합화로 표면을 개질한 이산화티타늄 광촉매 (F-TiO2/Pd)를 이용하여 요소를 분해하는 방법에 관한 것이다.The present invention also relates to a method of decomposing urea using titanium dioxide photocatalyst (F-TiO 2 / Pd) whose surface is modified by complexing palladium nanoparticles and fluorine anion complex.

또한, 본 발명은 상기 요소 분해 방법이In addition, the present invention is the urea decomposition method

a) 팔라듐 나노입자가 담지된 이산화티타늄 광촉매 (Pd/TiO2)를 현탁액으로 만들고 불소 음이온 복합화를 위해 불소 음이온을 첨가하는 단계;a) making a suspension of titanium dioxide photocatalyst (Pd / TiO 2 ) carrying palladium nanoparticles and adding fluorine anion for fluorine anion complexation;

b) 상기 팔라듐 나노입자 담지와 불소 음이온 복합화로 표면을 개질한 이산화티타늄 광촉매 (F-TiO2/Pd) 현탁액에 요소가 포함된 처리대상수를 가하고 혼합액을 만드는 단계; b) adding the treated water containing urea to the titanium dioxide photocatalyst (F-TiO 2 / Pd) suspension having the surface modified by complexing the palladium nanoparticle support and the fluorine anion and preparing a mixed solution;

c) 상기 혼합액에 자외선을 조사하여 요소를 분해하는 단계;를 포함하는 팔라듐 나노입자 담지와 불소 음이온 복합화로 표면을 개질한 이산화티타늄 광촉매 (F-TiO2/Pd)를 이용하여 요소를 분해하는 방법에 관한 것이다.c) decomposing urea by irradiating the mixture with ultraviolet rays to decompose urea using a titanium dioxide photocatalyst (F-TiO 2 / Pd) modified with a palladium nanoparticle support and a fluorine anion complex, including; It is about.

또한, 본 발명은 상기 a) 단계에서 팔라듐 나노입자가 담지된 이산화티타늄 광촉매 (Pd/TiO2)는 TiO2에 대한 Pd의 질량비가 TiO2:Pd = 100:0.1~100:3임을 특징으로 하는 팔라듐 나노입자 담지와 불소 음이온 복합화로 표면을 개질한 이산화티타늄 광촉매 (F-TiO2/Pd)를 이용하여 요소를 분해하는 방법에 관한 것이다.In addition, the present invention said step a) Palladium nanoparticles supported titanium dioxide photocatalyst (Pd / TiO 2) in the mass ratio of Pd on the TiO 2 TiO 2: characterized in that 3: Pd = 100: 0.1 ~ 100 The present invention relates to a method of decomposing urea using titanium dioxide photocatalyst (F-TiO 2 / Pd) whose surface has been modified by supporting palladium nanoparticles and fluorine anion complex.

또한, 본 발명은 상기 a) 단계에서 불소 음이온은 불화나트륨 (NaF) 형태로 가하는 것을 특징으로 하는 팔라듐 나노입자 담지와 불소 음이온 복합화로 표면을 개질한 이산화티타늄 광촉매 (F-TiO2/Pd)를 이용하여 요소를 분해하는 방법에 관한 것이다.In the present invention, the fluorine anion is added in the form of sodium fluoride (NaF) in the step a), and the titanium dioxide photocatalyst (F-TiO 2 / Pd) modified with a palladium nanoparticle support and a fluorine anion complex To decompose the elements using

또한, 본 발명은 상기 a) 단계에서 불소 음이온의 농도는 0.1 mM ~ 5 mM임을 특징으로 하는 팔라듐 나노입자 담지와 불소 음이온 복합화로 표면을 개질한 이산화티타늄 광촉매 (F-TiO2/Pd)를 이용하여 요소를 분해하는 방법에 관한 것이다.In addition, the present invention uses a titanium dioxide photocatalyst (F-TiO 2 / Pd) surface modified by the palladium nanoparticle support and fluorine anion complex, characterized in that the concentration of the fluorine anion in step a) is 0.1 mM ~ 5 mM To decompose the elements.

또한, 본 발명은 상기 b) 단계에서 혼합액의 pH를 3~5로 조절함을 특징으로 하는 팔라듐 나노입자 담지와 불소 음이온 복합화로 표면을 개질한 이산화티타늄 광촉매 (F-TiO2/Pd)를 이용하여 요소를 분해하는 방법에 관한 것이다.In addition, the present invention uses a titanium dioxide photocatalyst (F-TiO 2 / Pd) surface modified by the palladium nanoparticle support and fluorine anion complex, characterized in that the pH of the mixed solution is adjusted to 3 to 5 in step b) To decompose the elements.

또한, 본 발명은 팔라듐 나노입자 담지와 불소 음이온 복합화로 표면을 개질한 이산화티타늄 광촉매 (F-TiO2/Pd)를 이용하여 요소를 포함하는 산업폐수, 생활폐수 또는 축산폐수를 처리하는 방법에 관한 것이다.In addition, the present invention relates to a method for treating industrial wastewater, domestic wastewater or livestock wastewater containing urea using titanium dioxide photocatalyst (F-TiO 2 / Pd) whose surface is modified by complexing palladium nanoparticles and fluorine anion complexation. will be.

또한, 본 발명은 요소 분해용으로 사용되는, 팔라듐 나노입자 담지와 불소 음이온 복합화로 표면을 개질한 이산화티타늄 광촉매 (F-TiO2/Pd)에 관한 것이다.The present invention also relates to a titanium dioxide photocatalyst (F-TiO 2 / Pd) whose surface has been modified by palladium nanoparticle loading and fluorine anion complexation, which is used for urea decomposition.

본 발명의 F-TiO2/Pd 광촉매는 TiO2 표면의 팔라듐 나노입자와 불소 음이온의 시너지 효과에 의하여 TiO2, Pd/TiO2, F-TiO2, Au/TiO2, F-TiO2/Au, Pt/TiO2 및 F-TiO2/Pt보다 우수한 요소 분해효율을 나타내었다.The F-TiO 2 / Pd photocatalyst of the present invention is TiO 2 Due to the synergistic effect of palladium nanoparticles and fluorine anion on the surface, it is more effective than TiO 2 , Pd / TiO 2 , F-TiO 2 , Au / TiO 2 , F-TiO 2 / Au, Pt / TiO 2 and F-TiO 2 / Pt Excellent urea decomposition efficiency was shown.

본 발명의 F-TiO2/Pd 광촉매의 우수한 효과는 F-TiO2 또는 Pd/TiO2 광촉매의 요소 분해효율과 비교했을 때도 현저하며, 광촉매적 요소 분해에 대한 팔라듐 나노입자 담지와 불소 음이온 복합화의 시너지 효과는 Pd/TiO2 광촉매와 F-TiO2 광촉매 각각의 요소 분해 작용을 통상의 기술자가 이해하더라도 손쉽게 유추할 수 없는 것이다.The superior effect of the F-TiO 2 / Pd photocatalyst of the present invention is also remarkable when compared with the urea decomposition efficiency of F-TiO 2 or Pd / TiO 2 photocatalysts, and the combination of palladium nanoparticle loading and fluorine anion complex for photocatalytic urea degradation The synergistic effect is that even if a person skilled in the art understands the urea decomposition of each of the Pd / TiO 2 photocatalyst and the F-TiO 2 photocatalyst, it cannot be easily inferred.

또한, 본 발명의 F-TiO2/Pd 광촉매는 반복되는 요소 분해에서도 매우 안정적임이 입증되어 실제로 국제우주정거장에서의 리사이클 공정, 요소를 포함하는 산업폐수, 생활폐수 및 축산폐수의 처리 등에 매우 유용하다.In addition, the F-TiO 2 / Pd photocatalyst of the present invention has been proved to be very stable even in the repeated urea decomposition is actually very useful for recycling processes in the international space station, industrial wastewater containing urea, domestic wastewater and livestock wastewater, etc. .

도 1은 (a) F-TiO2/Pd, (b) Pd/TiO2, (c) F-TiO2 및 (d) TiO2 광촉매 시료의 X-선 광전자 분광기 (X-ray photoelectron spectroscopy) 스펙트럼에서 Pd 3d 및 F 1s 피크이다.
도 2는 F-TiO2/Pd 시료의 (a) 고해상도 투과전자현미경 (HRTEM) 사진 및 (b) Ti, (c) O 및 (d) F 원소 맵핑 사진이다.
도 3은 자외선 조사 하에서 (a) TiO2, (b) Pd/TiO2, (c) F-TiO2 및 (d) F-TiO2/Pd 현탁액에서 요소의 광촉매 분해 및 분해 산물의 생성을 나타낸다. 실험 조건: [광촉매] = 17.5 mg/35 mL, [요소] = 200 μM, pH = 4.0, 자외선의 파장 = 320 nm 이상.
도 4는 자외선 조사 하에서 (a) TiO2, (b) Pd/TiO2, (c) F-TiO2 및 (d) F-TiO2/Pd 현탁액에서 3시간 후 요소의 총유기탄소 (TOC) 제거효율을 나타낸다. 실험 조건: [광촉매] = 17.5 mg/35 mL, [요소] = 200 μM, pH = 4.0, 자외선의 파장 = 320 nm 이상.
도 5는 자외선 조사 하에서 TiO2, Pd/TiO2, F-TiO2 및 F-TiO2/Pd 현탁액에서 쿠마린으로부터 7-하이드록시쿠마린의 생성을 나타낸다. 실험 조건: [광촉매] = 17.5 mg/35 mL, [쿠마린] = 1 mM, pH = 4.0, 자외선의 파장 = 320 nm 이상.
도 6은 자외선 조사하 F-TiO2/Pd 상에서 (a) 불소 음이온의 농도 및 (b) 용액의 pH가 요소 분해에 미치는 영향을 나타낸다. 실험 조건: [광촉매] = 17.5 mg/35 mL, [요소] = 200 μM, 자외선의 파장 = 320 nm 이상.
도 7은 자외선 조사하 F-TiO2/Pd 상에서 요소 분해의 반복 사이클을 나타낸다. 요소는 각 사이클의 시작시 (화살표로 나타냄) 주입하였다. 실험 조건: [광촉매] = 17.5 mg/35 mL, 초기[요소] = 주입[요소] = 200 μM, pH = 4.0, 자외선의 파장 = 320 nm 이상.
1 shows X-ray photoelectron spectroscopy spectra of (a) F-TiO 2 / Pd, (b) Pd / TiO 2 , (c) F-TiO 2 and (d) TiO 2 photocatalyst samples Pd 3d and F 1s peak at.
2 is a (a) high resolution transmission electron microscope (HRTEM) photograph and (b) Ti, (c) O and (d) F element mapping photographs of an F-TiO 2 / Pd sample.
Figure 3 shows photocatalytic degradation and decomposition products of urea in (a) TiO 2 , (b) Pd / TiO 2 , (c) F-TiO 2 and (d) F-TiO 2 / Pd suspensions under ultraviolet irradiation. . Experimental conditions: [photocatalyst] = 17.5 mg / 35 mL, [urea] = 200 μM, pH = 4.0, wavelength of ultraviolet rays = 320 nm or more.
Figure 4 shows the total organic carbon (TOC) of urea after 3 hours in suspensions of (a) TiO 2 , (b) Pd / TiO 2 , (c) F-TiO 2 and (d) F-TiO 2 / Pd under UV irradiation. It shows the removal efficiency. Experimental conditions: [photocatalyst] = 17.5 mg / 35 mL, [urea] = 200 μM, pH = 4.0, wavelength of ultraviolet rays = 320 nm or more.
5 shows the production of 7-hydroxycoumarin from coumarin in suspensions of TiO 2 , Pd / TiO 2 , F-TiO 2 and F-TiO 2 / Pd under ultraviolet irradiation. Experimental conditions: [photocatalyst] = 17.5 mg / 35 mL, [coumarin] = 1 mM, pH = 4.0, wavelength of ultraviolet rays = 320 nm or more.
Figure 6 shows the effect of (a) concentration of fluorine anion and (b) solution pH on urea decomposition on F-TiO 2 / Pd under UV irradiation. Experimental conditions: [photocatalyst] = 17.5 mg / 35 mL, [urea] = 200 μM, wavelength of ultraviolet light = 320 nm or more.
7 shows a repeating cycle of urea decomposition on F-TiO 2 / Pd under ultraviolet irradiation. Urea was injected at the beginning of each cycle (indicated by arrow). Experimental conditions: [photocatalyst] = 17.5 mg / 35 mL, initial [urea] = injection [urea] = 200 μM, pH = 4.0, wavelength of ultraviolet rays = 320 nm or more.

아래에서는 구체적인 실시예를 들어 본 발명의 구성을 좀 더 자세히 설명한다. 그러나, 본 발명의 범위가 실시예의 기재에만 한정되는 것이 아님은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 자명하다.Hereinafter, the configuration of the present invention will be described in more detail with reference to specific embodiments. However, it is obvious to those skilled in the art that the scope of the present invention is not limited only to the description of the embodiments.

재료 및 화학약품Materials and Chemicals

본 발명에서 사용한 재료 및 화학 약품의 입수처는 아래와 같다.Where to obtain the materials and chemicals used in the present invention is as follows.

요소 (NH2CONH2, Sigma-Aldrich, ≥99.0%), 불화나트륨 (sodium fluoride, NaF, Sigma-Aldrich, ≥99.0%), 질산나트륨 (sodium nitrate, NaNO3, Sigma-Aldrich, ≥99.0%), 염화암모늄 (ammonium chloride, NH4Cl, Sigma-Aldrich, ≥99.0%), 요소분해효소 (Urease from Canavalia ensiformis (Jack bean), type Ⅲ, Sigma), 쿠마린 (coumarin, C9H6O2, Sigma, ≥99.0%), 염화백금산 수화물 (chloroplatinic acid hydrate, H2PtCl6·xH2O, Aldrich, ≥99.9%), 염화팔라듐 (palladium chloride, PdCl2, Aldrich, ≥99.9%), 염화금 수화물 (gold chloride hydrate, HAuCl4 · xH2O, Aldrich, ≥99.995%), 메탄올 (CH3OH, Wako, ≥99.8%), 탄산나트륨 (sodium carbonate, Na2CO3, Sigma-Aldrich, ≥99.0%), 중탄산나트륨 (sodium bicarbonate, NaHCO3, Sigma-Aldrich, ≥99.7%) 및 메탄술폰산 (methanesulfonic acid, CH3SO3H, Sigma-Aldrich, ≥99.5%). 에어록사이드 P25 (Aeroxide P25, Evonik) (아나타제 (anatase) : 루타일 (rutile)의 몰비 = 4.85 : 1; BET 표면적 = 60 m2/g)를 TiO2 재료로 이용하였다. 모든 용액은 Human-Power I+ 초고순수 제조 장치 (Human Corporation)를 이용하여 만든 초고순수 (18.3 MΩ·cm)로 제조하였다.Urea (NH 2 CONH 2 , Sigma-Aldrich, ≥99.0%), sodium fluoride (sodium fluoride, NaF, Sigma-Aldrich, ≥99.0%), sodium nitrate (sodium nitrate, NaNO 3 , Sigma-Aldrich, ≥99.0%) , Ammonium chloride, NH 4 Cl, Sigma-Aldrich, ≥99.0%, Urease from Canavalia ensiformis (Jack bean), type III, Sigma, coumarin (coumarin, C 9 H 6 O 2 , Sigma, ≥99.0%), chloroplatinic acid hydrate (H 2 PtCl 6 · x H 2 O, Aldrich, ≥99.9%), palladium chloride (palladium chloride, PdCl 2 , Aldrich, ≥99.9%), gold chloride hydrate (gold chloride hydrate, HAuCl 4 · x H 2 O, Aldrich, ≥99.995%), methanol (CH 3 OH, Wako, ≥99.8 %), sodium carbonate (sodium carbonate, Na 2 CO 3 , Sigma-Aldrich, ≥99.0% ), Sodium bicarbonate (NaHCO 3 , Sigma-Aldrich, ≥99.7%) and methanesulfonic acid (CH 3 SO 3 H, Sigma-Aldrich, ≥99.5%). Airoxide P25 (Eernik P25, Evonik) (mole ratio of anatase to rutile = 4.85: 1; BET surface area = 60 m 2 / g) was used as the TiO 2 material. All solutions were prepared with ultra-pure water (18.3 MΩ · cm) made using Human-Power I + ultrapure water production equipment (Human Corporation).

광촉매Photocatalyst 제조 및 특성 규명 Manufacturing and Characterization

TiO2 표면에 금속 담지는 광증착 (photodeposition) 방법으로 수행하였다. TiO2 현탁액 (0.5 g/500 mL)에 적절한 금속 전구체 (Pd의 경우 염화팔라듐, Pt의 경우 염화백금산 수화물, 그리고 Au의 경우 염화금 수화물)와 전자 주게로서 메탄올 (1 M) 첨가하고 200 W 수은 램프로 광조사하였다. TiO2 현탁액을 30분간 광조사한 후 금속이 담지된 TiO2 분말을 여과하여 모으고, 초고순수로 세척한 다음 오븐에서 건조하였다. TiO2 표면에 담지된 금속의 양은 유도결합플라즈마 원자방출분광기 (ICP-AES, inductively coupled plasma-atomic emission spectroscopy, Spectro)를 이용하여 여과물 용액 내에 남아있는 금속 전구체의 농도를 측정하여 평가하였다. 금속이 담지된 TiO2 분말 내에서 TiO2에 대한 금속의 질량비는 100:1였다.Metal support on the TiO 2 surface was performed by a photodeposition method. To a TiO 2 suspension (0.5 g / 500 mL) add a suitable metal precursor (palladium chloride for Pd, platinum chloride hydrate for Pt, and gold chloride hydrate for Au) and methanol (1 M) as an electron donor and a 200 W mercury lamp Light irradiation. After irradiating the TiO 2 suspension for 30 minutes, the TiO 2 powder loaded with metal was collected by filtration, washed with ultrapure water, and dried in an oven. The amount of metal supported on the TiO 2 surface was evaluated by measuring the concentration of metal precursor remaining in the filtrate solution using an inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The mass ratio of metal to TiO 2 in the metal-supported TiO 2 powder was 100: 1.

TiO2 (또는 금속이 담지된 TiO2)에 불소 음이온 복합화는 리간드 교환 방법으로 수행하였다. 불화나트륨을 TiO2 (또는 금속이 담지된 TiO2) 현탁액에 가하였다. 그 후, 과염소산 (HClO4) 용액을 이용하여 현탁액의 pH를 낮추어 용액 내의 불소 음이온과 TiO2 표면의 하이드록실기 사이의 리간드 교환을 유도했다.TiO 2 (TiO 2 or metal-carrying) a fluorine anion complexed to ligand was carried out by exchange methods. The sodium fluoride was added to the TiO 2 (TiO 2 or metal-carrying) suspension. The pH of the suspension was then lowered using a perchloric acid (HClO 4 ) solution to induce ligand exchange between the fluorine anion in the solution and the hydroxyl groups on the TiO 2 surface.

TiO2, Pd/TiO2, F-TiO2 및 F-TiO2/Pd의 표면 원자 구성은 X-선 에너지원으로서 Al Kα line (1486.6 eV)을 갖춘 X-선 광전자 분광기 (X-ray photoelectron spectroscopy, Thermo Scientific Theta Probe)를 이용하여 분석하였다. F-TiO2/Pd 표면상의 원소 분포는 가속 전압 200 kV로 JEOL JEM-2100F 현미경을 이용하여 고해상도 투과전자현미경 및 에너지 분산형 X-선 분광기 분석으로 밝혔다.The surface atomic composition of TiO 2 , Pd / TiO 2 , F-TiO 2, and F-TiO 2 / Pd is X-ray photoelectron spectroscopy with Al Kα line (1486.6 eV) as X-ray energy source , Thermo Scientific Theta Probe). The element distribution on the surface of F-TiO 2 / Pd was revealed by high resolution transmission electron microscopy and energy dispersive X-ray spectroscopy using a JEOL JEM-2100F microscope with an acceleration voltage of 200 kV.

광촉매 실험 및 화학 분석Photocatalyst Experiment and Chemical Analysis

광촉매 분말 (TiO2 또는 금속이 담지된 TiO2 (통상 Pd/TiO2))을 초고순수에 분산시키고 요소 용액을 광촉매 현탁액에 가하여 원하는 요소 농도로 맞추었다 (광촉매 질량 = 17.5 mg, [요소] = 200 μM, 용액 부피 = 35 mL). 불소 음이온 복합화를 위해 불화나트륨을 첨가하였다 (통상 [NaF] = 3 mM). 광촉매 현탁액의 pH는 과염소산 또는 수산화나트륨 용액을 가하여 조정하였다 (통상 pH = 4.0). 광촉매 현탁액은 어두운 곳에서 30분간 교반하여 시스템 내에서 불소 음이온과 요소가 흡착/탈착 평형에 도달하도록 하였다.Photocatalytic powder was added to the dispersion and urea solution in ultrapure water (TiO 2 or TiO 2 (usually Pd / TiO 2) the metal is supported) to the photocatalyst suspension was adjusted to the desired element concentration (photocatalyst weight = 17.5 mg, [element] = 200 μM, solution volume = 35 mL). Sodium fluoride was added for fluorine anion complexation (typically [NaF] = 3 mM). The pH of the photocatalyst suspension was adjusted by addition of perchloric acid or sodium hydroxide solution (normal pH = 4.0). The photocatalyst suspension was stirred for 30 minutes in the dark to allow fluorine anions and urea to reach adsorption / desorption equilibrium in the system.

300 W 제논 아크 램프 (Oriel)를 광원으로 이용하였다. 광원에서 발생한 빛은 5 cm의 적외선 물 필터 (IR water filter)에 의해 열을 발생하는 적외선이 차단되었으며, 빛 차단 필터 (cutoff filter)를 이용하여 320 nm 이상의 빛 (λ > 320 nm)만을 투과시켰다. 투과된 빛의 초점이 원통형의 유리 반응기 (부피 = 40 mL)로 향하게 하였다. 빛을 조사하면서 교반을 계속 진행하였고, 산소가 고갈되지 않도록 반응기의 뚜껑을 열어두었다. 자외선을 조사한 반응기에서 정해진 시간별로 시료 일정량 (1 mL)을 채취하고, 광촉매 입자를 제거하기 위하여 0.45 μm PTFE 주사기 필터 (Millipore)로 여과하였다. 데이터의 재현성을 보장하기 위하여 주어진 조건 하에서 2회 이상의 반복 실험을 수행하였다.A 300 W xenon arc lamp (Oriel) was used as the light source. The light generated from the light source was blocked by infrared rays generating heat by a 5 cm IR water filter, and only light (λ> 320 nm) of 320 nm or more was transmitted using a cutoff filter. . The transmitted light was directed to a cylindrical glass reactor (volume = 40 mL). The stirring was continued while irradiating light, and the lid of the reactor was left open so that oxygen was not depleted. A predetermined amount of sample (1 mL) was taken from the reactor irradiated with ultraviolet rays at predetermined times, and filtered through a 0.45 μm PTFE syringe filter (Millipore) to remove photocatalyst particles. Two or more replicate experiments were performed under given conditions to ensure reproducibility of the data.

요소 농도는 요소분해효소에 의해 요소의 가수분해 (NH2CONH2 + H2O + 2H+ + urease → CO2 + 2NH4 +)로부터 생성되는 암모늄 이온 (NH4 +)의 농도를 측정함으로써 평가하였다. 요소분해효소를 함유한 시료 (0.5 mL의 시료 및 0.1 mL의 요소분해효소 (0.12 g/100 mL))는 50 ℃로 20분간 수조에서 배양하였고, 30분간 상온으로 유지하였으며, 그 후 분석하였다. 요소분해효소가 없는 시료 (0.5 mL의 시료 및 0.1 mL의 초고순수)는 대조군으로 이용하였다. 암모늄 이온과 질산염 이온 (NO3 -)의 정량 분석은 Dionex IonPac AS14 컬럼 (4 mm Х 250 mm), Dionex IonPac CS12A 컬럼 (4 mm Х 250 mm) 및 전도도 탐지기를 갖춘 이온 크로마토그래피 (IC, Dionex ICS-1100)로 수행하였다. 탄산나트륨 (3.5 mM) 및 중탄산나트륨 (1 mM)의 혼합물과 메탄술폰산 용액 (20 mM)은 각각 질산염 이온 및 암모늄 이온 분석에서 용출액으로 이용하였다. 총 유기탄소 (TOC, 총 탄소 - 무기 탄소)의 농도는 이산화탄소 탐지기로서 비분산 적외선 센서를 갖춘 총 유기탄소 분석기 (Shimadzu TOC-LCPH)로 측정하였다.Urea concentration is assessed by measuring the concentration of ammonium ions (NH 4 + ) generated from urease hydrolysis (NH 2 CONH 2 + H 2 O + 2H + + urease → CO 2 + 2NH 4 + ) by urease It was. Samples containing urease (0.5 mL of sample and 0.1 mL of urease (0.12 g / 100 mL)) were incubated in a water bath at 50 ° C. for 20 minutes, kept at room temperature for 30 minutes, and then analyzed. A sample without urease (0.5 mL of sample and 0.1 mL of ultrapure water) was used as a control. Ammonium Ion and Nitrate Ion (NO 3 -) quantitative analysis is carried out with Dionex IonPac AS14 column (4 mm Х 250 mm), Dionex IonPac CS12A column (4 mm Х 250 mm) and ion chromatography (IC, Dionex ICS-1100) equipped with a conductivity detector It was. A mixture of sodium carbonate (3.5 mM) and sodium bicarbonate (1 mM) and methanesulfonic acid solution (20 mM) were used as eluents in nitrate ion and ammonium ion analysis, respectively. The concentration of total organic carbon (TOC, total carbon-inorganic carbon) was measured by a total organic carbon analyzer (Shimadzu TOC-L CPH ) equipped with a non-dispersive infrared sensor as a carbon dioxide detector.

자외선을 조사한 광촉매 현탁액에서 OH 라디칼의 생성은 화학 탐침으로서 쿠마린 (1 mM)을 이용한 화학 포집 방법으로 측정하였다. 쿠마린과 OH 라디칼의 반응 (coumarin + OH → 7-hydroxycoumarin)으로 생성된 7-하이드록시쿠마린은 여기 파장 332 nm 하에서 형광분광광도계 (spectrofluorometer, Shimadzu RF-5301)를 이용하여 460 nm의 형광 발광 강도를 측정함으로써 산정하였다. The production of OH radicals in the photocatalyst suspension irradiated with ultraviolet light was measured by a chemical collection method using coumarin (1 mM) as a chemical probe. The reaction of coumarin with OH radicals (coumarin + OH → 7-hydroxycoumarin) produced 7-hydroxycoumarin under a excitation wavelength of 332 nm using a spectrofluorometer (Shmadzu RF-5301). It was calculated by measuring.

결과 1: 팔라듐 나노입자 Result 1: Palladium Nanoparticles 담지와Support and 불소 음이온 복합화로 표면을  Fluoride Anion Complexation 개질한Modified 이산화티타늄  Titanium dioxide 광촉매Photocatalyst (F-TiO (F-TiO 22 /Pd)/ Pd) 표면의 특성Surface properties

F-TiO2/Pd의 표면 원자 구성은 X-선 광전자 분광기 (X-ray photoelectron spectroscopy)를 이용하여 분석하였다. Pd/TiO2, F-TiO2 및 TiO2의 표면 원자 구성 또한 대조군으로서 측정하였고, 도 1에 나타내었다. F-TiO2/Pd 시료의 X-선 광전자 분광기 스펙트럼은 결합 에너지 335 eV (for Pd 3d5 /2) 및 340 eV (for Pd 3d3 / 2)을 갖는 팔라듐 피크와 결합 에너지 684 eV (for F 1s)를 갖는 불소 피크를 보여주는데, 이것은 각각 TiO2의 표면에 담지된 팔라듐 나노입자와 TiO2의 표면에 흡착된 불소 음이온의 피크와 일치한다.Surface atomic composition of F-TiO 2 / Pd was analyzed using X-ray photoelectron spectroscopy. Surface atomic composition of Pd / TiO 2 , F-TiO 2 and TiO 2 was also measured as a control and is shown in FIG. 1. F-TiO 2 / Pd X- ray photoelectron spectroscopy spectrum of the sample is 335 eV bonding energy (for Pd 3d 5/2) and 340 eV (for Pd 3d 3/ 2) the palladium peak and the binding energy 684 eV (for F having 1s) to show a peak having a fluorine, which is equivalent to a peak of fluorine anions adsorbed on the palladium surface of the nanoparticles and TiO 2 supported on the surfaces of TiO 2, respectively.

도 2는 F-TiO2/Pd 시료의 고해상도 투과전자현미경 사진 및 원소 맵핑 사진을 보여준다. 팔라듐 원소는 TiO2 표면상에 2-5 nm 크기의 클러스터로 존재한다 (도 2a). 불소 원소의 분포는 잘 분산되어 있고 티타늄 및 산소의 원소들과 정확히 겹쳐있었다 (도 2b-d). 이러한 표면 분석 결과들은 F-TiO2/Pd 시료에서 TiO2 표면에 팔라듐 나노입자와 불소 음이온이 공존함을 확인해준다.Figure 2 shows a high-resolution transmission electron micrograph and elemental mapping picture of the F-TiO 2 / Pd sample. The palladium element is present in clusters of 2-5 nm size on the TiO 2 surface (FIG. 2A). The distribution of elemental fluorine was well dispersed and exactly overlapped with the elements of titanium and oxygen (Fig. 2b-d). These surface analysis results confirm that palladium nanoparticles and fluorine anion coexist on the TiO 2 surface in the F-TiO 2 / Pd sample.

결과 2: Result 2: 광촉매적Photocatalytic 요소 분해에서  In factor decomposition TiOTiO 22 표면에 팔라듐 나노입자 Palladium Nanoparticles on Surface 담지와Support and 불소 음이온 복합화의 시너지 효과 Synergy effect of fluorine anion complexation

도 3은 자외선 조사하 TiO2, Pd/TiO2, F-TiO2 및 F-TiO2/Pd 현탁액에서 요소의 광촉매 분해 및 분해 산물의 생성을 보여준다. 요소의 분해는 모든 경우에 R2 > 0.98의 1차 분해 동역학을 따랐다. TiO2 표면에 담지된 팔라듐 나노입자는 광촉매의 요소 분해 활성을 증대하였다. 또한 요소 분해는 TiO2 에 불소 음이온 복합화에 의해 가속화되었다. 자외선 조사 세 시간 후, TiO2, Pd/TiO2 및 F-TiO2 에 의해 각각 25%, 38% 및 36%의 요소가 분해되었다 (도 3a-c). TiO2 를 팔라듐 나노입자 담지와 불소 음이온 복합화 모두로 표면을 개질하였을 때 광촉매에 의한 요소 분해가 가장 빠르게 진행되었다. 자외선 조사 3시간 후 67%의 요소가 분해되었다 (도 3d). 이러한 결과는 두 개의 다른 표면 개질 즉, 팔라듐 나노입자 담지 및 불소 음이온 복합화가 TiO2 광촉매에 의한 요소 분해에서 시너지 효과를 나타냄을 분명하게 보여준다. 두 종류의 분해 산물인 암모늄 이온와 질산염 이온은 TiO2 및 표면이 개질된 TiO2 모두에서 요소 분해시 생성되었다. 질소의 질량 밸런스 (즉, 2 × 분해된 [요소] = 생성된 [NH4 +] + 생성된 [NO3 -])는 모든 경우에 만족되었으며, 이것은 요소가 분해되는 동안 다른 질소종의 생성은 무시할 만함을 의미한다. 분해 산물의 생성은 F-TiO2/Pd > Pd/TiO2

Figure 112018064738146-pat00001
F-TiO2 > TiO2 순이었다. 이러한 경향은 요소 분해 데이터와 일치한다.FIG. 3 shows the photocatalytic degradation and decomposition products of urea in TiO 2 , Pd / TiO 2 , F-TiO 2 and F-TiO 2 / Pd suspensions under ultraviolet irradiation. Decomposition of urea followed the first order kinetics of R 2 > 0.98 in all cases. The palladium nanoparticles supported on the TiO 2 surface increased the urea decomposition activity of the photocatalyst. Urea decomposition was also accelerated by fluorine anion complexation in TiO 2 . After three hours of ultraviolet irradiation, 25%, 38% and 36% of urea was decomposed by TiO 2 , Pd / TiO 2 and F-TiO 2 , respectively (FIGS. 3A-C). When TiO 2 was modified with both palladium nanoparticle loading and fluorine anion complexation, urea decomposition by the photocatalyst was the fastest. After 3 hours of ultraviolet irradiation, 67% of the urea decomposed (FIG. 3D). These results clearly show that two different surface modifications, palladium nanoparticle loading and fluorine anion complexation, have a synergistic effect on urea degradation by TiO 2 photocatalysts. Two types of decomposition products, ammonium ions and nitrate ions, were produced during urea decomposition in both TiO 2 and surface-modified TiO 2 . The mass balance of nitrogen (ie 2 × decomposed [urea] = generated [NH 4 + ] + generated [NO 3 ]) was satisfied in all cases, which means that the production of other nitrogen species during urea decomposition is It means negligible. The formation of decomposition products was determined by the fact that F-TiO 2 / Pd> Pd / TiO 2
Figure 112018064738146-pat00001
F-TiO 2 > TiO 2 It was net. This trend is consistent with urea decomposition data.

요소 제거에 있어서 F-TiO2/Pd의 우수한 광촉매 활성을 다시 확인하기 위하여, 자외선 조사 3시간 후 F-TiO2/Pd의 총 유기탄소 제거효율 (즉, 무기물화 효율)을 측정하고, TiO2, F-TiO2 및 Pd/TiO2의 총 유기탄소 제거효율과 비교하였다 (도 4). F-TiO2/Pd는 TiO2, Pd/TiO2 및 F-TiO2보다 요소 분해에 있어 총 유기탄소 제거효율이 높았다 (TiO2는 17%, Pd/TiO2는 30%, F-TiO2는 26%, 그리고 F-TiO2/Pd는 55%). 이러한 결과는 F-TiO2/Pd가 요소 분해뿐만 아니라 요소의 무기물화에도 효과적인 광촉매임을 나타낸다.In order to reconfirm the excellent photocatalytic activity of F-TiO 2 / Pd in urea removal, the total organic carbon removal efficiency (ie, mineralization efficiency) of F-TiO 2 / Pd was measured after 3 hours of ultraviolet irradiation, and TiO 2 And total organic carbon removal efficiency of F-TiO 2 and Pd / TiO 2 (FIG. 4). F-TiO 2 / Pd is TiO 2, Pd / TiO 2 and F-TiO 2 than that in the element degradation was higher total organic carbon removal efficiency (TiO 2 is 17%, Pd / TiO 2 is 30%, F-TiO 2 26%, and F-TiO 2 / Pd 55%). These results indicate that F-TiO 2 / Pd is an effective photocatalyst not only for urea decomposition but also for mineralization of urea.

TiO2의 표면 개질이 OH 라디칼 생성을 증대한다는 것과 OH 라디칼 생성에 대한 팔라듐 나노입자 담지와 불소 음이온 복합화의 시너지 효과를 입증하기 위하여 자외선 조사하에서 TiO2, Pd/TiO2, F-TiO2 및 F-TiO2/Pd 현탁액 내의 OH 라디칼 생성을 비교하였다 (도 5). OH 라디칼 생성은 쿠마린 존재하에서 7-하이드록시쿠마린의 생성과 비례한다. OH 라디칼 생성 (즉, 7-하이드록시쿠마린의 형광 발광 강도)은 TiO2뿐만 아니라 표면이 개질된 TiO2에서도 자외선 조사시간과 정비례하여 증가한다. Pd/TiO2와 F-TiO2는 TiO2보다 더 많은 OH 라디칼을 생성하였다. 이뿐만 아니라, F-TiO2/Pd는 Pd/TiO2 및 F-TiO2보다 훨씬 많은 OH 라디칼을 생성하였다. 이것은 TiO2 표면의 팔라듐 나노입자와 불소 음이온이 OH 라디칼 생성에 시너지 효과를 발휘함을 의미한다. 종합하면, 요소 분해에 있어서 TiO2, Pd/TiO2 및 F-TiO2보다 높은 F-TiO2/Pd의 광촉매 활성은 표면의 팔라듐 나노입자 및 불소 음이온의 시너지 작용에 의해 OH 라디칼이 더 많이 생성되기 때문이다.Surface modification of the TiO 2 is under UV irradiation in order to demonstrate the synergistic effect of the OH that increase the radical generation as OH palladium nanoparticles supported on the radical generating and fluorine anions complexed TiO 2, Pd / TiO 2, F-TiO 2 and F OH radical production in the -TiO 2 / Pd suspension was compared (FIG. 5). OH radical production is proportional to the production of 7-hydroxycoumarin in the presence of coumarin. OH radical production (i.e., the fluorescence intensity of 7-hydroxycoumarin) increases in direct proportion to UV irradiation time not only in TiO 2 but also in TiO 2 with a modified surface. Pd / TiO 2 and F-TiO 2 produced more OH radicals than TiO 2 . In addition, F-TiO 2 / Pd produced much more OH radicals than Pd / TiO 2 and F-TiO 2 . This is TiO 2 It means that the palladium nanoparticles and fluorine anion on the surface have a synergistic effect on the generation of OH radicals. Taken together, the photocatalytic activity of F-TiO 2 / Pd higher than TiO 2 , Pd / TiO 2 and F-TiO 2 in urea decomposition produces more OH radicals due to the synergy of surface palladium nanoparticles and fluorine anions. Because it becomes.

결과 3: 다양한 조건하에서 F-TiOResult 3: F-TiO under various conditions 22 /Pd의 광촉매적 요소 분해 동역학Photocatalytic Element Degradation Kinetics of P / Pd

TiO2에 불소 음이온 복합화 정도는 주입한 불소 음이온의 농도 및 용액의 pH에 큰 영향을 받는데, 이는 용액 내의 수산화기 (OH-)가 TiO2 표면에 대하여 불소 음이온과 경쟁하기 때문이다. 도 6은 불소 음이온 농도와 용액 pH에 따른 TiO2 표면의 불소 음이온 복합화 정도 (>Ti-F) 및 F-TiO2/Pd의 요소 분해 광촉매 활성을 나타낸 것이다. 요소 분해 광촉매 활성 결과는 일차 분해속도상수 (k)로 표현되었다. 이 k 값은 불소 음이온의 농도가 증가할수록 증가하였다. 불소 음이온의 농도가 높을수록 용액 내 불소 음이온과 TiO2 표면의 하이드록실기 사이의 리간드 교환반응이 촉진되어 TiO2 표면의 불소 음이온 복합화가 더 잘 진행된다 (>Ti-OH + F- → >Ti-F + OH-)(도 6a). 반면, 용액 pH가 증가하면 k 값은 감소한다. 이러한 경향은 TiO2 표면의 불소 음이온 복합화 정도가 용액의 pH가 증가할수록 감소하는 것과 일치한다 (도 6b). 용액 내의 수산화기 농도가 높아지면 (즉, 좀 더 염기적인 조건이 되면) TiO2 표면에서 불소 음이온의 탈착이 더 유도되어 (>Ti-F + OH- → >Ti-OH + F-), OH 라디칼 생성을 촉진하는 불소 음이온 복합화 정도가 감소함으로써 요소의 분해 속도가 느려진다. 종합하면, 요소 분해에 있어서 TiO2 표면의 불소 음이온 복합화 정도는 F-TiO2/Pd의 광촉매 활성을 결정하는 중요한 인자이며, TiO2 표면의 불소 음이온 복합화 정도는 용액 내 불소 음이온의 농도가 증가할수록, 그리고 용액의 pH가 감소할수록 커진다.The degree of fluorine anion complexation in TiO 2 is greatly influenced by the concentration of the injected fluorine anion and the pH of the solution because the hydroxyl group (OH ) in the solution competes with the fluorine anion for the TiO 2 surface. FIG. 6 shows the degree of fluorine anion complexation (> Ti-F) and urea decomposition photocatalytic activity of F-TiO 2 / Pd on the surface of TiO 2 depending on the concentration of fluorine anion and the pH of solution. Urea decomposition photocatalytic activity results were expressed as the primary decomposition rate constant ( k ). This k value increased with increasing concentration of fluorine anion. A ligand exchange reaction between a hydroxyl group of the fluorine anion and the TiO 2 surface the higher the concentration of fluorine anion solution is promoted is a fluorine anion composite of TiO 2 surface proceeds better (> Ti-OH + F - →> Ti -F + OH -) (Fig. 6a). On the other hand, as the solution pH increases, the k value decreases. This trend is consistent with the degree of fluorine anion complexation on the TiO 2 surface decreasing with increasing pH of the solution (FIG. 6B). The higher the hydroxyl group concentration in the solution (that is, if the more base conditions) the desorption of the fluoride anion is further derived from the TiO 2 surface (> Ti-F + OH - →> Ti-OH + F -), OH radicals By reducing the degree of fluoride anion complexation that promotes production, the rate of decomposition of urea is slowed. Taken together, the degree of fluorine anion complexation on the TiO 2 surface in urea decomposition is an important factor in determining the photocatalytic activity of F-TiO 2 / Pd, and the fluorine anion on the TiO 2 surface. The degree of complexation increases as the concentration of fluorine anions in the solution increases and as the pH of the solution decreases.

결과 4: 광촉매적 요소 분해에 대한 F-TiOOutcome 4: F-TiO for photocatalytic element decomposition 22 /Pd의 성능 및 안정성/ Pd performance and stability

자외선 조사하에서 요소 분해에 대한 TiO2 및 여러 종류의 표면개질 TiO2의 성능을 비교하여 살펴보았다 (표 1). Au/TiO2와 Pt/TiO2의 광촉매적 요소 분해는 Pd/TiO2와 마찬가지로 TiO2와 비교할 때 더 우수했다. 요소 분해에 대한 금속 나노입자 담지의 긍정적 효과의 정도는 Pd < Au < Pt 순으로 증가하였다. 그러나, 금속 나노입자가 담지된 TiO2 에 불소 음이온 복합화 효과는 금속 나노입자의 종류에 따라 상당한 차이가 있었다. 따라서, 금속 나노입자가 담지된 TiO2 광촉매의 활성 순서는 불소 음이온 복합화 후 현저히 바뀌었다. 금속 나노입자가 담지된 TiO2 에 대한 불소 음이온 복합화의 효과를 상대적 일차 분해 속도상수 (k rel = k(F-TiO2/metal)/k(metal/TiO2))로 나타내었다. 불소 음이온 복합화의 가장 현저한 긍정적 효과는 Pd/TiO2 시료에서 관찰되었다 (k rel = 2.222). Au/TiO2의 불소 음이온 복합화는 요소 분해 속도를 약간 증가시켰다 (k rel = 1.289). 그러나, 요소 분해에 대한 Pt/TiO2의 광촉매 활성은 오히려 불소 음이온 복합화에 의해 저하되었다 (k rel = 0.688). Pt/TiO2 에 대한 불소 음이온 복합화의 부정적 효과는 불소 음이온에 대한 Pt의 높은 흡착능 때문인 것으로 보인다. 불소 음이온 및 염소 음이온과 같은 할로겐 음이온의 흡착은 백금 나노입자의 표면에서 특히 잘 일어난다. 백금 나노입자상에 흡착된 불소 음이온은 산소의 흡착을 방해하고, 이것은 백금 나노입자로부터 산소로 전자의 전달을 저해하며, 백금 나노입자 내에 포획된 전자와 TiO2 표면에 포획된 정공 사이의 재결합 반응을 촉진한다. 이러한 반응은 결국 OH 라디칼 생성을 감소시킴으로써 요소 분해를 저해한다. F-TiO2/Pd는 본 발명에서 평가한 8종의 광촉매 (즉, TiO2, Pd/TiO2, F-TiO2, F-TiO2/Pd, Au/TiO2, F-TiO2/Au, Pt/TiO2 및 F-TiO2/Pt) 중 가장 높은 요소 분해 활성을 나타내었다. 따라서, F-TiO2/Pd는 요소 분해에 있어서 효과적인 광촉매인 것으로 판단된다.The performance of TiO 2 and various types of surface-modified TiO 2 on urea decomposition under UV irradiation was compared (Table 1). Photocatalytic decomposition of elements Au / TiO 2 and Pt / TiO 2 was more excellent as compared with the TiO 2 as in the Pd / TiO 2. The degree of positive effect of the metal nanoparticle loading on urea degradation increased in the order of Pd <Au <Pt. However, the effect of fluorine anion complexation on TiO 2 on which metal nanoparticles were supported was significantly different depending on the type of metal nanoparticles. Therefore, the order of activation of the TiO 2 photocatalyst on which the metal nanoparticles were supported changed significantly after fluorine anion complexation. The effect of fluorine anion complexation on TiO 2 loaded with metal nanoparticles is represented by the relative primary decomposition rate constant ( k rel = k (F-TiO 2 / metal) / k (metal / TiO 2 )). The most significant positive effect of fluorine anion complexation was observed in Pd / TiO 2 samples ( k rel = 2.222). Fluoride anion complexation of Au / TiO 2 slightly increased the rate of urea decomposition ( k rel = 1.289). However, the photocatalytic activity of Pt / TiO 2 on urea degradation was rather lowered by fluorine anion complexation ( k rel = 0.688). The negative effect of fluorine anion complexation on Pt / TiO 2 appears to be due to the high adsorption capacity of Pt on fluorine anions. Adsorption of halogen anions such as fluorine anions and chlorine anions occurs particularly well on the surface of platinum nanoparticles. The fluorine anion adsorbed on the platinum nanoparticles interferes with the adsorption of oxygen, which inhibits the transfer of electrons from the platinum nanoparticles to oxygen, and the electrons and TiO 2 trapped within the platinum nanoparticles. Promotes recombination reactions between holes trapped on the surface. This reaction eventually inhibits urea degradation by reducing OH radical production. F-TiO 2 / Pd are eight photocatalysts evaluated in the present invention (ie, TiO 2 , Pd / TiO 2 , F-TiO 2 , F-TiO 2 / Pd, Au / TiO 2 , F-TiO 2 / Au , Pt / TiO 2 and F-TiO 2 / Pt) showed the highest urea degradation activity. Therefore, F-TiO 2 / Pd is considered to be an effective photocatalyst in urea decomposition.

Figure 112018064738146-pat00002
Figure 112018064738146-pat00002

광촉매적 요소 분해에 대한 F-TiO2/Pd의 안정성은 반복적으로 요소를 분해시켜 봄으로써 평가되었다 (도 7). 각 사이클의 시작점마다 요소를 반응기에 주입하고 광조사 없이 30분간 교반 후 자외선을 조사하였다. F-TiO2/Pd의 요소 분해 효율은 최대 5회의 사이클까지 유지되었고, 이는 요소 분해에 대한 F-TiO2/Pd의 안정성을 입증한다. The stability of F-TiO 2 / Pd against photocatalytic urea degradation was evaluated by repeatedly degrading urea (FIG. 7). Urea was injected into the reactor at the beginning of each cycle and irradiated with ultraviolet rays after stirring for 30 minutes without irradiation. The urea decomposition efficiency of F-TiO 2 / Pd was maintained for up to five cycles, demonstrating the stability of F-TiO 2 / Pd against urea decomposition.

결론conclusion

효과적인 요소 분해 방법의 개발은 요소를 함유한 폐수 처리 및 소변으로부터 깨끗한 물을 만들어내는 기술에 있어 매우 중요하다. 본 발명자는 요소의 분해에 매우 효과적인 F-TiO2/Pd 광촉매를 발명하였다. F-TiO2/Pd 표면의 팔라듐 나노입자와 불소 음이온은 광촉매적 요소 분해에 있어 가장 중요한 산화종인 OH 라디칼의 생성을 증대하였다. 본 발명에서 평가한 8종의 광촉매 (즉, TiO2, Pd/TiO2, F-TiO2, F-TiO2/Pd, Au/TiO2, F-TiO2/Au, Pt/TiO2 및 F-TiO2/Pt) 중에서, F-TiO2/Pd는 가장 높은 요소 분해 활성을 나타내었다. 이뿐만 아니라, 광촉매적 요소 분해에 대한 F-TiO2/Pd의 안정성은 매우 우수하였다. 높은 분해 효율과 안정성에 기반하여 F-TiO2/Pd는 실용적인 요소 분해용 광촉매로 사용될 수 있다.The development of effective urea decomposition methods is of great importance in the treatment of wastewater containing urea and in the production of clean water from urine. The inventors have invented an F-TiO 2 / Pd photocatalyst which is very effective in the decomposition of urea. Palladium nanoparticles and fluorine anions on the surface of F-TiO 2 / Pd increased the production of OH radicals, which are the most important species for photocatalytic urea degradation. Eight photocatalysts evaluated in the present invention (ie TiO 2 , Pd / TiO 2 , F-TiO 2 , F-TiO 2 / Pd, Au / TiO 2 , F-TiO 2 / Au, Pt / TiO 2 and F -TiO 2 / Pt), F-TiO 2 / Pd showed the highest urea decomposition activity. In addition, the stability of F-TiO 2 / Pd against photocatalytic urea decomposition was very good. Based on high decomposition efficiency and stability, F-TiO 2 / Pd can be used as a practical photocatalyst for urea decomposition.

Claims (16)

a) TiO2에 대한 Pd의 질량비가 TiO2:Pd = 100:0.1~100:3인 팔라듐 나노입자가 담지된 이산화티타늄 광촉매 (Pd/TiO2)를 현탁액으로 만들고 불소 음이온 복합화를 위해 농도 0.1 mM ~ 5 mM로 불소 음이온을 첨가하는 단계;
b) 상기 팔라듐 나노입자 담지와 불소 음이온 복합화로 표면을 개질한 이산화티타늄 광촉매 (F-TiO2/Pd) 현탁액에 요소가 포함된 처리대상수를 가하고 pH 3~5인 혼합액을 만드는 단계; 및
c) 상기 혼합액에 자외선을 조사하여 요소를 분해하는 단계;를 포함하는 팔라듐 나노입자 담지와 불소 음이온 복합화로 표면을 개질한 이산화티타늄 광촉매 (F-TiO2/Pd)를 이용하여 요소를 분해하는 방법.
a) TiO the mass ratio of Pd to 2 TiO 2: Pd = 100: 0.1 ~ 100: 3 of palladium nanoparticles supported titanium dioxide photocatalyst (Pd / TiO 2) the concentration of 0.1 mM to create a suspension for a fluorine anion complexed Adding fluorine anion to ˜5 mM;
b) adding a water to be treated with urea to a titanium dioxide photocatalyst (F-TiO 2 / Pd) suspension having a surface modified by complexing palladium nanoparticles with fluorine anion and preparing a mixed solution having a pH of 3 to 5; And
c) decomposing urea by irradiating the mixture with ultraviolet rays to decompose urea using a titanium dioxide photocatalyst (F-TiO 2 / Pd) modified with a palladium nanoparticle support and a fluorine anion complex, including; .
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020180076379A 2018-07-02 2018-07-02 TiO2 photocatalyst surface modified with both Pd nanoparticles and fluorides and its application for the degradation of urea KR102045779B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180076379A KR102045779B1 (en) 2018-07-02 2018-07-02 TiO2 photocatalyst surface modified with both Pd nanoparticles and fluorides and its application for the degradation of urea

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180076379A KR102045779B1 (en) 2018-07-02 2018-07-02 TiO2 photocatalyst surface modified with both Pd nanoparticles and fluorides and its application for the degradation of urea

Publications (1)

Publication Number Publication Date
KR102045779B1 true KR102045779B1 (en) 2019-11-18

Family

ID=68727746

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180076379A KR102045779B1 (en) 2018-07-02 2018-07-02 TiO2 photocatalyst surface modified with both Pd nanoparticles and fluorides and its application for the degradation of urea

Country Status (1)

Country Link
KR (1) KR102045779B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111389197A (en) * 2020-03-27 2020-07-10 铭牌精工机械(山东)有限公司 Waste gas purification treatment method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090090194A (en) * 2008-02-20 2009-08-25 포항공과대학교 산학협력단 Photocatalyst, synthetic method and its application for wastewater treatment
JP2011036770A (en) * 2009-08-07 2011-02-24 Hokkaido Univ Method for producing noble metal-supported photocatalyst particle
JP2011245422A (en) * 2010-05-27 2011-12-08 Nippon Rensui Co Ltd Water treatment apparatus and water treatment method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090090194A (en) * 2008-02-20 2009-08-25 포항공과대학교 산학협력단 Photocatalyst, synthetic method and its application for wastewater treatment
JP2011036770A (en) * 2009-08-07 2011-02-24 Hokkaido Univ Method for producing noble metal-supported photocatalyst particle
JP2011245422A (en) * 2010-05-27 2011-12-08 Nippon Rensui Co Ltd Water treatment apparatus and water treatment method

Non-Patent Citations (47)

* Cited by examiner, † Cited by third party
Title
A. Ayati et al., Sep. Purif. Technol. 171 (2016) 62-68.
A. Fujishima et al., Surf. Sci. Rep. 63 (2008) 515-582.
A. Ofiarska et al., Chem. Eng. J. 285 (2016) 417-427.
A. Yamakata et al., J. Phys. Chem. B 105 (2001) 7258-7262.
A.N. Rollinson et al., Energy Environ. Sci. 4 (2011) 1216-1224.
B.B. Tolar et al., Environ. Microbiol. 19 (2017) 4838-4850.
C. Minero et al., Langmuir 16 (2000) 2632-2641.
C. Rose et al., Crit. Rev. Environ. Sci. Technol. 45 (2015) 1827-1879.
D. Zhao et al., J. Phys. Chem. C 112 (2008) 5993-6001.
E. Nicolau et al., ACS Sustain. Chem. Eng. 2 (2014) 749-754.
E. Nicolau et al., Adv. Space Res. 44 (2009) 965-970.
E. Pelizzetti et al., Chem. Commun. (2004) 1504-1505.
E.R. Blatchley et al., Environ. Sci. Technol. 44 (2010) 8529-8534.
F.J. Gracia et al., J. Catal. 209 (2002) 341-354.
G.W. Park et al., J. Photochem. Photobiol. B: Biol. 140 (2014) 315-320.
H. Li et al., J. Electroanal. Chem. 738 (2015) 14-19.
H. Park et al., J. Photochem. Photobiol. C: Photochem. Rev. 15 (2013) 1-20.
H. Park et al., J. Phys. Chem. B 108 (2004) 4086-4093.
H. Zollig et al., Environ. Sci. Technol. 49 (2015) 11062-11069.
I. Dobrosz-Gomez et al., C. R. Chim. 18 (2015) 1170-1182.
J. Kim et al., Energy Environ. Sci. 3 (2010) 1042-1045.
J. Kim et al., Energy Environ. Sci. 5 (2012) 7647-7656.
J. Lee et al., Environ. Sci. Technol. 38 (2004) 4026-4033.
J. Ryu et al., Catal. Today 282 (2017) 24-30.
J. Schneider et al., Chem. Rev. 114 (2014) 9919-9986.
J. Tang et al., Chem. Mater. 19 (2007) 116-122.
J. Zhang et al., Mater. Chem. Front. 1 (2017) 231-250.
K. Nakata et al., J. Photochem. Photobiol. C: Photochem. Rev. 13 (2012) 169-189.
K. Wenderich et al., Chem. Rev. 116 (2016) 14587-14619.
K.-i. Ishibashi et al., Electrochem. Commun. 2 (2000) 207-210.
L. Ling et al., Sep. Purif. Technol. 169 (2016) 273-278.
L. Nie et al., J. Mol. Catal. A: Chem. 390 (2014) 7-13.
L.B.B. Ndong et al., Chem. Eng. Sci. 123 (2015) 367-375.
L.S. Bobe et al., SAE Int. J. Aerosp. 4 (2011) 401-409.
M. Revilla et al., Limnol. Oceanogr. Meth. 3 (2005) 290-299.
M.G. Meμndez-Medrano et al., J. Phys. Chem. C 120 (2016) 5143-5154.
N. Li et al., J. Phys. Chem. C 121 (2017) 2923-2932.
P.M. Glibert et al., Biogeochemistry 77 (2006) 441-463.
S. Kim et al., Energy Environ. Sci. 11 (2018) 344-353.
S. Park et al., Environ. Sci. Pollut. Res. (2017) https://doi.org/10.1007/s11356-11017-18380-11353.
S. Weon et al., Appl. Catal. B: Environ. 220 (2018) 1-8.
W. Chen et al., Water Environ. Res. 86 (2014) 48-55.
W. Choi et al., Catal. Surv. Asia 10 (2006) 16-28.
W. Szeto et al., Chem. Eng. Sci. 177 (2018) 380-390.
X. Jiang et al., Catal. Today 300 (2018) 12-17.
X. Zhu et al., Appl. Surf. Sci. 364 (2016) 808-814.
Y. Wang et al., RSC Adv. 5 (2015) 34302-34313.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111389197A (en) * 2020-03-27 2020-07-10 铭牌精工机械(山东)有限公司 Waste gas purification treatment method
CN111389197B (en) * 2020-03-27 2022-03-01 潍坊博锐环境保护有限公司 Waste gas purification treatment method

Similar Documents

Publication Publication Date Title
Shinde et al. Photocatalytic degradation of dyes in water by analytical reagent grades ZnO, TiO 2 and SnO 2: A comparative study
Jaafar et al. Direct in situ activation of Ag0 nanoparticles in synthesis of Ag/TiO2 and its photoactivity
Jaramillo-Páez et al. Silver-modified ZnO highly UV-photoactive
Chen et al. Synergistic effect of bifunctional Co–TiO2 catalyst on degradation of Rhodamine B: Fenton-photo hybrid process
Ananpattarachai et al. Formation of hydroxyl radicals and kinetic study of 2-chlorophenol photocatalytic oxidation using C-doped TiO 2, N-doped TiO 2, and C, N Co-doped TiO 2 under visible light
Maya-Treviño et al. Synthesis and photocatalytic activity of ZnO-CuPc for methylene blue and potassium cyanide degradation
WO2013085469A1 (en) Photocatalytic metal oxide nanomaterials; method of making via h2-plasma treatment; use for organic waste decontamination in water
Fan et al. Photocatalytic degradation of naproxen by a H 2 O 2-modified titanate nanomaterial under visible light irradiation
Kim et al. Titanium dioxide surface modified with both palladium and fluoride as an efficient photocatalyst for the degradation of urea
Coulibaly et al. Enhanced removal of antibiotics in hospital wastewater by Fe–ZnO activated persulfate oxidation
Pouretedal et al. Photosensitization of TiO 2 by ZnS and bromo thymol blue and its application in photodegradation of para-nitrophenol
Ravichandran et al. Photovalorisation of pentafluorobenzoic acid with platinum doped TiO2
Sandhu et al. Photocatalytic denitrification of water using polystyrene immobilized TiO2 as floating catalyst
Chakrabortty et al. Photo-catalytic decolourisation of toxic dye with N-doped Titania: A case study with Acid Blue 25
Baluk et al. MOF/TiO 2 erythrocyte-like heterostructures decorated by noble metals for use in hydrogen photogeneration and pollutant photodegradation
Ntobeng et al. Facile fabrication of vanadium sensitized silver titanium oxides (V–Ag/TiO2) photocatalyst nanocomposite for pollutants removal in river water
Mdlovu et al. Formulation and characterization of W-doped titania nanotubes for adsorption/photodegradation of methylene blue and basic violet 3 dyes
Xiong et al. Nitrogen-doped TiO2/nitrogen-containing biochar composite catalyst as a photocatalytic material for the decontamination of aqueous organic pollutants
Khan et al. Titania/reduced graphene oxide nanocomposites (TiO2/rGO) as an efficient photocatalyst for the effective degradation of brilliant green in aqueous media: effect of peroxymonosulfate and operational parameters
Rezaei et al. Amino acid-based carbon quantum dot modified MIL-53 (Fe): Investigation of its visible-driven photocatalytic activity provided by a highly efficient photoreactor
Tabatabaee et al. Photodegradation of dye pollutant on Ag/ZnO Nanocatalyst under UV-irradiation
KR102045779B1 (en) TiO2 photocatalyst surface modified with both Pd nanoparticles and fluorides and its application for the degradation of urea
He et al. Solar light photocatalytic degradation of nitrite in aqueous solution over CdS embedded on metal–organic frameworks
Alzahrani Zinc oxide nanopowders prepared by the sol-gel process for the efficient photodegradation of methyl orange
Liu et al. Effective construction of Cu, S-CQDs/BiVO4 composites through a facile and efficient route

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant