KR101870308B1 - 참조 유닛 결정 방법 및 장치 - Google Patents

참조 유닛 결정 방법 및 장치 Download PDF

Info

Publication number
KR101870308B1
KR101870308B1 KR1020170096687A KR20170096687A KR101870308B1 KR 101870308 B1 KR101870308 B1 KR 101870308B1 KR 1020170096687 A KR1020170096687 A KR 1020170096687A KR 20170096687 A KR20170096687 A KR 20170096687A KR 101870308 B1 KR101870308 B1 KR 101870308B1
Authority
KR
South Korea
Prior art keywords
unit
candidate
units
encoder
encoding
Prior art date
Application number
KR1020170096687A
Other languages
English (en)
Other versions
KR20170091561A (ko
Inventor
임성창
김휘용
정세윤
조숙희
김종호
이하현
이진호
최진수
김진웅
안치득
Original Assignee
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자통신연구원 filed Critical 한국전자통신연구원
Publication of KR20170091561A publication Critical patent/KR20170091561A/ko
Application granted granted Critical
Publication of KR101870308B1 publication Critical patent/KR101870308B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/517Processing of motion vectors by encoding
    • H04N19/52Processing of motion vectors by encoding by predictive encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/109Selection of coding mode or of prediction mode among a plurality of temporal predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/597Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding specially adapted for multi-view video sequence encoding

Abstract

본 발명에 따른 인터 예측 방법은 복원된 주변 유닛 중에서 후보 유닛을 선택하는 단계, 선택된 후보 유닛을 이용하여, 복호화 대상 유닛에 대한 후보 유닛 집합을 생성하는 단계, 생성된 후보 유닛 집합을 구성하는 후보 유닛 중에서 참조 유닛을 결정하는 단계 및 결정된 참조 유닛을 이용하여, 복호화 대상 유닛에 대한 인터 예측을 수행하는 단계를 포함한다. 본 발명에 의하면, 영상 부호화/복호화 효율이 향상될 수 있다.

Description

참조 유닛 결정 방법 및 장치 {METHOD AND APPARATUS FOR DETERMINATION OF REFERENCE UNIT}
본 발명은 영상 처리에 관한 것으로서, 보다 상세하게는 인터 예측 방법 및 장치에 관한 것이다.
최근 HD(High Definition) 해상도를 가지는 방송 서비스가 국내뿐만 아니라 세계적으로 확대되면서, 많은 사용자들이 고해상도, 고화질의 영상에 익숙해지고 있으며 이에 따라 많은 기관들이 차세대 영상기기에 대한 개발에 박차를 가하고 있다. 또한 HDTV와 더불어 HDTV의 4배 이상의 해상도를 갖는 UHD(Ultra High Definition)에 대한 관심이 증대되면서 보다 높은 해상도, 고화질의 영상에 대한 압축기술이 요구되고 있다.
영상 압축을 위해, 시간적으로 이전 및/또는 이후의 픽쳐로부터 현재 픽쳐에 포함된 픽셀값을 예측하는 인터(inter) 예측 기술, 현재 픽쳐 내의 픽셀 정보를 이용하여 현재 픽쳐에 포함된 픽셀값을 예측하는 인트라(intra) 예측 기술, 출현 빈도가 높은 심볼(symbol)에 짧은 부호를 할당하고 출현 빈도가 낮은 심볼에 긴 부호를 할당하는 엔트로피 부호화 기술 등이 사용될 수 있다.
본 발명의 기술적 과제는 영상 부호화/복호화 효율을 높일 수 있는 영상 부호화 방법 및 장치를 제공함에 있다.
본 발명의 다른 기술적 과제는 영상 부호화/복호화 효율을 높일 수 있는 영상 복호화 방법 및 장치를 제공함에 있다.
본 발명의 또 다른 기술적 과제는 영상 부호화/복호화 효율을 높일 수 있는 인터 예측 방법 및 장치를 제공함에 있다.
본 발명의 또 다른 기술적 과제는 영상 부호화/복호화 효율을 높일 수 있는 참조 유닛 결정 방법 및 장치를 제공함에 있다.
본 발명의 일 실시 형태는 인터 예측 방법이다. 상기 방법은 복원된 주변 유닛 중에서 후보 유닛을 선택하는 단계, 상기 선택된 후보 유닛을 이용하여, 복호화 대상 유닛에 대한 후보 유닛 집합(candidate unit set)을 생성하는 단계, 상기 생성된 후보 유닛 집합을 구성하는 상기 후보 유닛 중에서 참조 유닛을 결정하는 단계 및 상기 결정된 참조 유닛을 이용하여, 상기 복호화 대상 유닛에 대한 인터 예측을 수행하는 단계를 포함하고, 상기 복원된 주변 유닛은 상기 복호화 대상 유닛의 상단에 인접한 상단 주변 유닛, 상기 복호화 대상 유닛의 좌측에 인접한 좌측 주변 유닛, 상기 복호화 대상 유닛의 우측 상단 코너에 위치한 우측 상단 코너 유닛, 상기 복호화 대상 유닛의 좌측 상단 코너에 위치한 좌측 상단 코너 유닛 및 상기 복호화 대상 유닛의 좌측 하단 코너에 위치한 좌측 하단 코너 유닛을 포함한다.
상기 후보 유닛 선택 단계에서는, 상기 상단 주변 유닛, 상기 좌측 주변 유닛, 상기 우측 상단 코너 유닛, 상기 좌측 상단 코너 유닛 및 상기 좌측 하단 코너 유닛을 상기 후보 유닛으로 선택할 수 있다.
상기 후보 유닛 선택 단계에서는, 상기 상단 주변 유닛 및 상기 좌측 주변 유닛을 상기 후보 유닛으로 선택할 수 있다.
상기 후보 유닛 선택 단계에서는, 상기 복원된 주변 유닛 중에서, 상기 복호화 대상 유닛에 인접한 경계의 길이가 소정의 임계값 이상인 유닛을 상기 후보 유닛으로 선택할 수 있다.
상기 후보 유닛 선택 단계에서는, 상기 복원된 주변 유닛 중에서, 소정의 임계값 이상의 크기를 갖는 유닛을 상기 후보 유닛으로 선택할 수 있다.
상기 후보 유닛 선택 단계에서는, 상기 복원된 주변 유닛 중에서, 소정의 임계값 이하의 깊이 값을 갖는 유닛을 상기 후보 유닛으로 선택할 수 있다.
상기 후보 유닛 선택 단계에서는, 상기 복원된 주변 유닛이 상기 복호화 대상 유닛에 인접하는 경계 간의 상대적인 길이, 상기 복원된 주변 유닛 간의 상대적인 크기 또는 상기 복원된 주변 유닛 간의 상대적인 깊이 값을 기준으로 상기 후보 유닛을 선택할 수 있다.
상기 후보 유닛 선택 단계에서는, 상기 복호화 대상 유닛의 부호화 파라미터 및 상기 복원된 주변 유닛의 부호화 파라미터 중 적어도 하나를 이용하여, 상기 후보 유닛을 선택할 수 있고, 상기 복호화 대상 유닛의 부호화 파라미터 및 상기 복원된 주변 유닛의 부호화 파라미터는 각각 움직임 벡터(motion vector), 참조 픽쳐 리스트(reference picture list), 참조 픽쳐 인덱스(reference picture index), 예측 방향(prediction direction) 및 움직임 벡터 예측기(motion vector predictor) 중 적어도 하나를 포함할 수 있다.
상기 복호화 대상 유닛의 제1 부호화 파라미터는 제1 참조 픽쳐 리스트 및 제1 참조 픽쳐 인덱스를 포함하고, 상기 후보 유닛 선택 단계는, 제2 부호화 파라미터를 가지는 유닛을 상기 후보 유닛으로 선택하는 단계를 더 포함하되, 상기 제2 부호화 파라미터는 상기 제1 참조 픽쳐 리스트와 동일한 제2 참조 픽쳐 리스트 및 상기 제1 참조 픽쳐 인덱스와 동일한 제2 참조 픽쳐 인덱스 중 적어도 하나를 포함할 수 있다.
상기 후보 유닛 선택 단계에서는, 상기 복호화 대상 유닛의 참조 픽쳐와 동일한 참조 픽쳐를 갖는 유닛을 상기 후보 유닛으로 선택할 수 있다.
상기 후보 유닛 선택 단계에서는, 인터 예측에 의해 부호화된 유닛만을 상기 후보 유닛으로 선택할 수 있다.
상기 후보 유닛 집합 생성 단계에서는, 상기 선택된 후보 유닛 및 동일 위치 유닛(collocated unit)을 함께 이용하여, 상기 후보 유닛 집합을 생성할 수 있고, 상기 동일 위치 유닛은, 상기 복호화 대상 유닛에 대한 참조 픽쳐 내의 유닛들 중에서, 상기 복호화 대상 유닛과 동일한 공간적 위치에 있는 유닛일 수 있다.
상기 후보 유닛 선택 단계에서는, 소정의 고정된 개수의 유닛을 상기 후보 유닛으로 선택할 수 있다.
상기 소정의 고정된 개수의 유닛은, 상기 복호화 대상 유닛의 부호화 파라미터와 상기 복원된 주변 유닛의 부호화 파라미터 간의 동일성에 기반하여 선택될 수 있고, 상기 복호화 대상 유닛의 부호화 파라미터 및 상기 복원된 주변 유닛의 부호화 파라미터는 각각 움직임 벡터, 참조 픽쳐 리스트, 참조 픽쳐 인덱스, 예측 방향 및 움직임 벡터 예측기 중 적어도 하나를 포함할 수 있다.
상기 소정의 고정된 개수의 유닛은, 상기 복호화 대상 유닛의 참조 픽쳐 및 상기 복원된 주변 유닛의 참조 픽쳐 간의 동일성에 기반하여 선택될 수 있다.
상기 후보 유닛 선택 단계는, 부호화 파라미터 식별자를 수신하는 단계, 상기 수신된 부호화 파라미터 식별자를 복호화하는 단계 및 상기 복호화된 부호화 파라미터 식별자에 할당된 부호화 파라미터 값을 기준으로, 상기 후보 유닛을 선택하는 단계를 포함할 수 있고, 상기 부호화 파라미터 식별자에 할당된 부호화 파라미터 값은, 상기 복원된 주변 유닛이 상기 부호화 대상 유닛에 인접하는 경계의 길이, 상기 복원된 주변 유닛의 크기 및 상기 복원된 주변 유닛의 깊이 값 중 적어도 하나일 수 있다.
상기 참조 유닛 결정 단계는, 참조 유닛 식별자를 수신하는 단계, 상기 수신된 참조 유닛 식별자를 복호화하는 단계 및 상기 복호화된 참조 유닛 식별자를 이용하여 상기 참조 유닛을 결정하는 단계를 포함할 수 있고, 상기 참조 유닛 식별자는 상기 후보 유닛 집합을 구성하는 상기 후보 유닛 중에서 참조 유닛으로 결정되는 유닛을 지시하는 식별자일 수 있다.
상기 참조 유닛 식별자에 할당된 코드워드 길이는, 상기 참조 유닛 식별자가 지시하는 유닛이 상기 참조 유닛으로 결정될 확률이 높을수록, 짧을 수 있다.
상기 후보 유닛 집합 생성 단계는, 상기 참조 유닛으로 결정될 확률이 높은 순서대로 상기 후보 유닛을 정렬하는 단계를 더 포함할 수 있고, 상기 참조 유닛 결정 단계에서는, 상기 정렬된 후보 유닛 중에서 첫 번째 유닛을 상기 참조 유닛으로 결정할 수 있다.
상기 후보 유닛 집합 생성 단계에서는, 상기 후보 유닛 중에서 상기 참조 유닛으로 결정될 확률이 가장 높은 한 개의 유닛만을 상기 후보 유닛 집합에 포함시킬 수 있고, 상기 참조 유닛 결정 단계에서는, 상기 후보 유닛 집합에 포함된 상기 한 개의 유닛을 상기 참조 유닛으로 결정할 수 있다.
본 발명에 따른 영상 부호화 방법에 의하면, 영상 부호화/복호화 효율이 향상될 수 있다.
본 발명에 따른 영상 복호화 방법에 의하면, 영상 부호화/복호화 효율이 향상될 수 있다.
본 발명에 따른 인터 예측 방법에 의하면, 영상 부호화/복호화 효율이 향상될 수 있다.
본 발명에 따른 참조 유닛 결정 방법에 의하면, 영상 부호화/복호화 효율이 향상될 수 있다.
도 1은 본 발명이 적용되는 영상 부호화 장치의 일 실시예에 따른 구성을 나타내는 블록도이다.
도 2는 본 발명이 적용되는 영상 복호화 장치의 일 실시예에 따른 구성을 나타내는 블록도이다.
도 3은 하나의 유닛이 복수의 하위 유닛으로 분할되는 실시예를 개략적으로 나타내는 개념도이다.
도 4는 부호화기에서의 참조 유닛 결정 방법의 일 실시예를 개략적으로 나타내는 흐름도이다.
도 5는 후보 유닛 집합 생성 방법의 일 실시예를 개략적으로 나타내는 개념도이다.
도 6은 후보 유닛 집합 생성 방법의 다른 실시예를 개략적으로 나타내는 개념도이다.
도 7은 후보 유닛 집합 생성 방법의 또 다른 실시예를 개략적으로 나타내는 개념도이다.
도 8은 후보 유닛 집합 생성 방법의 또 다른 실시예를 개략적으로 나타내는 개념도이다.
도 9는 후보 유닛 집합 생성 방법의 또 다른 실시예를 개략적으로 나타내는 개념도이다.
도 10은 후보 유닛들이 후보 유닛 집합에 포함되는 순서를 결정하는 방법의 일 실시예를 개략적으로 나타내는 개념도이다.
도 11은 본 발명의 실시예에 따른 부호화기에서의 참조 유닛 결정 방법을 개략적으로 설명하는 개념도이다.
도 12는 본 발명의 다른 실시예에 따른 부호화기에서의 참조 유닛 결정 방법을 개략적으로 설명하는 개념도이다.
도 13은 본 발명의 또 다른 실시예에 따른 부호화기에서의 참조 유닛 결정 방법을 개략적으로 설명하는 개념도이다.
도 14는 복호화기에서의 참조 유닛 결정 방법의 일 실시예를 개략적으로 나타내는 흐름도이다.
도 15는 본 발명의 실시예에 따른 복호화기에서의 참조 유닛 결정 방법을 개략적으로 설명하는 개념도이다.
도 16은 본 발명의 다른 실시예에 따른 복호화기에서의 참조 유닛 결정 방법을 개략적으로 설명하는 개념도이다.
도 17은 본 발명의 또 다른 실시예에 따른 복호화기에서의 참조 유닛 결정 방법을 개략적으로 설명하는 개념도이다.
이하, 도면을 참조하여 본 발명의 실시 형태에 대하여 구체적으로 설명한다. 본 명세서의 실시예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 명세서의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
어떤 구성 요소가 다른 구성 요소에 “연결되어” 있다거나 “접속되어” 있다고 언급된 때에는, 그 다른 구성 요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있으나, 중간에 다른 구성 요소가 존재할 수도 있다고 이해되어야 할 것이다. 아울러, 본 발명에서 특정 구성을 “포함”한다고 기술하는 내용은 해당 구성 이외의 구성을 배제하는 것이 아니며, 추가적인 구성이 본 발명의 실시 또는 본 발명의 기술적 사상의 범위에 포함될 수 있음을 의미한다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.
또한 본 발명의 실시예에 나타나는 구성부들은 서로 다른 특징적인 기능들을 나타내기 위해 독립적으로 도시되는 것으로, 각 구성부들이 분리된 하드웨어나 하나의 소프트웨어 구성단위로 이루어짐을 의미하지 않는다. 즉, 각 구성부는 설명의 편의상 각각의 구성부로 나열하여 포함한 것으로 각 구성부 중 적어도 두 개의 구성부가 합쳐져 하나의 구성부로 이루어지거나, 하나의 구성부가 복수 개의 구성부로 나뉘어져 기능을 수행할 수 있고 이러한 각 구성부의 통합된 실시예 및 분리된 실시예도 본 발명의 본질에서 벗어나지 않는 한 본 발명의 권리범위에 포함된다.
또한, 일부의 구성 요소는 본 발명에서 본질적인 기능을 수행하는 필수적인 구성 요소는 아니고 단지 성능을 향상시키기 위한 선택적 구성 요소일 수 있다. 본 발명은 단지 성능 향상을 위해 사용되는 구성 요소를 제외한 본 발명의 본질을 구현하는데 필수적인 구성부만을 포함하여 구현될 수 있고, 단지 성능 향상을 위해 사용되는 선택적 구성 요소를 제외한 필수 구성 요소만을 포함한 구조도 본 발명의 권리범위에 포함된다.
도 1은 본 발명이 적용되는 영상 부호화 장치의 일 실시예에 따른 구성을 나타내는 블록도이다.
도 1을 참조하면, 상기 영상 부호화 장치(100)는 움직임 예측부(111), 움직임 보상부(112), 인트라 예측부(120), 스위치(115), 감산기(125), 변환부(130), 양자화부(140), 엔트로피 부호화부(150), 역양자화부(160), 역변환부(170), 가산기(175), 필터부(180) 및 참조 픽쳐 버퍼(190)를 포함한다.
영상 부호화 장치(100)는 입력 영상에 대해 인트라(intra) 모드 또는 인터(inter) 모드로 부호화를 수행하고 비트스트림을 출력할 수 있다. 인트라 예측은 화면 내 예측, 인터 예측은 화면 간 예측을 의미한다. 인트라 모드인 경우 스위치(115)가 인트라로 전환되고, 인터 모드인 경우 스위치(115)가 인터로 전환될 수 있다. 영상 부호화 장치(100)는 입력 영상의 입력 블록에 대한 예측 블록을 생성한 후, 입력 블록과 예측 블록의 차분(residual)을 부호화할 수 있다.
인트라 모드인 경우, 인트라 예측부(120)는 현재 블록 주변의 이미 부호화된 블록의 픽셀값을 이용하여 공간적 예측을 수행하여 예측 블록을 생성할 수 있다.
인터 모드인 경우, 움직임 예측부(111)는, 움직임 예측 과정에서 참조 픽쳐 버퍼(190)에 저장되어 있는 참조 영상에서 입력 블록과 가장 매치가 잘 되는 영역을 찾아 움직임 벡터를 구할 수 있다. 움직임 보상부(112)는 움직임 벡터를 이용하여 움직임 보상을 수행함으로써 예측 블록을 생성할 수 있다. 여기서, 움직임 벡터는 인터 예측에 사용되는 2차원 벡터이며, 현재 부호화/복호화 대상 영상과 참조 영상 사이의 오프셋을 나타낼 수 있다.
감산기(125)는 입력 블록과 생성된 예측 블록의 차분에 의해 잔차 블록(residual block)을 생성할 수 있다. 변환부(130)는 잔차 블록에 대해 변환(transform)을 수행하여 변환 계수(transform coefficient)를 출력할 수 있다. 그리고 양자화부(140)는 입력된 변환 계수를 양자화 파라미터에 따라 양자화하여 양자화된 계수(quantized coefficient)를 출력할 수 있다.
엔트로피 부호화부(150)는, 양자화부(140)에서 산출된 값들 또는 부호화 과정에서 산출된 부호화 파라미터 값 등을 기초로 엔트로피 부호화를 수행하여 비트스트림(bit stream)을 출력할 수 있다.
엔트로피 부호화가 적용되는 경우, 높은 발생 확률을 갖는 심볼(symbol)에 적은 수의 비트가 할당되고 낮은 발생 확률을 갖는 심볼에 많은 수의 비트가 할당되어 심볼이 표현됨으로써, 부호화 대상 심볼들에 대한 비트열의 크기가 감소될 수 있다. 따라서 엔트로피 부호화를 통해서 영상 부호화의 압축 성능이 높아질 수 있다. 엔트로피 부호화부(150)는 엔트로피 부호화를 위해 지수 골룸(exponential golomb), CAVLC(Context-Adaptive Variable Length Coding), CABAC(Context-Adaptive Binary Arithmetic Coding)과 같은 부호화 방법을 사용할 수 있다.
도 1의 실시예에 따른 영상 부호화 장치는 인터 예측 부호화, 즉 화면 간 예측 부호화를 수행하므로, 현재 부호화된 영상은 참조 영상으로 사용되기 위해 복호화되어 저장될 필요가 있다. 따라서 양자화된 계수는 역양자화부(160)에서 역양자화되고 역변환부(170)에서 역변환된다. 역양자화, 역변환된 계수는 가산기(175)를 통해 예측 블록과 더해지고 복원 블록이 생성된다.
복원 블록은 필터부(180)를 거치고, 필터부(180)는 디블록킹 필터(deblocking filter), SAO(Sample Adaptive Offset), ALF(Adaptive Loop Filter) 중 적어도 하나 이상을 복원 블록 또는 복원 픽쳐에 적용할 수 있다. 필터부(180)는 적응적 인루프(in-loop) 필터로 불릴 수도 있다. 디블록킹 필터는 블록 간의 경계에 생긴 블록 왜곡을 제거할 수 있다. SAO는 코딩 에러를 보상하기 위해 픽셀값에 적정 오프셋(offset) 값을 더해줄 수 있다. ALF는 복원된 영상과 원래의 영상을 비교한 값을 기초로 필터링을 수행할 수 있다. 필터부(180)를 거친 복원 블록은 참조 픽쳐 버퍼(190)에 저장될 수 있다.
도 2는 본 발명이 적용되는 영상 복호화 장치의 일 실시예에 따른 구성을 나타내는 블록도이다.
도 2를 참조하면, 상기 영상 복호화 장치(200)는 엔트로피 복호화부(210), 역양자화부(220), 역변환부(230), 인트라 예측부(240), 움직임 보상부(250), 가산기(255), 필터부(260) 및 참조 픽쳐 버퍼(270)를 포함한다.
영상 복호화 장치(200)는 부호화기에서 출력된 비트스트림을 입력 받아 인트라 모드 또는 인터 모드로 복호화를 수행하고 재구성된 영상, 즉 복원 영상을 출력할 수 있다. 인트라 모드인 경우 스위치가 인트라로 전환되고, 인터 모드인 경우 스위치가 인터로 전환될 수 있다. 영상 복호화 장치(200)는 입력 받은 비트스트림으로부터 잔차 블록(residual block)을 얻고 예측 블록을 생성한 후 잔차 블록과 예측 블록을 더하여 재구성된 블록, 즉 복원 블록을 생성할 수 있다.
엔트로피 복호화부(210)는, 입력된 비트스트림을 확률 분포에 따라 엔트로피 복호화하여, 양자화된 계수(quantized coefficient) 형태의 심볼을 포함한 심볼들을 생성할 수 있다. 엔트로피 복호화 방법은 상술한 엔트로피 부호화 방법과 유사하다.
엔트로피 복호화 방법이 적용되는 경우, 높은 발생 확률을 갖는 심볼에 적은 수의 비트가 할당되고 낮은 발생 확률을 갖는 심볼에 많은 수의 비트가 할당되어 심볼이 표현됨으로써, 각 심볼들에 대한 비트열의 크기가 감소될 수 있다. 따라서 엔트로피 복호화 방법을 통해서 영상 복호화의 압축 성능이 높아질 수 있다.
양자화된 계수는 역양자화부(220)에서 역양자화되고 역변환부(230)에서 역변환되며, 양자화된 계수가 역양자화/역변환 된 결과, 잔차 블록(residual block)이 생성될 수 있다.
인트라 모드인 경우, 인트라 예측부(240)는 현재 블록 주변의 이미 부호화된 블록의 픽셀값을 이용하여 공간적 예측을 수행하여 예측 블록을 생성할 수 있다. 인터 모드인 경우, 움직임 보상부(250)는 움직임 벡터 및 참조 픽쳐 버퍼(270)에 저장되어 있는 참조 영상을 이용하여 움직임 보상을 수행함으로써 예측 블록을 생성할 수 있다.
잔차 블록과 예측 블록은 가산기(255)를 통해 더해지고, 더해진 블록은 필터부(260)를 거칠 수 있다. 필터부(260)는 디블록킹 필터, SAO, ALF 중 적어도 하나 이상을 복원 블록 또는 복원 픽쳐에 적용할 수 있다. 필터부(260)는 재구성된 영상, 즉 복원 영상을 출력할 수 있다. 복원 영상은 참조 픽쳐 버퍼(270)에 저장되어 인터 예측에 사용될 수 있다.
이하, 유닛(unit)은 영상 부호화 및 복호화의 단위를 의미한다. 영상 부호화 및 복호화 시 부호화 혹은 복호화 단위는, 영상을 분할하여 부호화 혹은 복호화 할 때 그 분할된 단위를 의미하므로, 블록, 부호화 유닛 (CU: Coding Unit), 부호화 블록, 예측 유닛 (PU: Prediction Unit), 예측 블록, 변환 유닛(TU: Transform Unit), 변환 블록(transform block) 등으로 불릴 수 있다. 하나의 유닛은 크기가 더 작은 하위 유닛으로 더 분할될 수 있다.
여기서, 예측 유닛은 예측 및/또는 움직임 보상 수행의 단위가 되는 기본 유닛을 의미한다. 예측 유닛은 복수의 파티션(partition)으로 분할될 수 있으며, 각각의 파티션은 예측 유닛 파티션(prediction unit partition)으로 불릴 수도 있다. 예측 유닛이 복수의 파티션으로 분할된 경우, 복수의 파티션 각각이 예측 및/또는 움직임 보상 수행의 단위가 되는 기본 유닛일 수 있다. 이하, 본 발명의 실시예에서는 예측 유닛이 분할된 각각의 파티션도 예측 유닛으로 불릴 수 있다.
한편, 상술한 바와 같이 인터 모드에서 부호화기 및 복호화기는 부호화/복호화 대상 유닛에 대한 예측 및/또는 움직임 보상을 수행할 수 있다. 여기서, 부호화/복호화 대상 유닛(encoding/decoding target unit)은 예측 유닛 및/또는 예측 유닛 파티션을 의미할 수 있다. 이 때, 부호화기 및 복호화기는 복원된 주변 유닛(reconstructed neighbor unit)의 움직임 벡터를 이용함으로써, 부호화/복호화 효율을 향상시킬 수 있다. 여기서, 복원된 주변 유닛은 이미 부호화 또는 복호화되어 복원된 유닛으로서, 부호화/복호화 대상 유닛에 인접한 유닛, 부호화/복호화 대상 유닛의 우측 상단 코너에 위치한 유닛, 부호화/복호화 대상 유닛의 좌측 상단 코너에 위치한 유닛 및/또는 부호화/복호화 대상 유닛의 좌측 하단 코너에 위치한 유닛을 포함할 수 있다.
일례로, 부호화기 및 복호화기는 복원된 주변 유닛의 움직임 벡터를 부호화/복호화 대상 유닛의 움직임 벡터로 사용할 수 있다. 이 때, 부호화/복호화 대상 유닛에서는 복원된 주변 유닛의 움직임 벡터가 사용되므로, 부호화기는 부호화/복호화 대상 유닛에 대한 움직임 벡터를 부호화하지 않을 수 있다. 따라서, 복호화기로 전송되는 비트량이 감소되고, 부호화 효율이 향상될 수 있다. 이러한 인터 예측 모드에는 스킵 모드(skip mode) 및/또는 다이렉트 모드(direct mode) 등이 있을 수 있다.
이 때, 부호화기는 복원된 주변 유닛 중 어떤 유닛의 움직임 벡터가 사용되는지를 지시하는 식별자 및/또는 인덱스를 사용할 수 있다. 상기 식별자 및/또는 인덱스가 사용되는 인터 예측 모드는 머지 모드(merge mode)로 불릴 수 있다.
다른 예로, 부호화기는, 부호화 대상 유닛의 움직임 벡터를 이용하여 예측 및/또는 보상을 수행한 후 부호화 대상 유닛의 움직임 벡터를 부호화할 때, 부호화 대상 유닛의 움직임 벡터와 복원된 주변 유닛의 움직임 벡터 간의 움직임 벡터 차분을 생성할 수 있다. 부호화기는 생성된 움직임 벡터 차분을 부호화하여 복호화기로 전송할 수 있다. 이 때, 복호화기는 움직임 벡터 차분을 복호화하고, 복호화된 움직임 벡터 차분과 복원된 주변 유닛의 움직임 벡터의 합을 통해 복호화 대상 유닛의 움직임 벡터를 도출할 수 있다. 이러한 인터 예측 방법은 MVP(Motion Vector Prediction: 움직임 벡터 예측)로 불릴 수 있다. MVP가 사용됨으로써, 부호화기에서 복호화기로 전송되는 정보량이 감소되고 부호화 효율이 향상될 수 있다.
이 때, 부호화기는 복원된 주변 유닛 중 어떤 유닛의 움직임 벡터가 사용되는지를 지시하는 식별자 및/또는 인덱스를 사용할 수 있다. 상기 식별자 및/또는 인덱스가 추가적으로 이용되는 MVP는 AMVP(Advanced Motion Vector Prediction)로 불릴 수 있다.
상술한 스킵 모드, 다이렉트 모드, 머지 모드, MVP, AMVP 등에서는, 복원된 주변 유닛 중에서 참조 유닛(reference unit)이 결정되고, 결정된 참조 유닛의 움직임 벡터가 현재 부호화/복호화 대상 유닛의 예측 및/또는 움직임 보상에 사용될 수 있다. 이하, 참조 유닛은 부호화/복호화 대상 유닛의 예측 및/또는 움직임 보상에 사용되는 유닛을 의미한다. 부호화기 및 복호화기는 현재 부호화/복호화 대상 유닛에 대한 인터 예측 및/또는 움직임 보상을 수행하는 경우, 참조 유닛의 부호화 파라미터를 이용할 수 있다.
부호화 파라미터는 구문 요소(syntax element)와 같이 부호화기에서 부호화되어 복호화기로 전송되는 정보뿐만 아니라, 부호화 혹은 복호화 과정에서 유추될 수 있는 정보를 포함할 수 있으며, 영상을 부호화하거나 복호화할 때 필요한 정보를 의미한다. 부호화 파라미터는 예를 들어 인터 예측 모드, 움직임 정보, 부호화 블록 패턴(CBP: Coded Block Pattern), 블록 크기, 블록 분할 정보 등의 값 및/또는 통계를 포함할 수 있다.
여기서, 움직임 정보(motion information)는 인터 예측 및 움직임 보상에 필요한 파라미터를 의미한다. 움직임 정보는 참조 픽쳐 리스트(reference picture list), 참조 픽쳐 인덱스(reference picture index), 움직임 벡터(motion vector), 예측 방향(prediction direction), 움직임 벡터 예측기(motion vector predictor) 중 적어도 하나를 포함할 수 있다. 여기서, 참조 픽쳐 리스트는 인터 예측에 사용되는 복수의 참조 영상으로 구성된 리스트이고, 참조 픽쳐 인덱스는 참조 픽쳐 리스트에 포함된 참조 픽쳐들 중에서 부호화/복호화 대상 유닛의 인터 예측에 사용되는 참조 픽쳐를 지시하는 인덱스이다.
인터 예측에는 2개의 참조 픽쳐 리스트가 사용될 수 있으며, 하나는 참조 픽쳐 리스트0, 다른 하나는 참조 픽쳐 리스트1로 불릴 수 있다. 움직임 정보에 포함된 예측 방향(prediction direction)은 인터 예측시 어떤 참조 픽쳐 리스트가 사용되는지를 지시하는 정보일 수 있다. 즉, 예측 방향은 참조 픽쳐 리스트0이 사용되는지, 참조 픽쳐 리스트1이 사용되는지 또는 참조 픽쳐 리스트0과 참조 픽쳐 리스트1이 모두 사용되는지 여부를 지시할 수 있다. 움직임 벡터 예측기는, 부호화기 및 복호화기가 움직임 벡터를 예측할 때, 예측 후보가 되는 유닛 및/또는 예측 후보가 되는 유닛의 움직임 벡터를 의미할 수 있다.
블록 분할 정보에는 유닛의 깊이(depth)에 관한 정보가 포함될 수 있다. 깊이 정보는 유닛이 분할되는 회수 및/또는 정도를 나타낼 수 있다.
도 3은 하나의 유닛이 복수의 하위 유닛으로 분할되는 실시예를 개략적으로 나타내는 개념도이다.
하나의 유닛은 트리 구조(tree structure)를 기초로 깊이 정보(depth)를 가지고 계층적으로 분할될 수 있다. 각각의 분할된 하위 유닛은 깊이 정보를 가질 수 있다. 상기 깊이 정보는 유닛이 분할된 회수 및/또는 정도를 나타내므로, 상기 하위 유닛의 크기에 관한 정보를 포함할 수도 있다.
도 3의 310을 참조하면, 가장 상위 노드는 루트 노드(root node)로 불릴 수 있고, 가장 작은 깊이 값을 가질 수 있다. 이 때, 가장 상위 노드는 레벨 0의 깊이를 가질 수 있으며, 분할되지 않은 최초의 유닛을 나타낼 수 있다.
레벨 1의 깊이를 갖는 하위 노드는 최초 유닛이 한 번 분할된 유닛을 나타낼 수 있으며, 레벨 2의 깊이를 갖는 하위 노드는 최초의 유닛이 두 번 분할된 유닛을 나타낼 수 있다. 예를 들어, 도 3의 320에서 노드 a에 대응하는 유닛 a는 최초 유닛에서 한 번 분할된 유닛이고, 레벨 1의 깊이를 가질 수 있다.
레벨 3의 리프 노드(leaf node)는 최초 유닛이 3번 분할된 유닛을 나타낼 수 있다. 예를 들어, 도3의 320에서 노드 d에 대응하는 유닛 d는 최초 유닛에서 세 번 분할된 유닛이고, 레벨 3의 깊이를 가질 수 있다. 따라서, 가장 하위 노드인 레벨 3의 리프 노드는 가장 깊은 깊이를 가질 수 있다.
상술한 바와 같이, 부호화기 및 복호화기는, 스킵 모드, 다이렉트 모드, 머지 모드, MVP, AMVP 등을 이용하여 인터 예측 및/또는 움직임 보상을 수행하는 경우, 복원된 주변 유닛 중에서 참조 유닛을 결정하고, 결정된 참조 유닛의 움직임 벡터를 이용할 수 있다. 부호화/복호화 대상 유닛에 인접한 복원된 주변 유닛들은 서로 다른 특성을 가질 수 있고, 예를 들어 상기 특성은 복원된 주변 유닛들 각각의 부호화 파라미터에 의해 나타내어질 수 있다. 따라서, 부호화기 및 복호화기는, 참조 유닛을 결정하고 부호화/복호화하는 경우, 영상의 부호화 파라미터를 효율적으로 이용할 필요가 있다. 또한, 하나의 픽쳐는 다양한 크기의 유닛, 다양한 깊이의 유닛을 포함할 수 있다. 따라서, 부호화/복호화 성능을 높이기 위해, 유닛의 크기 및/또는 깊이의 다양성을 고려하여 참조 유닛을 결정하는 방법이 제공될 수 있다.
도 4는 부호화기에서의 참조 유닛 결정 방법의 일 실시예를 개략적으로 나타내는 흐름도이다.
도 4를 참조하면, 부호화기는 복원된 주변 유닛을 이용하여, 후보 유닛 집합을 생성할 수 있다(S410). 여기서, 후보 유닛 집합(candidate unit set)은 참조 유닛 후보들의 집합을 의미한다. 현재 부호화 대상 유닛의 예측 및/또는 움직임 보상에 사용되는 참조 유닛은 상기 참조 유닛 후보들 중에서 결정될 수 있다. 이하, 후보 유닛은 참조 유닛 후보와 동일한 의미를 가질 수 있다.
부호화기는, 소정의 기준 및/또는 방법에 의해, 복원된 주변 유닛 중에서 후보 유닛을 선택할 수 있다. 이 때 부호화기는, 영상의 특성을 반영하기 위해, 부호화 대상 유닛의 부호화 파라미터 및/또는 복원된 주변 유닛의 부호화 파라미터를 이용할 수 있다. 부호화기는 선택된 후보 유닛을 후보 유닛 집합에 포함 및/또는 삽입시켜, 후보 유닛 집합을 생성할 수 있다. 후보 유닛 집합 생성 방법의 구체적인 실시예들은 후술하기로 한다.
다시 도 4를 참조하면, 부호화기는 생성된 후보 유닛 집합에 포함된 후보 유닛들 중에서 현재 부호화 대상 유닛의 예측 및/또는 움직임 보상에 사용되는 참조 유닛을 결정할 수 있다(S420).
참조 유닛이 결정되면, 부호화기는 결정된 참조 유닛을 이용하여 부호화 대상 유닛에 대한 인터 예측을 수행할 수 있다. 이 때 부호화기는, 인터 예측 및/또는 움직임 보상을 수행함에 있어, 스킵 모드, 다이렉트 모드, 머지 모드, MVP, AMVP 등의 방법을 사용할 수 있다. 참조 유닛 결정 방법의 구체적인 실시예들은 후술하기로 한다.
참조 유닛이 결정되면, 부호화기는 참조 유닛 식별 정보를 부호화하여 복호화기로 전송할 수 있다(S430). 참조 유닛 식별 정보에는 부호화 파라미터 식별자, 참조 유닛 식별자 등이 있을 수 있으며, 참조 유닛 식별 정보 부호화 방법의 구체적인 실시예는 후술하기로 한다.
도 5는 후보 유닛 집합 생성 방법의 일 실시예를 개략적으로 나타내는 개념도이다.
부호화기는 복원된 주변 유닛들 중에서 부호화 대상 유닛에 인접한 유닛들 및 부호화 대상 유닛의 코너에 위치한 유닛들을 후보 유닛으로 선택하여, 후보 유닛 집합에 포함시킬 수 있다. 인터 예측 및/또는 움직임 보상이 수행되는 부호화 대상 유닛은 예측 유닛(Prediction Unit)일 수 있다.
이하, 부호화 대상 유닛의 상단에 인접한 유닛은 상단 주변 유닛, 부호화 대상 유닛의 좌측에 인접한 유닛은 좌측 주변 유닛이라 한다. 또한 부호화 대상 유닛의 우측 상단 코너에 위치한 유닛은 우측 상단 코너 유닛, 부호화 대상 유닛의 좌측 상단 코너에 위치한 유닛은 좌측 상단 코너 유닛, 부호화 대상 유닛의 좌측 하단 코너에 위치한 유닛은 좌측 하단 코너 유닛이라 한다.
도 5의 510을 참조하면, 부호화기는 좌측 주변 유닛(A), 상단 주변 유닛(B), 우측 상단 코너 유닛(C), 좌측 상단 코너 유닛(D) 및 좌측 하단 코너 유닛(E)을, 후보 유닛 집합에 포함되는 후보 유닛으로 선택할 수 있다. 이 때, 일 실시예로, 생성된 후보 유닛 집합은 {A, B, C, D, E}와 같이 구성될 수 있다.
도 5의 520을 참조하면, 부호화기는 좌측 주변 유닛(A, B, C), 상단 주변 유닛(D, E, F), 우측 상단 코너 유닛(G), 좌측 상단 코너 유닛(H) 및 좌측 하단 코너 유닛(M)을, 후보 유닛 집합에 포함되는 후보 유닛으로 선택할 수 있다. 이 때, 일 실시예로, 생성된 후보 유닛 집합은 {H, D, E, F, G, A, B, C, M}과 같이 구성될 수 있다.
상술한 실시예에서, 부호화기는 좌측 주변 유닛 중에서 특정 유닛만을 후보 유닛으로 선택할 수도 있다. 예를 들어, 부호화기는 좌측 주변 유닛 중 가장 하단에 위치한 유닛만을 후보 유닛으로 선택할 수 있다. 또한 부호화기는 상단 주변 유닛 중에서 특정 유닛만을 후보 유닛으로 선택할 수도 있다. 예를 들어, 부호화기는 상단 주변 유닛 중에서 가장 우측에 위치한 유닛만을 후보 유닛으로 선택할 수 있다. 이 경우, 도 5의 520에서 생성된 후보 유닛 집합은 {H, F, G, C, M}일 수 있다.
도 6은 후보 유닛 집합 생성 방법의 다른 실시예를 개략적으로 나타내는 개념도이다.
부호화기는 복원된 주변 유닛들 중에서 부호화 대상 유닛의 좌측에 인접한 유닛들 및 부호화 대상 유닛의 상단에 인접한 유닛들을 후보 유닛으로 선택하여, 후보 유닛 집합에 포함시킬 수 있다.
도 6의 610을 참조하면, 부호화기는 좌측 주변 유닛(A), 상단 주변 유닛(B)을, 후보 유닛 집합에 포함되는 후보 유닛으로 선택할 수 있다. 이 때, 일 실시예로, 생성된 후보 유닛 집합은 {A, B}와 같이 구성될 수 있다.
도 6의 620을 참조하면, 부호화기는 좌측 주변 유닛(A, B, C), 상단 주변 유닛(D, E, F)을, 후보 유닛 집합에 포함되는 후보 유닛으로 선택할 수 있다. 이 때, 일 실시예로, 생성된 후보 유닛 집합은 {D, E, F, A, B, C}로 구성될 수 있다.
도 7은 후보 유닛 집합 생성 방법의 또 다른 실시예를 개략적으로 나타내는 개념도이다. 도 7의 실시예에서, 부호화 대상 유닛(X)의 크기는 16x16, C, D, H, M 유닛의 크기는 8x8, 나머지 유닛의 크기는 4x4라 가정한다.
도 6에서 상술한 바와 같이, 부호화기는 복원된 주변 유닛들 중에서 부호화 대상 유닛의 좌측에 인접한 유닛들 및 부호화 대상 유닛의 상단에 인접한 유닛들을 후보 유닛으로 선택할 수 있다. 이 때, 부호화기는, 좌측 주변 유닛들 및 상단 주변 유닛들 중에서, 부호화 대상 유닛과 인접한 경계의 길이가 소정의 길이 이상인 유닛들만을 후보 유닛으로 선택하여 후보 유닛 집합에 포함시킬 수도 있다. 여기서, 상기 소정의 길이는 양의 정수일 수 있다. 이하, 부호화 대상 유닛과 복원된 주변 유닛이 인접한 경계는 인접 경계라 한다.
도 7을 참조하면, 부호화기는 부호화 대상 유닛과 인접한 경계의 길이가 8 이상인 유닛들만을 후보 유닛으로 선택할 수 있다. C, D 유닛은 8x8의 크기를 가지고, 부호화 대상 유닛과 C, D 유닛이 인접한 경계의 길이가 8이므로, 후보 유닛 집합에 포함되는 후보 유닛으로 선택될 수 있다. 반면, A, B, E, F 유닛은 4x4 크기를 가지고, 부호화 대상 유닛과 A, B, E, F 유닛이 인접한 경계의 길이가 4이므로, 후보 유닛 집합에 포함되는 후보 유닛으로 선택되지 않을 수 잇다. 이 때, 일 실시예로, 생성된 후보 유닛 집합은 {C, D}일 수 있다.
다른 예로 부호화기는, 좌측 주변 유닛들의 인접 경계 및 상단 주변 유닛들의 인접 경계의 상대적인 길이를 기준으로, 후보 유닛 집합에 포함되는 후보 유닛을 선택할 수도 있다. 즉, 부호화기는 부호화 대상 유닛에 인접한 유닛들의 인접 경계 길이를 서로 비교하여 후보 유닛을 선택할 수 있다.
예를 들어, 복원된 주변 유닛들 중에서 인접 경계의 길이가 4인 유닛들 및 인접 경계의 길이가 8인 유닛들이 존재하는 경우, 부호화기는 인접 경계의 길이가 상대적으로 긴 후자의 유닛들만을 후보 유닛 집합에 포함시킬 수 있다. 다른 예로서, 복원된 주변 유닛들 중에서 인접 경계의 길이가 16인 유닛들 및 인접 경계의 길이가 4인 유닛들이 존재하는 경우, 부호화기는 인접 경계의 길이가 상대적으로 짧은 후자의 유닛들만을 후보 유닛 집합에 포함시킬 수 있다.
도 8은 후보 유닛 집합 생성 방법의 또 다른 실시예를 개략적으로 나타내는 개념도이다. 도 8의 실시예에서, 부호화 대상 유닛(X)의 크기는 16x16, C, D, H, M 유닛의 크기는 8x8, 나머지 유닛의 크기는 4x4라 가정한다.
도 5에서 상술한 바와 같이, 부호화기는 복원된 주변 유닛들 중에서 부호화 대상 유닛에 인접한 유닛들 및 부호화 대상 유닛의 코너에 위치한 유닛들을 후보 유닛으로 선택할 수 있다. 이 때, 부호화기는, 부호화 대상 유닛에 인접한 유닛들 및 부호화 대상 유닛의 코너에 위치한 유닛들 중에서, 소정의 크기 이상의 유닛들만을 후보 유닛으로 선택하여 후보 유닛 집합에 포함시킬 수도 있다. 여기서, 상기 소정의 크기는 m*n(m은 양의 정수, n은 양의 정수)일 수 있다.
도 8을 참조하면, 부호화기는 8x8 이상의 크기를 갖는 유닛들만을 후보 유닛으로 선택할 수 있다. C, D, H, M 유닛은 8x8의 크기를 가지므로, 후보 유닛 집합에 포함되는 후보 유닛으로 선택될 수 있다. 반면, A, B, E, F, G 유닛은 4x4 크기를 가지므로, 후보 유닛 집합에 포함되는 후보 유닛으로 선택되지 않을 수 있다. 이 때, 일 실시예로, 생성된 후보 유닛 집합은 {C, D, H, M}과 같이 구성될 수 있다.
다른 예로 부호화기는, 복원된 주변 유닛들의 상대적인 크기를 기준으로, 후보 유닛 집합에 포함되는 후보 유닛을 선택할 수도 있다. 즉, 부호화기는 복원된 주변 유닛들의 크기를 서로 비교하여 후보 유닛을 선택할 수 있다. 예를 들어, 크기가 8x8인 복원된 주변 유닛들 및 크기가 16x16인 복원된 주변 유닛들이 존재하는 경우, 부호화기는 크기가 상대적으로 큰 후자의 유닛들만을 후보 유닛 집합에 포함시킬 수 있다.
도 9는 후보 유닛 집합 생성 방법의 또 다른 실시예를 개략적으로 나타내는 개념도이다. 도 9의 실시예에서, 부호화 대상 유닛(X)의 깊이 값은 0이고, C, D, H, M 유닛의 깊이 값은 1이고, 나머지 유닛의 깊이 값은 2라 가정한다.
도 5에서 상술한 바와 같이, 부호화기는 복원된 주변 유닛들 중에서 부호화 대상 유닛에 인접한 유닛들 및 부호화 대상 유닛의 코너에 위치한 유닛들을 후보 유닛으로 선택할 수 있다. 이 때, 부호화기는, 부호화 대상 유닛에 인접한 유닛들 및 부호화 대상 유닛의 코너에 위치한 유닛들 중에서, 소정의 깊이 이하의 유닛들만을 후보 유닛으로 선택하여 후보 유닛 집합에 포함시킬 수도 있다. 여기서, 상기 소정의 깊이는 n(n은 양의 정수)일 수 있다.
도 9를 참조하면, 부호화기는 1 이하의 깊이를 갖는 유닛들만을 후보 유닛으로 선택할 수 있다. C, D, H, M 유닛은 1의 깊이를 가지므로, 후보 유닛 집합에 포함되는 후보 유닛으로 선택될 수 있다. 반면, A, B, E, F, G 유닛은 2의 깊이를 가지므로, 후보 유닛 집합에 포함되는 후보 유닛으로 선택되지 않을 수 있다. 이 때, 일 실시예로, 생성된 후보 유닛 집합은 {H, D, C, M}과 같이 구성될 수 있다.
다른 예로 부호화기는, 복원된 주변 유닛들의 상대적인 깊이를 기준으로, 후보 유닛 집합에 포함되는 후보 유닛을 선택할 수도 있다. 즉, 부호화기는 복원된 주변 유닛들의 깊이를 서로 비교하여 후보 유닛을 선택할 수 있다. 예를 들어, 깊이가 0인 복원된 주변 유닛들 및 깊이가 2인 복원된 주변 유닛들이 존재하는 경우, 부호화기는 깊이 값이 상대적으로 작은 전자의 유닛들만을 후보 유닛 집합에 포함시킬 수 있다.
또 다른 실시예로, 부호화기는 부호화 대상 유닛의 부호화 파라미터 및/또는 복원된 주변 유닛의 부호화 파라미터를 이용하여, 후보 유닛 집합에 포함되는 후보 유닛을 선택할 수 있다. 이 때, 부호화기는 부호화 대상 유닛과 복원된 주변 유닛 간의 부호화 파라미터 관련성을 이용하여 후보 유닛을 선택할 수도 있고, 복원된 주변 유닛의 부호화 파라미터만을 이용하여 후보 유닛을 선택할 수도 있다.
일례로 부호화기는, 복원된 주변 유닛의 움직임 정보와 부호화 대상 유닛의 움직임 정보가 동일한지 여부를 판단한 후, 복원된 주변 유닛들 중 부호화 대상 유닛과 동일한 움직임 정보를 가진 유닛들만을 후보 유닛으로 선택하여 후보 유닛 집합에 포함시킬 수도 있다. 예를 들어, 상기 움직임 정보는 움직임 벡터, 참조 픽쳐 리스트, 참조 픽쳐 인덱스, 예측 방향 및 움직임 벡터 예측기 중 적어도 하나 이상일 수 있다.
다른 예로 부호화기는, 복원된 주변 유닛의 움직임 정보와 부호화 대상 유닛의 움직임 정보가 유사한지 여부를 판단한 후, 복원된 주변 유닛들 중에서 부호화 대상 유닛과 유사한 움직임 정보를 가진 유닛들만을 후보 유닛으로 선택하여 후보 유닛 집합에 포함시킬 수도 있다. 예를 들어, 상기 움직임 정보는 움직임 벡터, 참조 픽쳐 리스트, 참조 픽쳐 인덱스, 예측 방향 및 움직임 벡터 예측기 중 적어도 하나 이상일 수 있다. 복원된 주변 유닛의 움직임 정보와 부호화 대상 유닛의 움직임 정보가 완전히 동일하지는 않지만 소정의 기준을 충족시키는 경우에는, 서로 유사한 것으로 판단될 수 있다.
복원된 주변 유닛의 움직임 정보와 부호화 대상 유닛의 움직임 정보가 유사한 경우의 실시예들은 다음과 같다. 예를 들어, 복원된 주변 유닛의 움직임 벡터와 부호화 대상 유닛의 움직임 벡터의 성분별 크기 차이가, 정수 화소 단위로 소정의 크기 미만인 경우, 복원된 주변 유닛의 움직임 정보와 부호화 대상 유닛의 움직임 정보가 유사한 것으로 판단될 수 있다. 여기서, 상기 소정의 크기는 임의의 자연수 및/또는 양의 실수일 수 있으며, 일례로 1일 수 있다. 다른 예로, 복원된 주변 유닛과 부호화 대상 유닛이 서로 다른 참조 픽쳐 리스트를 갖지만, 서로 동일한 참조 픽쳐를 사용하는 경우, 복원된 주변 유닛의 움직임 정보와 부호화 대상 유닛의 움직임 정보가 유사한 것으로 판단될 수 있다. 또 다른 예로, 복원된 주변 유닛과 부호화 대상 유닛이 서로 다른 참조 픽쳐 인덱스를 갖지만, 서로 동일한 참조 픽쳐를 사용하는 경우, 복원된 주변 유닛의 움직임 정보와 부호화 대상 유닛의 움직임 정보가 유사한 것으로 판단될 수 있다.
또한 예를 들어 부호화기는 복원된 주변 유닛들 중에서 인트라 예측에 의해 부호화된 유닛들은 후보 유닛으로 선택하지 않을 수 있다. 이 때, 부호화기는 인트라 예측에 의해 부호화된 유닛들은 후보 유닛 집합에 포함시키지 않을 수 있다. 일례로 부호화기는 복원된 주변 유닛들 중에서 인터 예측에 의해 부호화된 유닛들만을 후보 유닛으로 선택하여, 후보 유닛 집합에 포함시킬 수 있다.
부호화기는, 복원된 주변 유닛에 대한 잔차 신호(residual signal) 유무를 판단한 후, 복원된 주변 유닛들 중에서 잔차 신호가 존재하지 않는 유닛들을 후보 유닛으로 선택하여 후보 유닛 집합에 포함시킬 수도 있다. 여기서, 상기 잔차 신호 유무는, 잔차 신호 유무에 대한 구문 요소인 CBP(Coded Block Pattern) 및/또는 CBF(Coded Block Flag)의 값을 통해 판별될 수 있다.
상술한 후보 유닛 집합 생성 방법의 실시예들에서, 상기 후보 유닛 집합에 포함되는 후보 유닛의 개수는 소정의 개수(예를 들어, N개)로 제한될 수 있다. 여기서, N은 0보다 큰 양의 정수를 나타낼 수 있다.
후보 유닛 집합에 포함되는 후보 유닛의 개수가 N개로 제한되는 경우, 부호화기는 소정의 기준을 이용하여, 복원된 주변 유닛들 중에서 N개의 유닛만을 후보 유닛으로 선택할 수 있다. 여기서, 상기 소정의 기준에는 부호화 대상 유닛과의 인접 정도, 부호화 대상 유닛 경계와의 인접 정도, 부호화 대상 유닛과 인접한 경계의 상대적인 및/또는 절대적인 길이, 복원된 주변 유닛의 상대적인 및/또는 절대적인 크기, 복원된 주변 유닛의 상대적인 및/또는 절대적인 깊이 값, 복원된 주변 유닛의 부호화/복호화 순서 및/또는 부호화 대상 유닛의 부호화 파라미터와 복원된 주변 유닛의 부호화 파라미터 간의 동일성/유사성 등이 있을 수 있다. 복원된 주변 유닛의 부호화 파라미터와 부호화 대상 유닛의 부호화 파라미터가 유사한 경우의 실시예들은 상술한 바 있다. 예를 들어, 복원된 주변 유닛의 부호화 파라미터와 부호화 대상 유닛이 서로 동일한 참조 픽쳐를 사용하는 경우, 복원된 주변 유닛의 부호화 파라미터와 부호화 대상 유닛의 부호화 파라미터가 유사한 것으로 판단될 수 있다.
예를 들어, 후보 유닛 집합에 포함되는 후보 유닛의 개수는 2개일 수 있다. 이 때, 일례로 부호화기는 복원된 주변 유닛들 중에서, 부호화 대상 유닛에 인접한 경계의 길이가 긴 순서대로 2개의 유닛을 후보 유닛으로 선택하여 후보 유닛 집합에 포함시킬 수 있다.
다른 예로, 후보 유닛 집합에 포함되는 후보 유닛의 개수는 3개일 수 있다. 또한, 일례로 복원된 주변 유닛들이 동일한 움직임 정보를 가질 수 있다. 이 때 부호화기는, 동일한 움직임 정보를 가진 복원된 주변 유닛들 중에서, 부호화/복호화 순서상 늦게 복원된 3개의 유닛을 후보 유닛으로 선택하여, 후보 유닛 집합에 포함시킬 수 있다.
한편, 상술한 후보 유닛 집합 생성 방법의 실시예들에서, 상기 후보 유닛 집합에 포함되는 후보 유닛들은, 부호화 대상 유닛에 대한 참조 유닛으로 결정될 확률이 높은 순서대로 정렬될 수 있다. 즉, 부호화기는 부호화 대상 유닛에 대한 참조 유닛으로 결정될 확률이 높은 유닛을 우선적으로 후보 유닛 집합에 포함 및/또는 삽입시킬 수 있다. 이 때, 부호화기는 참조 유닛으로 결정될 확률이 높은 후보 유닛일수록, 짧은 코드워드를 갖는 참조 유닛 식별자를 할당하여 부호화 효율을 높일 수 있다.
도 10은 후보 유닛들이 후보 유닛 집합에 포함되는 순서를 결정하는 방법의 일 실시예를 개략적으로 나타내는 개념도이다. 도 10에서 복원된 주변 유닛들이 부호화/복호화되는 순서는 H->D->K->L->E->F->N->O->G->P->I->A->J->B->C->M이라 가정한다.
예를 들어, 부호화기는 복원된 주변 유닛들 중에서 부호화 대상 유닛의 좌측에 인접한 유닛들 및 부호화 대상 유닛의 상단에 인접한 유닛들을 후보 유닛으로 선택하여 후보 유닛 집합에 포함시킬 수 있다. 이 때, 부호화기는 선택된 후보 유닛들을 부호화/복호화 순서에 따라 후보 유닛 집합에 포함시킬 수 있다.
도 10을 참조하면, 부호화기는 부호화/복호화 순서가 빠른 후보 유닛을 우선적으로 후보 유닛 집합에 포함시킬 수 있다. 현재 부호화 대상 유닛(X)에 인접한 유닛들은 D->E->F->A->B->C의 순서로 부호화/복호화 될 수 있으므로, 생성된 후보 유닛 집합은 {D, E, F, A, B, C}와 같이 구성될 수 있다.
다른 실시예로, 부호화기는 후보 유닛 집합에 포함되는 후보 유닛들을, 부호화 대상 유닛에 인접한 경계의 길이가 긴 순서로 정렬할 수 있다. 즉, 부호화기는 부호화 대상 유닛에 인접한 경계의 길이가 긴 후보 유닛을 우선적으로 후보 유닛 집합에 포함 및/또는 삽입시킬 수 있다.
또 다른 실시예로, 부호화기는 후보 유닛 집합에 포함되는 후보 유닛들을, 깊이 값이 작은 순서로 정렬할 수 있다. 즉, 부호화기는 깊이 값이 작은 후보 유닛을 우선적으로 후보 유닛 집합에 포함 및/또는 삽입시킬 수 있다.
상술한 후보 유닛 집합 생성 방법의 실시예들에서, 부호화기는 복원된 주변 블록들 중에서 후보 유닛 집합에 포함되는 후보 유닛을 선택할 수 있다. 이 때, 복원된 주변 블록들 중에서 선택된 후보 유닛은 공간적(spatial) 후보 유닛으로 불릴 수 있다.
부호화기는, 공간적 후보 유닛 외에, 참조 픽쳐 내의 유닛들 중에서 부호화 대상 유닛과 동일한 공간적 위치에 있는 유닛을 후보 유닛으로 선택하여, 후보 유닛 집합에 포함시킬 수도 있다. 이하, 설명의 편의를 위해, 참조 픽쳐 내의 유닛들 중에서 부호화 대상 유닛과 동일한 공간적 위치에 있는 유닛은 동일 위치 유닛(collocated unit) 및/또는 동일 위치 블록(collocated block)이라 한다. 이 때, 참조 픽쳐 내의 유닛들 중에서 선택된 후보 유닛은 시간적(temporal) 후보 유닛으로 불릴 수 있다.
상술한 후보 유닛 집합 생성 과정에서, 부호화기는 복원된 주변 유닛에 대한 부호화 파라미터 식별자를 이용할 수 있다. 이 때, 후보 유닛 집합에 포함되는 후보 유닛들은 상기 부호화 파라미터 식별자를 이용하여 선택될 수 있다. 여기서, 부호화 파라미터 식별자가 사용되는 부호화 파라미터에는, 예를 들어 부호화 대상 유닛과 복원된 주변 유닛이 인접한 경계의 길이, 복원된 주변 유닛의 크기, 복원된 주변 유닛의 깊이 값 등이 있을 수 있다.
부호화 파라미터 식별자에는 소정의 값이 할당될 수 있다. 이 때, 일례로 부호화기는 복원된 주변 유닛 중에서, 부호화 파라미터 식별자에 할당된 값과 동일한 값의 부호화 파라미터를 갖는 유닛을 후보 유닛으로 선택할 수 있다. 다른 예로 부호화기는 복원된 주변 유닛 중에서, 부호화 파라미터 식별자에 할당된 값보다 큰 값의 부호화 파라미터를 갖는 유닛을 후보 유닛으로 선택할 수 있다. 또 다른 예로 부호화기는 부호화 파라미터 식별자에 할당된 값보다 작은 값의 부호화 파라미터를 갖는 유닛을 후보 유닛으로 선택할 수도 있다.
예를 들어, 부호화 대상 유닛과 복원된 주변 유닛이 인접한 경계의 길이에 대해 부호화 파라미터 식별자가 사용된다고 가정한다. 여기서, 상기 부호화 파라미터 식별자는 log2_unit_boundary_length에 의해 나타내어질 수 있다. 상술한 바와 같이 부호화기는 복원된 주변 유닛 중에서 부호화 대상 유닛과 인접한 경계의 길이가 소정의 길이보다 큰 유닛들만을 후보 유닛으로 선택하여 후보 유닛 집합에 포함시킬 수도 있다. 여기서, 상기 소정의 길이가 8이라 가정하면, 상기 부호화 파라미터 식별자 log2_unit_boundary_length에는 3의 값이 할당될 수 있다. 이 때, 부호화기는 상기 부호화 파라미터 식별자에 할당된 값보다 큰 인접 경계 길이를 갖는 유닛들만을 후보 유닛으로 선택하여 후보 유닛 집합에 포함시킬 수 있다. 또한, 부호화기는 3의 값이 할당된 상기 부호화 파라미터 식별자를 부호화하여, 복호화기로 전송할 수 있다.
후보 유닛 집합이 생성되면, 부호화기는 생성된 후보 유닛 집합에 포함된 후보 유닛들 중에서 현재 부호화 대상 유닛의 예측 및/또는 움직임 보상에 사용되는 참조 유닛을 결정할 수 있다.
도 11은 본 발명의 실시예에 따른 부호화기에서의 참조 유닛 결정 방법을 개략적으로 설명하는 개념도이다.
부호화기는, 후보 유닛 집합에 포함된 후보 유닛들 중에서, 율-왜곡 관점에서 최적의 부호화 효율을 나타내는 후보 유닛을 참조 유닛으로 결정할 수 있다. 또한 상술한 바와 같이 부호화기는 후보 유닛 집합에 포함된 후보 유닛들의 부호화 파라미터(예를 들어, 움직임 정보 등)를 인터 예측 및 움직임 보상에 이용할 수 있다. 이 때, 부호화기는, 상기 부호화 파라미터를 이용하여, 율-왜곡 관점에서 최적의 부호화 효율을 나타내는 후보 유닛을 참조 유닛으로 결정할 수 있다. 여기서, 율(distortion)과 왜곡(rate)의 관점에서 최적의 부호화 방식을 선택하는 방법은 율-왜곡 최적화(RDO: Rate Distortion Optimization)로 불릴 수 있다.
율-왜곡 최적화 방식에 의해 참조 유닛이 결정되면, 부호화기는 후보 유닛 집합에 포함된 후보 유닛들 중 어떤 후보 유닛이 참조 유닛으로 결정되는지를 지시하는 참조 유닛 식별자를 부호화하여 복호화기로 전송할 수 있다. 일례로, 상기 참조 유닛 식별자는, 참조 유닛으로 결정되는 후보 유닛의 후보 유닛 집합 내 순서 및/또는 위치를 지시할 수 있다. 다른 예로, 상기 참조 유닛 식별자는 부호화 대상 유닛으로부터 참조 유닛까지의 부호화 순서 차이를 지시할 수 있다. 또 다른 예로, 후보 유닛 집합 내의 후보 유닛들 각각에는 참조 유닛 인덱스가 할당될 수 있으며, 상기 참조 유닛 인덱스가 참조 유닛 식별자로 사용될 수 있다.
도 11을 참조하면, 후보 유닛 집합은 일 실시예로 {A, B, C, D, E, F}와 같이 구성될 수 있다. 이 때, 각각의 후보 유닛에는 참조 유닛 인덱스가 할당될 수 있으며, 예를 들어, A에는 0, B에는 1, C에는 2, D에는 3, E에는 4, F에는 5의 인덱스가 할당될 수 있다.
부호화기는 참조 유닛 인덱스를 부호화하여 복호화기로 전송할 수 있고, 복호화기는 부호화된 참조 유닛 인덱스를 수신하여 복호화할 수 있다. 부호화기가 B를 참조 유닛으로 결정하는 경우, 복호화기로 전송되는 참조 유닛 인덱스의 값은 1일 수 있다. 이 때, 복호화기는 상기 참조 유닛 인덱스의 값을 이용하여, 유닛 B를 참조 유닛으로 결정할 수 있다.
도 12는 본 발명의 다른 실시예에 따른 부호화기에서의 참조 유닛 결정 방법을 개략적으로 설명하는 개념도이다. 도 12에서 복원된 주변 유닛들이 부호화/복호화되는 순서는 H->D->K->L->E->F->N->O->G->P->I->A->J->B->C->M이라 가정한다.
상술한 바와 같이, 후보 유닛 집합 생성 과정에서 부호화기는, 후보 유닛 집합에 포함되는 후보 유닛들을, 참조 유닛으로 결정될 확률이 높은 순서대로 정렬할 수 있다. 이 때, 부호화기는 후보 유닛 집합 내에 포함된 후보 유닛들 중에서 첫 번째 후보 유닛을 참조 유닛으로 결정할 수 있다.
도 12를 참조하면, 부호화기는 부호화 대상 유닛에 인접한 유닛들을 후보 유닛으로 선택할 수 있다. 이 때, 선택되는 후보 유닛들은 A, B, C, D, E, F일 수 있다. 부호화기는 선택된 후보 유닛들을 부호화/복호화 순서에 따라 정렬할 수 있다. 예를 들어, 부호화기는 부호화 순서상 늦게 부호화된 유닛을 우선적으로 후보 유닛 집합에 포함시킬 수 있다. 이 때, 후보 유닛 집합은 {C, B, A, F, E, D}와 같이 구성될 수 있다. 부호화기는 상기 후보 유닛 집합 내의 첫 번째 후보 유닛 C를 참조 유닛으로 결정할 수 있다. 이 경우, 부호화 대상 유닛과의 부호화 순서 차이가 가장 작은 후보 유닛이 참조 유닛으로 결정될 수 있다.
후보 유닛 집합 내의 첫 번째 후보 유닛이 참조 유닛으로 결정되는 경우, 부호화기 및 복호화기는 별도의 참조 유닛 식별자 없이 참조 유닛을 결정할 수 있다. 따라서, 부호화기는 참조 유닛 식별자를 부호화하지 않을 수 있으며, 참조 유닛 식별자를 복호화기로 전송하지 않을 수 있다.
도 13은 본 발명의 또 다른 실시예에 따른 부호화기에서의 참조 유닛 결정 방법을 개략적으로 설명하는 개념도이다.
도 13을 참조하면, 부호화기는 부호화 대상 유닛에 인접한 유닛들을 후보 유닛으로 선택할 수 있다. 이 때, 선택된 후보 유닛들은 A, D, E, F일 수 있다.
한편, 후보 유닛 집합에 포함되는 후보 유닛의 개수는 소정의 개수로 제한될 수 있으며, 상기 소정의 개수는 1일 수도 있다. 이 때, 부호화기는 복원된 주변 유닛들 중에서 참조 유닛으로 선택될 확률이 가장 높은 하나의 유닛만을 후보 유닛으로 선택하여 후보 유닛 집합을 생성할 수 있다. 예를 들어, 부호화기는 복원된 주변 유닛들의 크기를 서로 비교하여, 상대적으로 가장 큰 유닛(예를 들어, 유닛 A) 만을 후보 유닛으로 선택할 수 있다. 이 때, 후보 유닛 집합은 {A}와 같이 구성되고, 후보 유닛 집합을 구성하는 후보 유닛의 개수는 1개일 수 있다.
후보 유닛 집합을 구성하는 후보 유닛의 개수가 1개인 경우, 부호화기 및 복호화기는 해당 후보 유닛을 참조 유닛으로 결정할 수 있다. 이 때, 부호화기 및 복호화기는 별도의 참조 유닛 식별자 없이 참조 유닛을 결정할 수 있다. 따라서, 부호화기는 참조 유닛 식별자를 부호화하지 않을 수 있으며, 참조 유닛 식별자를 복호화기로 전송하지 않을 수 있다.
도 4에서 상술한 바와 같이, 참조 유닛이 결정되면 부호화기는 참조 유닛 식별 정보를 부호화하여 복호화기로 전송할 수 있다. 참조 유닛 식별 정보는 부호화 파라미터 식별자 및 참조 유닛 식별자 중 적어도 하나를 포함할 수 있다.
부호화기는 복원된 주변 유닛에 대한 부호화 파라미터 식별자를 이용할 수 있다. 이 때, 후보 유닛 집합에 포함되는 후보 유닛들은 상기 부호화 파라미터 식별자를 이용하여 선택될 수 있다.
부호화 파라미터 식별자에는 소정의 값이 할당될 수 있다. 이 때, 일례로 부호화기는 복원된 주변 유닛 중에서, 부호화 파라미터 식별자에 할당된 값과 동일한 값의 부호화 파라미터를 갖는 유닛을 후보 유닛으로 선택할 수 있다. 다른 예로 부호화기는 복원된 주변 유닛 중에서, 부호화 파라미터 식별자에 할당된 값보다 큰 값의 부호화 파라미터를 갖는 유닛을 후보 유닛으로 선택할 수 있다. 또 다른 예로 부호화기는 부호화 파라미터 식별자에 할당된 값보다 작은 값의 부호화 파라미터를 갖는 유닛을 후보 유닛으로 선택할 수도 있다.
부호화기는 부호화 파라미터 식별자를 부호화할 수 있다. 이 때, 부호화된 부호화 파라미터 식별자는 복호화기로 전송될 수 있다.
또한 상술한 바와 같이, 부호화기는 후보 유닛 집합에 포함된 후보 유닛들의 부호화 파라미터를 인터 예측 및 움직임 보상에 이용할 수 있다. 이 때, 부호화기는, 상기 부호화 파라미터를 이용하여, 율-왜곡 관점에서 최적의 부호화 효율을 나타내는 후보 유닛을 참조 유닛으로 결정할 수 있다.
율-왜곡 최적화 방식에 의해 참조 유닛이 결정되면, 부호화기는 후보 유닛 집합에 포함된 후보 유닛들 중 어떤 후보 유닛이 참조 유닛으로 결정되는지를 지시하는 참조 유닛 식별자를 부호화하여 복호화기로 전송할 수 있다. 일례로, 상기 참조 유닛 식별자는, 참조 유닛으로 결정되는 후보 유닛의 후보 유닛 집합 내 순서 및/또는 위치를 지시할 수 있다. 다른 예로, 상기 참조 유닛 식별자는 부호화 대상 유닛으로부터 참조 유닛까지의 부호화 순서 차이를 지시할 수 있다. 또 다른 예로, 후보 유닛 집합 내의 후보 유닛들 각각에는 참조 유닛 인덱스가 할당될 수 있으며, 상기 참조 유닛 인덱스가 참조 유닛 식별자로 사용될 수 있다.
복호화기는 부호화된 참조 유닛 식별자를 수신하여 복호화할 수 있다. 복호화기는 복호화된 참조 유닛 식별자를 이용하여 참조 유닛을 결정할 수 있다.
후보 유닛 집합 내의 첫 번째 후보 유닛이 참조 유닛으로 결정되는 경우 및 후보 유닛 집합을 구성하는 후보 유닛의 개수가 1개인 경우, 부호화기 및 복호화기는 별도의 참조 유닛 식별자 없이 참조 유닛을 결정할 수 있다. 이 때, 부호화기는 참조 유닛 식별자의 부호화를 생략할 수도 있다.
도 14는 복호화기에서의 참조 유닛 결정 방법의 일 실시예를 개략적으로 나타내는 흐름도이다.
도 14를 참조하면, 복호화기는 부호화기로부터 참조 유닛 식별 정보를 수신하여 복호화할 수 있다(S1410). 부호화기로부터 전송된 참조 유닛 식별 정보는 부호화 파라미터 식별자 및 참조 유닛 식별자 중 적어도 하나를 포함할 수 있다.
복호화기는, 참조 유닛 식별 정보에 포함된 부호화 파라미터 식별자를 이용하여, 후보 유닛 집합에 포함되는 후보 유닛들을 선택할 수 있다. 부호화 파라미터 식별자에는 소정의 값이 할당될 수 있다. 이 때, 일례로 복호화기는 복원된 주변 유닛 중에서, 부호화 파라미터 식별자에 할당된 값과 동일한 값의 부호화 파라미터를 갖는 유닛을 후보 유닛으로 선택할 수 있다. 다른 예로 복호화기는 복원된 주변 유닛 중에서, 부호화 파라미터 식별자에 할당된 값보다 큰 값의 부호화 파라미터를 갖는 유닛을 후보 유닛으로 선택할 수 있다. 또 다른 예로 복호화기는 부호화 파라미터 식별자에 할당된 값보다 작은 값의 부호화 파라미터를 갖는 유닛을 후보 유닛으로 선택할 수도 있다. 여기서, 부호화 파라미터 식별자에 할당된 값은, 부호화기에서 사용된, 부호화 파라미터 및/또는 부호화 파라미터 식별자의 값과 동일한 값일 수 있다.
복호화기는 부호화기에서 부호화된 참조 유닛 식별자를 복호화할 수 있다. 상술한 바와 같이, 참조 유닛 식별자는 후보 유닛 집합에 포함된 후보 유닛들 중 어떤 후보 유닛이 참조 유닛으로 결정되는지를 지시할 수 있다. 일례로, 상기 참조 유닛 식별자는, 참조 유닛으로 결정되는 후보 유닛의 후보 유닛 집합 내 순서 및/또는 위치를 지시할 수 있다. 다른 예로, 상기 참조 유닛 식별자는 복호화 대상 유닛으로부터 참조 유닛까지의 복호화 순서 차이를 지시할 수 있다. 또 다른 예로, 후보 유닛 집합 내의 후보 유닛들 각각에는 참조 유닛 인덱스가 할당될 수 있으며, 상기 참조 유닛 인덱스가 참조 유닛 식별자로 사용될 수 있다. 복호화기는, 후보 유닛 집합에서 참조 유닛을 결정함에 있어, 복호화된 참조 유닛 식별자를 이용할 수 있다.
후보 유닛 집합 내의 첫 번째 후보 유닛이 참조 유닛으로 결정되는 경우 및 후보 유닛 집합을 구성하는 후보 유닛의 개수가 1개인 경우, 부호화기 및 복호화기는 별도의 참조 유닛 식별자 없이 참조 유닛을 결정할 수 있다. 이 때, 부호화기는 참조 유닛 식별자를 전송하지 않을 수 있으므로, 복호화기는 참조 유닛 식별자를 복호화하지 않을 수 있다.
다시 도 14를 참조하면, 복호화기는 복원된 주변 유닛을 이용하여, 후보 유닛 집합을 생성할 수 있다(S1420).
복호화기는, 소정의 기준 및/또는 방법에 의해, 복원된 주변 유닛 중에서 후보 유닛을 선택할 수 있다. 이 때 복호화기는, 영상의 특성을 반영하기 위해, 복호화 대상 유닛의 부호화 파라미터 및/또는 복원된 주변 유닛의 부호화 파라미터를 이용할 수 있다. 복호화기는 선택된 후보 유닛을 후보 유닛 집합에 포함 및/또는 삽입시켜, 후보 유닛 집합을 생성할 수 있다.
복호화기는 부호화기에서와 동일한 과정을 통해 후보 유닛 집합을 생성할 수 있다. 부호화기에서의 후보 유닛 집합 생성 과정은 상술한 바 있으므로, 복호화기에서의 후보 유닛 집합 생성 과정의 상세한 설명은 생략하기로 한다.
후보 유닛 집합이 생성되면, 복호화기는 생성된 후보 유닛 집합에 포함된 후보 유닛들 중에서 현재 복호화 대상 유닛의 예측 및/또는 움직임 보상에 사용되는 참조 유닛을 결정할 수 있다(S1430).
복호화기는 참조 유닛 결정 과정에서, 복호화된 참조 유닛 식별 정보를 이용할 수 있다. 참조 유닛이 결정되면, 복호화기는 결정된 참조 유닛을 이용하여 부호화 대상 유닛에 대한 인터 예측을 수행할 수 있다. 참조 유닛 결정 방법의 구체적인 실시예들은 후술하기로 한다.
도 15는 본 발명의 실시예에 따른 복호화기에서의 참조 유닛 결정 방법을 개략적으로 설명하는 개념도이다.
복호화기는, 복호화된 참조 유닛 식별자를 이용하여, 후보 유닛 집합에 포함된 후보 유닛들 중에서 복호화 대상 유닛의 인터 예측 및 움직임 보상에 이용되는 참조 유닛을 결정할 수 있다. 일례로, 상기 참조 유닛 식별자는, 참조 유닛으로 결정되는 후보 유닛의 후보 유닛 집합 내 순서 및/또는 위치를 지시할 수 있다. 다른 예로, 상기 참조 유닛 식별자는 복호화 대상 유닛으로부터 참조 유닛까지의 복호화 순서 차이를 지시할 수 있다. 또 다른 예로, 후보 유닛 집합 내의 후보 유닛들 각각에는 참조 유닛 인덱스가 할당될 수 있으며, 상기 참조 유닛 인덱스가 참조 유닛 식별자로 사용될 수 있다.
도 15를 참조하면, 후보 유닛 집합은 일 실시예로 {A, B, C, D, E, F}와 같이 구성될 수 있다. 이 때, 각각의 후보 유닛에는 참조 유닛 인덱스가 할당될 수 있으며, 예를 들어, A에는 0, B에는 1, C에는 2, D에는 3, E에는 4, F에는 5의 인덱스가 할당될 수 있다. 복호화된 참조 유닛 인덱스의 값이 2인 경우, 복호화기는 상기 참조 유닛 인덱스의 값을 이용하여, 유닛 C를 참조 유닛으로 결정할 수 있다.
도 16은 본 발명의 다른 실시예에 따른 복호화기에서의 참조 유닛 결정 방법을 개략적으로 설명하는 개념도이다. 도 16에서 복원된 주변 유닛들이 복호화되는 순서는 H->D->K->L->E->F->N->O->G->P->I->A->J->B->C->M이라 가정한다.
후보 유닛 집합 생성 과정에서 복호화기는, 후보 유닛 집합에 포함되는 후보 유닛들을, 참조 유닛으로 결정될 확률이 높은 순서대로 정렬할 수 있다. 이 때, 복호화기는 후보 유닛 집합 내에 포함된 후보 유닛들 중에서 첫 번째 후보 유닛을 참조 유닛으로 결정할 수 있다.
도 16을 참조하면, 복호화기는 복호화 대상 유닛에 인접한 유닛들을 후보 유닛으로 선택할 수 있다. 이 때, 선택되는 후보 유닛들은 A, B, C, D, E, F일 수 있다. 복호화기는 선택된 후보 유닛들을 복호화 순서에 따라 정렬할 수 있다. 예를 들어, 복호화기는 복호화 순서상 늦게 복호화된 유닛을 우선적으로 후보 유닛 집합에 포함시킬 수 있다. 이 때, 후보 유닛 집합은 {C, B, A, F, E, D}와 같이 구성될 수 있다. 복호화기는 상기 후보 유닛 집합 내의 첫 번째 후보 유닛 C를 참조 유닛으로 결정할 수 있다. 이 경우, 복호화 대상 유닛과의 복호화 순서 차이가 가장 작은 후보 유닛이 참조 유닛으로 결정될 수 있다.
후보 유닛 집합 내의 첫 번째 후보 유닛이 참조 유닛으로 결정되는 경우, 부호화기 및 복호화기는 별도의 참조 유닛 식별자 없이 참조 유닛을 결정할 수 있다. 이 때, 부호화기는 참조 유닛 식별자를 복호화기로 전송하지 않을 수 있으므로, 복호화기는 참조 유닛 식별자를 복호화하지 않을 수 있다.
도 17은 본 발명의 또 다른 실시예에 따른 복호화기에서의 참조 유닛 결정 방법을 개략적으로 설명하는 개념도이다.
도 17을 참조하면, 복호화기는 복호화 대상 유닛에 인접한 유닛들을 후보 유닛으로 선택할 수 있다. 이 때, 선택된 후보 유닛들은 A, D, E, F일 수 있다.
한편, 후보 유닛 집합에 포함되는 후보 유닛의 개수는 소정의 개수로 제한될 수 있으며, 상기 소정의 개수는 1일 수도 있다. 이 때, 복호화기는 복원된 주변 유닛들 중에서 참조 유닛으로 선택될 확률이 가장 높은 하나의 유닛만을 후보 유닛으로 선택하여 후보 유닛 집합을 생성할 수 있다. 예를 들어, 복호화기는 복원된 주변 유닛들의 크기를 서로 비교하여, 상대적으로 가장 큰 유닛(예를 들어, 유닛 A) 만을 후보 유닛으로 선택할 수 있다. 이 때, 후보 유닛 집합은 {A}와 같이 구성되고, 후보 유닛 집합을 구성하는 후보 유닛의 개수는 1개일 수 있다.
후보 유닛 집합을 구성하는 후보 유닛의 개수가 1개인 경우, 부호화기 및 복호화기는 해당 후보 유닛을 참조 유닛으로 결정할 수 있다. 이 때, 부호화기 및 복호화기는 별도의 참조 유닛 식별자 없이 참조 유닛을 결정할 수 있다. 따라서, 부호화기는 참조 유닛 식별자를 복호화기로 전송하지 않을 수 있으므로, 복호화기는 참조 유닛 식별자를 복호화하지 않을 수 있다.
상술한 실시예들에서, 방법들은 일련의 단계 또는 블록으로서 순서도를 기초로 설명되고 있으나, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당해 기술 분야에서 통상의 지식을 가진 자라면 순서도에 나타난 단계들이 배타적이지 않고, 다른 단계가 포함되거나, 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.
상술한 실시예는 다양한 양태의 예시들을 포함한다. 다양한 양태들을 나타내기 위한 모든 가능한 조합을 기술할 수는 없지만, 해당 기술 분야의 통상의 지식을 가진 자는 다른 조합이 가능함을 인식할 수 있을 것이다. 따라서, 본 발명은 이하의 특허청구범위 내에 속하는 모든 다른 교체, 수정 및 변경을 포함한다고 할 것이다.

Claims (4)

  1. 복원된 주변 유닛들 중에서 공간적 후보 유닛들을 선택하는 단계;
    복호화 대상 유닛의 시간적 후보 유닛을 결정하는 단계 ;
    상기 공간적 후보 유닛들 및 상기 시간적 후보 유닛을 이용하여, 복호화 대상 유닛의 인터 예측에 대한 후보 집합(candidate set)을 생성하는 단계; 및
    상기 후보 집합과 부호화 파라미터 식별자에 기초하여, 상기 복호화 대상 유닛에 대한 인터 예측을 수행하는 단계를 포함하되,
    상기 선택된 공간적 후보 유닛들은 상기 복원된 주변 유닛들 중에서, 상기 복호화 대상 유닛과 다른 참조 픽쳐 리스트 및 상기 복호화 대상 유닛과 동일한 참조 픽쳐를 가진 유닛들이고 ,
    상기 부호화 파라미터 식별자는 상기 후보 집합으로부터 상기 복호화 대상 유닛의 인터 예측에 사용되는 참조 유닛의 움직임 벡터를 특정하는 것을 특징으로 하는 인터 예측 방법.
  2. 제1항에 있어서, 상기 공간적 후보 유닛들을 선택하는 단계는,
    상기 복원된 주변 유닛들 중에서 상기 복호화 대상 유닛의 좌측 주변 유닛들로부터 제1 공간적 후보 유닛을 선택하는 단계; 및
    상기 복원된 주변 유닛들 중에서 상기 복호화 대상 유닛의 상단 주변 유닛들로부터 제2 공간적 후보 유닛을 선택하는 단계를 포함하는 것을 특징으로 하는 인터 예측 방법.
  3. 제2항에 있어서, 상기 좌측 주변 유닛들은 상기 복호화 대상 유닛의 좌측 하단 코너 유닛과 상기 복호화 대상 유닛의 좌측 주변 유닛을 포함하고,
    상기 상단 주변 유닛들은 상기 복호화 대상 유닛의 우측 상단 코너 유닛, 상기 복호화 대상 유닛의 상단 주변 유닛 및 상기 복호화 대상 유닛의 좌측 상단 코너 유닛을 포함하는 것을 특징으로 하는 인터 예측 방법.
  4. 제2항에 있어서, 상기 제1 공간적 후보 유닛은 인터 예측에 의해 부호화되는 상기 좌측 주변 유닛들로부터 선택되고,
    상기 제2 공간적 후보 유닛은 인터 예측에 의해 부호화되는 상기 상단 주변 유닛들로부터 선택되는 것을 특징으로 하는 인터 예측 방법.
KR1020170096687A 2010-12-13 2017-07-31 참조 유닛 결정 방법 및 장치 KR101870308B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100126630 2010-12-13
KR20100126630 2010-12-13

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020160136365A Division KR101769085B1 (ko) 2010-12-13 2016-10-20 참조 유닛 결정 방법 및 장치

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020180069617A Division KR101922564B1 (ko) 2010-12-13 2018-06-18 참조 유닛 결정 방법 및 장치

Publications (2)

Publication Number Publication Date
KR20170091561A KR20170091561A (ko) 2017-08-09
KR101870308B1 true KR101870308B1 (ko) 2018-06-22

Family

ID=46685501

Family Applications (10)

Application Number Title Priority Date Filing Date
KR1020110133709A KR101588601B1 (ko) 2010-12-13 2011-12-13 참조 유닛 결정 방법 및 장치
KR1020160005257A KR101669541B1 (ko) 2010-12-13 2016-01-15 참조 유닛 결정 방법 및 장치
KR1020160136365A KR101769085B1 (ko) 2010-12-13 2016-10-20 참조 유닛 결정 방법 및 장치
KR1020170096687A KR101870308B1 (ko) 2010-12-13 2017-07-31 참조 유닛 결정 방법 및 장치
KR1020180069617A KR101922564B1 (ko) 2010-12-13 2018-06-18 참조 유닛 결정 방법 및 장치
KR1020180144375A KR102018112B1 (ko) 2010-12-13 2018-11-21 참조 유닛 결정 방법 및 장치
KR1020190106313A KR102127687B1 (ko) 2010-12-13 2019-08-29 참조 유닛 결정 방법 및 장치
KR1020200076146A KR20200077495A (ko) 2010-12-13 2020-06-23 참조 유닛 결정 방법 및 장치
KR1020210068928A KR102435393B1 (ko) 2010-12-13 2021-05-28 참조 유닛 결정 방법 및 장치
KR1020220103308A KR20220119579A (ko) 2010-12-13 2022-08-18 참조 유닛 결정 방법 및 장치

Family Applications Before (3)

Application Number Title Priority Date Filing Date
KR1020110133709A KR101588601B1 (ko) 2010-12-13 2011-12-13 참조 유닛 결정 방법 및 장치
KR1020160005257A KR101669541B1 (ko) 2010-12-13 2016-01-15 참조 유닛 결정 방법 및 장치
KR1020160136365A KR101769085B1 (ko) 2010-12-13 2016-10-20 참조 유닛 결정 방법 및 장치

Family Applications After (6)

Application Number Title Priority Date Filing Date
KR1020180069617A KR101922564B1 (ko) 2010-12-13 2018-06-18 참조 유닛 결정 방법 및 장치
KR1020180144375A KR102018112B1 (ko) 2010-12-13 2018-11-21 참조 유닛 결정 방법 및 장치
KR1020190106313A KR102127687B1 (ko) 2010-12-13 2019-08-29 참조 유닛 결정 방법 및 장치
KR1020200076146A KR20200077495A (ko) 2010-12-13 2020-06-23 참조 유닛 결정 방법 및 장치
KR1020210068928A KR102435393B1 (ko) 2010-12-13 2021-05-28 참조 유닛 결정 방법 및 장치
KR1020220103308A KR20220119579A (ko) 2010-12-13 2022-08-18 참조 유닛 결정 방법 및 장치

Country Status (6)

Country Link
US (6) US9288491B2 (ko)
EP (4) EP4340362A2 (ko)
JP (11) JP5668149B2 (ko)
KR (10) KR101588601B1 (ko)
CN (15) CN107105270B (ko)
WO (1) WO2012081894A1 (ko)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107105270B (zh) 2010-12-13 2020-04-24 韩国电子通信研究院 帧间预测方法
CN107959857B (zh) * 2011-10-18 2022-03-01 株式会社Kt 视频信号解码方法
US9143781B2 (en) * 2012-04-03 2015-09-22 Qualcomm Incorporated Weighted prediction parameter coding
RU2608354C2 (ru) * 2012-07-02 2017-01-18 Самсунг Электроникс Ко., Лтд. Способ и устройство для кодирования видео и способ и устройство для декодирования видео, определяющие список опорных изображений внешнего прогнозирования в зависимости от размера блока
US9716899B2 (en) * 2013-06-27 2017-07-25 Qualcomm Incorporated Depth oriented inter-view motion vector prediction
US10404982B2 (en) 2014-11-05 2019-09-03 Samsung Electronics Co., Ltd. Per-sample prediction encoding apparatus and method
CN116489348A (zh) * 2015-11-20 2023-07-25 韩国电子通信研究院 对图像进行编/解码的方法和装置
KR102465914B1 (ko) * 2016-03-04 2022-11-14 한국전자통신연구원 영상 부호화 장치의 부호화 방법
US10560718B2 (en) * 2016-05-13 2020-02-11 Qualcomm Incorporated Merge candidates for motion vector prediction for video coding
CN116567220A (zh) 2016-08-11 2023-08-08 Lx 半导体科技有限公司 图像编码/解码设备和图像数据的发送设备
WO2018128228A1 (ko) * 2017-01-03 2018-07-12 엘지전자 주식회사 영상 코딩 시스템에서 영상 디코딩 방법 및 장치
US11330269B2 (en) 2017-09-27 2022-05-10 Nec Corporation Moving image coding device, moving image coding method and moving image coding program
CN110351566B (zh) * 2018-04-02 2022-02-11 浙江大学 一种参考运动信息排序方法及装置
WO2019199106A1 (ko) * 2018-04-14 2019-10-17 엘지전자 주식회사 영상 코딩 시스템에서 인터 예측에 따른 영상 디코딩 방법 및 장치
US20200014931A1 (en) * 2018-07-06 2020-01-09 Mediatek Inc. Methods and Apparatuses of Generating an Average Candidate for Inter Picture Prediction in Video Coding Systems
CN110933423B (zh) * 2018-09-20 2022-03-25 杭州海康威视数字技术股份有限公司 帧间预测方法和设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080080617A1 (en) 2006-09-28 2008-04-03 Kabushiki Kaisha Toshiba Motion vector detection apparatus and method

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06165164A (ja) 1992-11-18 1994-06-10 Nec Corp 動画像処理装置
DE69423166T2 (de) 1993-09-08 2000-07-06 Thomson Consumer Electronics Verfahren und Vorrichtung zur Bewegungsauswertung mit Blockübereinstimmung
US5796434A (en) * 1996-06-07 1998-08-18 Lsi Logic Corporation System and method for performing motion estimation in the DCT domain with improved efficiency
US6567469B1 (en) * 2000-03-23 2003-05-20 Koninklijke Philips Electronics N.V. Motion estimation algorithm suitable for H.261 videoconferencing applications
EP2819411B1 (en) * 2001-09-14 2018-08-29 NTT DoCoMo, Inc. Coding method and decoding method
BRPI0216048B1 (pt) * 2001-10-17 2018-09-25 Matsushita Electric Ind Co Ltd método e aparelho de codificação de figuras móveis
AU2002343215C1 (en) * 2001-11-06 2009-01-22 Panasonic Intellectual Property Corporation Of America Moving picture coding method, and moving picture decoding method
JP4150742B2 (ja) 2002-01-09 2008-09-17 松下電器産業株式会社 動きベクトル復号化方法
JP4114859B2 (ja) 2002-01-09 2008-07-09 松下電器産業株式会社 動きベクトル符号化方法および動きベクトル復号化方法
PT1530374E (pt) * 2002-08-08 2013-02-06 Panasonic Corp Método de codificação e método de descodificação de imagens em movimento
JP3977716B2 (ja) * 2002-09-20 2007-09-19 株式会社東芝 動画像符号化/復号化方法及び装置
WO2004068844A1 (ja) * 2003-01-30 2004-08-12 Fujitsu Limited 画像圧縮方法、画像復元方法、プログラム及び装置
JP2005005844A (ja) * 2003-06-10 2005-01-06 Hitachi Ltd 計算装置及び符号化処理プログラム
US8064520B2 (en) * 2003-09-07 2011-11-22 Microsoft Corporation Advanced bi-directional predictive coding of interlaced video
CN101147399B (zh) * 2005-04-06 2011-11-30 汤姆森许可贸易公司 编码增强层视频数据的方法和设备
JP4169767B2 (ja) * 2005-09-27 2008-10-22 三洋電機株式会社 符号化方法
KR100727989B1 (ko) * 2005-10-01 2007-06-14 삼성전자주식회사 동영상 부호화시의 인터 모드 결정 방법 및 장치
JP5031230B2 (ja) * 2005-11-28 2012-09-19 キヤノン株式会社 データ送信装置及び方法
CN101371571B (zh) * 2006-01-12 2013-06-19 Lg电子株式会社 处理多视图视频
JP5192393B2 (ja) 2006-01-12 2013-05-08 エルジー エレクトロニクス インコーポレイティド 多視点ビデオの処理
CN101005614A (zh) * 2006-01-17 2007-07-25 鲁海宁 动态图像编解码方法、装置和计算机可读记录介质
EP2039171B1 (en) 2006-07-07 2016-10-05 Telefonaktiebolaget LM Ericsson (publ) Weighted prediction for video coding
JP4592656B2 (ja) 2006-08-17 2010-12-01 富士通セミコンダクター株式会社 動き予測処理装置、画像符号化装置および画像復号化装置
US8238442B2 (en) * 2006-08-25 2012-08-07 Sony Computer Entertainment Inc. Methods and apparatus for concealing corrupted blocks of video data
JP5151984B2 (ja) 2006-09-29 2013-02-27 富士通株式会社 動画像符号化装置
CN101175210B (zh) * 2006-10-30 2010-08-11 中国科学院计算技术研究所 用于视频预测残差系数解码的熵解码方法及熵解码装置
KR100856411B1 (ko) * 2006-12-01 2008-09-04 삼성전자주식회사 조도 보상 방법 및 그 장치와 그 방법을 기록한 컴퓨터로 읽을 수 있는 기록매체
KR101307050B1 (ko) * 2006-12-14 2013-09-11 톰슨 라이센싱 비트 심도 스케일러빌리티를 위하여 인핸스먼트 계층 레시듀얼 예측을 이용하여 비디오 데이터를 인코딩 및/또는 디코딩하기 위한 방법 및 장치
WO2008084423A1 (en) * 2007-01-08 2008-07-17 Nokia Corporation Improved inter-layer prediction for extended spatial scalability in video coding
KR101366241B1 (ko) * 2007-03-28 2014-02-21 삼성전자주식회사 영상 부호화, 복호화 방법 및 장치
JP5666293B2 (ja) * 2007-04-12 2015-02-12 トムソン ライセンシングThomson Licensing ビデオ・エンコーディング、およびデコーディングのためのスキップ/ダイレクトモードのコンテクストに依存するマージのための方法と装置
JP2008283490A (ja) * 2007-05-10 2008-11-20 Ntt Docomo Inc 動画像符号化装置、方法及びプログラム、並びに動画像復号化装置、方法及びプログラム
JP4325708B2 (ja) * 2007-07-05 2009-09-02 ソニー株式会社 データ処理装置、データ処理方法およびデータ処理プログラム、符号化装置、符号化方法および符号化プログラム、ならびに、復号装置、復号方法および復号プログラム
US20100195723A1 (en) * 2007-09-25 2010-08-05 Tomohiro Ikai Moving image encoder and moving image decoder
KR101597325B1 (ko) * 2007-10-16 2016-03-02 엘지전자 주식회사 비디오 신호 처리 방법 및 장치
KR101228020B1 (ko) 2007-12-05 2013-01-30 삼성전자주식회사 사이드 매칭을 이용한 영상의 부호화 방법 및 장치, 그복호화 방법 및 장치
KR101446773B1 (ko) * 2008-02-20 2014-10-02 삼성전자주식회사 영상 복구를 이용한 인터 예측 부호화, 복호화 방법 및장치
ES2812473T3 (es) * 2008-03-19 2021-03-17 Nokia Technologies Oy Vector de movimiento combinado y predicción de índice de referencia para la codificación de vídeo
CN101609681B (zh) * 2008-06-18 2012-04-04 北京工业大学 编码方法、编码器、解码方法及解码器
KR20100018810A (ko) * 2008-08-07 2010-02-18 전자부품연구원 초고화질 영상 부호화, 복호화 방법 및 장치 및 컴퓨터로판독가능한 기록매체
EP2315446A4 (en) * 2008-08-08 2011-12-28 Sharp Kk DEVICE FOR DYNAMIC IMAGE CODING AND DEVICE FOR DYNAMIC IMAGE DECODING
WO2010029850A1 (ja) * 2008-09-09 2010-03-18 日本電気株式会社 画像符号化装置、画像復号化装置、画像符号化方法、画像復号化方法、及びそのプログラム
US8724697B2 (en) 2008-09-26 2014-05-13 Qualcomm Incorporated Locating motion vectors for video data units
KR101377527B1 (ko) * 2008-10-14 2014-03-25 에스케이 텔레콤주식회사 복수 개의 참조 픽처의 움직임 벡터 부호화/복호화 방법 및장치와 그를 이용한 영상 부호화/복호화 장치 및 방법
KR101279573B1 (ko) * 2008-10-31 2013-06-27 에스케이텔레콤 주식회사 움직임 벡터 부호화 방법 및 장치와 그를 이용한 영상 부호화/복호화 방법 및 장치
KR101491556B1 (ko) * 2008-12-02 2015-02-09 삼성전자주식회사 깊이 추정 장치 및 방법
JP5133290B2 (ja) * 2009-03-31 2013-01-30 株式会社Kddi研究所 動画像符号化装置および復号装置
JP2010258927A (ja) 2009-04-28 2010-11-11 Renesas Electronics Corp 符号データ処理装置、方法及びプログラム
WO2010126613A2 (en) 2009-05-01 2010-11-04 Thomson Licensing Inter-layer dependency information for 3dv
US9113169B2 (en) * 2009-05-07 2015-08-18 Qualcomm Incorporated Video encoding with temporally constrained spatial dependency for localized decoding
KR101474756B1 (ko) 2009-08-13 2014-12-19 삼성전자주식회사 큰 크기의 변환 단위를 이용한 영상 부호화, 복호화 방법 및 장치
US9060176B2 (en) * 2009-10-01 2015-06-16 Ntt Docomo, Inc. Motion vector prediction in video coding
US9036692B2 (en) * 2010-01-18 2015-05-19 Mediatek Inc. Motion prediction method
US9609342B2 (en) * 2010-02-19 2017-03-28 Skype Compression for frames of a video signal using selected candidate blocks
CN101815218B (zh) * 2010-04-02 2012-02-08 北京工业大学 基于宏块特征的快速运动估计视频编码方法
KR101752418B1 (ko) * 2010-04-09 2017-06-29 엘지전자 주식회사 비디오 신호 처리 방법 및 장치
SI2924995T1 (sl) * 2010-07-09 2018-10-30 Samsung Electronics Co., Ltd. Postopek za dekodiranje videa z uporabo združevanja blokov
KR101456499B1 (ko) * 2010-07-09 2014-11-03 삼성전자주식회사 움직임 벡터의 부호화 방법 및 장치, 그 복호화 방법 및 장치
US9124898B2 (en) * 2010-07-12 2015-09-01 Mediatek Inc. Method and apparatus of temporal motion vector prediction
JP5134050B2 (ja) 2010-07-23 2013-01-30 ソニー株式会社 符号化装置および方法、記録媒体、並びにプログラム
US8824558B2 (en) * 2010-11-23 2014-09-02 Mediatek Inc. Method and apparatus of spatial motion vector prediction
CN107105270B (zh) 2010-12-13 2020-04-24 韩国电子通信研究院 帧间预测方法
US9288501B2 (en) 2011-03-08 2016-03-15 Qualcomm Incorporated Motion vector predictors (MVPs) for bi-predictive inter mode in video coding
SI3481066T1 (sl) * 2011-06-28 2021-10-29 Lg Electronics Inc Metoda izvedbe prediktorja gibalnega vektorja
BR112014004914B1 (pt) * 2011-08-29 2022-04-12 Ibex Pt Holdings Co., Ltd Método de codificação de uma imagem em um modo amvp

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080080617A1 (en) 2006-09-28 2008-04-03 Kabushiki Kaisha Toshiba Motion vector detection apparatus and method

Also Published As

Publication number Publication date
KR101922564B1 (ko) 2018-11-27
EP2654302A4 (en) 2015-08-05
JP6518274B2 (ja) 2019-05-22
US11252424B2 (en) 2022-02-15
CN107087194A (zh) 2017-08-22
JP2015053737A (ja) 2015-03-19
CN107087194B (zh) 2020-02-11
CN107105288A (zh) 2017-08-29
KR20170091561A (ko) 2017-08-09
KR101669541B1 (ko) 2016-10-26
CN107105292A (zh) 2017-08-29
CN107105270A (zh) 2017-08-29
JP2015053736A (ja) 2015-03-19
CN107105292B (zh) 2020-09-08
WO2012081894A1 (ko) 2012-06-21
CN107087195A (zh) 2017-08-22
KR20180127630A (ko) 2018-11-29
KR20210065922A (ko) 2021-06-04
CN107071469B (zh) 2020-03-03
CN107454420A (zh) 2017-12-08
US20190364292A1 (en) 2019-11-28
KR20220119579A (ko) 2022-08-30
CN107105270B (zh) 2020-04-24
US9288491B2 (en) 2016-03-15
US20130251044A1 (en) 2013-09-26
EP2654302A1 (en) 2013-10-23
CN107454421B (zh) 2020-12-29
KR102127687B1 (ko) 2020-06-29
CN107454421A (zh) 2017-12-08
KR101769085B1 (ko) 2017-08-17
JP2016036162A (ja) 2016-03-17
KR20160124071A (ko) 2016-10-26
US10425653B2 (en) 2019-09-24
JP2015053739A (ja) 2015-03-19
EP4340362A2 (en) 2024-03-20
CN103348681A (zh) 2013-10-09
JP6840779B2 (ja) 2021-03-10
CN107105289A (zh) 2017-08-29
CN107105288B (zh) 2020-12-22
CN107105290A (zh) 2017-08-29
KR20190104123A (ko) 2019-09-06
KR102018112B1 (ko) 2019-09-04
CN107105291B (zh) 2020-04-07
EP2654302B1 (en) 2019-09-04
JP2014502481A (ja) 2014-01-30
JP7387841B2 (ja) 2023-11-28
JP5668149B2 (ja) 2015-02-12
JP2019110591A (ja) 2019-07-04
CN107454420B (zh) 2020-08-07
CN107105293A (zh) 2017-08-29
JP6100344B2 (ja) 2017-03-22
EP3985979A1 (en) 2022-04-20
US11843795B2 (en) 2023-12-12
US20160150240A1 (en) 2016-05-26
US20140037001A1 (en) 2014-02-06
CN107454419A (zh) 2017-12-08
KR20120065954A (ko) 2012-06-21
KR20160011688A (ko) 2016-02-01
US20220132152A1 (en) 2022-04-28
CN107071469A (zh) 2017-08-18
CN107454419B (zh) 2020-12-29
EP3554078A1 (en) 2019-10-16
US20240022747A1 (en) 2024-01-18
KR101588601B1 (ko) 2016-01-29
CN105611298B (zh) 2019-06-18
JP2022168308A (ja) 2022-11-04
CN107087195B (zh) 2020-03-13
JP2015053738A (ja) 2015-03-19
JP2017118582A (ja) 2017-06-29
CN107105293B (zh) 2020-05-12
CN107105290B (zh) 2020-05-12
CN107105289B (zh) 2020-12-22
CN105611298A (zh) 2016-05-25
JP7145252B2 (ja) 2022-09-30
KR102435393B1 (ko) 2022-08-23
CN107105291A (zh) 2017-08-29
EP3985979B1 (en) 2024-03-27
KR20180072633A (ko) 2018-06-29
JP2024003161A (ja) 2024-01-11
KR20200077495A (ko) 2020-06-30
CN103348681B (zh) 2017-03-15
JP2021119658A (ja) 2021-08-12

Similar Documents

Publication Publication Date Title
KR101922564B1 (ko) 참조 유닛 결정 방법 및 장치
KR101937213B1 (ko) 인트라 예측 모드 부호화/복호화 방법 및 컴퓨터로 읽을 수 있는 기록 매체

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant