KR101859170B1 - Triazol compounds and Use thereof - Google Patents

Triazol compounds and Use thereof Download PDF

Info

Publication number
KR101859170B1
KR101859170B1 KR1020160047206A KR20160047206A KR101859170B1 KR 101859170 B1 KR101859170 B1 KR 101859170B1 KR 1020160047206 A KR1020160047206 A KR 1020160047206A KR 20160047206 A KR20160047206 A KR 20160047206A KR 101859170 B1 KR101859170 B1 KR 101859170B1
Authority
KR
South Korea
Prior art keywords
pyrrolo
methyl
pyrimidine
compound
triazol
Prior art date
Application number
KR1020160047206A
Other languages
Korean (ko)
Other versions
KR20160124034A (en
Inventor
김용철
한선영
고효진
이선미
Original Assignee
광주과학기술원
경상대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원, 경상대학교 산학협력단 filed Critical 광주과학기술원
Publication of KR20160124034A publication Critical patent/KR20160124034A/en
Application granted granted Critical
Publication of KR101859170B1 publication Critical patent/KR101859170B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41921,2,3-Triazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/041,2,3-Triazoles; Hydrogenated 1,2,3-triazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems

Abstract

본 발명은 JAK 활성을 억제하는 신규한 트리아졸 유도체 화합물 및 그 용도에 관한 것이다. 본 발명의 조성물을 사용함으로써 효과적으로 JAK1, JAK2, 및 JAK3 활성을 억제할 수 있고, 이에 따라 JAK 활성에 의해 유발되는 질병들을 효과적으로 억제할 수 있다. The present invention relates to novel triazole derivative compounds which inhibit JAK activity and uses thereof. By using the composition of the present invention, it is possible to effectively inhibit JAK1, JAK2, and JAK3 activity, thereby effectively inhibiting diseases caused by JAK activity.

Description

트리아졸 화합물 및 이의 용도{Triazol compounds and Use thereof}Triazole compounds and uses thereof < RTI ID = 0.0 >

본 발명은 JAK 활성을 억제하는 신규한 트리아졸 유도체 화합물 및 그 용도에 관한 것이다.The present invention relates to novel triazole derivative compounds which inhibit JAK activity and uses thereof.

JAK(Janus kinases)는 세포 생장, 생존, 발달 및 분화와 같은 포유류 세포에서의 시그널링 절차에서, 신호 전달과 관련된 다양한 타입 1/2 싸이토카인 및 성장 인자 호르몬의 바인딩을 통해 리셉터를 활성화 시키는 것에 의해 주요 역할을 하는 세포내 비-리셉터 티로신 키나아제이다[1]. JAK (Janus kinases) play a major role in the signaling process in mammalian cells, such as cell growth, survival, development and differentiation, by activating the receptor through binding of various type 1/2 cytokines and growth factor hormones associated with signal transduction Is an intracellular non-receptor tyrosine kinase [1].

관련 리셉터에 결합하는 것에 의해, 싸이토카인들은 JAK 패밀리 멤버들을 활성화시키고, 신호 전달자 및 전사 활성자(signal transducer and activator of transcription, STAT)의 소집 및 인산화의 결과를 낳는다[2]. JAK1, JAK2, JAK3 및 TYK2로도 불리는 티로신 키나아제 2를 포함하는 네 개의 JAK 이성질체가 발굴되었다[3]. 각각의 JAK 키나아제는 면역-관련 질병의 발병 및 다양한 세포에서의 혈액 암 시그널링에서의 영향에서 주요 역할을 한다[4]. 따라서 JAK 패밀리 및 JAK/STAT는 약물 발굴에 있어서의 치료학적 타겟으로서의 그들의 잠재력에 대해 연구되어져 왔다. JAK1 및 TYK2는 다양한 면역 반응 및 그들의 억제와 연관되어 왔다[5]. JAK1은 전-염증성 싸이토카인 다운스트림 시그널링을 타입 I(IFN-α/β) 및 타입 Ⅱ(IFN-γ) 인터페론 및 IL-2, -4 및 -10 패밀리 멤버를 통해 매개한다[6]. JAK1 및 JAK3이 T 세포의 분화 및 발달 동안의 싸이토카인 시그널링 프로세스를 제어하기 때문에, JAK3 활성화는 전형적으로 자가 면역 질환, 예컨대 류마티스 관절염(RA)에서 관찰된다[7]. 다른 JAK 키나아제들과 대조적으로, JAK2는 혈액성 암 세포의 발달(progression) 및 성장(growth)에 기여하는 경로와 연관되고[8], 돌연변이된 JAK2에 의한 비정상 신호는 혈액암, 예컨대 척수 증식성 종양(myeloproliferative neoplasm, MPN)을 유발시킨다. By binding to related receptors, cytokines activate JAK family members, resulting in the encapsulation and phosphorylation of signal transducers and activators of transcription (STAT) [2]. Four JAK isomers have been identified, including tyrosine kinase 2, also called JAK1, JAK2, JAK3 and TYK2 [3]. Each JAK kinase plays a major role in the onset of immune-related diseases and in the effects of blood cancer signaling in various cells [4]. Thus, the JAK family and JAK / STAT have been studied for their potential as therapeutic targets in drug discovery. JAK1 and TYK2 have been associated with a variety of immune responses and their inhibition [5]. JAK1 mediates pro-inflammatory cytokine downstream signaling through type I (IFN-α / β) and type II (IFN-γ) interferons and IL-2, -4 and -10 family members [6]. JAK3 activation is typically observed in autoimmune diseases such as rheumatoid arthritis (RA), since JAK1 and JAK3 control the cytokine signaling process during T cell differentiation and development [7]. In contrast to other JAK kinases, JAK2 is associated with a pathway that contributes to the progression and growth of hematologic cancer cells [8], and abnormal signals from mutated JAK2 are associated with blood cancer, Tumor (myeloproliferative neoplasm, MPN) is induced.

MPN은 진성 다혈구증(polycythemia vera, PV), 본태성 혈소판 증가증(essential thrombocytosis, ET), 및 골수 섬유증(myelofibrosis)을 포함한다. MPN의 기저 병인(underlying pathogenic cause)은 JH2 도메인 내의 JAK2 아미노산 617의 발린의 페닐알라닌으로의 돌연변이(JAK2V617F)이다; 상기 돌연변이는 거의 95%의 PV 환자 및 50% 이상의 ET 및 MF 환자들에 존재한다[10]. JAK2V617F 돌연변이는 또한 폐암에서 낮은 대립형질(allele) 빈도로 관찰되고[11], 이러한 발견에 기반하여, Hedvat 및 그의 동료들은 폐암을 억제하기 위한 JAK2 억제자의 능력을 평가하였으며, 시너지 효과에 기인한 폐암 컴비네이션 치료에서의 그들의 잠재성을 보였다[12]. 게다가, 급성 백혈병 및 다른 암종을 포함하는 MPN의 병인에서의 JAK2V627F 돌연변이의 역할은 MPN의 타겟팅된 치료을 위한 JAK2 억제자의 발전을 도왔다[14]. 그러나 JAK2 경로-관련된 병리 현상을 설명하고, 치료학적 전략을 최적화하기 위해 추가 연구가 요구된다. JAK 패밀리 멤버 JAK1, -2 및 -3는 유의한 수고 유사성 및 높은 수준의 서열 상동성을 보이고, 그들 고유의 정상적인 기능ning들의 이해는 JAK 구조-기능 관계를 결정하기 위한 전제이고, 선택적으로 타겟팅된 치료제들을 발전시키고 있다[15]. MPN includes polycythemia vera (PV), essential thrombocytosis (ET), and myelofibrosis. The underlying pathogenic cause of MPN is the mutation of valine to phenylalanine (JAK2V617F) of the JAK2 amino acid 617 in the JH2 domain; These mutations are present in nearly 95% of PV patients and more than 50% of ET and MF patients [10]. JAK2V617F mutation was also observed with a low allele frequency in lung cancer [11], and based on this finding Hedvat and colleagues assessed the ability of JAK2 inhibitors to inhibit lung cancer, Showed their potential in combination therapy [12]. In addition, the role of the JAK2V627F mutation in the pathogenesis of MPN, including acute leukemia and other carcinomas, has led to the development of JAK2 inhibitors for targeted treatment of MPN [14]. However, further studies are required to explain JAK2 pathway-related pathology and to optimize therapeutic strategies. The JAK family members JAK1, -2 and -3 show significant homology and high level of sequence homology, and their normal understanding of functional ning is a prerequisite for determining the JAK structure-function relationship, And develop therapeutic agents [15].

이들의 구조적 및 기능적 이슈들을 분석하기 위해, 선택적인 JAK2 억제자의 개발이 중요하고, 아직 도전 과제로 남아 있었다. To analyze their structural and functional issues, the development of selective JAK2 inhibitors is important and remains a challenge.

본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.Numerous papers and patent documents are referenced and cited throughout this specification. The disclosures of the cited papers and patent documents are incorporated herein by reference in their entirety to better understand the state of the art to which the present invention pertains and the content of the present invention.

본 발명자들은 JAK(Janus Kinase)에 대한 새로운 억제자를 발굴하고자 예의 연구 노력하였다. 그 결과 트리아졸 화합물을 포함하는 소정의 신규 화합물 군이 JAK의 활성을 억제함을 규명함으로써, 본 발명을 완성하게 되었다. The present inventors have tried to find a new inhibitor for JAK (Janus Kinase). As a result, the present inventors have completed the present invention by confirming that a certain new compound group including a triazole compound inhibits the activity of JAK.

따라서, 본 발명의 목적은 JAK을 억제하는 소정의 화합물, 또는 약제학적으로 허용가능한 이의 염을 제공하는데 있다.It is therefore an object of the present invention to provide certain compounds which inhibit JAK, or a pharmaceutically acceptable salt thereof.

본 발명의 또 다른 목적은 JAK(Janus kinase) 억제용 조성물을 제공하는데 있다. It is another object of the present invention to provide a composition for inhibiting JAK (Janus kinase).

본 발명의 또 다른 목적은 면역 결핍 질환 또는 골수증식성 종양(MPN)의 예방 또는 치료용 조성물을 제공하는데 있다. It is yet another object of the present invention to provide a composition for the prevention or treatment of immunodeficiency diseases or myeloproliferative neoplasia (MPN).

본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.Other objects and advantages of the present invention will become more apparent from the following detailed description of the invention, claims and drawings.

본 발명의 일 양태에 따르면, 본 발명은 하기 화학식 1의 화합물, 또는 약제학적으로 허용가능한 이의 염을 제공한다:According to one aspect of the present invention, there is provided a compound of the formula 1: [Image Omitted] or a pharmaceutically acceptable salt thereof:

화학식 1Formula 1

Figure 112016037130768-pat00001
Figure 112016037130768-pat00001

상기 화학식 1 에서, In Formula 1,

R3

Figure 112016037130768-pat00002
,
Figure 112016037130768-pat00003
Figure 112016037130768-pat00004
로 구성된 군으로부터 선택되는 어느 하나이고, R 3 is
Figure 112016037130768-pat00002
,
Figure 112016037130768-pat00003
And
Figure 112016037130768-pat00004
≪ / RTI > and < RTI ID = 0.0 >

상기 R2는 수소, C1-4 알킬, 알릴, 메톡시에틸, 5-에톡시-5-옥소펜틸, 3-히드록시프로필, 5-히드록시펜틸, 말단 탄소가 시아노기 치환된 C1-6 직쇄 알킬, tert-부톡시아미노에틸(-CH2CH2N(H)Boc), 2-아미노에틸, 메틸부트-2-인-1-일, 비닐, 4,4,4-트리할로부틸, 및 시클로알킬 치환된 C1-4 알킬로 구성된 군으로부터 선택되는 어느 하나이며; Wherein R 2 is hydrogen, C 1-4 alkyl, allyl, methoxyethyl, 5-ethoxy-5-oxo-pentyl, 3-hydroxypropyl, 5-hydroxypentyl, the terminal carbon is substituted with a cyano group C 1- 6 straight chain alkyl, tert- butoxycarbonyl-amino-ethyl (-CH 2 CH 2 N (H ) Boc), 2- aminoethyl, 2-methyl-boot of 1-yl, a vinyl, can 4,4,4 Butyl, and cycloalkyl substituted C 1-4 alkyl;

상기 R1은 수소, 메틸, 페닐 및 p-톨릴로 구성된 군으로부터 선택되는 어느 하나이다. Wherein R < 1 > is any one selected from the group consisting of hydrogen, methyl, phenyl and p-tolyl.

본 발명자들은 JAK(Janus Kinase)에 대한 새로운 억제자를 발굴하고자 예의 연구 노력하였다. 그 결과 트리아졸 화합물을 포함하는 소정의 신규 화합물 군이 JAK의 활성을 억제함을 규명하였다.The present inventors have tried to find a new inhibitor for JAK (Janus Kinase). As a result, it was found that certain novel compounds, including triazole compounds, inhibited the activity of JAK.

본 발명의 용어 "C1-4 알킬"은 1 내지 4 탄소 원자를 포함하는 직쇄 또는 분지쇄(straight or branched chain) 알킬을 나타내고, 예를 들어 메틸, 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸, sec-부틸, tert-부틸 등을 의미한다. 바람직하게는 직쇄 알킬을 나타내며, 바람직한 예를 들면 메틸이다. The term "C 1-4 alkyl" of the present invention refers to straight or branched chain alkyl containing from 1 to 4 carbon atoms, for example methyl, ethyl, n -propyl, isopropyl, n- Butyl, isobutyl, sec -butyl, tert -butyl, and the like. Preferably straight chain alkyl, and preferred examples thereof are methyl.

본 발명의 용어 "할로"는 할로겐 치환기를 나타내며, -F, -Cl,-Br 또는 -I 치환기를 나타낸다. 본 발명의 4,4,4-트리할로부틸에 있어서, 할로는 바람직하게 플루오로이다. The term "halo " of the present invention represents a halogen substituent and represents a -F, -Cl, -Br or -I substituent. In the 4,4,4-trihalobutyl of the present invention, halo is preferably fluoro.

본 발명의 용어 "시아노"는 -CN 치환기를 의미한다. The term "cyano" of the present invention means a -CN substituent.

본 발명의 용어 "말단 탄소가 시아노기 치환된 C1-6 직쇄 알킬"은 시아노메틸, 2-시아노에틸, 3-시아노프로필, 4-시아노부틸, 5-시아노펜틸 또는 6-시아노헥실을 의미한다. 바람직하게는 말단 탄소가 시아노기 치환된 C3-5 직쇄 알킬이다. The term "C 1-6 straight-chain alkyl substituted with a terminal carbon of the present invention" refers to a C 1-6 straight-chain alkyl substituted with a cyano group by a cyanomethyl, 2-cyanoethyl, 3- cyanopropyl, 4- cyanobutyl, Means cyanohexyl. Preferably, the terminal carbon is a C 3-5 straight chain alkyl substituted with a cyano group.

본 발명의 일 구체예에 있어서, 본 발명의 화합물은 4-(5-메틸-1H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(화합물 10), 4-(1,4-디메틸-1H-1,2,3-트리아졸-5-일)-7H-피롤로[2,3-d]피리미딘(화합물 11), 4-(1-메틸-4-(p-톨릴)-1H-1,2,3-트리아졸-5-일)-7H-피롤로[2,3-d]피리미딘(화합물 12), 4-(1-(2-메톡시에틸)-4-(p-톨릴)-1H-1,2,3-트리아졸-5-일)-7H-피롤로[2,3-d]피리미딘(화합물 13), 4-(1,5-디메틸-1H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(화합물 14), 4-(1-메틸-5-(p-톨릴)-1H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(화합물 15), 4-(5-메틸-1-비닐-1H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(화합물 16), 4-(1-알릴-5-메틸-1H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(화합물 17), 4-(5-메틸-1-(2-메틸알릴)-1H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(화합물 18), 4-(5-메틸-1-(3-메틸비닐-2-엔-1-일)-1H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(화합물 19), 2-(5-메틸-4-(7H-피롤로[2,3-d]피리미딘-4-일)-1H-1,2,3-트리아졸-1-일)에탄-1-아민(화합물 20), 4-(1-(2-메톡시에틸)-5-메틸-1H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(화합물 21), 4-(1-(2-메톡시에틸)-5-(p-톨릴)-1H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(화합물 22), 4-(5-메틸-1-(4,4,4-트리플루오로부틸)-1H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(화합물 23), 3-(5-메틸-4-(7H-피롤로[2,3-d]피리미딘-4-일)-1H-1,2,3-트리아졸-1-일)프로판-1-올(화합물 24), 5-(5-메틸-4-(7H-피롤로[2,3-d]피리미딘-4-일)-1H-1,2,3-트리아졸-1-일)펜탄-1-올(화합물 25), 4-(5-메틸-4-(7H-피롤로[2,3-d]피리미딘-4-일)-1H-1,2,3-트리아졸-1-일)부탄니트릴(화합물 26), 5-(5-메틸-4-(7H-피롤로[2,3-d]피리미딘-4-일)-1H-1,2,3-트리아졸-1-일)펜탄니트릴(화합물 27), 5-(5-페닐-4-(7H-피롤로[2,3-d]피리미딘-4-일)-1H-1,2,3-트리아졸-1-일)펜탄니트릴(화합물 28), 5-(4-(7H-피롤로[2,3-d]피리미딘-4-일)-5-(p-톨릴)-1H-1,2,3-트리아졸-1-일)펜탄니트릴(화합물 29), 6-(5-메틸-4-(7H-피롤로[2,3-d]피리미딘-4-일)-1H-1,2,3-트리아졸-1-일)헥산니트릴(화합물 30), 4-(1-(시클로프로필메틸)-5-메틸-1H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(화합물 31), 4-(1-(시클로부틸메틸)-5-메틸-1H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(화합물 32), 4-(1-(시클로펜틸메틸)-5-메틸-1H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(화합물 33), 4-(1-(시클로헥실메틸)-5-메틸-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(화합물 34), 4-(2,5-디메틸-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(화합물 35), 4-(2-메틸-5-(p-톨릴)-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(화합물 36), 4-(5-메틸-2-비닐-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(화합물 37), 4-(2-알릴-5-메틸-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(화합물 38), 4-(5-메틸-2-(2-메틸알릴)-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(화합물 39), 4-(5-메틸-2-(3-메틸부트-2-엔-1-일)-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(화합물 40), 2-(4-메틸-5-(7H-피롤로[2,3-d]피리미딘-4-일)-2H-1,2,3-트리아졸-2-일)에탄-1-아민(화합물 41), tert-부틸(2-(4-메틸-5-(7H-피롤로[2,3-d]피리미딘-4-일)-2H-1,2,3-트리아졸-2-일)에틸)카바메이트(화합물 42), 4-(2-(2-메톡시에틸)-5-메틸-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(화합물 43), 4-(2-(2-메톡시에틸)-5-(p-톨릴)-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(화합물 44), 4-(5-메틸-2-(4,4,4-트리플루오로부틸)-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(화합물 45), 3-(4-메틸-5-(7H-피롤로[2,3-d]피리미딘-4-일)-2H-1,2,3-트리아졸-2-일)프로판-1-올(화합물 46), 5-(4-메틸-5-(7H-피롤로[2,3-d]피리미딘-4-일)-2H-1,2,3-트리아졸-2-일)펜탄-1-올(화합물 47), 에틸 5-(4-메틸-5-(7H-피롤로[2,3-d]피리미딘-4-일)-2H-1,2,3-트리아졸-2-일)펜타노에이트(화합물 48), 4-(4-메틸-5-(7H-피롤로[2,3-d]피리미딘-4-일)-2H-1,2,3-트리아졸-2-일)부탄니트릴(화합물 49), 5-(4-메틸-5-(7H-피롤로[2,3-d]피리미딘-4-일)-2H-1,2,3-트리아졸-2-일)펜탄니트릴(화합물 50), 5-(4-페닐-5-(7H-피롤로[2,3-d]피리미딘-4-일)-2H-1,2,3-트리아졸-2-일)펜탄니트릴(화합물 51), 5-(4-(7H-피롤로[2,3-d]피리미딘-4-일)-5-(p-톨릴)-2H-1,2,3-트리아졸-2-일)펜탄니트릴(화합물 52), 6-(4-메틸-5-(7H-피롤로[2,3-d]피리미딘-4-일)-2H-1,2,3-트리아졸-2-일)헥산니트릴(화합물 53), 4-(2-(시클로프로필메틸)-5-메틸-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(화합물 54), 4-(2-(시클로부틸메틸)-5-메틸-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(화합물 55), 4-(2-(시클로펜틸메틸)-5-메틸-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(화합물 56), 및 4-(2-(시클로헥실메틸)-5-메틸-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(화합물 57)으로 구성된 군으로부터 선택된다.In one embodiment of the invention, the compound of the present invention is selected from the group consisting of 4- (5-methyl-1H-1,2,3-triazol-4-yl) -7H-pyrrolo [2,3- Pyrrolo [2,3-d] pyrimidine (Compound 11), 4- (4-fluorobenzyloxy) Pyrrolo [2,3-d] pyrimidine (Compound 12), 4- (4-fluorophenyl) Pyrrolo [2,3-d] pyrimidine (Compound 13 (2-methoxyethyl) -4- (p- tolyl) Pyrrolo [2,3-d] pyrimidine (Compound 14), 4- (l-tert-butyl- Pyrrolo [2,3-d] pyrimidine (Compound 15), 4- (5-methylpyridin-2-ylmethyl) Pyrrolo [2,3-d] pyrimidine (Compound 16), 4- (l-allyl-5-methyl- (5-methyl-l- (2-methylallyl) - lH-pyrrolo [2,3-d] pyrimidine Pyrrolo [2,3-d] pyrimidine (Compound 18), 4- (5-methyl-1- (3-methylvinyl- - N-1 - Yl) -7H-pyrrolo [2,3-d] pyrimidine (Compound 19), 2- (5- (Compound 20), 4- (l- (2-methoxyphenyl) -lH-pyrrolo [2,3-d] pyrimidin- Pyrrolo [2,3-d] pyrimidine (Compound 21), 4- (1- (2-methylpiperidin-l-yl) Pyrrolo [2,3-d] pyrimidine (Compound 22), 4- (5-tert-butylphenyl) Pyrrolo [2,3-d] pyrimidine (Compound 23) was obtained in the same manner as Compound ), 3- (5-methyl-4- (7H-pyrrolo [2,3-d] pyrimidin- Pyrido [2,3-d] pyrimidin-4-yl) -1H-1,2,3-triazol-1-yl) (5-methyl-4- (7H-pyrrolo [2,3-d] pyrimidin-4-yl) -lH-1,2,3-triazole- Yl) butanenitrile (Compound 26), 5- (5-methyl-4- (7H-pyrrolo [2,3- d] pyrimidin- -1-yl) pentanenitrile (Compound 27), 5- (5-phenyl- (Compound 28), 5- (4- (4-fluoropyridin-2-yl) (P-tolyl) -1H-1,2,3-triazol-1-yl) pentanenitrile (Compound 29), 6 Yl) hexanenitrile (Compound 30), (5-methyl-4- (7H-pyrrolo [2,3-d] pyrimidin- Pyrrolo [2,3-d] pyrimidine (Compound 31), 4 (4-fluorobenzylsulfanyl) Pyrrolo [2,3-d] pyrimidine (Compound 32), 4- (4-fluorobenzylsulfanyl) Pyrrolo [2,3-d] pyrimidine (Compound 33), 4- (4-fluoropyridin-2-ylmethyl) Pyrrolo [2,3-d] pyrimidine (Compound 34), 4- (2-methylpiperazin-1- (Compound 35), 4- (2-methyl-5- (pyridin-2-ylmethyl) Pyrrolo [2,3-d] pyrimidine (Compound 36), 4- (5-methyl-2- Yl) -7H-pyrrolo [2,3-d] pyrimidine (Compound 37), 4- (2-allyl-5-methyl- Pyridin-2-yl) -7H-pyrrolo [2,3-d] pyrimidine Yl) -7H-pyrrolo [2,3- d] pyrimidine (Compound 39), 4- (5-methyl- (Compound 40), 2- (4-methyl-5- (7H) -quinolin-2-yl-pyridin- (Compound 41), tert-butyl (2- (2-pyrrolidin-l-yl) Yl) ethyl) carbamate (Compound 42), 4-methyl-5- (7H- pyrrolo [2,3-d] pyrimidin- Pyrrolo [2,3-d] pyrimidine (Compound 43) was synthesized in the same manner as in Synthesis Example 1, but using 4- (2- (2-methoxyethyl) Pyrrolo [2,3-d] pyrimidin-4-yl) -7H-pyrrolo [2,3- Methyl-2- (4,4,4-trifluorobutyl) -2H-1,2,3-triazol-4-yl) -7H-pyrrolo [2 , 3-d] pyrimidine (Compound 45), 3- (4 2-yl) propan-1-ol (Compound 46), (2-methyl-5- 2-yl) pentan-1-ol (prepared by reacting 5- (4H-pyrrolo [2,3- d] pyrimidin- Compound 47), ethyl 5- (4-methyl-5- (7H-pyrrolo [2,3-d] pyrimidin- (48), 4- (4-methyl-5- (7H-pyrrolo [2,3- d] pyrimidin-4-yl) -2H-1,2,3- triazol- ) Butanenitrile (Compound 49), 5- (4-methyl-5- (7H-pyrrolo [2,3- d] pyrimidin- (7H-pyrrolo [2,3-d] pyrimidin-4-yl) -2H-1,2,3-triazole-2 Pyrrolo [2,3-d] pyrimidin-4-yl) -5- (p-tolyl) -2H-1,2,3 (7H-pyrrolo [2,3-d] pyrimidin-4-yl) -2H-1,2,4- (Compound 53), 4- (2- (cyclopropylmethyl) -5-methyl-2H-1,2,3-triazol-4-yl) -7H-pyrrolo [ Lt; RTI ID = 0.0 > [2,3-d] Pyrimidine (Compound 54), 4- (2- (cyclobutylmethyl) -5-methyl-2H-1,2,3-triazol- (Compound 55), 4- (2- (cyclopentylmethyl) -5-methyl-2H-1,2,3-triazol-4-yl) -7H- pyrrolo [2,3- d] pyrimidine (Compound 56), and 4- (2- (cyclohexylmethyl) -5-methyl-2H-1,2,3-triazol-4-yl) -7H- pyrrolo [2,3- (Compound 57).

본 발명의 다른 일 양태에 따르면, 본 발명은 상술한 화합물, 또는 약제학적으로 허용가능한 이의 염을 포함하는 JAK(Janus kinase) 억제용 조성물을 제공한다. 본 발명의 "JAK"은 세포 내 티로신 키나아제의 패밀리로서, 천선성 면역 및 후천성 면역 모두에서 수 많은 싸이토카인의 시그널링에 주요한 역할을 한다. 이러한 JAK의 기능으로 인해, 지금껏 면역, 염증, 암 관련 질환의 타겟으로 이용되어 왔다. 특히 JAK1 및 JAK3는 면역 결핍 질환, JAK2는 골수증식성 종양(MPN)에 관련되어 있어 이들의 활성을 억제하면 상기 질환들을 예방 또는 치료할 수 있는 것으로 알려져 있다. 본 발명자들은 본 발명의 화합물들이 JAK1, JAK2 및 JAK3를 모두 억제하는 효능이 있음을 확인하였다. According to another aspect of the present invention, there is provided a composition for inhibiting JAK (Janus kinase) comprising the above-mentioned compound, or a pharmaceutically acceptable salt thereof. The "JAK" of the present invention, as a family of intracellular tyrosine kinases, plays a major role in the signaling of numerous cytokines, both in chondrogenic immunity and acquired immunity. Due to the function of JAK, it has been used as a target for immunity, inflammation and cancer-related diseases. JAK1 and JAK3 are related to immunodeficiency disease and JAK2 is associated with myeloproliferative neoplasm (MPN), and it is known that inhibition of these activities can prevent or treat the above diseases. The present inventors have confirmed that the compounds of the present invention are effective for inhibiting both JAK1, JAK2 and JAK3.

본 발명의 일 구현예에 있어서, 본 발명의 JAK은 JAK1, JAK2 및 JAK3로 구성된 군으로부터 선택되는 어느 하나 이상이다.In one embodiment of the present invention, the JAK of the present invention is any one or more selected from the group consisting of JAK1, JAK2, and JAK3.

본 발명의 다른 일 양태에 따르면, 본 발명은 상술한 화합물, 또는 약제학적으로 허용가능한 이의 염을 유효 성분으로 포함하는 면역 결핍 질환 또는 골수증식성 종양(MPN)의 예방 또는 치료용 조성물을 제공한다. According to another aspect of the present invention, there is provided a composition for the prophylaxis or treatment of immunodeficiency disease or myeloproliferative neoplasm (MPN) comprising the above-mentioned compound, or a pharmaceutically acceptable salt thereof as an active ingredient .

본 발명의 일 구현예에 있어서, 본 발명의 면역 결핍 질환은 중증 복합 면역 결핍증(SCID), 비장 비대증, 가려움증(pruritus), 악액질(cachexia), 빈혈(anemia), 자가면역 질환, 류머티스 관절염 및 알러지 질환으로 구성된 군으로부터 선택되는 어느 하나이다. In one embodiment of the invention, the immunodeficient disease of the invention is selected from the group consisting of severe combined immunodeficiency syndrome (SCID), spleen enlargement, pruritus, cachexia, anemia, autoimmune diseases, rheumatoid arthritis and allergies ≪ / RTI > disease.

본 발명의 일 구현예에 있어서, 본 발명의 골수증식성 종양(MPN)은 진성 적혈구 증가증(polycythemia vera), 본태성 혈소판 증가증(essential thrombocythemia), 골수섬유증(myelofibrosis), 버드-키아리 증후군(Budd-Chiari Syndrome), 골수 섬유증 및 림프 악성종양으로 구성된 군으로부터 선택되는 어느 하나이다.In one embodiment of the present invention, the myeloproliferative tumor (MPN) of the present invention is useful for the treatment of polycythemia vera, essential thrombocythemia, myelofibrosis, Budd- , ≪ / RTI > Chiari Syndrome), myelofibrosis and lymphoid malignancies.

JAK의 활성을 억제함으로서 상기 질환들을 유효하게 예방 또는 치료할 수 있음은 종래 알려져 있다[1,2,3].It is known to effectively prevent or treat these diseases by inhibiting the activity of JAK [1,2,3].

본 발명의 약제학적 조성물은 상술한 유효성분 이외에 약제학적으로 허용되는 담체를 포함한다. 본 발명의 약제학적 조성물에 포함되는 약제학적으로 허용되는 담체는 제제시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 약제학적 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다. 적합한 약제학적으로 허용되는 담체 및 제제는 Remington's Pharmaceutical Sciences(19th ed., 1995)에 상세히 기재되어 있다.The pharmaceutical composition of the present invention includes a pharmaceutically acceptable carrier in addition to the above-mentioned effective ingredient. The pharmaceutically acceptable carriers to be contained in the pharmaceutical composition of the present invention are those conventionally used in the present invention and include lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, But are not limited to, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrups, methylcellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil. It is not. The pharmaceutical composition of the present invention may further contain a lubricant, a wetting agent, a sweetening agent, a flavoring agent, an emulsifying agent, a suspending agent, a preservative, etc. in addition to the above components. Suitable pharmaceutically acceptable carriers and formulations are described in detail in Remington ' s Pharmaceutical Sciences (19th ed., 1995).

본 발명의 약제학적 조성물의 적합한 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하게 처방될 수 있다. 한편, 본 발명의 약제학적 조성물의 투여량은 바람직하게는 1일 당 0.001-1000 mg/kg(체중)이다.The appropriate dosage of the pharmaceutical composition of the present invention may vary depending on factors such as the formulation method, administration method, age, body weight, sex, pathological condition, food, administration time, administration route, excretion rate, . On the other hand, the dosage of the pharmaceutical composition of the present invention is preferably 0.001-1000 mg / kg (body weight) per day.

본 발명의 약제학적 조성물은 경구 또는 비경구로 투여할 수 있고, 비경구로 투여되는 경우, 피부에 국소적으로 도포, 정맥내 주입, 피하 주입, 근육 주입, 복강 주입, 경피 투여 등으로 투여할 수 있다. The pharmaceutical composition of the present invention can be administered orally or parenterally, and when administered parenterally, it can be administered by local application to the skin, intravenous injection, subcutaneous injection, muscle injection, intraperitoneal injection, transdermal administration, .

본 발명의 약제학적 조성물은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약제학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화 함으로써 단위 용량 형태로 제조되거나 또는 다용량 용기내에 내입시켜 제조될 수 있다. 이때 제형은 오일 또는 수성 매질중의 용액, 현탁액 또는 유화액 형태이거나 엑스제, 분말제, 과립제, 정제 또는 캅셀제 형태일 수도 있으며, 분산제 또는 안정화제를 추가적으로 포함할 수 있다.The pharmaceutical composition of the present invention may be formulated into a unit dose form by formulating it using a pharmaceutically acceptable carrier and / or excipient according to a method which can be easily carried out by a person having ordinary skill in the art to which the present invention belongs. Or by intrusion into a multi-dose container. The formulations may be in the form of solutions, suspensions or emulsions in oils or aqueous media, or in the form of excipients, powders, granules, tablets or capsules, and may additionally contain dispersing or stabilizing agents.

본 발명의 일 구현예에 있어서, 본 발명의 화합물은 화학식 1의 R3

Figure 112016037130768-pat00005
인 것이다. 본발명의 화합물들인 2,5-트리아졸, 1,5-트리아졸, 또는 1,4-트리아졸의 형태는 모두 JAK 활성 억제 효과를 나타내지만, 본 발명자들은 특히 2,5-트리아졸 형태의 화합물들의 IC50 값이 현저히 낮다는 결과를 도출하였다. In one embodiment of the invention, the compounds of the present invention are those wherein R < 3 >
Figure 112016037130768-pat00005
. Although the forms of the compounds of the present invention such as 2,5-triazole, 1,5-triazole, or 1,4-triazole all exhibit JAK activity inhibitory effects, The IC 50 values of the compounds were significantly lower.

본 발명의 일 구현예에 있어서, 본 발명의 R2는 말단 탄소가 시아노기 치환된 C1-6 직쇄 알킬, 2-메틸알릴, 4,4,4-트리할로부틸, 시클로알킬 치환된 C1-4 알킬로 구성된 군으로부터 선택되는 어느 하나이다. In one embodiment of the present invention, R 2 of the present invention is a compound wherein the terminal carbon is a C 1-6 straight chain alkyl substituted with cyano group, 2-methylallyl, 4,4,4-trihalobutyl, cycloalkyl substituted C 1-4 alkyl. ≪ / RTI >

본 발명의 일 구현예에 있어서, 본 발명의 말단 탄소가 시아노기 치환된 C1-6 알킬은 3-시아노프로필 또는 4-시아노부틸이다. In one embodiment of the present invention, the C 1-6 alkyl substituted with the cyano group of the terminal carbon of the present invention is 3-cyanopropyl or 4-cyanobutyl.

본 발명의 일 구현예에 있어서, 본 발명의 4,4,4-트리할로부틸은 4,4,4-트리플루오로부틸이다. In one embodiment of the present invention, the 4,4,4-trihalobutyl of the present invention is 4,4,4-trifluorobutyl.

본 발명의 일 구현예에 있어서, 본 발명의 시클로알킬 치환된 C1-4 알킬은 시클로프로필메틸, 시클로부틸메틸 또는 시클로펜틸메틸이다.In one embodiment of the invention, the cycloalkyl substituted C 1-4 alkyl of the invention is cyclopropylmethyl, cyclobutylmethyl or cyclopentylmethyl.

본 발명의 일 구현예에 있어서, 본 발명의 R1은 메틸이다. In one embodiment of the invention, R < 1 >

상술한 치환기들로 치환된 화합물의 경우, 더 우수한 JAK 억제 활성을 나타내었다.Compounds substituted with the above-mentioned substituents showed a better JAK inhibitory activity.

본 발명의 일 구체예에 있어서, 본 발명의 화합물은 4-(5-메틸-2-(2-메틸알릴)-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(화합물 39), 4-(5-메틸-2-(4,4,4-트리플루오로부틸)-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(화합물 45), 4-(4-메틸-5-(7H-피롤로[2,3-d]피리미딘-4-일)-2H-1,2,3-트리아졸-2-일)부탄니트릴(화합물 49), 5-(4-메틸-5-(7H-피롤로[2,3-d]피리미딘-4-일)-2H-1,2,3-트리아졸-2-일)펜탄니트릴(화합물 50), 4-(2-(시클로프로필메틸)-5-메틸-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(화합물 54), 및 4-(2-(시클로부틸메틸)-5-메틸-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(화합물 55), 4-(2-(시클로펜틸메틸)-5-메틸-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(화합물 56) 및 4-(2-(시클로헥실메틸)-5-메틸-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(화합물 57)으로 구성된 군으로부터 선택되는 어느 하나 이상이다. 상술한 화합물들은 JAK2 억제에 대한 효소 분석에 있어서 IC50 값이 100 nM 이하 수준으로 관찰되었고, JAK1 및 JAK3의 억제 활성도 뛰어난 것을 확인하였다. In one embodiment of the invention, the compound of the present invention is 4- (5-methyl-2- (2-methylallyl) -2H-1,2,3-triazol- [2,3-d] pyrimidine (Compound 39), 4- (5-methyl-2- (4,4,4-trifluorobutyl) -2H- Pyrrolo [2,3-d] pyrimidine (Compound 45), 4- (4-methyl-5- (7H-pyrrolo [2,3-d] pyrimidin-4-yl) - 2H-1,2,3-triazol-2-yl) pentanenitrile (Compound 50), 4- (2- (cyclopropylmethyl) Yl) -7H-pyrrolo [2,3-d] pyrimidine (Compound 54) and 4- (2- (cyclobutylmethyl) Yl) -7H-pyrrolo [2,3-d] pyrimidine (Compound 55), 4- (2- (cyclopentylmethyl) ) -7H-pyrrolo [2,3-d] pyrimidine (Compound 56) and 4- (2- (cyclohexylmethyl) -5- -7H-pyrrolo [2,3-d] pyrimidine (Compound 57) It is at least one selected from the group. The above compounds were found to have an IC 50 value of less than 100 nM in the enzyme assay for inhibition of JAK2, and that the inhibitory activity of JAK1 and JAK3 was also excellent.

본 발명의 특징 및 이점을 요약하면 다음과 같다:The features and advantages of the present invention are summarized as follows:

(a) 본 발명은 본 명세서 상의 소정의 화학식 1의 화합물, 또는 약제학적으로 허용가능한 이의 염을 제공한다.(a) The present invention provides a compound of formula 1, or a pharmaceutically acceptable salt thereof, as described herein.

(b) 본 발명은 JAK(Janus kinase) 억제용 조성물을 제공한다. (b) The present invention provides a composition for inhibiting JAK (Janus kinase).

(c) 본 발명은 면역 결핍 질환 또는 골수증식성 종양(MPN)의 예방 또는 치료용 조성물을 제공한다. (c) The present invention provides a composition for the prophylaxis or treatment of immunodeficiency disease or myeloproliferative neoplasm (MPN).

(d) 본 발명의 화합물을 이용하면 효과적으로 JAK1, JAK2, 및 JAK3 활성을 억제할 수 있다. (d) Use of the compounds of the present invention can effectively inhibit JAK1, JAK2, and JAK3 activity.

(e) 본 발명의 화합물을 포함하는 조성물을 이용하면 JAK 활성에 의해 유발되는 질병들을 효과적으로 억제할 수 있다. (e) Use of a composition comprising a compound of the present invention can effectively inhibit diseases caused by JAK activity.

도 1은 FDA 승인된 JAK 억제자 룩소리티닙 및 소파시티닙의 화학구조식과 JAK 패밀리 멤버에 대한 억제의 IC50 값을 나타낸다.
도 2는 1,5-트리아졸(화합물 21) 및 2,5-트리아졸(화합물 43) 이성질체의 최적화된 구조 정전위 맵을 나타낸다. 파란색이 양 전하를 빨간색이 음 전하를 나타낸다.
도 3은 HCC827 및 HCC827 GR 세포들에서의 화합물 54와 룩소리티닙의 항-증식 효과를 나타낸다.
도 4는 HCC827 및 HCC827 GR 세포에서의 STAT3 인산화(Y705)의 억제를 나타낸다.
도 5는 다양한 알킬 그룹으로 치환된 각각의 트리아졸 레지오이성질체의 합성 개요를 나타낸다.
Figure 1 shows the chemical structure of the FDA approved JAK inhibitor luxoritinib and soap Cityst nip and the IC 50 value of inhibition on the JAK family member.
Figure 2 shows an optimized structural constant potential map of 1,5-triazole (Compound 21) and 2,5-triazole (Compound 43) isomers. Blue indicates positive charge and red negative charge.
Figure 3 shows the anti-proliferative effect of compound 54 and luxoritinib in HCC827 and HCC827 GR cells.
Figure 4 shows inhibition of STAT3 phosphorylation (Y705) in HCC827 and HCC827 GR cells.
Figure 5 shows a synthesis outline of each triazole resinoisomer substituted with various alkyl groups.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are only for describing the present invention in more detail and that the scope of the present invention is not limited by these embodiments in accordance with the gist of the present invention .

실시예Example

1. 일반적인 합성1. General Synthesis

모든 시약 및 용매를 상업적 공급자(시그마 알드리치, TCI 등)로부터 구입하였고, 추가적인 정제없이 그대로 이용하였다. TLC(Thin layer chromatography)를 형광 실리카겔 플레이트(Merck 사의 60 F254)를 이용하여 수행하였고, 짧은-파장(short wave) UV 광으로 가시화하였다. 크로마토그래피 정제를 Kieselgel 60(Merck) 0.040-0.063 mm 컬럼 크로마토그래피를 이용하여 실시하였다. 양자 핵 자기 공명 분광법을 JEOL JNM-LA 300WB 분광광도계를 이용하여 300 MHz에서 또는 JEOL JNM-ECX 400P 분광광도계를 이용하여 400 MHz에서 수행하였고, 스펙트럼을 CDCl3 또는 DMSO-d 6에서 수집하였다. 달리 기재하지 않는 한, 캐미컬 시프트가 내부(internal) TMS(tetramethylsilane)로부터의 다운필드 ppm 또는 DMSO(2.5 ppm)로부터의 상대적인 ppm으로 표현되었다. 데이터는 하기와 같이 보고되었다: 캐미컬 쉬프트, 인테그레이션, 멀티플리시티(s, singlet; d, diublet; t, triplet; m, multiplet; br, broad) 및 커플링 상수. MALDI-TOF 및 ESI(electrospray ionization) 기구를 이용하여 질량 분광법을 수행하였다. All reagents and solvents were purchased from commercial suppliers (Sigma Aldrich, TCI, etc.) and used without further purification. Thin layer chromatography (TLC) was performed using a fluorescent silica gel plate (Merck 60 F254) and visualized with short-wave UV light. Chromatographic purification was performed using Kieselgel 60 (Merck) 0.040-0.063 mm column chromatography. Quantum nuclear magnetic resonance spectroscopy was performed at 300 MHz using a JEOL JNM-LA 300WB spectrophotometer or at 400 MHz using a JEOL JNM-ECX 400P spectrophotometer, and the spectrum was collected in CDCl 3 or DMSO- d 6 . Unless otherwise noted, the chemical shifts were expressed in ppm downfield from internal TMS (tetramethylsilane) or relative ppm from DMSO (2.5 ppm). The data were reported as follows: chemical shift, integration, multiplication (s, singlet; d, diublet; t, triplet; m, multiplet; br, broad) and coupling constant. Mass spectroscopy was performed using MALDI-TOF and ESI (electrospray ionization) instruments.

제조예 1: 4-아이오도-7H-피롤로[2,3-d]피리미딘(4)의 제조Preparation Example 1: Preparation of 4-iodo-7H-pyrrolo [2,3-d] pyrimidine (4)

4-클로로-7H-피롤로[2,3-d]피리미딘을 H2O 내의 요오드화 수소산(hydriodic acid) 57 중량% 내로 용해시켰다. 용액을 실온에서 48시간 동안 교반하였다. 고체를 필터링하여 제거하였다. 차가운 물 내의 현탁액을 NH3(aq) 용액으로 pH 8이 되도록 하였다. 고체를 필터링하였고, 물로 세척 후 고체를 건조시켰다. 4-Chloro -7H- pyrrolo [2,3-d] pyrimidine was dissolved into 57% by weight hydroiodic acid (hydriodic acid) in H 2 O. The solution was stirred at room temperature for 48 hours. The solid was filtered off. The suspension in cold water was brought to pH 8 with NH 3 ( aq ) solution. The solids were filtered, washed with water and then the solids were dried.

제조예 2: 4-아이오도-7-((2-(트리메틸실릴)에톡시)메틸)-7H-피롤로[2,3-d]피리미딘(5)의 제조.Preparation Example 2: Preparation of 4-iodo-7 - ((2- (trimethylsilyl) ethoxy) methyl) -7H-pyrrolo [2,3-d] pyrimidine (5).

건조시킨 DMF 내의 4-아이오도-7h-피롤로[2,3-d]피리미딘(4)의 용액에 대해 K2CO3를 첨가한 후, 실온에서 30분간 교반하였다. 30분 후, 2-(트리메틸실릴)에톡시메틸 클로라이드를 용액에 적상하였고(drop-wised), 실온에서 6시간동안 교반하여 반응시켰다. 퀀칭을 위해, 포화 NH4Cl 수용액을 용액에 첨가하였다. 혼합물을 에틸아세테이트로 붇고, 에틸아세테이트로 2회 추출하였다. 결합 유기층(The combined organic layers)을 Na2SO4로 건조시켰고, 필터링하였으며, 농축시켰다. 잔여물을 실리카겔 컬럼 크로마토그래피(헥산/에틸아세테이트)로 정제하여 원하는 화합물을 수득하였다.To a solution of 4-iodo-7h-pyrrolo [2,3-d] pyrimidine (4) in dry DMF was added K 2 CO 3 and stirred for 30 minutes at room temperature. After 30 minutes, 2- (trimethylsilyl) ethoxymethyl chloride was added dropwise to the solution and allowed to react at room temperature for 6 hours with stirring. For quenching, a saturated aqueous NH 4 Cl solution was added to the solution. The mixture was poured into ethyl acetate and extracted twice with ethyl acetate. The combined organic layers were dried over Na 2 SO 4 , filtered and concentrated. The residue was purified by silica gel column chromatography (hexane / ethyl acetate) to give the desired compound.

제조예 3-1: 4-(프로프-1-인-1-일)-7-((2-(트리메틸실릴)에톡시)메틸)-7H-피롤로[2,3-d]피리미딘(6a)의 제조.Preparation Example 3-1: 4- (Prop-1-yn-1-yl) -7- (2- (trimethylsilyl) ethoxy) methyl) -7H- pyrrolo [2,3- d] pyrimidine (6a).

Pd(PPh3)4, CuI(I) 및 TEA를 건조시킨 DMF 내의 4-아이오도-7-((2-(트리메틸실릴)에톡시)메틸)-7H-피롤로[2,3-d]피리미딘(5) 용액에 첨가하였다. 혼합물은 실온에서 15분간 N2를 불어넣었다(bubbled). 실온에서 1시간 동안 혼합물 용액에 프로핀(propyne)을 불어넣은 후, 실온에서 밤새도록(over night) 교반하여 반응시켰다. 최종적으로 진공에서 용매를 제거하고, 잔여물을 에틸아세테이트로 2회 추출한 뒤, 물로 세척하였다. 결합된 유기층을 Na2SO4로 건조시켰고, 필터링하였으며, 농축시켰다. 잔여물을 실리카겔 컬럼 크로마토그래피(헥산/에틸아세테이트)로 정제하여 원하는 화합물을 수득하였다. Pd (PPh 3) 4, CuI (I) and 4-iodo in the drying the TEA DMF -7 - (ethoxy) (2- (trimethylsilyl) methyl) -7H- pyrrolo [2,3-d] Pyrimidine < / RTI > (5). The mixture was bubbled with N 2 at room temperature for 15 minutes. Propyne was blown into the mixture solution at room temperature for 1 hour, and the mixture was allowed to react overnight at room temperature with stirring. The solvent was finally removed in vacuo and the residue was extracted twice with ethyl acetate and washed with water. The combined organic layers were dried over Na 2 SO 4 , filtered and concentrated. The residue was purified by silica gel column chromatography (hexane / ethyl acetate) to give the desired compound.

제조예 3-2: 4-(페닐에티닐)-7-((2-(트리메틸실릴)에톡시)메틸)-7H-피롤로[2,3-d]피리미딘(6b)의 제조Preparation 3-2: Preparation of 4- (phenylethynyl) -7 - ((2- (trimethylsilyl) ethoxy) methyl) -7H-pyrrolo [2,3- d] pyrimidine (6b)

Pd(PPh3)4, CuI(I) 및 TEA를 건조시킨 DMF 내의 4-아이오도-7-((2-(트리메틸실릴)에톡시)메틸)-7H-피롤로[2,3-d]피리미딘(5) 용액에 첨가하였다. 혼합물은 실온에서 15분간 N2를 불어넣었다(bubbled). 실온에서 1시간 동안 혼합물 용액에 페닐아세틸렌(phenyl acetylene)을 불어넣은 후, 실온에서 o/n에 대해 교반하여 반응시켰다. 최종적으로 진공에서 용매를 제거하고, 잔여물을 에틸아세테이트로 2회 추출한 뒤, 물로 세척하였다. 결합된 유기층을 Na2SO4로 건조시켰고, 필터링하였으며, 농축시켰다. 잔여물을 실리카겔 컬럼 크로마토그래피(헥산/에틸아세테이트)로 정제하여 원하는 화합물을 수득하였다. Pd (PPh 3) 4, CuI (I) and 4-iodo in the drying the TEA DMF -7 - (ethoxy) (2- (trimethylsilyl) methyl) -7H- pyrrolo [2,3-d] Pyrimidine < / RTI > (5). The mixture was bubbled with N 2 at room temperature for 15 minutes. Phenylacetylene was blown into the mixture solution at room temperature for 1 hour, and the mixture was reacted by stirring at o / n at room temperature. The solvent was finally removed in vacuo and the residue was extracted twice with ethyl acetate and washed with water. The combined organic layers were dried over Na2SO4, filtered and concentrated. The residue was purified by silica gel column chromatography (hexane / ethyl acetate) to give the desired compound.

제조예 3-3: 4-(p-톨릴에티닐)-7-((2-(트리메틸실릴)에톡시)메틸)-7H-피롤로[2,3,-d]피리미딘(6c)Production Example 3-3: Preparation of 4- (p-tolyloethynyl) -7 - ((2- (trimethylsilyl) ethoxy)

Pd(PPh3)4, CuI(I) 및 TEA를 건조시킨 DMF 내의 4-아이오도-7-((2-(트리메틸실릴)에톡시)메틸)-7H-피롤로[2,3-d]피리미딘(5) 용액에 첨가하였다. 혼합물은 실온에서 15분간 N2를 불어넣었다(bubbled). 실온에서 1시간 동안 혼합물 용액에 4-에티닐톨루엔(4-ethynyltoluene)을 불어넣은 후, 실온에서 o/n에 대해 교반하여 반응시켰다. 최종적으로 진공에서 용매를 제거하고, 잔여물을 에틸아세테이트로 2회 추출한 뒤, 물로 세척하였다. 결합된 유기층을 Na2SO4로 건조시켰고, 필터링하였으며, 농축시켰다. 잔여물을 실리카겔 컬럼 크로마토그래피(헥산/에틸아세테이트)로 정제하여 원하는 화합물을 수득하였다. Pd (PPh 3) 4, CuI (I) and 4-iodo in the drying the TEA DMF -7 - (ethoxy) (2- (trimethylsilyl) methyl) -7H- pyrrolo [2,3-d] Pyrimidine < / RTI > (5). The mixture was bubbled with N 2 at room temperature for 15 minutes. Ethynyltoluene (4-ethynyltoluene) was blown into the mixture solution at room temperature for 1 hour, and the mixture was reacted with o / n at room temperature by stirring. The solvent was finally removed in vacuo and the residue was extracted twice with ethyl acetate and washed with water. The combined organic layers were dried over Na 2 SO 4 , filtered and concentrated. The residue was purified by silica gel column chromatography (hexane / ethyl acetate) to give the desired compound.

제조예 4-1: 4-(5-메틸-1H-1,2,3-트리아졸-4-일)-7-((2-(트리메틸실릴)에톡시)메틸)-7H-피롤로[2,3,-d]피리미딘(7a)의 제조Production Example 4-1: Synthesis of 4- (5-methyl-1H-1,2,3-triazol-4-yl) -7- (2- (trimethylsilyl) ethoxy) 2,3, -d] pyrimidine (7a)

4-(프로프-1-인-1-일)-7-((2-(트리메틸실릴)에톡시)메틸)-7H-피롤로[2,3-d]피리미딘(6a)을 건조된 DMF 내에 용해시키고, NaN3를 첨가하였다. 용액의 혼합물을 95℃에서 5시간 동안 교반하였다. 교반후, 용액을 실온으로 냉각시킨 뒤, 용매를 진공에서 제거하였다. 용액 제조를 위해, 잔여물을 1 N HCl(aq) 용액에 붓고, 에틸아세테이트로 2회 추출하였다. 결합된 유기 층을 Na2SO4로 건조시켰고, 필터링하였으며, 농축시켰다. 잔여물을 실리카겔 컬럼 크로마토그래피(헥산/에틸아세테이트)로 정제하여 원하는 화합물을 얻었다. 7H-pyrrolo [2,3-d] pyrimidine (6a) was reacted with 4- (prop- 1 -yl-1-yl) -7- (2- (trimethylsilyl) ethoxy) was dissolved in DMF was added NaN 3. The mixture was stirred at 95 < 0 > C for 5 hours. After stirring, the solution was cooled to room temperature and the solvent was removed in vacuo. For solution preparation, the residue was poured into 1 N HCl (aq) solution and extracted twice with ethyl acetate. The combined organic layers were dried over Na 2 SO 4 , filtered and concentrated. The residue was purified by silica gel column chromatography (hexane / ethyl acetate) to obtain the desired compound.

제조예 4-2: 4-(5-페닐-1H-1,2,3-트리아졸-4-일)-7-((2-(트리메틸실릴)에톡시)메틸)-7H-피롤로[2,3,-d]피리미딘(7b)의 제조Preparation Example 4-2: Preparation of 4- (5-phenyl-1H-1,2,3-triazol-4-yl) -7- (2- (trimethylsilyl) ethoxy) 2,3, -d] pyrimidine (7b)

4-(페닐에티닐)-7-((2-(트리메틸실릴)에톡시)메틸)-7H-피롤로[2,3-d]피리미딘(6b)을 건조된 DMF 내에 용해시키고, NaN3를 첨가하였다. 용액의 혼합물을 95℃에서 7시간 동안 교반하였다. 교반후, 용액을 실온으로 냉각시킨 뒤, 용매를 진공에서 제거하였다. 용액 제조를 위해, 잔여물을 1 N HCl(aq) 용액에 붓고, 에틸아세테이트로 2회 추출하였다. 결합된 유기 층을 Na2SO4로 건조시켰고, 필터링하였으며, 농축시켰다. 잔여물을 실리카겔 컬럼 크로마토그래피(헥산/에틸아세테이트)로 정제하여 원하는 화합물을 얻었다. Pyrrolo [2,3-d] pyrimidine (6b) was dissolved in dry DMF and NaN 3 (5 mL) was added dropwise to a solution of 4- (phenylethynyl) Was added. Was stirred at 95 < 0 > C for 7 hours. After stirring, the solution was cooled to room temperature and the solvent was removed in vacuo. For solution preparation, the residue was poured into 1 N HCl (aq) solution and extracted twice with ethyl acetate. The combined organic layers were dried over Na 2 SO 4 , filtered and concentrated. The residue was purified by silica gel column chromatography (hexane / ethyl acetate) to obtain the desired compound.

제조예 4-3: 4-(5-(p-톨릴)-1H-1,2,3-트리아졸-4-일)-7-((2-(트리메틸실릴)에톡시)메틸)-7H-피롤로[2,3,-d]피리미딘(4")의 제조 Preparation Example 4-3: 4- (5- (p-Tolyl) -1H-1,2,3-triazol-4-yl) - pyrrolo [2,3, -d] pyrimidine (4 ")

4-(p-톨릴에티닐)-7-((2-(트리메틸실릴)에톡시)메틸)-7H-피롤로[2,3-d]피리미딘을 건조된 DMF 내에 용해시키고, NaN3를 첨가하였다. 용액의 혼합물을 95℃에서 7시간 동안 교반하였다. 교반후, 용액을 실온으로 냉각시킨 뒤, 용매를 진공에서 제거하였다. 용액 제조를 위해, 잔여물을 1 N HCl(aq) 용액에 붓고, 에틸아세테이트로 2회 추출하였다. 결합된 유기 층을 Na2SO4로 건조시켰고, 필터링하였으며, 농축시켰다. 잔여물을 실리카겔 컬럼 크로마토그래피(헥산/에틸아세테이트)로 정제하여 원하는 화합물을 얻었다. Pyrrolo [2,3-d] pyrimidine was dissolved in dry DMF and NaN 3 was added dropwise to a solution of 4- (p- tolyloethynyl) -7- (2- (trimethylsilyl) ethoxy) . Was stirred at 95 < 0 > C for 7 hours. After stirring, the solution was cooled to room temperature and the solvent was removed in vacuo. For solution preparation, the residue was poured into 1 N HCl (aq) solution and extracted twice with ethyl acetate. The combined organic layers were dried over Na 2 SO 4 , filtered and concentrated. The residue was purified by silica gel column chromatography (hexane / ethyl acetate) to obtain the desired compound.

제조예 5: 트리아졸의 알킬화(alkylation)를 위한 일반적인 공정(8a-c)Preparation Example 5: General procedure for alkylation of triazole (8a-c)

ACN 내의 각각의 트리아졸 화합물(7a-c)의 용액 제조를 위해, K2CO3, KOH 및 TBAB를 첨가하였다. 용액을 실온에서 30분간 교반한 뒤, 알킬 브로마이드를 첨가하고, 실온에서 3-24시간 동안 반응시켰다. 반응 후, 고체를 필터링하여 제거하고, 디에틸에테르로 세척하였다. 필터링 용매를 진공에서 제거한 뒤, 실리카겔 컬럼 크로마토그래피(헥산/에틸아세테이트)로 정제하여 원하는 화합물을 얻었다. For the preparation of a solution of each triazole compound (7a-c) in ACN, K 2 CO 3 , KOH and TBAB were added. The solution was stirred at room temperature for 30 minutes, then alkyl bromide was added and allowed to react at room temperature for 3-24 hours. After the reaction, the solid was filtered off and washed with diethyl ether. The filtration solvent was removed in vacuo and the residue was purified by silica gel column chromatography (hexane / ethyl acetate) to give the desired compound.

제조예 6:(2-트리메틸실릴)에톡시 메틸 그룹의 탈보호(deprotection)를 위한 일반적인 공정(9a-c, 10)Preparation 6: General procedure (9a-c, 10) for deprotection of (2-trimethylsilyl) ethoxymethyl group [

건조된 THF 내의 알킬 치환된 트리아졸(8a-c) 또는 비치환된 트리아졸(7a)의 스타팅 용액에 1 M THF 내의 TBAF를 첨가하였다. 혼합물을 60℃에서 24-48시간 동안 교반한 뒤, 실온으로 냉각시켰다. 혼합물을 에틸 아세테이트 및 물 내로 붓고, 에틸아세테이트로 2회 추출하였다. 결합된 유기 층은 Na2SO4로 건조시켰고, 필터링하였으며, 농축시켰다. 잔여물을 실리카겔 컬럼 크로마토그래피(헥산/에틸아세테이트)로 정제하여 원하는 화합물을 얻었다. To the starting solution of alkyl substituted triazole (8a-c) or unsubstituted triazole (7a) in dry THF was added TBAF in 1 M THF. The mixture was stirred at 60 < 0 > C for 24-48 hours and then cooled to room temperature. The mixture was poured into ethyl acetate and water and extracted twice with ethyl acetate. The combined organic layer was dried with Na 2 SO 4, was filtered and concentrated. The residue was purified by silica gel column chromatography (hexane / ethyl acetate) to obtain the desired compound.

2. 제조 화합물2. Preparation Compound

2-1. 4-아이오도-7H-피롤로[2,3-d]피리미딘(4)2-1. Pyrrolo [2,3-d] pyrimidine (4) [0156] < EMI ID =

제조예 1에 기재된 방법에 따라, 원하는 화합물을 91.0% 수율로 얻었다. 1H NMR(400 MHz, DMSO-d6) δ(ppm) J(Hz) 12.46(br, 1H) 8.39(s, 1H) 7.63(d, J=4, 1H) 6.29(d, J=4, 1H); MS(ESI): [M]+ =245.6According to the method described in Preparation Example 1, the desired compound was obtained in a yield of 91.0%. 1 H NMR (400 MHz, DMSO -d6) δ (ppm) J (Hz) 12.46 (br, 1H) 8.39 (s, 1H) 7.63 (d, J = 4, 1H) 6.29 (d, J = 4, 1H ); MS (ESI): [M] < + & gt ; = 245.6

2-2. 4-아이오도-7-((2-(트리메틸실릴)에톡시)메틸)-7H-피롤로[2,3-d]피리미딘(5)2-2. Pyrrolo [2,3-d] pyrimidine (5) was obtained in the same manner as in (1) except that 4-iodo-

제조예 2에 기재된 방법에 따라, 원하는 화합물을 74.3% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 8.53(s, 1H) 7.40(d, J=4, 1H) 6.44(d, J=4, 1H) 5.62(s, 2H) 3.52(t, J=8, 2H) 0.91(t, J=8, 2H) -0.06(s, 9H); MS(ESI): [M]+ =377.1According to the method described in Preparation 2, the desired compound was obtained in 74.3% yield. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 8.53 (s, 1H) 7.40 (d, J = 4, 1H) 6.44 (d, J = 4, 1H) 5.62 (s, 2H) 3.52 (t, J = 8, 2H) 0.91 (t, J = 8, 2H), 0.06 (s, 9H); MS (ESI): [M] < + & gt ; = 377.1

2-3. 4-(프로프-1-인-1-일)-7-((2-(트리메틸실릴)에톡시)메틸)-7H-피롤로[2,3-d]피리미딘(6a)2-3. Pyrrolo [2,3-d] pyrimidine (6a) was obtained in the same manner as in (1) except for using 4- (2- (trimethylsilyl) ethoxy)

제조예 3-1에 기재된 방법에 따라, 원하는 화합물을 981.3% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 8.81(s, 1H) 7.35(d, J=4, 1H) 6.68(d, J=4, 1H) 5.63(s, 2H) 3.51(t, J=8, 2H) 2.20(s, 3H) 0.89(t, J=8, 2H) -0.07(s, 9H); MS(ESI): [M]+ =288.4The desired compound was obtained in a yield of 981.3% according to the method described in Production Example 3-1. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 8.81 (s, 1H) 7.35 (d, J = 4, 1H) 6.68 (d, J = 4, 1H) 5.63 (s, 2H) 3.51 (t, J = 8, 2H) 2.20 (s, 3H) 0.89 (t, J = 8, 2H) - 0.07 (s, 9H); MS (ESI): [M] < + & gt ; = 288.4

2-4. 4-(페닐에티닐)-7-((2-(트리메틸실릴)에톡시)메틸)-7H-피롤로[2,3-d]피리미딘(6b)2-4. Pyrrolo [2,3-d] pyrimidine (6b) was obtained in the same manner as in (1) except that 4- (phenylethynyl)

제조예 3-2에 기재된 방법에 따라, 원하는 화합물을 98% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 8.90(s, 1H) 7.70(d, J=4, 1H) 7.68(d, J=4, 1H) 7.43(d, J=4, 2H) 7.41(t, J=4, 3H) 6.79(d, J=4, 1H) 5.67(s, 2H) 3.56(t, J=8, 2H) 0.94(t, J=8, 2H) -0.05(s, 9H); MS(ESI): [M]+ =350.1According to the method described in Manufacturing Example 3-2, the desired compound was obtained in 98% yield. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 8.90 (s, 1H) 7.70 (d, J = 4, 1H) 7.68 (d, J = 4, 1H) 7.43 (d, J = 4, 2H) 7.41 (t, J = 4, 3H) 6.79 (d, J = 4, 1H) 5.67 (s, 2H) 3.56 (t, J = 8, 2H) 0.94 (t, J = 8, 2H) -0.05 (s, 9H); MS (ESI): [M] < + & gt ; = 350.1

2-5. 4-(p-톨릴에티닐)-7-((2-(트리메틸실릴)에톡시)메틸)-7H-피롤로[2,3,-d]피리미딘(6c)2-5. Pyrrolo [2,3, -d] pyrimidine (6c) was prepared in accordance with the general method of example 1 from 4- (p- tolyloethynyl) -7- (2- (trimethylsilyl) ethoxy)

제조예 3-3에 기재된 방법에 따라, 원하는 화합물을 57.5% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 8.89(s, 1H) 7.59(d, J=8, 2H) 7.41(d, J=4, 1H) 7.23(d, J=8, 2H) 6.78(d, J=4, 1H) 5.67(s, 2H) 3.56(t, J=8, 2H) 2.41(s, 3H) 0.94(t, J=8, 2H) -0.05(s, 9H); MS(ESI): [M]+ =363.9According to the method described in Manufacturing Example 3-3, the desired compound was obtained in 57.5% yield. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 8.89 (s, 1H) 7.59 (d, J = 8, 2H) 7.41 (d, J = 4, 1H) 7.23 (d, J = 8, 2H) 6.78 (d, J = 4, 1H) 5.67 (s, 2H) 3.56 (t, J = 8, 2H) 2.41 (s, 3H) 0.94 (t, J = 8, 2H) -0.05 (s , 9H); MS (ESI): [M] < + & gt ; = 363.9

2-6. 4-(5-메틸-1H-1,2,3-트리아졸-4-일)-7-((2-(트리메틸실릴)에톡시)메틸)-7H-피롤로[2,3,-d]피리미딘(7a)2-6. 7 - ((2- (trimethylsilyl) ethoxy) methyl) -7H-pyrrolo [2,3, -d ] Pyrimidine (7a)

제조예 4-1에 기재된 방법에 따라, 원하는 화합물을 54.3% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 8.96(s, 1H) 7.43(d, J=4, 1H) 7.33(d, J=4, 1H) 5.71(s, 2H) 3.57(t, J=8, 2H) 2.87(s, 3H) 0.93(t, J=8, 2H) -0.05(s, 9H); MS(ESI): [M]+ =332.8According to the method described in Production Example 4-1, the desired compound was obtained in a yield of 54.3%. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 8.96 (s, 1H) 7.43 (d, J = 4, 1H) 7.33 (d, J = 4, 1H) 5.71 (s, 2H) 3.57 (t, J = 8, 2H) 2.87 (s, 3H) 0.93 (t, J = 8, 2H) - 0.05 (s, 9H); MS (ESI): [M] < + & gt ; = 332.8

2-7. 4-(5-페닐-1H-1,2,3-트리아졸-4-일)-7-((2-(트리메틸실릴)에톡시)메틸)-7H-피롤로[2,3,-d]피리미딘(7b)2-7. 7 - ((2- (trimethylsilyl) ethoxy) methyl) -7H-pyrrolo [2,3, -d ] Pyrimidine (7b)

제조예 4-2에 기재된 방법에 따라, 원하는 화합물을 76% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 8.93(s, 1H) 7.73(d, J=4, 1H) 7.72(d, J=8, 1H) 7.40(d, J=8, 3H) 6.67(d, J=4, 1H) 5.69(s, 2H) 3.58(t, J=8, 2H) 0.95(t, J=8, 2H) -0.05(s, 9H); MS(ESI): [M]+ =394.0The desired compound was obtained in 76% yield according to the method described in Production Example 4-2. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 8.93 (s, 1H) 7.73 (d, J = 4, 1H) 7.72 (d, J = 8, 1H) 7.40 (d, J = 8, 3H) 6.67 (d, J = 4, 1H) 5.69 (s, 2H) 3.58 (t, J = 8, 2H) 0.95 (t, J = 8, 2H) - 0.05 (s, 9H); MS (ESI): [M] < + & gt ; = 394.0

2-8. 4-(5-(p-톨릴)-1H-1,2,3-트리아졸-4-일)-7-((2-(트리메틸실릴)에톡시)메틸)-7H-피롤로[2,3-d]피리미딘(7c)2-8. Methyl-7H-pyrrolo [2,3-c] pyridin-2-ylmethyl) -7- (2- (trimethylsilyl) ethoxy) 3-d] pyrimidine (7c) < RTI ID = 0.0 &

제조예 4-3에 기재된 방법에 따라, 원하는 화합물을 79.9% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 8.94(s, 1H) 7.60(d, J=8, 2H) 7.35(d, J=4, 1H) 7.18(d, J=8, 2H) 6.72(br, 1H) 5.69(s, 2H) 3.58(t, J=8, 2H) 2.37(s, 3H) 0.95(t, J=8, 2H) -0.06(s, 9H); MS(ESI): [M]+ =406.9According to the method described in Manufacturing Example 4-3, the desired compound was obtained in 79.9% yield. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 8.94 (s, 1H) 7.60 (d, J = 8, 2H) 7.35 (d, J = 4, 1H) 7.18 (d, J = 8, 2H) 6.72 (br, 1H) 5.69 (s, 2H) 3.58 (t, J = 8, 2H) 2.37 (s, 3H) 0.95 (t, J = 8, 2H) MS (ESI): [M] < + & gt ; = 406.9

2-9. 4-(5-메틸-1H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(10)2-9. Pyrrolo [2,3-d] pyrimidine (10) was obtained in the same manner as in Example 1 using 4- (5-methyl-1H-

제조예 6에 기재된 방법에 따라, 원하는 화합물을 21.5% 수율로 얻었다. 1H NMR(400 MHz, DMSO-d 6 ) δ(ppm) J(Hz) 12.13(br, 1H) 8.78(s, 1H) 7.58(d, J=4, 1H) 7.13(d, J=4, 1H) 2.72(s, 3H); MS(ESI) : [M]+ =200.9According to the method described in Preparation 6, the desired compound was obtained in a yield of 21.5%. 1 H NMR (400 MHz, DMSO- d 6) δ (ppm) J (Hz) 12.13 (br, 1H) 8.78 (s, 1H) 7.58 (d, J = 4, 1H) 7.13 (d, J = 4, 1H), 2.72 (s, 3H); MS (ESI): [M] < + & gt ; = 200.9

2-10. 4-(1,4-디메틸-1H-1,2,3-트리아졸-5-일)-7H-피롤로[2,3-d]피리미딘 (11)2-10. Pyrrolo [2,3-d] pyrimidine (11) was obtained in the same manner as in (1)

제조예 6에 기재된 방법에 따라, 원하는 화합물을 12.4% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 9.65(br, 1H) 9.01(s, 1H) 7.47(d, J=4, 1H) 6.50(d, J=4, 1H) 4.20(s, 3H) 2.43(s, 3H); MS(ESI): [M]+ =215.0According to the method described in Preparation 6, the desired compound was obtained in a yield of 12.4%. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 9.65 (br, 1H) 9.01 (s, 1H) 7.47 (d, J = 4, 1H) 6.50 (d, J = 4, 1H) 4.20 (s, 3 H) 2.43 (s, 3 H); MS (ESI): [M] < + & gt ; = 215.0

2-11. 4-(1-메틸-4-(p-톨릴)-1H-1,2,3-트리아졸-5-일)-7H-피롤로[2,3-d]피리미딘(12) 2-11. Pyrrolo [2,3-d] pyrimidine (12) was obtained in the same manner as in (1) above except that 1-methyl-

제조예 6에 기재된 방법에 따라, 원하는 화합물을 8.6% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 10.04(br, 1H) 9.07(s, 1H) 7.40(d, J=8, 2H) 7.22(d, J=4, 1H) 7.08(d, J=8, 2H) 5.89(d, J=4, 1H) 4.14(s, 3H) 2.05(s, 3H); MS(ESI): [M]+ =291.0According to the method described in Production Example 6, the desired compound was obtained in a yield of 8.6%. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 10.04 (br, 1H) 9.07 (s, 1H) 7.40 (d, J = 8, 2H) 7.22 (d, J = 4, 1H) 7.08 (d, J = 8, 2H) 5.89 (d, J = 4, 1H) 4.14 (s, 3H) 2.05 (s, 3H); MS (ESI): [M] < + & gt ; = 291.0

2-12. 4-(1-(2-메톡시에틸)-4-(p-톨릴)-1H-1,2,3-트리아졸-5-일)-7H-피롤로[2,3-d]피리미딘(13)2-12. LH-pyrrolo [2,3-d] pyrimidine (2-methoxyethyl) -4- (13)

제조예 6에 기재된 방법에 따라, 원하는 화합물을 4.0% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 10.14(br, 1H) 9.06(s, 1H) 7.38(d, J=8, 2H) 7.22(d, J=4, 1H) 7.06(d, J=8, 2H) 5.91(d, J=4, 1H) 4.83(t, J=8, 2H) 3.76(t, J=8, 2H) 3.10(s, 3H) 2.31(s, 3H); MS(ESI): [M]+ =334.9According to the method described in Preparation 6, the desired compound was obtained in 4.0% yield. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 10.14 (br, 1H) 9.06 (s, 1H) 7.38 (d, J = 8, 2H) 7.22 (d, J = 4, 1H) 7.06 (d, J = 8, 2H) 5.91 (d, J = 4, 1H) 4.83 (t, J = 8, 2H) 3.76 (t, J = 8, 2H) 3.10 (s, 3H) 2.31 (s, 3H); MS (ESI): [M] < + & gt ; = 334.9

2-13. 4-(1,5-디메틸-1H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(14)2-13. Pyrrolo [2,3-d] pyrimidine (14) Synthesis of 4- (l, 5-dimethyl-

제조예 6에 기재된 방법에 따라, 원하는 화합물을 40.3% 수율로 얻었다. 1H NMR(400 MHz, DMSO-d 6 ) δ(ppm) J(Hz) 12.15(br, 1H) 8.77(s, 1H) 7.57(d, J=4, 1H) 7.00(d, J=4, 1H) 4.20(s, 3H) 2.63(s, 3H); MS(ESI): [M]+ =215.0According to the method described in Preparation 6, the desired compound was obtained in a yield of 40.3%. 1 H NMR (400 MHz, DMSO- d 6) δ (ppm) J (Hz) 12.15 (br, 1H) 8.77 (s, 1H) 7.57 (d, J = 4, 1H) 7.00 (d, J = 4, 1H) 4.20 (s, 3H) 2.63 (s, 3H); MS (ESI): [M] < + & gt ; = 215.0

2-14. 4-(1-메틸-5-(p-톨릴)-1H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(15)2-14. Pyrrolo [2,3-d] pyrimidine (15) was obtained in the same manner as in (1)

제조예 6에 기재된 방법에 따라, 원하는 화합물을 13.5% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 10.37(br, 1H) 8.69(s, 1H) 7.36(d, J=8, 2H) 7.35(d, J=4, 1H) 7.32(d, J=8, 2H) 7.20(d, J=4, 1H) 4.03(s, 3H) 2.45(s, 3H); MS(ESI): [M]+ =290.9According to the method described in Production Example 6, the desired compound was obtained in a yield of 13.5%. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 10.37 (br, 1H) 8.69 (s, 1H) 7.36 (d, J = 8, 2H) 7.35 (d, J = 4, 1H) 7.32 (d, J = 8, 2H) 7.20 (d, J = 4, 1H) 4.03 (s, 3H) 2.45 (s, 3H); MS (ESI): [M] < + & gt ; = 290.9

2-15. 4-(5-2-15. 4- (5- 메틸methyl -1-비닐-1H-1,2,3--1-vinyl-1H-1,2,3- 트리아졸Triazole -4-일)-7H-피롤로[2,3-d]피리미딘(16)Yl) -7H-pyrrolo [2,3-d] pyrimidine (16)

제조예 6에 기재된 방법에 따라, 원하는 화합물을 72.3% 수율로 얻었다. 1H NMR(400MHz,CDCl3)δ(ppm)J(Hz) 9.13(br, 1H) 8.89(s, 1H) 7.49(d, J=4, 1H) 7.39(d, J=4, 1H) 7.20(dd, 1 J=162 J=12, 1H) 6.21(d, J=12, 1H) 5.39(d, J=12, 1H) 2.94(s, 3H); MS(ESI): [M]+ =227.3According to the method described in Preparation 6, the desired compound was obtained in 72.3% yield. 1 H NMR (400MHz, CDCl 3 ) δ (ppm) J (Hz) 9.13 (br, 1H) 8.89 (s, 1H) 7.49 (d, J = 4, 1H) 7.39 (d, J = 4, 1H) 7.20 (dd, 1 J = 16 2 J = 12, 1H) 6.21 (d, J = 12, 1H) 5.39 (d, J = 12, 1H) 2.94 (s, 3H); MS (ESI): [M] < + & gt ; = 227.3

2-16. 4-(1-알릴-5-메틸-1H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(17)2-16. Pyrrolo [2,3-d] pyrimidine (17) [0156] To a solution of 4- (l-allyl-

제조예 6에 기재된 방법에 따라, 원하는 화합물을 77.6% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 9.66(br, 1H) 8.90(s, 1H) 7.53(dd, 1 J=82 J=4, 1H) 7.41(dd, 1 J=82 J=4, 1H) 6.78(d, J=4, 1H) 6.08(m, 1H) 2.84(s, 3H) 1.95(d, J=4, 2H); MS(ESI): [M]+ =241.4According to the method described in Preparation 6, the desired compound was obtained in 77.6% yield. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 9.66 (br, 1H) 8.90 (s, 1H) 7.53 (dd, 1 J = 8 2 J = 4, 1H) 7.41 (dd, 1 J = 8 2 J = 4, 1H) 6.78 (d, J = 4, 1H) 6.08 (m, 1H) 2.84 (s, 3H) 1.95 (d, J = 4, 2H); MS (ESI): [M] < + & gt ; = 241.4

2-17. 4-(5-메틸-1-(2-메틸알릴)-1H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(18) 2-17. Pyrrolo [2,3-d] pyrimidine (18) [0157] To a solution of 4- (5-methyl-

제조예 6에 기재된 방법에 따라, 원하는 화합물을 30.9% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 11.20(br, 1H) 8.92(s, 1H) 7.50(d, J=4, 1H) 7.46(d, J=4, 1H) 5.03(s, 1H) 4.96(s, 1H) 4.73(s, 1H) 2.83(s, 3H) 1.78(s, 3H); MS(ESI): [M]+ =255.2According to the method described in Preparation 6, the desired compound was obtained in 30.9% yield. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 11.20 (br, 1H) 8.92 (s, 1H) 7.50 (d, J = 4, 1H) 7.46 (d, J = 4, 1H) 5.03 (s, 1H) 4.96 (s, 1H) 4.73 (s, 1H) 2.83 (s, 3H) 1.78 (s, 3H); MS (ESI): [M] < + & gt ; = 255.2

2-18. 4-(5-메틸-1-(3-메틸비닐-2-엔-1-일)-1H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(19)2-18. 1 H-1,2,3-triazol-4-yl) -7H-pyrrolo [2,3-d] ] Pyrimidine (19)

제조예 6에 기재된 방법에 따라, 원하는 화합물을 96.9% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 9.64(br, 1H) 8.88(s, 1H) 7.48(d, J=4, 1H) 7.38(d, J=4, 1H) 5.38(t, J=8, 1H) 5.01(d, J=4, 2H) 2.84(s, 3H) 1.87(s, 3H) 1.79(s, 3H); MS(ESI): [M]+ =269.4According to the method described in Preparation 6, the desired compound was obtained in 96.9% yield. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 9.64 (br, 1H) 8.88 (s, 1H) 7.48 (d, J = 4, 1H) 7.38 (d, J = 4, 1H) 5.38 (t, J = 8, 1H) 5.01 (d, J = 4, 2H) 2.84 (s, 3H) 1.87 (s, 3H) 1.79 (s, 3H); MS (ESI): [M] < + & gt ; = 269.4

2-19. 2-(5-메틸-4-(7H-피롤로[2,3-d]피리미딘-4-일)-1H-1,2,3-트리아졸-1-일)에탄-1-아민(20)2-19. The title compound was prepared in accordance with the general method of example 1 from 2- (5-methyl-4- (7H-pyrrolo [2,3-d] pyrimidin- 20)

제조예 6에 기재된 방법에 따라, 원하는 화합물을 18.0% 수율로 얻었다. 1H NMR(400 MHz, CD3OD-d 4 ) δ(ppm) J(Hz) 8.77(s, 1H) 7.49(d, J=4, 1H) 7.23(d, J=4, 1H) 4.56(t, J=8, 2H) 3.31(t, J=8, 2H) 2.84(s, 3H); MS(ESI): [M]+ =244.4According to the method described in Preparation 6, the desired compound was obtained in a yield of 18.0%. 1 H NMR (400 MHz, CD 3 OD- d 4) δ (ppm) J (Hz) 8.77 (s, 1H) 7.49 (d, J = 4, 1H) 7.23 (d, J = 4, 1H) 4.56 ( t, J = 8, 2H) 3.31 (t, J = 8, 2H) 2.84 (s, 3H); MS (ESI): [M] < + & gt ; = 244.4

2-20. 4-(1-(2-메톡시에틸)-5-메틸-1H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(21)2-20. Pyrrolo [2,3-d] pyrimidine (21) Synthesis of 4- (l- (2-methoxyethyl) -5-

제조예 6에 기재된 방법에 따라, 원하는 화합물을 58.6% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 9.88(br, 1H) 8.90(s, 1H) 7.49(d, J=4, 1H) 7.40(d, J=4, 1H) 4.54(t, J=8, 2H) 3.88(t, J=8, 2H) 3.34(s, 3H) 2.90(s, 3H); MS(ESI): [M]+ =259.4According to the method described in Preparation 6, the desired compound was obtained in 58.6% yield. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 9.88 (br, 1H) 8.90 (s, 1H) 7.49 (d, J = 4, 1H) 7.40 (d, J = 4, 1H) 4.54 (t, J = 8, 2H) 3.88 (t, J = 8, 2H) 3.34 (s, 3H) 2.90 (s, 3H); MS (ESI): [M] < + & gt ; = 259.4

2-21. 4-(1-(2-메톡시에틸)-5-(p-톨릴)-1H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(22)2-21. LH-pyrrolo [2,3-d] pyrimidine (2-methoxyethyl) -5- (22)

제조예 6에 기재된 방법에 따라, 원하는 화합물을 31.8% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 9.78(br, 1H) 8.67(s, 1H) 7.40(d, J=8, 2H) 7.35(d, J=4, 1H) 7.31(d, J=8, 2H) 7.24(d, J=4, 1H) 4.47(t, J=8, 2H) 3.88(t, J=8, 2H) 3.29(s, 3H) 2.45(s, 3H); MS(ESI): [M]+ =335.0According to the method described in Production Example 6, the desired compound was obtained in a yield of 31.8%. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 9.78 (br, 1H) 8.67 (s, 1H) 7.40 (d, J = 8, 2H) 7.35 (d, J = 4, 1H) 7.31 (d, J = 8, 2H) 7.24 (d, J = 4, 1H) 4.47 (t, J = 8, 2H) 3.88 (t, J = 8, 2H) 3.29 (s, 3H) 2.45 (s, 3H); MS (ESI): [M] < + & gt ; = 335.0

2-22. 4-(5-메틸-1-(4,4,4-트리플루오로부틸)-1H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(23)2-22. Pyrrolo [2,3-d] pyrimidin-4-ylmethyl) -lH-pyrrolo [2,3- Middin (23)

제조예 6에 기재된 방법에 따라, 원하는 화합물을 15.6% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 9.55(br, 1H) 8.90(s, 1H) 7.49(d, J=4, 1H) 7.40(d, J=4, 1H) 4.48(t, J=8, 2H) 2.90(s, 3H) 2.29(m, 4H); MS(ESI): [M]+ =311.2According to the method described in Preparation 6, the desired compound was obtained in a yield of 15.6%. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 9.55 (br, 1H) 8.90 (s, 1H) 7.49 (d, J = 4, 1H) 7.40 (d, J = 4, 1H) 4.48 (t, J = 8, 2H) 2.90 (s, 3H) 2.29 (m, 4H); MS (ESI): [M] < + & gt ; = 311.2

2-23. 3-(5-메틸-4-(7H-피롤로[2,3-d]피리미딘-4-일)-1H-1,2,3-트리아졸-1-일)프로판-1-올(24)2-23. 1-yl) propan-1-ol (prepared by reacting 5-methyl-4- (7H- pyrrolo [2,3- d] pyrimidin- 24)

제조예 6에 기재된 방법에 따라, 원하는 화합물을 36.6% 수율로 얻었다. 1H NMR(400 MHz, CD3OD-d 4 ) δ(ppm) J(Hz) 8.75(s, 1H) 7.46(d, J=4, 1H) 7.20(d, J=4, 1H) 4.2(t, J=8, 2H) 3.63(t, J=8, 2H) 2.88(s, 3H) 2.16(t, J=8, 2H); MS(ESI): [M]+ =259.5According to the method described in Preparation 6, the desired compound was obtained in 36.6% yield. 1 H NMR (400 MHz, CD 3 OD- d 4) δ (ppm) J (Hz) 8.75 (s, 1H) 7.46 (d, J = 4, 1H) 7.20 (d, J = 4, 1H) 4.2 ( t, J = 8, 2H) 3.63 (t, J = 8, 2H) 2.88 (s, 3H) 2.16 (t, J = 8, 2H); MS (ESI): [M] < + & gt ; = 259.5

2-24. 5-(5-메틸-4-(7H-피롤로[2,3-d]피리미딘-4-일)-1H-1,2,3-트리아졸-1-일)펜탄-1-올(25)2-24. (5-methyl-4- (7H-pyrrolo [2,3-d] pyrimidin-4-yl) -1H-1,2,3-triazol-1-yl) pentan- 25)

제조예 6에 기재된 방법에 따라, 원하는 화합물을 47.9% 수율로 얻었다. 1H NMR(400 MHz, CD3OD-d 4 ) δ(ppm) J(Hz) 8.76(s, 1H) 7.48(d, J=4, 1H) 7.21(d, J=4, 1H) 4.46(t, J=8, 2H) 3.58(t, J=8, 2H) 2.81(s, 3H) 1.99(m, 2H) 1.65(m, 2H) 1.46(m, 2H); MS(ESI) : [M]+ =287.0According to the method described in Preparation 6, the desired compound was obtained in 47.9% yield. 1 H NMR (400 MHz, CD 3 OD- d 4) δ (ppm) J (Hz) 8.76 (s, 1H) 7.48 (d, J = 4, 1H) 7.21 (d, J = 4, 1H) 4.46 ( t, J = 8, 2H) 3.58 (t, J = 8, 2H) 2.81 (s, 3H) 1.99 (m, 2H) 1.65 (m, 2H) 1.46 (m, 2H); MS (ESI): [M] < + & gt ; = 287.0

2-25. 4-(5-메틸-4-(7H-피롤로[2,3-d]피리미딘-4-일)-1H-1,2,3-트리아졸-1-일)부탄니트릴(26)2-25. 1-yl) butanenitrile (26) To a solution of 4- (5-methyl-4- (7H- pyrrolo [2,3- d] pyrimidin-

제조예 6에 기재된 방법에 따라, 원하는 화합물을 12.1%% 수율로 얻었다. 1H NMR(400 MHz, CD3OD-d 4 ) δ(ppm) J(Hz) 12.09(br, 1H) 8.74(s, 1H) 7.55(d, J=4, 1H) 7.15(d, J=4, 1H) 4.45(t, J=8, 2H) 2.79(s, 3H) 2.59(t, J=8, 2H) 2.15(quint, J=8, 2H); MS(ESI) : [M]+ =268.3According to the method described in Preparation 6, the desired compound was obtained in a yield of 12.1%. 1 H NMR (400 MHz, CD 3 OD- d 4) δ (ppm) J (Hz) 12.09 (br, 1H) 8.74 (s, 1H) 7.55 (d, J = 4, 1H) 7.15 (d, J = 4, 1H) 4.45 (t, J = 8, 2H) 2.79 (s, 3H) 2.59 (t, J = 8, 2H) 2.15 (quint, J = 8, 2H); MS (ESI): [M] < + & gt ; = 268.3

2-26. 5-(5-메틸-4-(7H-피롤로[2,3-d]피리미딘-4-일)-1H-1,2,3-트리아졸-1-일)펜탄니트릴(27)2-26. (27): < RTI ID = 0.0 > 5- (5-methyl-

제조예 6에 기재된 방법에 따라, 원하는 화합물을 10.5% 수율로 얻었다. 1H NMR(400 MHz, CD3OD-d 4 ) δ(ppm) J(Hz) 12.08(br, 1H) 8.74(s, 1H) 7.54(d, J=4, 1H) 7.15(d, J=4, 1H) 4.42(t, J=8, 2H) 2.78(s, 3H) 2.56(t, J=8, 2H) 1.93(m, 2H) 1.60(m, 2H); MS(ESI): [M]+ =282.5According to the method described in Preparation 6, the desired compound was obtained in 10.5% yield. 1 H NMR (400 MHz, CD 3 OD- d 4) δ (ppm) J (Hz) 12.08 (br, 1H) 8.74 (s, 1H) 7.54 (d, J = 4, 1H) 7.15 (d, J = 4, 1H) 4.42 (t, J = 8, 2H) 2.78 (s, 3H) 2.56 (t, J = 8, 2H) 1.93 (m, 2H) 1.60 (m, 2H); MS (ESI): [M] < + & gt ; = 282.5

2-27. 5-(5-페닐-4-(7H-피롤로[2,3-d]피리미딘-4-일)-1H-1,2,3-트리아졸-1-일)펜탄니트릴(28)2-27. 1-yl) pentanenitrile (28) The title compound was obtained as a colorless oil from 5- (5-phenyl-4- (7H-pyrrolo [2,3-

제조예 6에 기재된 방법에 따라, 원하는 화합물을 9.4% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 9.62(br, 1H) 8.63(s, 1H) 7.55(m, 3H) 7.46(d, J=4, 1H) 7.44(m, 1H) 7.43(d, J=4, 1H) 7.26(m, 1H) 4.41(t, J=8, 2H) 2.35(t, J=8, 2H) 2.04(m, 2H) 1.72(m, 2H); MS(ESI): [M]+ =343.9According to the method described in Preparation 6, the desired compound was obtained in 9.4% yield. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 9.62 (br, 1H) 8.63 (s, 1H) 7.55 (m, 3H) 7.46 (d, J = 4, 1H) 7.44 (m, 1H) 7.43 (d, J = 4, 1H) 7.26 (m, 1H) 4.41 (t, J = 8, 2H) 2.35 (t, J = 8, 2H) 2.04 (m, 2H) 1.72 (m, 2H) ; MS (ESI): [M] < + & gt ; = 343.9

2-28. 5-(4-(7H-피롤로[2,3-d]피리미딘-4-일)-5-(p-톨릴)-1H-1,2,3-트리아졸-1-일)펜탄니트릴(29)2-28. (P-tolyl) -1H-1,2,3-triazol-1-yl) pentanenitrile (29)

제조예 6에 기재된 방법에 따라, 원하는 화합물을 15.2% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 9.65(br, 1H) 8.66(s, 1H) 7.38(d, J=8, 2H) 7.26(d, J=4, 1H) 7.20(d, J=8, 2H) 7.07(d, J=4, 1H) 4.40(t, J=8, 2H) 2.47(s, 3H) 2.07(m,2H) 1.71(m, 2H) 0.90(m, 2H); MS(ESI): [M]+ =357.9According to the method described in Preparation 6, the desired compound was obtained in a yield of 15.2%. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 9.65 (br, 1H) 8.66 (s, 1H) 7.38 (d, J = 8, 2H) 7.26 (d, J = 4, 1H) 7.20 (d, J = 8, 2H) 7.07 (d, J = 4, 1H) 4.40 (t, J = 8, 2H) 2.47 (s, 3H) 2.07 (m, 2H) 1.71 (m, 2H) 0.90 ( m, 2H); MS (ESI): [M] < + & gt ; = 357.9

2-29. 6-(5-메틸-4-(7H-피롤로[2,3-d]피리미딘-4-일)-1H-1,2,3-트리아졸-1-일)헥산니트릴(30)2-29. Yl) -1H-1,2,3-triazol-1-yl) hexanenitrile (30)

제조예 6에 기재된 방법에 따라, 원하는 화합물을 11.9% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 9.07(br, 1H) 8.88(s, 1H) 7.48(d, J=4, 1H) 7.38(d, J=4, 1H) 4.42(t, J=8, 2H) 2.88(s, 3H) 2.40(t, J=8, 2H) 2.04(m, 2H) 1.80(m, 2H) 1.58(m,2H); MS(ESI): [M]+ =296.5According to the method described in Preparation 6, the desired compound was obtained in a yield of 11.9%. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 9.07 (br, 1H) 8.88 (s, 1H) 7.48 (d, J = 4, 1H) 7.38 (d, J = 4, 1H) 4.42 (t, J = 8, 2H) 2.88 (s, 3H) 2.40 (t, J = 8, 2H) 2.04 (m, 2H) 1.80 (m, 2H) 1.58 (m, 2H); MS (ESI): [M] < + & gt ; = 296.5

2-30. 4-(1-(시클로프로필메틸)-5-메틸-1H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(31)2-30. Pyrrolo [2,3-d] pyrimidine (31) Synthesis of 4- (l- (cyclopropylmethyl) -5-

제조예 6에 기재된 방법에 따라, 원하는 화합물을 11.3% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 9.94(br, 1H) 8.89(s, 1H) 7.51(d, J=4, 1H) 7.40(d, J=4, 1H) 4.27(d, J=8, 2H) 2.91(s, 3H) 1.38(m, 1H) 0.71(q, J=8, 2H) 0.52(m, J=8, 2H); MS(ESI): [M]+ =256.1According to the method described in Preparation 6, the desired compound was obtained in a yield of 11.3%. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 9.94 (br, 1H) 8.89 (s, 1H) 7.51 (d, J = 4, 1H) 7.40 (d, J = 4, 1H) 4.27 (d, J = 8, 2H) 2.91 (s, 3H) 1.38 (m, 1H) 0.71 (q, J = 8, 2H) 0.52 (m, J = 8, 2H); MS (ESI): [M] < + & gt ; = 256.1

2-31. 4-(1-(시클로부틸메틸)-5-메틸-1H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(32)2-31. Pyrrolo [2,3-d] pyrimidine (32) was obtained in the same manner as in Example 1 using 4- (l- (cyclobutylmethyl)

제조예 6에 기재된 방법에 따라, 원하는 화합물을 12.3% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 10.47(br, 1H) 8.90(s, 1H) 7.51(d, J=4, 1H) 7.42(d, J=4, 1H) 4.39(d, J=8, 2H) 2.94(m, 1H) 2.87(s, 3H) 2.15(m, 2H) 1.94(m, 2H); MS(ESI): [M]+ =269.1According to the method described in Preparation 6, the desired compound was obtained in a yield of 12.3%. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 10.47 (br, 1H) 8.90 (s, 1H) 7.51 (d, J = 4, 1H) 7.42 (d, J = 4, 1H) 4.39 (d, J = 8, 2H) 2.94 (m, 1H) 2.87 (s, 3H) 2.15 (m, 2H) 1.94 (m, 2H); MS (ESI): [M] < + & gt ; = 269.1

2-32. 4-(1-(시클로펜틸메틸)-5-메틸-1H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(33)2-32. Pyrrolo [2,3-d] pyrimidine (33) [0157] To a solution of 4- (1- (cyclopentylmethyl) -5-

제조예 6에 기재된 방법에 따라, 원하는 화합물을 7.6% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 9.46(br, 1H) 8.88(s, 1H) 7.50(d, J=4, 1H) 7.38(d, J=4, 1H) 4.30(d, J=8, 2H) 2.88(s, 3H) 1.80(m, 2H) 1.72(m, 2H) 1.42(m, 2H) 0.99(m, 2H); MS(ESI): [M]+ =283.2According to the method described in Preparation 6, the desired compound was obtained in a yield of 7.6%. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 9.46 (br, 1H) 8.88 (s, 1H) 7.50 (d, J = 4, 1H) 7.38 (d, J = 4, 1H) 4.30 (d, J = 8, 2H) 2.88 (s, 3H) 1.80 (m, 2H) 1.72 (m, 2H) 1.42 (m, 2H) .99 (m, 2H); MS (ESI): [M] < + & gt ; = 283.2

2-33. 4-(1-(시클로헥실메틸)-5-메틸-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(34)2-33. Pyrrolo [2,3-d] pyrimidine (34) was obtained in the same manner as in Example 1 using 4- (l- (cyclohexylmethyl) -5-

제조예 6에 기재된 방법에 따라, 원하는 화합물을 14.2% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 9.38(br, 1H) 8.88(s, 1H) 7.51(d, J=4, 1H) 7.38(d, J=4, 1H) 4.21(d, J=4, 2H) 2.86(s, 3H) 2.64(m, 1H) 2.03(m, 2H) 1.76(m, 2H) 1.55(m, 2H) 1.13(m, 2H) 0.88(m, 2H); MS(ESI): [M]+ =297.1According to the method described in Preparation 6, the desired compound was obtained in a yield of 14.2%. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 9.38 (br, 1H) 8.88 (s, 1H) 7.51 (d, J = 4, 1H) 7.38 (d, J = 4, 1H) (D, J = 4, 2H) 2.86 (s, 3H) 2.64 (m, 2H); MS (ESI): [M] < + & gt ; = 297.1

2-34. 4-(2,5-디메틸-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(35)2-34. Pyrrolo [2,3-d] pyrimidine (35) [0251] To a solution of 4- (2,5-dimethyl-

제조예 6에 기재된 방법에 따라, 원하는 화합물을 18.4% 수율로 얻었다. 1H NMR(400 MHz, DMSO-d 6 ) δ(ppm) J(Hz) 12.09(br, 1H) 8.73(s, 1H) 7.53(d, J=4, 1H) 7.14(d, J=4, 1H) 4.00(s, 3H) 2.75(s, 3H); MS(ESI): [M]+ =215.1According to the method described in Preparation 6, the desired compound was obtained in a yield of 18.4%. 1 H NMR (400 MHz, DMSO- d 6) δ (ppm) J (Hz) 12.09 (br, 1H) 8.73 (s, 1H) 7.53 (d, J = 4, 1H) 7.14 (d, J = 4, 1H) 4.00 (s, 3 H) 2.75 (s, 3 H); MS (ESI): [M] < + & gt ; = 215.1

2-35. 4-(2-메틸-5-(p-톨릴)-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(36)2-35. Pyrrolo [2,3-d] pyrimidine (36) [0251] To a solution of 4- (2-

제조예 6에 기재된 방법에 따라, 원하는 화합물을 27.2% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 10.52(br, 1H) 8.94(s, 1H) 7.63(d, J=8, 2H) 7.34(d, J=4, 1H) 7.19(d, J=8, 2H) 6.67(d, J=4, 1H) 4.38(s, 3H) 2.38(s, 3H); MS(ESI): [M]+ =291.0According to the method described in Preparation Example 6, the desired compound was obtained in a yield of 27.2%. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 10.52 (br, 1H) 8.94 (s, 1H) 7.63 (d, J = 8, 2H) 7.34 (d, J = 4, 1H) 7.19 (d, J = 8, 2H) 6.67 (d, J = 4, 1H) 4.38 (s, 3H) 2.38 (s, 3H); MS (ESI): [M] < + & gt ; = 291.0

2-36. 4-(5-메틸-2-비닐-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(37) 2-36. Pyrrolo [2,3-d] pyrimidine (37) was obtained in the same manner as in (1)

제조예 6에 기재된 방법에 따라, 원하는 화합물을 15.1% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 9.32(br, 1H) 8.95(s, 1H) 7.40(d, J=4, 1H) 7.38(dd, 1 J=82 J=4, 1H) 7.38(dd, 1 J=162 J=8, 1H) 7.26(dd, 1 J=82 J=4, 1H) 6.06(d, J=16, 1H) 5.14(d, J=16, 1H) 2.84(s, 3H); MS(ESI): [M]+ =227.3According to the method described in Preparation 6, the desired compound was obtained in a yield of 15.1%. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 9.32 (br, 1H) 8.95 (s, 1H) 7.40 (d, J = 4, 1H) 7.38 (dd, 1 J = 8 2 J = 4, 1H) 7.38 (dd , 1 J = 16 2 J = 8, 1H) 7.26 (dd, 1 J = 8 2 J = 4, 1H) 6.06 (d, J = 16, 1H) 5.14 (d, J = 16, 1H) 2.84 (s, 3H); MS (ESI): [M] < + & gt ; = 227.3

2-37. 4-(2-알릴-5-메틸-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(38) 2-37. Pyrrolo [2,3-d] pyrimidine (38) was prepared in accordance with the general method of example 1 from 4- (2-allyl-

제조예 6에 기재된 방법에 따라, 원하는 화합물을 83.2% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 9.16(br, 1H) 8.93(s, 1H) 7.38(d, J=4, 1H) 7.25(d, J=4, 1H) 7.18(m, 1H) 7.40(m, 5H) 7.14(m, 1H) 6.60(dd, 1 J=82 J=4, 1H) 2.81(s, 3H) 1.95(d, J=4, 2H). 13C NMR (DMSO-d 6)δ(ppm) 152.74, 151.14, 149.37, 144.92, 142.95, 142.62, 127.92, 114.70, 101.93, 60.74, 20.27, 12.82; MS(ESI): [M]+ =241.4According to the method described in Production Example 6, the desired compound was obtained in a yield of 83.2%. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 9.16 (br, 1H) 8.93 (s, 1H) 7.38 (d, J = 4, 1H) 7.25 (d, J = 4, 1H) 7.18 (m, 1H) 7.40 ( m, 5H) 7.14 (m, 1H) 6.60 (dd, 1 J = 8 2 J = 4, 1H) 2.81 (s, 3H) 1.95 (d, J = 4, 2H). 13 C NMR (DMSO- d 6 )? (Ppm) 152.74, 151.14, 149.37, 144.92, 142.95, 142.62, 127.92, 114.70, 101.93, 60.74, 20.27, 12.82; MS (ESI): [M] < + & gt ; = 241.4

2-38. 4-(5-메틸-2-(2-메틸알릴)-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(39)2-38. Pyrrolo [2,3-d] pyrimidine (39) was prepared in the same manner as in Example 1, except that 4- (5-methyl-

제조예 6에 기재된 방법에 따라, 원하는 화합물을 13.9% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 10.79(br, 1H) 8.97(s, 1H) 7.44(d, J=4, 1H) 7.22(d, J=4, 1H) 5.06(d, J=32, 2H) 5.05(s, 1H) 2.80(s, 3H) 1.78(s,3H). 13C NMR (DMSO-d 6)δ(ppm) 152.82, 1521.12, 150.26, 142.41, 140.25, 135.52, 127.44, 117.81, 114.31, 113.10, 102.39, 53.18, 20.23, 10.42; MS(ESI): [M]+ =255.2According to the method described in Production Example 6, the desired compound was obtained in a yield of 13.9%. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 10.79 (br, 1H) 8.97 (s, 1H) 7.44 (d, J = 4, 1H) 7.22 (d, J = 4, 1H) 5.06 (d, J = 32, 2H) 5.05 (s, 1H) 2.80 (s, 3H) 1.78 (s, 3H). 13 C NMR (DMSO- d 6 )? (Ppm) 152.82, 1521.12, 150.26, 142.41, 140.25, 135.52, 127.44, 117.81, 114.31, 113.10, 102.39, 53.18, 20.23, 10.42; MS (ESI): [M] < + & gt ; = 255.2

2-39. 4-(5-메틸-2-(3-메틸부트-2-엔-1-일)-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(40)2-39. 2-enyl-2H-1,2,3-triazol-4-yl) -7H-pyrrolo [2,3- d ] Pyrimidine (40)

제조예 6에 기재된 방법에 따라, 원하는 화합물을 59.5% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 9.85(br, 1H) 8.94(s, 1H) 7.40(d, J=4, 1H) 7.22(d, J=4, 1H) 5.60(t, J=8, 1H) 5.10(d, J=4, 2H) 2.78(s, 3H) 1.88(s, 3H) 1.82(s, 3H). 13C NMR (DMSO-d 6)δ(ppm) 152.75, 151.15, 149.48, 144.73, 142.63, 138.56, 127.85, 118.61, 114.44, 102.00, 52.91, 25.88, 18.49, 12.85; MS(ESI): [M]+ =269.3According to the method described in Production Example 6, the desired compound was obtained in a yield of 59.5%. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 9.85 (br, 1H) 8.94 (s, 1H) 7.40 (d, J = 4, 1H) 7.22 (d, J = 4, 1H) 5.60 (t, J = 8, 1H) 5.10 (d, J = 4, 2H) 2.78 (s, 3H) 1.88 (s, 3H) 1.82 (s, 3H). 13 C NMR (DMSO- d 6 )? (Ppm) 152.75, 151.15, 149.48, 144.73, 142.63, 138.56, 127.85, 118.61, 114.44, 102.00, 52.91, 25.88, 18.49, 12.85; MS (ESI): [M] < + & gt ; = 269.3

2-40. 2-(4-메틸-5-(7H-피롤로[2,3-d]피리미딘-4-일)-2H-1,2,3-트리아졸-2-일)에탄-1-아민(41)2-40. 2-yl) ethane-1-amine (prepared by reacting 2- (4-methyl-5- (7H- pyrrolo [2,3- d] pyrimidin- 41)

제조예 6에 기재된 방법에 따라, 원하는 화합물을 21.2% 수율로 얻었다. 1H NMR(400 MHz, CD3OD-d 4 ) δ(ppm) J(Hz) 8.77(s, 1H) 7.47(d, J=4, 1H) 7.13(d, J=4, 1H) 4.61(t, J=8, 2H) 3.31(t, J=8, 2H) 2.71(s, 3H); MS(ESI): [M]+ =244.4According to the method described in Preparation 6, the desired compound was obtained in a yield of 21.2%. 1 H NMR (400 MHz, CD 3 OD- d 4) δ (ppm) J (Hz) 8.77 (s, 1H) 7.47 (d, J = 4, 1H) 7.13 (d, J = 4, 1H) 4.61 ( t, J = 8, 2H) 3.31 (t, J = 8, 2H) 2.71 (s, 3H); MS (ESI): [M] < + & gt ; = 244.4

2-41. tert-부틸(2-(4-메틸-5-(7H-피롤로[2,3-d]피리미딘-4-일)-2H-1,2,3-트리아졸-2-일)에틸)카바메이트(42)2-41. yl) ethyl) -2,3-dimethyl-lH-pyrrolo [2,3-d] pyrimidin- Carbamate (42)

제조예 6에 기재된 방법에 따라, 원하는 화합물을 37.4% 수율로 얻었다. 1H NMR(400 MHz, CD3OD-d 4 ) δ(ppm) J(Hz) 8.76(s, 1H) 7.46(d, J=4, 1H) 7.16(d, J=4, 1H) 4.58(t, J=8, 2H) 3.64(t, J=8, 2H) 2.70(s, 3H) 1.36(s,9H); MS(ESI): [M]+ =344.3According to the method described in Production Example 6, the desired compound was obtained in a yield of 37.4%. 1 H NMR (400 MHz, CD 3 OD- d 4) δ (ppm) J (Hz) 8.76 (s, 1H) 7.46 (d, J = 4, 1H) 7.16 (d, J = 4, 1H) 4.58 ( t, J = 8, 2H) 3.64 (t, J = 8, 2H) 2.70 (s, 3H) 1.36 (s, 9H); MS (ESI): [M] < + & gt ; = 344.3

2-42. 4-(2-(2-메톡시에틸)-5-메틸-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(43)2-42. Pyrrolo [2,3-d] pyrimidine (43) was prepared in the same manner as in Example 1, except that 4- (2- (2-methoxyethyl)

제조예 6에 기재된 방법에 따라, 원하는 화합물을 71.4% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 10.12(br, 1H) 8.95(s, 1H) 7.40(d, J=4, 1H) 7.22(d, J=4, 1H) 4.67(t, J=8, 2H) 4.00(t, J=8, 2H) 3.40(s, 3H) 2.79(s, 3H). 13C NMR (DMSO-d 6)δ(ppm) 152.75, 151.14, 149.43, 144.70, 142.73, 127.84, 114.48, 102.01, 70.23, 58.43, 54.74, 12.85; MS(ESI): [M]+ =259.2According to the method described in Preparation 6, the desired compound was obtained in 71.4% yield. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 10.12 (br, 1H) 8.95 (s, 1H) 7.40 (d, J = 4, 1H) 7.22 (d, J = 4, 1H) 4.67 (t, J = 8, 2H) 4.00 (t, J = 8, 2H) 3.40 (s, 3H) 2.79 (s, 3H). 13 C NMR (DMSO- d 6 )? (Ppm) 152.75, 151.14, 149.43, 144.70, 142.73, 127.84, 114.48, 102.01, 70.23, 58.43, 54.74, 12.85; MS (ESI): [M] < + & gt ; = 259.2

2-43. 4-(2-(2-메톡시에틸)-5-(p-톨릴)-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(44)2-43. Pyrrolo [2,3-d] pyrimidine (prepared according to the method described in Example 1) (44)

제조예 6에 기재된 방법에 따라, 원하는 화합물을 50.7% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 10.72(br, 1H) 8.94(s, 1H) 7.66(d, J=8, 2H) 7.35(d, J=4, 1H) 7.19(d, J=8, 2H) 6.70(d, J=4, 1H) 4.78(t, J=8, 2H) 4.07(t, J=8, 2H) 3.42(s, 3H) 2.38(s, 3H); MS(ESI): [M]+ =335.2According to the method described in Preparation 6, the desired compound was obtained in a yield of 50.7%. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 10.72 (br, 1H) 8.94 (s, 1H) 7.66 (d, J = 8, 2H) 7.35 (d, J = 4, 1H) 7.19 (d, J = 8, 2H) 6.70 (d, J = 4, 1H) 4.78 (t, J = 8, 2H) 4.07 (t, J = 8, 2H) 3.42 (s, 3H) 2.38 (s, 3H); MS (ESI): [M] < + & gt ; = 335.2

2-44. 4-(5-메틸-2-(4,4,4-트리플루오로부틸)-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(45)2-44. Pyrrolo [2,3-d] pyrimidin-4-yl) -lH-pyrrolo [2,3- Middin (45)

제조예 6에 기재된 방법에 따라, 원하는 화합물을 52.7% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 10.46(br, 1H) 8.97(s, 1H) 7.45(d, J=4, 1H) 7.19(d, J=4, 1H) 4.60(t, J=8, 2H) 2.80(s, 3H) 2.37(m, 2H) 2.27(m 2H). 13C NMR (DMSO-d 6)δ(ppm) 152.73, 151.13, 149.33, 144.91, 142.87, 127.94, 126.53, 114.49, 101.85, 53.43, 30.29, 22.39, 12.85; MS(ESI): [M]+ =311.5According to the method described in Preparation 6, the desired compound was obtained in 52.7% yield. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 10.46 (br, 1H) 8.97 (s, 1H) 7.45 (d, J = 4, 1H) 7.19 (d, J = 4, 1H) 4.60 (t, J = 8, 2H) 2.80 (s, 3H) 2.37 (m, 2H) 2.27 (m, 2H). 13 C NMR (DMSO- d 6 )? (Ppm) 152.73, 151.13, 149.33, 144.91, 142.87, 127.94, 126.53, 114.49, 101.85, 53.43, 30.29, 22.39, 12.85; MS (ESI): [M] < + & gt ; = 311.5

2-45. 3-(4-메틸-5-(7H-피롤로[2,3-d]피리미딘-4-일)-2H-1,2,3-트리아졸-2-일)프로판-1-올(46)2-45. 2-yl) propan-1-ol (prepared by reacting 3- (4-methyl-5- (7H- pyrrolo [2,3- d] pyrimidin- 46)

제조예 6에 기재된 방법에 따라, 원하는 화합물을 86.9% 수율로 얻었다. 1H NMR(400 MHz, CD3OD-d 4 ) δ(ppm) J(Hz) 8.75(s, 1H) 7.45(d, J=4, 1H) 7.12(d, J=4, 1H) 4.59(t, J=8, 2H) 3.66(t, J=8, 2H) 2.69(s, 3H) 2.24(t, J=8, 2H). 13C NMR (DMSO-d 6)δ(ppm) 152.73, 151.14, 149.48, 144.56, 142.56, 127.82, 114.45, 102.02, 58.18, 52.24, 32.90, 12.85; MS(ESI): [M]+ =259.3According to the method described in Preparation 6, the desired compound was obtained in a yield of 86.9%. 1 H NMR (400 MHz, CD 3 OD- d 4) δ (ppm) J (Hz) 8.75 (s, 1H) 7.45 (d, J = 4, 1H) 7.12 (d, J = 4, 1H) 4.59 ( t, J = 8, 2H) 3.66 (t, J = 8, 2H) 2.69 (s, 3H) 2.24 (t, J = 8, 2H). 13 C NMR (DMSO- d 6 )? (Ppm) 152.73, 151.14, 149.48, 144.56, 142.56, 127.82, 114.45, 102.02, 58.18, 52.24, 32.90, 12.85; MS (ESI): [M] < + & gt ; = 259.3

2-46. 5-(4-메틸-5-(7H-피롤로[2,3-d]피리미딘-4-일)-2H-1,2,3-트리아졸-2-일)펜탄-1-올(47)2-46. 2-yl) pentan-1-ol (prepared by reacting 5- (4H-pyrrolo [2,3- d] pyrimidin- 47)

제조예 6에 기재된 방법에 따라, 원하는 화합물을 25.4% 수율로 얻었다. 1H NMR(400 MHz, CD3OD-d 4 ) δ(ppm) J(Hz) 8.77(s, 1H) 7.47(d, J=4, 1H) 7.13(d, J=4, 1H) 4.53(t, J=8, 2H) 3.57(t, J=8, 2H) 2.70(s, 3H) 2.08(m, 2H) 1.62(m, 2H) 1.45(m, 2H); MS(ESI): [M]+ =287.3According to the method described in Preparation 6, the desired compound was obtained in a yield of 25.4%. 1 H NMR (400 MHz, CD 3 OD- d 4) δ (ppm) J (Hz) 8.77 (s, 1H) 7.47 (d, J = 4, 1H) 7.13 (d, J = 4, 1H) 4.53 ( t, J = 8, 2H) 3.57 (t, J = 8, 2H) 2.70 (s, 3H) 2.08 (m, 2H) 1.62 (m, 2H) 1.45 (m, 2H); MS (ESI): [M] < + & gt ; = 287.3

2-47. 에틸 5-(4-메틸-5-(7H-피롤로[2,3-d]피리미딘-4-일)-2H-1,2,3-트리아졸-2-일)펜타노에이트(48)2-47. Ethyl) -5- (7H-pyrrolo [2,3-d] pyrimidin-4-yl) -2H-1,2,3- triazol- )

제조예 6에 기재된 방법에 따라, 원하는 화합물을 24.3% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 9.81(br, 1H) 8.94(s, 1H) 7.40(d, J=4, 1H) 7.21(d, J=4, 1H) 4.51(t, J=8, 2H) 4.16(q, J=8, 2H) 2.78(s, 3H) 2.39(t, J=8, 2H) 2.14(m, 2H) 1.78(m, 2H) 1.27(t, J=8, 2H); MS(ESI): [M]+ =329.3According to the method described in Preparation 6, the desired compound was obtained in a yield of 24.3%. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 9.81 (br, 1H) 8.94 (s, 1H) 7.40 (d, J = 4, 1H) 7.21 (d, J = 4, 1H) 4.51 (t, J = 8, 2H) 4.16 (q, J = 8, 2H) 2.78 (s, 3H) 2.39 (t, J = 8, 2H) 2.14 (m, 2H) 1.78 (m, 2H) 1.27 ( t, J = 8, 2H); MS (ESI): [M] < + & gt ; = 329.3

2-48. 4-(4-메틸-5-(7H-피롤로[2,3-d]피리미딘-4-일)-2H-1,2,3-트리아졸-2-일)부탄니트릴(49)2-48. Pyran [2,3-d] pyrimidin-4-yl) -2H-1,2,3-triazol-2-yl) butanenitrile (49)

제조예 6에 기재된 방법에 따라, 원하는 화합물을 64.5% 수율로 얻었다. 1H NMR(400 MHz, CD3OD-d 4 ) δ(ppm) J(Hz) 12.15(br, 1H) 8.78(s, 1H) 7.57(d, J=4, 1H) 7.02(d, J=4, 1H) 4.56(t, J=8, 2H) 2.64(s, 3H) 2.57(t, J=8, 2H) 2.23(quint, J=8, 2H). 13C NMR (DMSO-d 6)δ(ppm) 152.76, 151.12, 149.33, 144.99, 142.95, 127.90, 120.28, 114.51, 102.00, 53.51, 25.60, 14.49, 12.87; MS(ESI): [M]+ =269.3According to the method described in Preparation 6, the desired compound was obtained in 64.5% yield. 1 H NMR (400 MHz, CD 3 OD- d 4) δ (ppm) J (Hz) 12.15 (br, 1H) 8.78 (s, 1H) 7.57 (d, J = 4, 1H) 7.02 (d, J = J = 8, 2H) 2.64 (s, 3H) 2.57 (t, J = 8, 2H) 2.23 (quint, J = 8, 2H). 13 C NMR (DMSO- d 6 )? (Ppm) 152.76, 151.12, 149.33, 144.99, 142.95, 127.90, 120.28, 114.51, 102.00, 53.51, 25.60, 14.49, 12.87; MS (ESI): [M] < + & gt ; = 269.3

2-49. 5-(4-메틸-5-(7H-피롤로[2,3-d]피리미딘-4-일)-2H-1,2,3-트리아졸-2-일)펜탄니트릴(50)2-49. (50): < RTI ID = 0.0 > 5- (4H-pyrrolo [

제조예 6에 기재된 방법에 따라, 원하는 화합물을 39.5% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 10.20(br, 1H) 8.95(s, 1H) 7.43(d, J=4, 1H) 7.19(d, J=4, 1H) 4.58(t, J=8, 2H) 2.79(s, 3H) 2.46(t, J=8, 2H) 2.27(m, 2H) 1.81(m, 2H), 13C NMR (DMSO-d 6)δ(ppm) 152.75, 151.13, 149.41, 144.74, 142.71, 127.82, 121.25, 120.95, 114.48, 101.99, 54.07, 28.66, 22.61, 16.25, 12.85; MS(ESI): [M]+ =282.3According to the method described in Preparation Example 6, the desired compound was obtained in a yield of 39.5%. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 10.20 (br, 1H) 8.95 (s, 1H) 7.43 (d, J = 4, 1H) 7.19 (d, J = 4, 1H) 4.58 (t, J = 8, 2H) 2.79 (s, 3H) 2.46 (t, J = 8, 2H) 2.27 (m, 2H) 1.81 (m, 2H), 13 C NMR (DMSO- d 6) δ ( ppm) 152.75, 151.13, 149.41, 144.74, 142.71, 127.82, 121.25, 120.95, 114.48, 101.99, 54.07, 28.66, 22.61, 16.25, 12.85; MS (ESI): [M] < + & gt ; = 282.3

2-50. 5-(4-페닐-5-(7H-피롤로[2,3-d]피리미딘-4-일)-2H-1,2,3-트리아졸-2-일)펜탄니트릴(51)2-50. Pyran [2,3-d] pyrimidin-4-yl) -2H-1,2,3-triazol-2-yl) pentanenitrile (51)

제조예 6에 기재된 방법에 따라, 원하는 화합물을 37.5% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 10.19(br, 1H) 8.94(s, 1H) 7.76(m,2H) 7.40(m, 3H) 7.36(d, J=4, 1H) 6.66(d, J=4, 1H) 4.69(t, J=8, 2H) 2.49(t, J=8, 2H) 2.32(m, 2H) 1.87(m, 2H); MS(ESI): [M]+ =344.1According to the method described in Preparation 6, the desired compound was obtained in a yield of 37.5%. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 10.19 (br, 1H) 8.94 (s, 1H) 7.76 (m, 2H) 7.40 (m, 3H) 7.36 (d, J = 4, 1H) 6.66 (d, J = 4, 1H) 4.69 (t, J = 8, 2H) 2.49 (t, J = 8, 2H) 2.32 (m, 2H) 1.87 (m, 2H); MS (ESI): [M] < + & gt ; = 344.1

2-51. 5-(4-(7H-피롤로[2,3-d]피리미딘-4-일)-5-(p-톨릴)-2H-1,2,3-트리아졸-2-일)펜탄니트릴(52)2-51. (P-tolyl) -2H-1,2,3-triazol-2-yl) pentanenitrile (52)

제조예 6에 기재된 방법에 따라, 원하는 화합물을 25.6% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 9.97(br, 1H) 8.93(s, 1H) 7.65(d, J=8,2H) 7.34(d, J=4, 1H) 7.20(d, J=8, 2H) 6.68(d, J=4, 1H) 4.67(t, J=8, 2H) 2.48(t, J=8, 2H) 2.39(s, 3H) 2.29(m, 2H) 1.87(m, 2H); MS(ESI): [M]+ =358.1According to the method described in Preparation 6, the desired compound was obtained in a yield of 25.6%. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 9.97 (br, 1H) 8.93 (s, 1H) 7.65 (d, J = 8,2H) 7.34 (d, J = 4, 1H) 7.20 (d, J = 8, 2H) 6.68 (d, J = 4, 1H) 4.67 (t, J = 8, 2H) 2.48 (t, J = 8, 2H) 2.39 (s, 3H) 2.29 (m, 2H) 1.87 (m, 2H); MS (ESI): [M] < + & gt ; = 358.1

2-52. 6-(4-메틸-5-(7H-피롤로[2,3-d]피리미딘-4-일)-2H-1,2,3-트리아졸-2-일)헥산니트릴(53)2-52. Pyran [2,3-d] pyrimidin-4-yl) -2H-1,2,3-triazol-2-yl) hexanenitrile (53)

제조예 6에 기재된 방법에 따라, 원하는 화합물을 36.9% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 9.95(br, 1H) 8.94(s, 1H) 7.41(d, J=4, 1H) 7.19(d, J=4, 1H) 4.54(t, J=8, 2H) 2.78(s, 3H) 2.39(t, J=8, 2H) 2.14(m, 2H) 1.79(m, 2H) 1.55(m,2H). 13C NMR (DMSO-d 6)δ(ppm) 152.73, 151.14, 149.46, 144.61, 142.59, 127.84, 121.11, 114.47, 102.02, 54.68, 28.79, 25.68, 24.74, 16.52, 12.86; MS(ESI): [M]+ =296.3According to the method described in Preparation 6, the desired compound was obtained in 36.9% yield. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 9.95 (br, 1H) 8.94 (s, 1H) 7.41 (d, J = 4, 1H) 7.19 (d, J = 4, 1H) (M, 2H), 1.54 (d, J = 8, 2H) 2.78 (s, 3H) 2.39 (t, J = 8, 2H) 2.14 (m, 13 C NMR (DMSO- d 6 )? (Ppm) 152.73, 151.14, 149.46, 144.61, 142.59, 127.84, 121.11, 114.47, 102.02, 54.68, 28.79, 25.68, 24.74, 16.52, 12.86; MS (ESI): [M] < + & gt ; = 296.3

2-53. 4-(2-(시클로프로필메틸)-5-메틸-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(54)2-53. Pyrrolo [2,3-d] pyrimidine (54) Synthesis of 4- (2- (cyclopropylmethyl) -5-

제조예 6에 기재된 방법에 따라, 원하는 화합물을 35.7% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 10.48(br, 1H) 8.96(s, 1H) 7.42(d, J=4, 1H) 7.24(d, J=4, 1H) 4.36(d, J=8, 2H) 2.80(s, 3H) 1.52(m, 1H) 0.71(q, J=8, 2H) 0.53(m, J=8, 2H). 13C NMR (DMSO-d 6)δ(ppm) 152.74, 151.16, 149.53, 144.56, 142.64, 127.81, 114.48, 102.03, 59.36, 12.83, 11.49, 4.19; MS(ESI): [M]+ =255.1According to the method described in Preparation 6, the desired compound was obtained in 35.7% yield. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 10.48 (br, 1H) 8.96 (s, 1H) 7.42 (d, J = 4, 1H) 7.24 (d, J = 4, 1H) J = 8, 2H) 2.80 (s, 3H) 1.52 (m, 1H) 0.71 (q, J = 8, 2H) 0.53 (m, J = 8, 2H). 13 C NMR (DMSO- d 6 )? (Ppm) 152.74, 151.16, 149.53, 144.56, 142.64, 127.81, 114.48, 102.03, 59.36, 12.83, 11.49, 4.19; MS (ESI): [M] < + & gt ; = 255.1

2-54. 4-(2-(시클로부틸메틸)-5-메틸-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(55)2-54. Pyrrolo [2,3-d] pyrimidine (55) was obtained as a white amorphous solid from 4- (2- (cyclobutylmethyl) -5-

제조예 6에 기재된 방법에 따라, 원하는 화합물을 28.9% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 10.89(br, 1H) 8.96(s, 1H) 7.44(d, J=4, 1H) 7.23(d, J=4, 1H) 4.51(d, J=8, 2H) 3.07(m, 1H) 2.78(s, 3H) 2.19(m, 2H) 1.96(m, 2H). 13C NMR (DMSO-d 6)δ(ppm) 152.73, 151.15, 149.49, 144.47, 142.59, 127.84, 114.47, 101.94, 59.51, 39.43, 35.34, 25.73, 18.25, 12.82; MS(ESI): [M]+ =269.1According to the method described in Preparation 6, the desired compound was obtained in 28.9% yield. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 10.89 (br, 1H) 8.96 (s, 1H) 7.44 (d, J = 4, 1H) 7.23 (d, J = 4, 1H) 4.51 (d, J = 8, 2H) 3.07 (m, 1H) 2.78 (s, 3H) 2.19 (m, 2H) 1.96 (m, 2H). 13 C NMR (DMSO- d 6 )? (Ppm) 152.73, 151.15, 149.49, 144.47, 142.59, 127.84, 114.47, 101.94, 59.51, 39.43, 35.34, 25.73, 18.25, 12.82; MS (ESI): [M] < + & gt ; = 269.1

2-55. 4-(2-(시클로펜틸메틸)-5-메틸-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(56) 2-55. Pyrrolo [2,3-d] pyrimidine (56) Synthesis of 4- (2- (cyclopentylmethyl) -5-methyl-2H-

제조예 6에 기재된 방법에 따라, 원하는 화합물을 18.6% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 10.10(br, 1H) 8.95(s, 1H) 7.40(d, J=4, 1H) 7.23(d, J=4, 1H) 4.42(d, J=8, 2H) 2.78(s, 3H) 2.68(m, 1H) 1.82(m, 2H) 1.70(m, 2H) 1.67(m, 2H) 1.43(m, 2H). 13C NMR (DMSO-d 6)δ(ppm) 152.72, 151.15, 14951, 144.45, 142.51, 127.85, 114.47, 101.95, 59.39, 40.68, 39.63, 30.13, 25.14, 12.83; MS(ESI): [M]+ =283.2According to the method described in Preparation 6, the desired compound was obtained in a yield of 18.6%. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 10.10 (br, 1H) 8.95 (s, 1H) 7.40 (d, J = 4, 1H) 7.23 (d, J = 4, 1H) 4.42 (d, J = 8, 2H) 2.78 (s, 3H) 2.68 (m, 1H) 1.82 (m, 2H) 1.70 (m, 2H) 1.67 (m, 2H) 1.43 (m, 2H). 13 C NMR (DMSO- d 6 )? (Ppm) 152.72, 151.15, 14951, 144.45, 142.51, 127.85, 114.47, 101.95, 59.39, 40.68, 39.63, 30.13, 25.14, 12.83; MS (ESI): [M] < + & gt ; = 283.2

2-56. 4-(2-(시클로헥실메틸)-5-메틸-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘(57)2-56. Pyrrolo [2,3-d] pyrimidine (57) Synthesis of 4- (2- (cyclohexylmethyl) -5-

제조예 6에 기재된 방법에 따라, 원하는 화합물을 29.0% 수율로 얻었다. 1H NMR(400 MHz, CDCl3) δ(ppm) J(Hz) 11.18(br, 1H) 8.96(s, 1H) 7.44(d, J=4, 1H) 7.22(d, J=4, 1H) 4.33(d, J=4, 2H) 2.79(s, 3H) 2.18(m, 1H) 1.77(m, 4H) 1.32(m, 4H) 1.14(m, 2H); MS(ESI): [M]+ =297.1According to the method described in Production Example 6, the desired compound was obtained in a yield of 29.0%. 1 H NMR (400 MHz, CDCl 3) δ (ppm) J (Hz) 11.18 (br, 1H) 8.96 (s, 1H) 7.44 (d, J = 4, 1H) 7.22 (d, J = 4, 1H) 4.33 (d, J = 4, 2H) 2.79 (s, 3H) 2.18 (m, 1H) 1.77 (m, 4H) 1.32 (m, 4H) 1.14 (m, 2H); MS (ESI): [M] < + & gt ; = 297.1

3. 분석3. Analysis

실시예 3-1: JAK1 효소 분석Example 3-1: JAK1 enzyme analysis

JAK1 (h)을 20 mM Tris/HCl pH 7.5, 0.2 mM EDTA, 500 μM GEEPLYWSFPAKKK, 10 mM Mg-아세테이트 및 [9-33P-ATP](특이적 활성은 대략 500 cpm/pmol, 요구되는 농도)와 함께 배양하였다. Mg-ATP 혼합물의 첨가에 의해 반응을 시작시켰다. 40분 간의 실온 배양 후, 3% 인산 용액(phosphoric acid solution)의 첨가에 의해 반응을 정지시켰다. 반응의 10 μl 부분 표본(aliquot)을 P30 필터매트(filtermat)으로 점적(spotted)시켰고, 75 mM 인산으로 5분간 3회 세척시켰으며, 메탄올로 1회 세척하였고, 건조시켰으며, 섬광 계수(scintillation counting)하였다. JAK1 (h) was incubated with 20 mM Tris / HCl pH 7.5, 0.2 mM EDTA, 500 μM GEEPLYWSFPAKKK, 10 mM Mg-acetate and [9-33P-ATP] (specific activity approximately 500 cpm / And cultured together. The reaction was initiated by the addition of the Mg-ATP mixture. After incubation for 40 minutes at room temperature, the reaction was stopped by addition of 3% phosphoric acid solution. A 10 μl aliquot of the reaction was spotted with a P30 filtermat and washed three times for 5 min with 75 mM phosphoric acid, washed once with methanol, dried, scintillated counting).

실시예 3-2: JAK2 효소 분석Example 3-2: JAK2 enzyme analysis

재조합 JAK2 단백질 키나아제 활성의 억제를 HTRF(homogeneous time-resolved fluorescence) 분석을 이용하여 측정하였다. 요컨대, 분석은 ATP의 존재하에서의 펩타이드 기질의 인산화에 기반하고, 결과적으로 얻은 인산화된 기질을 TR-FRET(Time Resolved-Fluorescence Resonence Energy Transfer)에 의해 검출하였다. 키나아제 도메인을 함유하는 재조합 단백질을 Millipore 사로부터 구입하였다. HTRF KinEASE 키트(Cisbio)를 이용하여 제조자의 지침에 따라, 최적 효소(optimal enzyme), ATP, 및 기질 농도를 효소에 대해 확립하였다. 분석들은 키나아제 반응 버퍼(50 mM HEPES (pH 7.0), 0.1 mM 오르쏘바나데이트, 0.01% BSA, 0.02% NaN3) 내의 펩타이드 기질 및 순차적으로 희석된 화합물들과 혼합된 효소로 구성된다. JAK2에 대해, 10 mM ATP, 5 mM MgCl2, 및 1 mM DTT를 이용하였다. TR-FRET 신호를 EnVision multi-label reader(Perkin Elmer)를 이용해 측정하였다. IC50 값을 Prism version 5.01(GraphPad)를 이용하여 비선형 회귀(nonlinear regression)에 의해 계산하였다. The inhibition of recombinant JAK2 protein kinase activity was measured using homogeneous time-resolved fluorescence (HTRF) analysis. In short, the assay was based on the phosphorylation of the peptide substrate in the presence of ATP and the resulting phosphorylated substrate was detected by TR-FRET (Time Resolved-Fluorescence Resonance Energy Transfer). Recombinant proteins containing the kinase domain were purchased from Millipore. Optimal enzymes, ATP, and substrate concentrations were established for the enzyme using the HTRF KinEASE kit (Cisbio) according to the manufacturer's instructions. Analysis are composed of enzyme mixed with the compound diluted with peptide substrate and sequentially in a kinase reaction buffer (50 mM HEPES (pH 7.0) , 0.1 mM ortho vanadate, 0.01% BSA, 0.02% NaN 3). For JAK2, it was used 10 mM ATP, 5 mM MgCl 2 , and 1 mM DTT. The TR-FRET signal was measured using an EnVision multi-label reader (Perkin Elmer). IC50 values were calculated by nonlinear regression using Prism version 5.01 (GraphPad).

실시예 3-3: JAK3 효소 분석Example 3-3: Analysis of JAK3 enzyme

JAK2 효소 분석을 위해 이용된 절차와 동일한 절차를 이용하였다. The same procedure as used for JAK2 enzyme analysis was used.

실시예 3-4: JAK2V61F 돌연변이 효소 분석Example 3-4: JAK2V61F mutant enzyme assay

A2X JAK2 JH1 JH2 V617F / Tyr 06 혼합물을 50 mM HEPES pH 7.5, 0.01% BRIJ-35, 10 mM MgCl2, 1 mM EGTA 내에서 준비하였다. 최종 10 μL 키나아제 반응은 50 mM HEPES pH 7.5, 0.01% BRIJ-35, 10 mM MgCl2, 1 mM EGTA 내의 7.38-100 ng JAK2 JH1 JH2 V617F 및 2 μM Tyr 06으로 구성된다. 배양 1시간 후, 1:128 희석된 현상 시약 A(Development Reagent A) 5 μL를 첨가하였다. A2X JAK2 JH1 JH2 V617F / Tyr 06 mixture was prepared in 50 mM HEPES pH 7.5, 0.01% BRIJ-35, 10 mM MgCl2, 1 mM EGTA. The final 10 μL kinase reaction consists of 7.38-100 ng JAK2 JH1 JH2 V617F and 2 μM Tyr 06 in 50 mM HEPES pH 7.5, 0.01% BRIJ-35, 10 mM MgCl 2 , 1 mM EGTA. After 1 hour of incubation, 5 [mu] L of 1: 128 diluted Development Reagent A was added.

4. 세포 증식 분석4. Cell proliferation assay

실시예 4-1: HEL 92.1.7 세포 내의 WST에 의한 항-증식 활성 분석Example 4-1: HEL 92.1.7 Anti-proliferative activity assay by WST in cells

트리아졸 화합물의 항-증식 활성을 WST-1 분석에 의해 측정하였다. HEL 92.1.7 세포(인간 백혈병 세포 주)를 96-웰 플레이트로 100 μL의 배지 내에 5×104 세포/웰의 농도로 접종하였다; 각 화합물을 최종 농도 10 μM이 되도록 첨가하였고, 37℃, 5% CO2-95% 공기의 가습 환경(humidified atmosphere)에서 배양시켰다. 배지의 흡광도를 마이크로플레이트 리더를 이용하여 450 nm에서 측정하였다. 데이터를 대조군과 비교하여 생존 세포의 백분율로서 표현하였다. The antiproliferative activity of triazole compounds was determined by WST-1 assay. HEL 92.1.7 cells (human leukemia cell line) were inoculated into 96-well plates at a concentration of 5 x 10 4 cells / well in 100 μL of medium; Each compound was added to a final concentration of 10 μM, were incubated at 37 ℃, 5% CO 2 -95 % air humidified environment (humidified atmosphere). The absorbance of the medium was measured at 450 nm using a microplate reader. Data were expressed as percentage of viable cells compared to control.

실시예 4-2: HCC827 야생형 및 제피티닙(gefitinib-저항성 HCC827 세포 주의 세포 독성 효과Example 4-2: Cytotoxic effect of HCC827 wild-type and gefitinib-resistant HCC827 cells

MTT 분석에 의해 세포 독성 효과를 측정하였다. 96-웰 플레이트 내의 200 μl 배지 내의 총 2×103 세포를 다양한 농도의 4-(2-(시클로프로필메틸)-5-메틸-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘 및 룩소리티닙(Ruxolitinib)으로 37℃에서 72시간동안 처리하였다. 생존 세포를 MTT [3-(4,5-디메틸싸이아졸-2-일)-2,5-디페닐테트라졸륨 브로마이드](2 mg/mL)으로 4 시간 동안 염색하였다. 배지를 제거하였고, 각 웰에 대해 200 μL의 DMSO 추가에 의해 수(water)-불용성 포르마잔을 용해시켰다. 흡광도를 570 nm에서 마이크로타이터 플레이트 리더(Berthold Technologies)를 이용하여 측정하였다. The cytotoxic effect was measured by MTT assay. A total of 2 x 10 < 3 > cells in 200 [mu] l medium in 96-well plates were incubated with varying concentrations of 4- (2- (cyclopropylmethyl) -5- methyl-2H-1,2,3-triazol- Pyrrolo [2,3-d] pyrimidine and ruxolitinib at 37 占 폚 for 72 hours. Viable cells were stained with MTT [3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide] (2 mg / mL) for 4 hours. The medium was removed and water-insoluble formazan was dissolved by the addition of 200 [mu] L DMSO to each well. Absorbance was measured at 570 nm using a microtiter plate reader (Berthold Technologies).

5. 웨스턴 블랏5. Western blot

HCC827 세포를 다양한 농도의 4-(2-(시클로프로필메틸)-5-메틸-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘으로 24시간 동안 처리하였다. 그런 뒤, 세포를 획수하였고, 20 mM Tris-Cl(pH 7.5), 1% Triton X-100, 137 mM 소듐 클로라이드, 10% 글리세롤, 2 mM EDTA, 1 mM 소듐 오르쏘바나데이트, 25 mM B-글리세로포스페이트, 2 mM 소듐 피로포스페이트, 1 mM 페닐메틸설포닐플루오라이드 및 1 μg/mL 류펩틴(leupeptin)을 함유하는 EBC 용해(lysis) 버퍼의 첨가로 용해시켰다(lysed). 세포 용해물을 13,000 × g로 15 분간 원심분리 시켜, 비용해성 물질들을 제거하였다. 세포 용해물의 50 μg 샘플을 10% SDS-PAGE, Bio-Rad)에 의해 분리시켰고, 단백질을 니트로셀룰로오스 막으로 이동시켰다. 막들을 5% 탈지유를 함유하는 PBST 내에서 1시간 동안 배양시켜, 비특이적 단백질 결합을 차단시켰다. 그 후, 단백질들을 특이적 항체(1:1000 희석)와 함께 4℃에서 밤새 면역블랏시켰다. 막들을 HRP-컨쥬게이션된 2차 항체(1:5000 희석)와 함께 1시간 동안 실온에서 배양시켰고, ECL 화학발광(chemiluminescence system) 시스템을 이용하여 현상(developed)시켰다. LAS3000-미니 시스템(Fugifilm)를 검출에 이용하였다. HCC827 cells were treated with various concentrations of 4- (2- (cyclopropylmethyl) -5-methyl-2H-1,2,3-triazol-4-yl) -7H- pyrrolo [2,3- For 24 hours. Cells were then streaked and stained with 20 mM Tris-Cl (pH 7.5), 1% Triton X-100, 137 mM sodium chloride, 10% glycerol, 2 mM EDTA, 1 mM sodium orthovanadate, 25 mM B- (Lysed) with the addition of EBC lysis buffer containing glycerophosphate, 2 mM sodium pyrophosphate, 1 mM phenylmethylsulfonyl fluoride and 1 [mu] g / mL leupeptin. Cell lysates were centrifuged at 13,000 x g for 15 minutes to remove insoluble materials. A 50 μg sample of cell lysate was separated by 10% SDS-PAGE, Bio-Rad) and the protein transferred to the nitrocellulose membrane. The membranes were incubated in PBST containing 5% skim milk for 1 hour to block non-specific protein binding. Proteins were then immunoblotted overnight at 4 ° C with a specific antibody (1: 1000 dilution). Membranes were incubated with HRP-conjugated secondary antibody (1: 5000 dilution) for 1 hour at room temperature and developed using an ECL chemiluminescence system. A LAS3000-mini system (Fugifilm) was used for detection.

실험 결과Experiment result

1. 화학(chemistry)1. Chemistry

JAK2 억제제의 합성을 위해, 출발 물질 4-클로로-7H-피롤로피리미딘(3)을 요오드화수소산(hydriodic acid)을 이용하여 대응되는 요오드화물(iodide) 화합물 4로 먼저 전환시켰다; 피롤-NH 모이어티를 [2-(트리메틸실릴)에톡시]메틸(SEM)에 의해 보호되게 하였고, 화합물 5를 얻었다. SEM-보호된 피롤로피리미딘(5)을 TEA, CuI(I) 및 Pd(PPh3)4 및 다양한 알카인 모이어티들, 예컨대 프로핀(propyne), 페닐아세틸렌 및 4-에티닐톨루엔의 존재하에서 Sonogashira 커플링 반응에 이용하였고, 피롤로피리미딘 4-위치(position)의 트리아졸 그룹의 도입을 위한 전구체 화합물들(6a-c)을 얻었다. 그런 뒤 5원 시클릭 트리아졸(7a-c)을 알킨(alkyne) 구조들을 이용하여 클릭 화학(click chemistry)에 의해 생성시켰다. 최종적으로, 다른 트리아졸 레지오이성질체(regioisomer)(8)를 다양한 알킬 할라이드, K2CO3 및 TBAB와의 화합물 7의 치환 반응을 통해 얻었다; 중간체 화합물 7 및 8의 SEM 그룹의 이어지는 탈보호 반응은 화합물 10 및 9를 각각 생성시켰다. 알킬 치환 반응에서 오직 1,5- 및 2,5-트리아졸 이성질체만을 주요 산물 및 부산물로 각각 얻었고, 상기에서 R1은 메틸 그룹(7a)이었으며, R2 위치에서의 메틸화를 제외하고, 모두 세 이성질체가 생성되었다. 그러나, 트리아졸 모이어티의 알킬화 반응에서 1,4-트리아졸 이성질체(11, 12 및 13)를 또한 부산물로서 얻었고, 상기에서 R1 위치는 페닐 및 톨릴(tolyl) 그룹으로 치환되었다(7b 및 7c). 세가지 다른 레지오이성질체(regioisomers) 중에서 오직 2,5-트리아졸 이성질체인 주요 산물 만이 JAK2 효소를 명백한 선택성을 가지고 억제하였다. For the synthesis of the JAK2 inhibitor, the starting material 4-chloro-7H-pyrrolopyrimidine (3) was first converted to the corresponding iodide compound 4 using hydriodic acid; The pyrrole-NH moiety was protected by [2- (trimethylsilyl) ethoxy] methyl (SEM) to give compound 5. The presence of toluene ethynyl the SEM- protected pyrrolo pyrimidine (5) in TEA, CuI (I) and Pd (PPh 3) 4, and a variety of alkynyl moieties, e.g., propyn (propyne), phenylacetylene, and 4 To give the precursor compounds (6a-c) for the introduction of the triazole group at the pyrrolopyrimidine 4-position. The 5-membered cyclic triazole (7a-c) was then generated by click chemistry using alkyne structures. Finally, another triazole regioisomer (8) was obtained via a displacement reaction of compound 7 with various alkyl halides, K 2 CO 3 and TBAB; Subsequent deprotection of the SEM group of intermediate compounds 7 and 8 resulted in compounds 10 and 9, respectively. In the alkylation reaction, only the 1,5- and 2,5-triazole isomers were obtained as major products and by-products, respectively, wherein R1 was the methyl group (7a), except for the methylation at the R 2 position, . However, in the alkylation reaction of the triazole moiety, the 1,4-triazole isomers (11, 12 and 13) were also obtained as byproducts, in which the R 1 position was substituted with phenyl and tolyl groups (7b and 7c ). Of the three different regioisomers, only the major product, the 2,5-triazole isomer, inhibited the JAK2 enzyme with obvious selectivity.

2. 1H, NOESY 및 XRD를 포함하는 NMR에 의한 구조 결정2. Determination of structure by NMR, including 1H, NOESY and XRD

알킬 치환 반응에 있어서, 치환된 트리아졸은 2 주요 레지오이성질체(regioisomer)를 생성한다: 1,5- 및 2,5-트리아졸 화합물. 트리아졸 화합물의 구조를 화합물 21 및 43의 XRD에 의해 결정하였다. 두 이성질체의 1H-NMR 분석은 두 이성질체 사이의 피롤로피리미딘 그룹의 5번 수소(도 2 내의'b') 및 NH 양성자(proton)의 케미컬 쉬프트(chemical shift)에 있어서, 각각 0.264 ppm(1,5-트리아졸에 대해 7.477 ppm 및 2,5-트리아졸에 대해 7.213 ppm) 및 0.556 ppm(1,5-트리아졸에 대해 10.445 ppm 및 2,5-트리아졸에 대해 11.101 ppm)로 현저한 차이를 나타내었다. NOESY 분석에서, 각 트리아졸 이성질체 구조 내의 'b' 양성자의 조사(irradiation)는 다른 양성자들에서의 효과와 유의하게 다른 패턴을 만들어낸다. 오직 'c' 및 NH 양성자가 화합물 21(1,5-트리아졸)에서 영향을 받은 반면에, 화합물 43(2,5-트리아졸)의 'c', 'd', 'e', 'f' 및 'g' 양성자는 강화되었다. 상기 데이터는 1,5-트리아졸 이성질체의 상응하는 그룹에 비해 2,5-트리아졸 이성질체(43)의 메틸 및 메톡시에틸 그룹이 'b' 양성자에 더 가깝다는 것을 보여준다. In alkyl substitution reactions, substituted triazoles produce two major regioisomers: 1,5- and 2,5-triazole compounds. The structure of the triazole compound was determined by the XRD of compounds 21 and 43. The 1 H-NMR analysis of the two isomers showed that the hydrogen shifts of the pyrrolopyrimidine group between the two isomers were 0.264 ppm ('b' in FIG. 2) and the chemical shift of the NH 3 proton 7.477 ppm for 1,5-triazole and 7.213 ppm for 2,5-triazole) and 0.556 ppm (10.445 ppm for 1,5-triazole and 11.101 ppm for 2,5-triazole) Respectively. In the NOESY analysis, the irradiation of the 'b' protons in each triazole isomer structure produces a significantly different pattern than the effects in the other protons. C ',' e ', and' f 'of compound 43 (2,5-triazole), whereas only' c 'and NH 3 proton were affected by compound 21 'And' g 'proton were enhanced. The data show that the methyl and methoxyethyl groups of the 2,5-triazole isomer (43) are closer to the 'b' protons than to the corresponding groups of the 1,5-triazole isomers.

1,5-트리아졸(화합물 21) 및 2,5-트리아졸(화합물 43) 유도체에 있어서의 'b'양성자에서의 케미컬 쉬프트의 차이의 가능한 원인을 밝히기 위해, 대칭성 제약(symmetry constraints) 없는 분자 특성에 기반한 일반적인 계산 방법(a general computational calculating method)인 DFT(density functional theory)를 이용하여 정전위(electrostatic potential)를 계산하는 것에 의해 가우시안 09 Rev D.01.[18]에서 각 이성질체의 전자 밀도를 계산하였다. Mulliken 파퓰레이션(population) 분석에서, 상기 트리아졸 이성질체 사이의 정전위(electrostatic potential)에서 어떠한 현저한 차이도 관찰되지 않았다. 그러나 B3LYP(Beck3 Lee-Yang-Parr exchange functions) 방법의 형태에서 더욱 자세한 하이브리드 계산 프로토콜을 Kohn-Sham 오비탈의 확장을 위한 6-31+G(d)* 스탠다드 기저 세트에 적용하였을 때, 도 2에 나타낸 바와 같이 정전위 맵에서 두 트리아졸 이성질체의 전자 밀도의 다른 특성들이 관찰되었다. 2,5-트리아졸(화합물 43)의 'b' 양성자의 정전위는 0.117167로 계산되었고, 1,5-트리아졸(화합물 21)에 대한 0.094112의 값보다 더 높았다. 1,5- 및 2,5-트리아졸 사이의 부분적 전자 밀도의 패턴의 차이는 이성질체 사이의 'b' 양성자의 관찰된 케미컬 쉬프트의 원인일 수 있다. 그러므로, 더 낮은 부분적 전자 밀도를 갖는, 1,5-트리아졸(화합물 21)의 'b' 양성자는 다운필드로 쉬프트되었다. 4.588 및 4.568 eV로 각각 계산된 1,5- 및 2,5-트리아졸 이성질체 사이의 상기 에너지 갭을 계산하기 위해, HOMO 및 LUMO의 비교에 의해 분자 오비탈의 전자 밀도를 또한 시험하였다. 작은 HOMO-LUMO 에너지 갭 값 4.568 eV를 갖는 소프트 분자(soft molecule)가 4.588 eV의 큰 HOMO-LUMO 에너지 갭 값을 갖는 하드 분자(hard molecule)에 비해 더 분극화될 것이기 때문에, 계산된 정전위는 그들의 분극률 및 확산 차이를 충분히 설명한다. 1H-NMR 스펙트럼에서의 'b' 및 NH 양성자의 케미컬 쉬프트로 인해 전자 밀도 분석의 결과는 잔여 유도체들의 레지오이성질체의 구조 결정에 의해 뒷받침된다. 더욱이 본 발명의 1,5-트리아졸 아날로그의 1H-NMR 데이터는 pan-JAK 억제제로서 Gehringer 등[17]에 의해 보고된 1,5-트리아졸 유도체와 일맥상통한다. To reveal possible causes of the difference in chemical shifts in the 'b' protons in the 1,5-triazole (compound 21) and 2,5-triazole (compound 43) derivatives, molecules without symmetry constraints The electronic density of each isomer in Gaussian 09 Rev D.01. [18] is calculated by calculating the electrostatic potential using DFT (density functional theory), a general computational calculating method based on the characteristics Respectively. In the Mulliken population analysis, no significant difference in electrostatic potential between the triazole isomers was observed. However, when a more detailed hybrid calculation protocol in the form of the B3LYP (Beck3 Lee-Yang-Parr exchange functions) method is applied to the 6-31 + G (d) * standard base set for extension of the Kohn-Sham orbital, As shown, other properties of the electron density of the two triazole isomers in the electrostatic mapping were observed. The electrostatic potential of the 'b' proton of 2,5-triazole (Compound 43) was calculated to be 0.117167 and higher than the value of 0.094112 for 1,5-triazole (Compound 21). The difference in the pattern of partial electron density between 1,5- and 2,5-triazole may be the cause of the observed chemical shift of the 'b' protons between the isomers. Therefore, the 'b' protons of 1,5-triazole (Compound 21), which had a lower partial electron density, were shifted downfield. The electron density of the molecular orbital was also tested by comparison of HOMO and LUMO to calculate this energy gap between the 1,5- and 2,5-triazole isomers calculated respectively at 4.588 and 4.568 eV. Since the soft molecule with a small HOMO-LUMO energy gap value of 4.568 eV will be more polarized than a hard molecule with a large HOMO-LUMO energy gap value of 4.588 eV, Describe the polarization ratio and diffusion difference sufficiently. The results of the electron density analysis due to the chemical shift of the 'b' and NH protons in the 1 H-NMR spectrum are supported by the determination of the regioisomer structure of the remaining derivatives. In addition, 1 H-NMR data of the 1,5-triazole analogs of the present invention are consistent with the 1,5-triazole derivatives reported by Gehringer et al. [17] as pan-JAK inhibitors.

3. 3. In vitroIn vitro 효소 억제 활성 Enzyme inhibitory activity

처음으로, 모든 화합물의 JAK 키나아제 패밀리 멤버 JAK1, JAK2 및 JAK3에 대한 그들의 억제 활성을 10 및 1 μM의 농도에서 스크리닝함으로써 측정하였다. 표 1 및 2는 1 μM 농도에서 각 JAK 패밀리 멤버의 백분율 억제를 나타낸다: 선택된 화합물들의 IC50 값을 괄호 안에 나타내었다. For the first time, their inhibitory activity against the JAK kinase family members JAK1, JAK2 and JAK3 of all compounds was determined by screening at a concentration of 10 and 1 [mu] M. Tables 1 and 2 show percent inhibition of each JAK family member at 1 μM concentration: IC 50 values of the selected compounds are shown in parentheses.

예컨대 화합물 10과 같은, R2 위치에서의 치환 없는 화합물들은 무시할 정도의 JAK1 및 JAK3 키나아제 억제 활성 및 1 μM에서의 26.7% 억제의 약한 JAK2 억제 활성을 보였다. 일반적으로, 1) 모든 트리아졸 화합물들 사이에서, 2,5-트리아졸 레지오이성질체는 R2 위치에서, 상응하는 1,4- 및 2,5-트리아졸(화합물 11 및 화합물 36)보다 더욱 잠재성있는 메틸-치환된 1,5-트리아졸(화합물 14)을 제외한 다양한 알킬 그룹의 치환을 갖는 이성질체에 비해 더 효과적으로 JAK2 키나아제 활성을 억제하였다. 2) 모든 합성된 1,4-이성질체들(화합물 11-13)은 모든 세 JAK 패밀리 멤버들에 대해 불활성화되었다. 3) 상응하는 메틸 치환된 아날로그와 대조적으로, R1 위치에 페닐 또는 톨릴 그룹을 갖는 화합물들(12, 13, 15, 22, 28, 29, 36, 44, 51 및 52)은 완전히 불활성화되었다. Substitution-free compounds at the R 2 position, such as Compound 10, showed negligible JAK1 and JAK3 kinase inhibitory activity and a weak JAK2 inhibitory activity of 26.7% inhibition at 1 μM. In general, 1) among all the triazole compounds, the 2,5-triazole regioisomer is more potent at the R 2 position than the corresponding 1,4- and 2,5-triazoles (compounds 11 and 36) (JAK2) kinase activity more effectively than the isomers having various alkyl group substitutions except for the methyl-substituted 1,5-triazole (Compound 14). 2) All synthesized 1,4-isomers (compounds 11-13) were inactivated for all three JAK family members. 3) In contrast to the corresponding methyl substituted analogs, the compounds 12, 13, 15, 22, 28, 29, 36, 44, 51 and 52 with phenyl or tolyl groups at the R 1 position were completely inactivated.

대부분의 1,5-트리아졸 화합물들(화합물 14-34)은 약한 억제 활성을 갖거나, 억제 활성을 갖지 않았지만, R2 위치에서 메틸부테닐(화합물 19), 트리플루오로부틸(화합물 23), 부탄니트릴(화합물 26) 및 펜탄니트릴(화합물 27) 치환기를 갖는 몇몇 유도체들은 JAK1 및 JAK2 모두에 대해 1 μM에서 대략 50% 억제의 보통의 억제 효과를 나타내었다. 이러한 치환기들은 또한 상응하는 2,5-트리아졸 화합물들에 의해 JAK1 및 JAK2 억제를 증진시켰다. Most of the 1,5-triazole compounds (compounds 14-34) have weak inhibitory activity or no inhibitory activity, but methyl butenyl (compound 19), trifluorobutyl (compound 23) Some derivatives with substituents of butanenitrile (compound 26) and pentanenitrile (compound 27) showed the usual inhibitory effect of approximately 50% inhibition at 1 μM for both JAK1 and JAK2. These substituents also enhanced JAK1 and JAK2 inhibition by the corresponding 2,5-triazole compounds.

## 레지오이성질체Regioisomer RR 1One RR 22 JAK1JAK1 aa (IC(IC 5050 bb )) JAK2JAK2 aa (IC(IC 5050 bb )) JAK3JAK3 aa (IC(IC 5050 bb )) 1010 NONNON MeMe HH 11.211.2 26.726.7 2.22.2 1111 1,4-트리아졸1,4-triazole MeMe CH3 CH 3 -8.9 c -8.9 c 1.71.7 -0.9-0.9 1212 1,4-트리아졸1,4-triazole 4-MePh4-MePh CH3 CH 3 -3.1-3.1 0.70.7 -4.4-4.4 1313 1,4-트리아졸1,4-triazole 4-MePh4-MePh CH2CH2OCH3 CH 2 CH 2 OCH 3 3.03.0 4.44.4 -3.8-3.8 1414 1,5-트리아졸1,5-triazole MeMe CH3 CH 3 32.532.5 39.739.7 6.16.1 1515 1,5-트리아졸1,5-triazole 4-MePh4-MePh CH3 CH 3 -3.2-3.2 4.04.0 1.61.6 1616 1,5-트리아졸1,5-triazole MeMe CH=CH2 CH = CH 2 13.113.1 25.125.1 -11.2-11.2 1717 1,5-트리아졸1,5-triazole MeMe CH2CH=CH2 CH 2 CH = CH 2 20.320.3 27.127.1 -11.6-11.6 1818 1,5-트리아졸1,5-triazole MeMe CH2C=(CH2)CH3 CH 2 C = (CH 2 ) CH 3 18.418.4 30.230.2 8.28.2 1919 1,5-트리아졸1,5-triazole MeMe CH2CH=C(CH3)2 CH 2 CH = C (CH 3 ) 2 50.650.6 50.250.2 -6.9-6.9 2020 1,5-트리아졸1,5-triazole MeMe CH2CH2NH2 CH 2 CH 2 NH 2 6.66.6 3.63.6 13.013.0 2121 1,5-트리아졸1,5-triazole MeMe CH2CH2OCH3 CH 2 CH 2 OCH 3 4.54.5 4.84.8 -7.6-7.6 2222 1,5-트리아졸1,5-triazole 4-MePh4-MePh CH2CH2OCH3 CH 2 CH 2 OCH 3 0.80.8 3.03.0 0.50.5 2323 1,5-트리아졸1,5-triazole MeMe CH2CH2CH2CF3 CH 2 CH 2 CH 2 CF 3 58.758.7 51.951.9 2.12.1 2424 1,5-트리아졸1,5-triazole MeMe CH2CH2CH2OHCH 2 CH 2 CH 2 OH 4.84.8 24.024.0 -7.1-7.1 2525 1,5-트리아졸1,5-triazole MeMe CH2CH2CH2CH2CH2OHCH 2 CH 2 CH 2 CH 2 CH 2 OH 9.89.8 6.66.6 1.31.3 2626 1,5-트리아졸1,5-triazole MeMe CH2CH2CH2CNCH 2 CH 2 CH 2 CN 45.745.7 40.640.6 -0.2-0.2 2727 1,5-트리아졸1,5-triazole MeMe CH2CH2CH2CH2CNCH 2 CH 2 CH 2 CH 2 CN 45.345.3 46.046.0 -6.3-6.3 2828 1,5-트리아졸1,5-triazole PhPh CH2CH2CH2CH2CNCH 2 CH 2 CH 2 CH 2 CN 4.94.9 1.71.7 -3.19-3.19 2929 1,5-트리아졸1,5-triazole 4-MePh4-MePh CH2CH2CH2CH2CNCH 2 CH 2 CH 2 CH 2 CN 5.45.4 8.98.9 3.03.0 3030 1,5-트리아졸1,5-triazole MeMe CH2CH2CH2CH2CH2CNCH 2 CH 2 CH 2 CH 2 CH 2 CN 30.830.8 26.126.1 -4.7-4.7 3131 1,5-트리아졸1,5-triazole MeMe CH2(C3H5)CH 2 (C 3 H 5 ) 13.213.2 9.79.7 -2.60-2.60 3232 1,5-트리아졸1,5-triazole MeMe CH2(C4H7)CH 2 (C 4 H 7 ) 15.815.8 0.90.9 5.65.6 3333 1,5-트리아졸1,5-triazole MeMe CH2(C5H9)CH 2 (C 5 H 9 ) 25.625.6 10.710.7 3.43.4 3434 1,5-트리아졸1,5-triazole MeMe CH2(C6H11)CH 2 (C 6 H 11 ) 33.233.2 -8.9-8.9 6.16.1 3535 2,5-트리아졸2,5-triazole MeMe CH3 CH 3 11.211.2 5.65.6 1.61.6

## 레지오이성질체Regioisomer RR 1One RR 22 JAK1JAK1 aa (( ICIC 5050 bb )) JAK2JAK2 aa (( ICIC 5050 bb )) JAK3JAK3 aa (( ICIC 5050 bb )) 3636 2,5-트리아졸2,5-triazole 4-MePh4-MePh CH3 CH 3 9.19.1 -0.6-0.6 4.14.1 3737 2,5-트리아졸2,5-triazole MeMe CH=CH2 CH = CH 2 45.445.4 60.460.4 -8.7-8.7 3838 2,5-트리아졸2,5-triazole MeMe CH2CH=CH2 CH 2 CH = CH 2 50.750.7 82.3 (511)82.3 (511) 1.31.3 3939 2,5-트리아졸2,5-triazole MeMe CH2C=(CH2)CH3 CH 2 C = (CH 2 ) CH 3 81.1 (142)81.1 (142) 95.3 (67.4)95.3 (67.4) 15.615.6 4040 2,5-트리아졸2,5-triazole MeMe CH2CH=C(CH3)2 CH 2 CH = C (CH 3 ) 2 53.653.6 77.9 (786)77.9 (786) -4.3-4.3 4141 2,5-트리아졸2,5-triazole MeMe CH2CH2NH2 CH 2 CH 2 NH 2 19.119.1 13.913.9 4.84.8 4242 2,5-트리아졸2,5-triazole MeMe CH2CH2NHBOCCH 2 CH 2 NHBOC 5.45.4 3.23.2 -3.7-3.7 4343 2,5-트리아졸2,5-triazole MeMe CH2CH2OCH3 CH 2 CH 2 OCH 3 51.751.7 88.0 (310)88.0 (310) 8.38.3 4444 2,5-트리아졸2,5-triazole 4-MePh4-MePh CH2CH2OCH3 CH 2 CH 2 OCH 3 -3.8-3.8 2.52.5 7.17.1 4545 2,5-트리아졸2,5-triazole MeMe CH2CH2CH2CF3 CH 2 CH 2 CH 2 CF 3 84.7 (82)84.7 (82) 88.1 (96.3)88.1 (96.3) 10.810.8 4646 2,5-트리아졸2,5-triazole MeMe CH2CH2CH2OHCH 2 CH 2 CH 2 OH 62.662.6 86.7 (156)86.7 (156) 20.220.2 4747 2,5-트리아졸2,5-triazole MeMe CH2CH2CH2CH2CH2OHCH 2 CH 2 CH 2 CH 2 CH 2 OH 53.653.6 60.460.4 2.02.0 4848 2,5-트리아졸2,5-triazole MeMe CH2CH2CH2CH2COOCH2CH3 CH 2 CH 2 CH 2 CH 2 COOCH 2 CH 3 20.220.2 25.425.4 -9.0-9.0 4949 2,5-트리아졸2,5-triazole MeMe CH2CH2CH2CNCH 2 CH 2 CH 2 CN 89.0 (72)89.0 (72) 96.3 (73.5)96.3 (73.5) 51.1 (1,760)51.1 (1,760) 5050 2,5-트리아졸2,5-triazole MeMe CH2CH2CH2CH2CNCH 2 CH 2 CH 2 CH 2 CN 78.4 (138)78.4 (138) 96.3 (63.6)96.3 (63.6) 14.714.7 5151 2,5-트리아졸2,5-triazole PhPh CH2CH2CH2CH2CNCH 2 CH 2 CH 2 CH 2 CN 7.77.7 11.111.1 -1.1-1.1 5252 2,5-트리아졸2,5-triazole 4-MePh4-MePh CH2CH2CH2CH2CNCH 2 CH 2 CH 2 CH 2 CN 12.012.0 13.113.1 1.21.2 5353 2,5-트리아졸2,5-triazole MeMe CH2CH2CH2CH2CH2CNCH 2 CH 2 CH 2 CH 2 CH 2 CN 81.6 (186)81.6 (186) 90.1 (165)90.1 (165) 6.46.4 5454 2,5-트리아졸2,5-triazole MeMe CH2(C3H5)CH 2 (C 3 H 5 ) 68.3 (444)68.3 (444) 96.1 (41.9)96.1 (41.9) 21.6 (2,440)21.6 (2,440) 5555 2,5-트리아졸2,5-triazole MeMe CH2(C4H7)CH 2 (C 4 H 7 ) 68.968.9 96.1 (62.7)96.1 (62.7) 22.522.5 5656 2,5-트리아졸2,5-triazole MeMe CH2(C5H9)CH 2 (C 5 H 9 ) 76.876.8 87.9 (71.8)87.9 (71.8) 11.111.1 5757 2,5-트리아졸2,5-triazole MeMe CH2(C6H11)CH 2 (C 6 H 11 ) 60.660.6 32.032.0 6.76.7

1,4- 및 1,5-트리아졸의 시리즈에서 비록 주목할만한 활성 또는 SAR이 관찰되지 않았지만, 2,5-트리아졸 화합물들의 명확한 SAR을 갖는 잠재적이고 선택적인 JAK2 억제 활성이 관찰되었다. 대부분의 현재의 JAK 억제제들이 니트릴 모이어티를 함유하므로, R2 위치에 전자-풍부 모이어티, 예컨대 니트릴 그룹 뿐만 아니라 알켄(alkene), 아민, 트리플루오로메틸, 히드록실 및 에스터 그룹을 포함하는 다양한 치환기를 도입하고자 하였다. 알켄-치환된 유도체의 시리즈(화합물 37-40)에서, 먼저 R2 위치에서 메틸 치환(화합물 35)과는 대조적으로 비닐 치환(화합물 37)에 대한 JAK1 및 JAK2 키나아제 억제 활성에서의 극적인 증가를 관찰하였다. 아날로그의 시리즈의 억제 활성의 패턴은 다음과 같다: 비닐(화합물 37) < 3-메틸부트-2-에닐(화합물 40) < 알릴 (화합물 38) < 2-메틸알릴(39). 특히, 화합물 38과 대조적으로 알릴 그룹의 2-위치에서의 추가적인 메틸 그룹을 갖는 화합물 39는, 각각 142 nM 및 67.4 nM의 IC50 값을 갖는 JAK1 및 JAK2 억제 활성에서의 극적인 증가(예를 들어, JAK2에 대해 7.6배 증가) 및 JAK3에 대한 높은 선택성을 보였다. Potential and selective JAK2 inhibitory activity with a clear SAR of 2,5-triazole compounds was observed, although no significant activity or SAR was observed in the series of 1,4- and 1,5-triazoles. Since most current JAK inhibitors contain a nitrile moiety, it is possible to use a variety of electron-rich moieties at the R 2 position, including nitrile groups as well as alkene, amine, trifluoromethyl, hydroxyl and ester groups To introduce a substituent. In the series of alkene-substituted derivatives (compounds 37-40), we first observed a dramatic increase in JAK1 and JAK2 kinase inhibitory activity on vinyl substitution (compound 37) as opposed to methyl substitution (compound 35) at the R 2 position Respectively. The pattern of inhibition activity of the series of analogs is as follows: Vinyl (Compound 37) <3-Methylbut-2-enyl (Compound 40) <Allyl (Compound 38) <2-Methyl Allyl (39). In particular, the dramatic increase in contrast, allyl having an additional methyl group at the 2-position of the group of compounds 39, 142 nM, respectively and the JAK1 and JAK2 inhibition with IC 50 value of 67.4 nM and compound activity 38 (e.g., 7.6 fold increase over JAK2) and high selectivity for JAK3.

알켄 그룹의 이로운 효과에 기반하여, R2 치환기의 말단에 다양한 전자-풍부 그룹을 갖는 화합물 41-53을 합성하였고 평가하였다. R2 치환기의 비슷한 길이를 갖는 화합물 38 및 41 또는 42의 비교는 아민 또는 NHBOC 그룹은 알릴 치환기(화합물 38)에 비해 JAK 억제 활성을 감소시켰다는 것을 밝혔다. 비슷한 길이의 다른 치환된 알킬 모이어티 및 다양한 전자-풍부 그룹들 가운데, 메톡시(화합물 43), 트리플루오로부틸(화합물 45) 및 프로판올(화합물 46) 모이어티를 갖는 화합물들은 JAK2에 대하여 각각 210, 96.3 및 156 nM의 IC50의 단지 보통의 억제 활성을 나타내었다. 3-트리플루오로메틸-n-프로필-치환된 화합물 45의 경우, 유사한 억제 능력(JAK1에서의 ICS=82 nM)이 관찰되었다. 화합물 46과 히드록실 모이어티를 공유하지만 두 탄소가 연장된 탄소 체인을 갖는 화합물 47은 모든 JAK 키나아제에 대한 감소된 억제를 보였다. Based on the beneficial effects of the alkene groups, compounds 41-53 having various electron-rich groups at the end of the R 2 substituent were synthesized and evaluated. Comparison of Compounds 38 and 41 or 42 having similar lengths of R 2 substituents revealed that the amine or NHBOC group reduced the JAK inhibitory activity relative to the allyl substituent (Compound 38). Compounds having methoxy (compound 43), trifluorobutyl (compound 45), and propanol (compound 46) moieties among other substituted alkyl moieties of similar length and various electron-rich groups were identified as 210 , it exhibited the inhibitory activity of typically only of 96.3 and 156 nM of the IC 50. For the 3-trifluoromethyl-n-propyl-substituted compound 45, a similar inhibitory potency (ICS = 82 nM in JAK1) was observed. Compound 47, which shares a hydroxyl moiety with compound 46 but has two carbon-extended carbon chains, showed reduced inhibition against all JAK kinases.

다른 탄소 체인 길이(각각 4, 5, 및 6)를 갖는 니트릴-치환된 화합물 49, 50 및 53은 다른 전자-풍부 치환된 유도체들에 비하여 JAK 패밀리 멤버의 강화된 억제를 보였다. 게다가 JAK1에 대한 억제 활성은 탄소 체인 길이가 증가함에따라 감소하였다: 탄소 체인 길이 4(화합물 49) > 탄소 체인 길이 5(화합물 50) > 탄소 체인 길이 6(화합물 53). 그러나, JAK2에 대한 억제 활성은 탄소 체인 길이 4(화합물 49) 또는 5(화합물 50)에서 최적화되었고, 6 탄소 체인 길이를 갖는 화합물 53은 활성에서 2.4배 감소를 보였다. 특히 화합물 49는 본 발명에서 1 μM에서 50% 보다 더 좋은 억제(IC50=1.76 μM)를 갖는 JAK3의 유일한 억제제였다. 니트릴 유도체들의 시리즈 가운데, 화합물 50은 JAK3에 비해 높은 JAK2 선택성 및 JAK1에 비해 2.2배 높은 선택성을 보였다.Nitrile-substituted compounds 49, 50 and 53 with different carbon chain lengths (4, 5, and 6, respectively) showed enhanced inhibition of the JAK family members relative to other electron-richly substituted derivatives. In addition, the inhibitory activity against JAK1 decreased with increasing carbon chain length: carbon chain length 4 (compound 49)> carbon chain length 5 (compound 50)> carbon chain length 6 (compound 53). However, the inhibitory activity against JAK2 was optimized for carbon chain length 4 (compound 49) or 5 (compound 50), and compound 53 having a 6 carbon chain length showed 2.4 fold reduction in activity. In particular, compound 49 was the only inhibitor of JAK3 with better inhibition (IC 50 = 1.76 [mu] M) than 1% at 50 [mu] M in the present invention. Among the series of nitrile derivatives, Compound 50 showed higher JAK2 selectivity than JAK3 and 2.2 times higher selectivity than JAK1.

최종적으로, 대표적인 JAK2 억제제 룩소리티닙(화합물 1)이 약물 분자 구조로서 시클로펜탄 그룹을 갖기 때문에 다양한-사이즈의 시클로알칸 모이어티(화합물 54-57)을 평가하였다. 비록 화합물 54-57의 JAK1 억제 활성이 1 μM에서 61-77% 억제로 모두 유사하지만, 시클로알칸 링의 사이즈의 감소에따라 JAK2 억제는 증가되었다. 그러므로, 시클로프로필메틸-치환된 화합물 54가 41.9 nM의 IC50 값 및 JAK1과 JAK3에 대해 각각 10.6 배 및 58.1 배의 선택성을 갖는, 가장 강하고, 선택적인 JAK2 억제자였다. Finally, various-sized cycloalkane moieties (compounds 54-57) were evaluated because the representative JAK2 inhibitor luxoritinib (Compound 1) has a cyclopentane group as the drug molecule structure. Although the JAK1 inhibitory activity of compounds 54-57 were all similar at 61-77% inhibition at 1 [mu] M, the JAK2 inhibition was increased with decreasing size of the cycloalkane ring. Therefore, the cyclopropylmethyl-substituted compound 54 was the strongest, selective JAK2 inhibitor with an IC 50 value of 41.9 nM and a selectivity of 10.6 and 58.1 for JAK1 and JAK3, respectively.

JAK2V617F 돌연변이가 JAK2 관련된 MPN 발병의 병인 요소인 것으로 보고되어 왔기 때문에[14], 상기 돌연변이 효소를 억제하기 위한 잠재적 JAK2 억제 활성을 갖는 7개 화합물들의 능력을 평가하였다. 일반적으로 상기 화합물들은 야생형 JAK2에 비해 JAK2V617F 돌연변이에 대하여 더 낮은 억제 활성을 보였다; 대부분의 잠재적인 억제자들은 펜탄니트릴 아날로그 화합물 50 및 시클로프로필메틸 아날로그 화합물 54였고, 100 nM의 농도에서 JAK2V617F의 53.5% 및 56.8% 억제를 나타내었다. JAK2 및 JAK2V617F에 대한 억제 활성에 기반하여, 화합물 50 및 54가 가장 선택적이고, 신규한 JAK2 억제자로 간주되었다. Because the JAK2V617F mutation has been reported to be a causative agent of the JAK2-associated MPN outbreak [14], the ability of seven compounds with potential JAK2 inhibitory activity to inhibit the mutant enzyme has been evaluated. In general, these compounds exhibited lower inhibitory activity against the JAK2V617F mutation compared to the wild-type JAK2; Most potential inhibitors were the pentane nitrile analog compound 50 and the cyclopropyl methyl analog compound 54 and showed 53.5% and 56.8% inhibition of JAK2V617F at a concentration of 100 nM. Based on the inhibitory activity against JAK2 and JAK2V617F, compounds 50 and 54 were considered to be the most selective and novel JAK2 inhibitors.

4. 세포 성장 억제4. Cell growth inhibition

JAK2-연관된 MPN 및 제피티닙-저항성 NSCLC의 세포 모델에서의 추가적인 기능적 연구에 앞서, 화합물 50 및 54의 세포 투과성을 PAMPA(Parallel Artificial Membrane Permeability Assay, 높은 값>-4.07; 중간 값 -4.07~-4.87; 낮은 값 < -4.87)[20]에 의해 측정하였다. 상기 결과들은, 각각 -4.38±0.29 및 -4.05±0.41의 값을 갖는 화합물 50 및 54의 보통 및 높은 투과성을 나타낸다. MPN 적백혈병(erythroleukemia)으로부터 유래되고 JAK2V617F 돌연변이를 수반하는 HEL92.1.7 세포에서, 7개의 대표적인 아날로그(화합물 45 제외)는 10 μM의 농도에서 대략 40-65%의 주목할만한 항-증식 효능을 나타내었다(supporting information); 이는 HEL92.1.7 세포에서 14.7±0.25 μM의 IC50를 갖는 룩소리티닙(화합물 1)과 유사하였다. 비록 이 결과가 효소 활성 및 세포 증식의 억제 사이의 차이를 나타내지만, JAK2에 대한 단일-디지트(single digit) 나노몰 IC50을 갖는 룩소리티닙(화합물 1)은 또한 HEL 92.1.7 세포에서 동일한 농도에서 오직 55% 억제를 나타낸다. 효소 및 세포 사이의 활성 프로파일에서의 이 갭(gap)과 일관되게, HEL92.1.7 에서의 186 nM의 EC50 값이 룩소리티닙(화합물 1)에 대해 보고되어 왔다[21].Prior to further functional studies in cell models of JAK2 -associated MPN and zetitinib-resistant NSCLC, the cellular permeability of compounds 50 and 54 was assessed by PAMA (high value &gt;-4.07;4.87; low value <-4.87) [20]. The results show the moderate and high permeability of compounds 50 and 54, respectively, having values of -4.38 ± 0.29 and -4.05 ± 0.41. In HEL92.1.7 cells derived from MPNE (erythroleukemia) and involving a JAK2V617F mutation, seven representative analogs (except compound 45) exhibited a remarkable anti-proliferative effect of approximately 40-65% at a concentration of 10 [mu] M supporting information; This was similar to luxoritinib (Compound 1) with an IC 50 of 14.7 + 0.25 [mu] M in HEL92.1.7 cells. Although the results represents the difference between the enzyme activity and inhibition of cell proliferation, one for JAK2 - Luxor same utility nip (compound 1) with nanomolar IC 50 digits (single digit) is also in HEL 92.1.7 cells Lt; RTI ID = 0.0 &gt; 55% &lt; / RTI &gt; Consistent with this gap in enzyme and cell-to-cell activity profiles, an EC 50 value of 186 nM in HEL92.1.7 has been reported for Luxoritinib (Compound 1) [21].

5. 웨스턴 블랏5. Western blot

화합물 54의 추가적인 기능 연구를 HCC827 WT 및 HCC827 GR 세포에서 수행하였다. 이러한 세포 주들은 야생형 및 제피티닙-저항성 NSCLC 각각으로부터 유래되었고, 후자는 EGFR 억제자-저항성 NSCLC의 잘 알려진 형태이다. 이러한 세포 유형들은 항암 약물, 예컨대 TKIs 또는 시스플라틴과의 조합에 있어서의 JAK2 억제자에 의해 효과적으로 억제되는 것으로 알려져 왔다[22]. 이러한 세포 주들이 다양한 농도의 룩소리티닙(화합물 1), 잠재적 JAK1/2 억제자 또는 화합물 54와 함께 배양되었을 때, 화합물 1은 HCC827 WT 세포(30 μM에서 16.6%)에 비해 HCC827 GR 세포에서의 증식의 더 높은 억제(30 μM에서 57.1%)를 나타냈다. 화합물 54는 30 μM에서 HCC827 GR 세포의 증식을 억제하였으나, HCC827 WT 세포에 대해서 항-증식 효과를 보이지 않았다. 게다가, SH2 도메인 내의 공동의 포스포티로신 상호작용을 통해 호모다이머화를 자극하는, JAK2 활성화의 다운스트림 시그널링 이벤트인[23] STAT3의 인산화(Y705)는 또한 HCC827 GR 세포 내에서 30 μM의 화합물 54에 의해 억제된다. 흥미롭게도, 룩소리티닙(화합물 1)이 유의하게 양쪽 세포 타입에서 이 시그널링을 유의하게 억제하는 반면, STAT3 인산화의 억제는 HCC827 WT 세포 내에서 관찰되지 않는다. compound 54 additional functional studies were performed on HCC827 WT and HCC827 GR cells. These cell lines were derived from wild-type and zetitinib-resistant NSCLC, respectively, and the latter is a well-known form of EGFR inhibitor-resistant NSCLC. These cell types have been shown to be effectively inhibited by JAK2 inhibitors in combination with anticancer drugs such as TKIs or cisplatin [22]. When these cell lines were cultured with varying concentrations of luxoritinib (Compound 1), a potential JAK1 / 2 inhibitor or Compound 54, Compound 1 was more potent in HCC827 GR cells compared to HCC827 WT cells (16.6% at 30 μM) Indicating a higher inhibition of proliferation (57.1% at 30 μM). Compound 54 inhibited the proliferation of HCC827 GR cells at 30 [mu] M, but did not show anti-proliferative effect on HCC827 WT cells. In addition, phosphorylation of STAT3 (Y705), a downstream signaling event of JAK2 activation, that stimulates homodimerization through a common phosphotyrosine interaction in the SH2 domain, also inhibited 30 [mu] M of compound 54 . Interestingly, inhibition of STAT3 phosphorylation was not observed in HCC827 WT cells, while luxoritinib (Compound 1) significantly inhibited this signaling in both cell types.

4-(2,5-트리아졸)-피롤로피리미딘 구조에 기반한 유도체들의 합성적 및 SAR 연구들의 본 발명의 결과들은 잠재적이고 높은 선택성을 갖는 JAK2 억제자들을 발굴하였다. R2 위치에서의 전자-풍부 모이어티를 갖는 다양한 알킬-치환된 그룹들최적화 및 SAR 분석에 따라, 시클로프로필메틸-치환된 화합물 54(IC50=41.9 nM 및 선택성 배율: JAK1/2 10.6 및 JAK3/2 58.1)는 신규 잠재적이고 선택성있는 JAK2 억제자로서 발굴되었다. 화합물 54는 또한 JAK2V617F 돌연변이에 대한 유사한 억제 가능성을 나타낸다. 더욱이 화합물 54는 JAK2 돌연변이를 수반하는 MPN 조혈세포 암으로부터 유래된 HEL 92.1.7 세포 및 제피티닙-저항성 NSCLC 세포의 증식을 억제한다. 화합물 54는 또한 STAT3의 호혜성 상호작용(reciprocal interaction) 사이트인 SH2 도메인 내의 Y705에서의 STAT3 인산화를 억제한다. 본 발명의 신규한 JAK2 선택적 억제자들은, 더욱 강하고 선택적인 JAK2 억제자의 추가적 개발을 통한 새로운 약물 발굴을 위한 잠재적인 리드 화합물이다. The inventive results of synthetic and SAR studies of derivatives based on 4- (2,5-triazole) -pyrrolopyrimidine structures have uncovered potent and highly selective JAK2 inhibitors. According to various alkyl-substituted groups optimization and SAR analysis with the electron-rich moiety at the R 2 position, the cyclopropylmethyl-substituted compound 54 (IC 50 = 41.9 nM and selectivities: JAK 1/2 10.6 and JAK 3 / 2 58.1) was unearthed as a new potential and selective JAK2 inhibitor. Compound 54 also shows a similar inhibition potential for the JAK2V617F mutation. Moreover, compound 54 inhibits the proliferation of HEL 92.1.7 cells and zetitinib-resistant NSCLC cells derived from MPN hematopoietic cell carcinoma with JAK2 mutation. Compound 54 also inhibits STAT3 phosphorylation at Y705 within the SH2 domain, the reciprocal interaction site of STAT3. The novel JAK2 selective inhibitors of the present invention are potential lead compounds for new drug discovery through the further development of more potent and selective JAK2 inhibitors.

이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the same is by way of illustration and example only and is not to be construed as limiting the scope of the present invention. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

참고문헌references

[1] Leonard, W. J.; O'Shea, J. J. JAKS and STATS: Biological Implications. Annu. Rev. Immunol. 16 (1998) 293-322. (b) Ghoreschi, K.; Laurence, A.; O'Shea, J. J. Janus Kinases in Immune Cell Signaling. Immunol. Rev. 228 (2009) 273-287.[1] Leonard, W. J .; O'Shea, J. J. JAKS and STATS: Biological Implications. Annu. Rev. Immunol. 16 (1998) 293-322. (b) Ghoreschi, K .; Laurence, A .; O'Shea, J. J. Janus Kinases in Immune Cell Signaling. Immunol. Rev. 228 (2009) 273-287.

[2] Aaronson, D. S.; Horvath, C. M. A Road Map for Those Who Don't Know JAK-STAT. Science 296 (2002) 1653-1655.[2] Aaronson, D. S .; Horvath, C. M. A Road Map for Those Who Do not Know JAK-STAT. Science 296 (2002) 1653-1655.

[3] Manning, G.; Whyte, D. B.; Martinez, R.; Hunter, T.; Sundarsanam, S. The Protein Kinase Complement of the Human Genome. Science 298 (2002) 1912-1934.[3] Manning, G .; Whyte, D. B .; Martinez, R .; Hunter, T .; Sundarsanam, S. The Protein Kinase Complement of the Human Genome. Science 298 (2002) 1912-1934.

[4] O'Shea, J. J.; Plenge, R. JAK and STAT Signaling Molecules in Immunoregulation and Immune-mediated Disease. Immunity 36 (2012) 542-550. [4] O'Shea, J. J .; Plenge, R. JAK and STAT Signaling Molecules in Immunoregulation and Immune-mediated Disease. Immunity 36 (2012) 542-550.

[5] Flex, E.; Petrangeli, V.; Stella, L.; Chiaretti, S.; Hornakova, T.; Knoops, L.; Ariola, C.; Fodale, V.; Clappier, E.; Paoloni, F.; Martinelli, S.; Fragale, A.; Sanchez, M.; Tavolaro, S.; Messina, M.; Cazzaniga, G.; Camera, A.; Pizzolo, G.; Tornesello, A.; Vignetti, M.; Battistini, A.; Cave, H.; Gelb, B. D.; Renauld, J.-C.; Biondi, A.; Constantinescu, S. N.; Foa, R.; Tartaglia, M. Somatically Acquired JAK1 Mutations in Adult Acute Lymphoblastic Leukemia. J. Exp. Med. 205 (2008) 751-758.[5] Flex, E .; Petrangeli, V .; Stella, L .; Chiaretti, S .; Hornakova, T .; Knoops, L .; Ariola, C .; Fodale, V .; Clappier, E .; Paoloni, F .; Martinelli, S.; Fragale, A .; Sanchez, M .; Tavolaro, S.; Messina, M .; Cazzaniga, G .; Camera, A .; Pizzolo, G .; Tornesello, A .; Vignetti, M .; Battistini, A .; Cave, H .; Gelb, B. D .; Renauld, J.-C .; Biondi, A .; Constantinescu, S. N .; Foa, R .; Tartaglia, M. Somatically Acquired JAK1 Mutations in Adult Acute Lymphoblastic Leukemia. J. Exp. Med. 205 (2008) 751-758.

[6] Gadina, M.; Hilton, D.; Johnston, J. A.; Morinobu, A.; Lighvani, A.; Zhou, Y. J.; Visconti, R.; O'Shea, J. J. Signaling by Type I and II Cytokine Receptors: Ten Years After. Curr.Opin.Immunol.13 (2001) 363-373.[6] Gadina, M .; Hilton, D .; Johnston, J. A .; Morinobu, A .; Lighvani, A .; Zhou, Y. J .; Visconti, R .; O'Shea, J. J. Signaling by Type I and II Cytokine Receptors: Ten Years After. Curr. Opin. Immunol. 13 (2001) 363-373.

[7] O'Shea, J. J.; Husa, M.; Li, D.; Hofmann, S. R.; Watford, W.; Roberts, J. L.; Buckley, R. H.; Changelian, P.; Candotti, F. Jak3 and The Pathogenesis of Severe Combined Immunodeficiency. Mol. Immunol. 41 (2004) 727-737.[7] O'Shea, J. J .; Husa, M .; Li, D .; Hofmann, S. R .; Watford, W .; Roberts, J. L .; Buckley, R. H .; Changelian, P .; Candotti, F. Jak3 and The Pathogenesis of Severe Combined Immunodeficiency. Mol. Immunol. 41 (2004) 727-737.

[8] Tan, S.-H.; Nevalainen, M. T. Signal Transducer and Activator of Transcription 5A/B in Prostate and Breast Cancers. Endocr.Relat. Cancer 15 (2008) 367-390. [8] Tan, S. -H .; Nevalainen, M. T. Signal Transducer and Activator of Transcription 5A / B in Prostate and Breast Cancers. Endocr. Relat. Cancer 15 (2008) 367-390.

[9] Vainchenker, W.; Dusa, A.; Constantinescu, S. N. JAKs in Pathology: Role of Janus Kinases in Hematopoietic Malignancies and Immunodeficiencies. Semin. Cell Dev. Biol. 19 (2008) 385-393.[9] Vainchenker, W .; Dusa, A .; Constantinescu, S. N. JAKs in Pathology: Role of Janus Kinases in Hematopoietic Malignancies and Immunodeficiencies. Semin. Cell Dev. Biol. 19 (2008) 385-393.

[10] Chen, E.; Staudt, L. M.; Green, A. R. Janus Kinase Deregulation in Leukemia and Lymphoma. Immunity 36 (2012) 529-541.[10] Chen, E .; Staudt, L. M .; Green, A. R. Janus Kinase Deregulation in Leukemia and Lymphoma. Immunity 36 (2012) 529-541.

[11] Lipson, D.; Capelletti, M.; Yelensky, R.; Otto, G.; Parker, A.; Jarosz, M.; Curran, J. A.; Balasubramanian, S.; Bloom, T.; Brennan, K. W.; Donahue, A.; Downing, S. R.; Frampton, G. M.; Garcia, L.; Juhn, F.; Mitchell, K. C.; White, E.; White, J.; Zwirko, Z.; Peretz, T.; Nechushtan, H.; Soussan-Gutman, L.; Kim, J.; Sasaki, H.; Kim, H. R.; Park, S. I.; Ercan, D.; Sheehan, C. E.; Ross, J. S.; Cronin, M. T.; Jㅴnne, P. A.; Stephens, P. J. Identification of New ALK and RET Gene Fusions from Colorectal and Lung Cancer Biop-sies. Nat. Med. 18 (2012) 382-384.[11] Lipson, D .; Capelletti, M .; Yelensky, R .; Otto, G .; Parker, A .; Jarosz, M .; Curran, J. A .; Balasubramanian, S .; Bloom, T .; Brennan, K. W .; Donahue, A .; Downing, S. R .; Frampton, G. M .; Garcia, L .; Juhn, F .; Mitchell, K. C .; White, E .; White, J .; Zwirko, Z .; Peretz, T .; Nechushtan, H .; Soussan-Gutman, L .; Kim, J .; Sasaki, H .; Kim, H. R .; Park, S. I .; Ercan, D .; Sheehan, C. E .; Ross, J. S .; Cronin, M. T .; J ㅴ nne, P. A .; Stephens, P. J. Identification of New ALK and RET Gene Fusions from Colorectal and Lung Cancer Biop-sies. Nat. Med. 18 (2012) 382-384.

[12] Koppikar, P.; Bhagwat, N.; Kilpivaara, O.; Manshouri, T.; Adli, M.; Hricik, T.; Liu, F.; Saunders, L. M.; Mullally, A.; Abdel-Wahab, O.; Leung, L.; Weinstein, A.; Marubayashi, S.; Goel, A.; Gㆆnen, M.; Estrov, Z.; Ebert, B. L.; Chiosis, G.; Nimer, S. D.; Bernstein, B. E.; Verstovsek, S.; Levine, R. L. Heterodimeric JAK-STAT Activation as a Mechanism of Persistence to JAK2 Inhibitor Therapy. Nature 489 (2012) 155-159. [12] Koppikar, P .; Bhagwat, N .; Kilpivaara, O .; Manshouri, T .; Judge, M .; Hricik, T .; Liu, F .; Saunders, L. M .; Mullally, A .; Abdel-Wahab, O .; Leung, L .; Weinstein, A .; Marubayashi, S.; Goel, A .; G ㆆ nen, M .; Estrov, Z .; Ebert, B. L .; Chiosis, G .; Nimer, S. D .; Bernstein, B. E .; Verstovsek, S .; Levine, R. L. Heterodimeric JAK-STAT Activation as a Mechanism of Persistence to JAK2 Inhibitor Therapy. Nature 489 (2012) 155-159.

[13] Lu, X.; Levine, R.; Tong, W.; Wernig, G.; Pikman, Y.; Zarnegar, S.; Gilliland, D. G.; Lodish, H. Expression of a Homodimeric Type I Cytokine Receptor is Required for JAK2V617F-mediated Transfor-mation. Proc. Natl. Acad. Sci. 102 (2005) 18962-18967.[13] Lu, X .; Levine, R .; Tong, W .; Wernig, G .; Pikman, Y .; Zarnegar, S .; Gilliland, D. G .; Lodish, H. Expression of a Homodimeric Type I Cytokine Receptor is Required for JAK2V617F-mediated Transfor-mation. Proc. Natl. Acad. Sci. 102 (2005) 18962-18967.

[14] Pardanani, A.; Vannucchi, A. M.; Passamonti, F.; Cervantes, F.; Barbui, T.; Tefferi, A. JAK Inhibitor Therapy for Myelofibrosis: Criti-cal Assessment of Value and Limitations. Leukemia 25 (2011) 218-225.[14] Pardanani, A .; Vannucchi, A. M .; Passamonti, F .; Cervantes, F .; Barbui, T .; Tefferi, A. JAK Inhibitor Therapy for Myelofibrosis: Criti-cal Assessment of Value and Limitations. Leukemia 25 (2011) 218-225.

[15] Meyer, S. C.; Levine, R. L. Molecular Pathways: Molecular Basis for Sensitivity and Resistance to JAK Kinase Inhibitors. Clin. Cancer Res. 20 (2014) 2051-2059.[15] Meyer, S. C .; Levine, R. L. Molecular Pathways: Molecular Basis for Sensitivity and Resistance to JAK Kinase Inhibitors. Clin. Cancer Res. 20 (2014) 2051-2059.

[16] Kubler, P. Janus Kinase Inhibitors: Mechanisms of Action. Exp. and Clin. Pharm. 37 (2014) 154-157.[16] Kubler, P. Janus Kinase Inhibitors: Mechanisms of Action. Exp. and Clin. Pharm. 37 (2014) 154-157.

[17] Gehringer, M.; Forster, M.; Laufer, S. A. Solution-phase Parallel Synthesis of Ruxolitinib-Derived Janus Kinase Inhibitors via Copper-catalyzed Azide-alkyne Cycloaddition. ACS Comb. Sci. 17 (2015) 5-10.[17] Gehringer, M .; Forster, M .; Laufer, S. A. Solution-phase Parallel Synthesis of Ruxolitinib-Derived Janus Kinase Inhibitors via Copper-catalyzed Azide-alkyne Cycloaddition. ACS Comb. Sci. 17 (2015) 5-10.

[18] Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Nor-mand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Strat-mann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochter-ski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, ㅦ. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, (2009).[18] Gaussian 09, Revision D.01, MJ Frisch, GW Trucks, HB Schlegel, GE Scuseria, MA Robb, JR Cheeseman, G. Scalmani, V. Barone, B. Mennucci, GA Petersson, H. Nakatsuji, M. Caricato, X. Li, HP Hratchian, AF Izmaylov, J. Bloino, G. Zheng, JL Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, , Y. Honda, O. Kitao, H. Nakai, T. Vreven, JA Montgomery, Jr., JE Peralta, F. Ogliaro, M. Bearpark, JJ Heyd, E. Brothers, KN Kudin, VN Staroverov, R. Kobayashi , J. Millenam, M. Klene, JE Knox, JB Cross, V. Bakken, JC Miller, J. Cassi, N. Rega, K. Raghavachari, A. Rendell, JC Burant, SS Iyengar, J. Tomasi, C. Adom, J. Jaramillo, R. Gomperts, RE Stratmann, O. Yazyev, AJ Austin, R. Cammi, C. Pomelli, JW Ochter-ski, RL Martin, K. Morokuma, VG Zakrzewski, GA Voth, P. Salvador, JJ Dannenberg, S. Dapprich, AD Daniels, ㅦ. J. Farkos, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, (2009).

[19] Julian T. R.; William L. J. Performance of B3LYP Density Func-tional Methods for a Large Set of Organic Molecules. J. of Chem. Theory Comput. 4 (2008) 297-306.[19] Julian T. R .; William L. J. Performance of B3LYP Density Funcional Methods for a Large Set of Organic Molecules. J. of Chem. Theory Comput. 4 (2008) 297-306.

[20] Avdeef, A.; Artursson, P.; Neuhoff, S.; Lazorova, L.; Grㅵsjㆆ, J.; Tavelin, S. Caco-2 Permeability of Weakly Basic Drugs Predicted with the Double-sink PAMPA pKa(flux) Method. Eur. J. Pharm. Sci. 4 (2005) 333-349.[20] Avdeef, A .; Artursson, P .; Neuhoff, S .; Lazorova, L .; Gr ㅵ sj ㆆ, J .; Tavelin, S. Caco-2 Permeability of Weakly Basic Drugs Predicted with the double-sink PAMPA pKa (flux) Method. Eur. J. Pharm. Sci. 4 (2005) 333-349.

[21] Quintㅱs-Cardama, A.; Vaddi, K.; Liu, P.; Manshouri, T.; Li, J.; Scherle, P. A.; Caulder, E.; Wen, X.; Li, Y.; Waeltz, P.; Rupar, M.; Burn, T.; Lo, Y.; Kelley, J.; Covington, M.; Shepard, S.; Rodgers, J. D.; Haley, P.; Kantarjian, H.; Fridman, J. S.; Verstovsek, S. Preclini-cal Characterization of the Selective JAK1/2 Inhibitor INCB018424: Therapeutic Implications for the Treatment of Myeloproliferative Neoplasms. Blood 115 (2010) 3109-3117.[21] Quint ㅱ s-Cardama, A .; Vaddi, K .; Liu, P.; Manshouri, T .; Li, J .; Scherle, P. A .; Caulder, E .; Wen, X .; Li, Y .; Waeltz, P .; Rupar, M .; Burn, T .; Lo, Y .; Kelley, J .; Covington, M .; Shepard, S.; Rodgers, J. D .; Haley, P .; Kantarjian, H .; Fridman, J. S .; Verstovsek, S. Preclini-cal Characterization of the Selective JAK1 / 2 Inhibitor INCB018424: Therapeutic Implications for the Treatment of Myeloproliferative Neoplasms. Blood 115 (2010) 3109-3117.

[22] Murakami, T.; Takigawa, N.; Ninomiya, T.; Ochi, N.; Yasugi, M.; Honda, Y.; Kubo, T.; Ichihara, E.; Hotta, K.; Tanimoto, M.; Kiura, K. Effect of AZD1480 in an Epidermal Growth Factor Recep-tor-driven Lung Cancer Model. Lung Cancer 83 (2014) 30-36. [22] Murakami, T .; Takigawa, N .; Ninomiya, T .; Ochi, N .; Yasugi, M .; Honda, Y .; Kubo, T .; Ichihara, E .; Hotta, K .; Tanimoto, M .; Kiura, K. Effect of AZD1480 on an Epidermal Growth Factor Recep-tor-driven Lung Cancer Model. Lung Cancer 83 (2014) 30-36.

[23] Chang, K. T.; Tsai, C. M.; Chiou, Y. C.; Chiu, C. H.; Jeng, K. S.; Huang, C..Y. IL-6 Induces Neuroendocrine Dedifferentiation and Cell Proliferation in Non-small Cell Lung Cancer Cells. Am. J. Phys-iol. Lung Cell Mol. Physiol. 289 (2005) L446-L453. [23] Chang, K. T .; Tsai, C. M .; Chiou, Y. C .; Chiu, C. H .; Jeng, K. S .; Huang, C..y. IL-6 Induces Neuroendocrine Dedifferentiation and Cell Proliferation in Non-small Cell Lung Cancer Cells. Am. J. Phys-iol. Lung Cell Mol. Physiol. 289 (2005) L446-L453.

Claims (14)

하기 화학식 1의 화합물, 또는 약제학적으로 허용가능한 이의 염:
화학식 1
Figure 112018002200221-pat00006

상기 화학식 1 에서,
R3
Figure 112018002200221-pat00007
또는
Figure 112018002200221-pat00008
이고,
(i) 상기 R3
Figure 112018002200221-pat00016
인 경우,
상기 R2는 C1-4 알릴, 메톡시에틸, 3-히드록시프로필, 5-히드록시펜틸, 말단 탄소가 시아노기 치환된 C1-6 직쇄 알킬, 비닐, 4,4,4-트리할로부틸, 및 시클로알킬 치환된 C1-4 알킬로 구성된 군으로부터 선택되는 어느 하나이며;
상기 R1은 메틸이고,
(ii) 상기 R3
Figure 112018002200221-pat00017
인 경우,
상기 화합물은 4-(5-메틸-1-(3-메틸비닐-2-엔-1-일)-1H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘, 4-(5-메틸-1-(4,4,4-트리플루오로부틸)-1H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘, 4-(5-메틸-4-(7H-피롤로[2,3-d]피리미딘-4-일)-1H-1,2,3-트리아졸-1-일)부탄니트릴, 및 5-(5-메틸-4-(7H-피롤로[2,3-d]피리미딘-4-일)-1H-1,2,3-트리아졸-1-일)펜탄니트릴으로 구성된 군으로부터 선택된 것이다.
Claims 1. Compounds of the formula 1, or a pharmaceutically acceptable salt thereof,
Formula 1
Figure 112018002200221-pat00006

In Formula 1,
R 3 is
Figure 112018002200221-pat00007
or
Figure 112018002200221-pat00008
ego,
(i) the R &lt; 3 &gt;
Figure 112018002200221-pat00016
Quot;
Wherein R 2 is C 1-4 allyl, methoxyethyl, 3-hydroxypropyl, 5-hydroxypentyl, C 1-6 straight chain alkyl substituted with a cyano group at the terminal carbon, vinyl, Butyl, and cycloalkyl substituted C 1-4 alkyl;
Wherein R &lt; 1 &gt; is methyl,
(ii) said R &lt; 3 &gt;
Figure 112018002200221-pat00017
Quot;
The compound was prepared from 4- (5-methyl-1- (3-methylvinyl-2-en-1-yl) -1H- 3-d] pyrimidine, 4- (5-methyl-1- (4,4,4-trifluorobutyl) -1H- 2,3-d] pyrimidine, 4- (5-methyl-4- (7H-pyrrolo [2,3- Yl) butanenitrile and 5- (5-methyl-4- (7H-pyrrolo [2,3-d] pyrimidin- ) Pentanenitrile. &Lt; / RTI &gt;
제 1 항에 있어서, 상기 화합물은 4-(5-메틸-1-(3-메틸비닐-2-엔-1-일)-1H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘, 4-(5-메틸-1-(4,4,4-트리플루오로부틸)-1H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘, 4-(5-메틸-4-(7H-피롤로[2,3-d]피리미딘-4-일)-1H-1,2,3-트리아졸-1-일)부탄니트릴, 5-(5-메틸-4-(7H-피롤로[2,3-d]피리미딘-4-일)-1H-1,2,3-트리아졸-1-일)펜탄니트릴, 4-(5-메틸-2-비닐-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘, 4-(2-알릴-5-메틸-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘, 4-(5-메틸-2-(2-메틸알릴)-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘, 4-(5-메틸-2-(3-메틸부트-2-엔-1-일)-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘, 4-(2-(2-메톡시에틸)-5-메틸-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘, 4-(5-메틸-2-(4,4,4-트리플루오로부틸)-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘, 3-(4-메틸-5-(7H-피롤로[2,3-d]피리미딘-4-일)-2H-1,2,3-트리아졸-2-일)프로판-1-올, 5-(4-메틸-5-(7H-피롤로[2,3-d]피리미딘-4-일)-2H-1,2,3-트리아졸-2-일)펜탄-1-올, 4-(4-메틸-5-(7H-피롤로[2,3-d]피리미딘-4-일)-2H-1,2,3-트리아졸-2-일)부탄니트릴, 5-(4-메틸-5-(7H-피롤로[2,3-d]피리미딘-4-일)-2H-1,2,3-트리아졸-2-일)펜탄니트릴, 6-(4-메틸-5-(7H-피롤로[2,3-d]피리미딘-4-일)-2H-1,2,3-트리아졸-2-일)헥산니트릴, 4-(2-(시클로프로필메틸)-5-메틸-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘, 4-(2-(시클로부틸메틸)-5-메틸-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘, 4-(2-(시클로펜틸메틸)-5-메틸-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘, 및 4-(2-(시클로헥실메틸)-5-메틸-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘으로 구성된 군으로부터 선택되는 것을 특징으로 하는 화합물, 또는 약제학적으로 허용가능한 이의 염.
The compound of claim 1, wherein said compound is selected from the group consisting of 4- (5-methyl-1- (3-methylvinyl-2-en-1-yl) -1H-1,2,3-triazol- Pyrrolo [2,3-d] pyrimidine, 4- (5-methyl-1- (4,4,4-trifluorobutyl) -1H- Pyrrolo [2,3-d] pyrimidine, 4- (5H-pyrrolo [2,3-d] pyrimidin- Yl) butanenitrile, 5- (5-methyl-4- (7H-pyrrolo [2,3- d] pyrimidin- Yl) -7H-pyrrolo [2,3-d] pyrimidine, &lt; / RTI &gt; Pyrrolo [2,3-d] pyrimidine, 4- (5-methyl-2-pyridin- (5-methyl-2- (3-methylpyridin-2-ylmethyl) Yl) -2H-1,2,3-triazol-4-yl) -7H-pyrrolo [2,3- d] pyrimidine, 4- (2- Methyl-2H-1,2,3-triazol-4-yl) -7H-pyrrolo [2,3- d] pyrimidine, 4- (5- 4,4-trifluorobutyl) -2H-1,2,3-triazol-4-yl) -7H- Pyrrolo [2,3-d] pyrimidin-4-yl) -2H-1,2,3-triazole Yl) propane-1-ol, 5- (4H-pyrrolo [2,3-d] pyrimidin- Yl) -2H-1, 2,3-triazole (hereinafter referred to as &quot; Yl) butanenitrile, 5- (4-methyl-5- (7H-pyrrolo [2,3-d] pyrimidin- Yl) -2-methyl-5- (7H-pyrrolo [2,3-d] pyrimidin- Pyrrolo [2,3-d] pyrimidine, 4- (2-methylpiperazin-1-yl) Pyrrolo [2,3-d] pyrimidine, 4- (2- (cyclopentyl) -2,3-dimethyl- Methyl-2H-1,2,3-triazol-4-yl) -7H-pyrrolo [2,3- d] pyrimidine and 4- (2- (cyclohexylmethyl) -5 Methyl-2H-1,2,3-triazol-4-yl) -7H-pyrrolo [2,3-d] pyrimidine. Acceptable salt thereof available as water, or a pharmaceutically.
삭제delete 삭제delete 제 1 항에 따른 화합물, 또는 약제학적으로 허용가능한 이의 염을 유효 성분으로 포함하는 면역 결핍 질환 또는 골수증식성 종양(MPN)의 예방 또는 치료용 조성물.
A composition for preventing or treating an immunodeficiency disease or a myeloproliferative neoplasm (MPN) comprising the compound according to claim 1 or a pharmaceutically acceptable salt thereof as an active ingredient.
제 5 항에 있어서, 상기 면역 결핍 질환은 중증 복합 면역 결핍증(SCID), 비장 비대증, 가려움증(pruritus), 악액질(cachexia), 빈혈(anemia), 자가면역 질환, 류머티스 관절염 및 알러지 질환으로 구성된 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 조성물.
6. The method of claim 5, wherein said immunodeficiency disease is selected from the group consisting of severe combined immunodeficiency syndrome (SCID), spleen enlargement, pruritus, cachexia, anemia, autoimmune disease, rheumatoid arthritis and allergic diseases. &Lt; / RTI &gt; is selected.
제 5 항에 있어서, 상기 골수증식성 종양(MPN)은 진성 적혈구 증가증(polycythemia vera), 본태성 혈소판 증가증(essential thrombocythemia), 골수섬유증(myelofibrosis), 버드-키아리 증후군(Budd-Chiari Syndrome), 골수 섬유증 및 림프 악성종양으로 구성된 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 조성물.
6. The method of claim 5, wherein the myeloproliferative neoplasm (MPN) is selected from the group consisting of polycythemia vera, essential thrombocythemia, myelofibrosis, Budd-Chiari Syndrome, Myelofibrosis, and lymphoid malignancies. &Lt; RTI ID = 0.0 &gt; 21. &lt; / RTI &gt;
제 5 항에 있어서, 상기 면역 결핍 질환 또는 골수증식성 종양(MPN)의 예방 또는 치료는 JAK(Janus kinase) 억제에 의한 것인, 조성물.
6. The composition according to claim 5, wherein the prevention or treatment of said immunodeficiency disease or myeloproliferative neoplasm (MPN) is by JAK (Janus kinase) inhibition.
제 8 항에 있어서, 상기 JAK은 JAK1, JAK2 및 JAK3로 구성된 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는 조성물.
9. The composition according to claim 8, wherein the JAK is any one or more selected from the group consisting of JAK1, JAK2 and JAK3.
제 5 항에 있어서, 상기 화합물은 말단 탄소가 시아노기 치환된 C1-6 직쇄 알킬이 3-시아노프로필 또는 4-시아노부틸인 것을 특징으로 하는 조성물.
6. The composition of claim 5, wherein the compound is a 3-cyanopropyl or 4-cyanobutyl C 1-6 straight chain alkyl wherein the terminal carbon is cyano substituted.
제 5 항에 있어서, 상기 4,4,4-트리할로부틸이 4,4,4-트리플루오로부틸인 것을 특징으로 하는 조성물.
6. The composition of claim 5, wherein the 4,4,4-trihalobutyl is 4,4,4-trifluorobutyl.
제 5 항에 있어서, 상기 시클로알킬 치환된 C1-4 알킬이 시클로프로필메틸, 시클로부틸메틸 또는 시클로펜틸메틸인 것을 특징으로 하는 조성물.
6. A composition according to claim 5, wherein said cycloalkyl substituted C 1-4 alkyl is cyclopropylmethyl, cyclobutylmethyl or cyclopentylmethyl.
삭제delete 제 5 항에 있어서, 상기 화합물은 4-(5-메틸-2-(2-메틸알릴)-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘, 4-(5-메틸-2-(4,4,4-트리플루오로부틸)-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘, 4-(4-메틸-5-(7H-피롤로[2,3-d]피리미딘-4-일)-2H-1,2,3-트리아졸-2-일)부탄니트릴, 5-(4-메틸-5-(7H-피롤로[2,3-d]피리미딘-4-일)-2H-1,2,3-트리아졸-2-일)펜탄니트릴, 4-(2-(시클로프로필메틸)-5-메틸-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘, 4-(2-(시클로부틸메틸)-5-메틸-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘, 4-(2-(시클로펜틸메틸)-5-메틸-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘 및 4-(2-(시클로헥실메틸)-5-메틸-2H-1,2,3-트리아졸-4-일)-7H-피롤로[2,3-d]피리미딘으로 구성된 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는 조성물.

6. The compound according to claim 5 wherein said compound is 4- (5-methyl-2- (2-methylallyl) -2H-1,2,3-triazol- d] pyrimidine, 4- (5-methyl-2- (4,4,4-trifluorobutyl) -2H-1,2,3- triazol- Pyrrolo [2,3-d] pyrimidin-4-yl) -2H-1,2,3-triazol-2-yl ) Butanenitrile, 5- (4H-pyrrolo [2,3-d] pyrimidin-4-yl) -2H-1,2,3- triazol- Pyrrolo [2,3-d] pyrimidine, 4- (2-cyclopropylmethyl-5-methyl-2H- Pyrrolo [2,3-d] pyrimidine, 4- (2- (cyclopentylmethyl) -5-methyl-2H- Methyl-2H-1,2,3-triazol-4-yl) -7H-pyrrolo [2,3- d] pyrimidine and 4- (2- (cyclohexylmethyl) -2H-1,2,3-triazol-4-yl) -7H-pyrrolo [2,3-d] pyrimidine.

KR1020160047206A 2015-04-17 2016-04-18 Triazol compounds and Use thereof KR101859170B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150054745 2015-04-17
KR20150054745 2015-04-17

Publications (2)

Publication Number Publication Date
KR20160124034A KR20160124034A (en) 2016-10-26
KR101859170B1 true KR101859170B1 (en) 2018-05-17

Family

ID=57251650

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160047206A KR101859170B1 (en) 2015-04-17 2016-04-18 Triazol compounds and Use thereof

Country Status (1)

Country Link
KR (1) KR101859170B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109535164B (en) * 2017-09-21 2022-01-18 上海华汇拓医药科技有限公司 JAK kinase inhibitor, preparation method thereof and application thereof in medical field

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070135461A1 (en) * 2005-12-13 2007-06-14 Rodgers James D Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as janus kinase inhibitors

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070135461A1 (en) * 2005-12-13 2007-06-14 Rodgers James D Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as janus kinase inhibitors

Also Published As

Publication number Publication date
KR20160124034A (en) 2016-10-26

Similar Documents

Publication Publication Date Title
CN109970614B (en) Compounds as TRKA kinase inhibitors and uses thereof
EP3023101B1 (en) Therapeutic agent for fgfr inhibitor-resistant cancer
CA2616196C (en) A pyridin quinolin substituted pyrrolo [1,2-b] pyrazole monohydrate as tgf-beta inhibitor
JP5583968B2 (en) Oxo-substituted imidazo [1,2b] pyridazine, process for its preparation and use as a medicament
KR101792837B1 (en) Imidazopyrazines for use as kinase inhibitors
EP3313844B1 (en) Heteroaryl substituted aminopyridine compounds
KR102577241B1 (en) Amino-fluoropiperidine derivatives as kinase inhibitor
AU2018208231B2 (en) Imidazopyrazine compound, preparation method therefor and use thereof
US7897600B2 (en) Amino pyrazole compound
BRPI0622030A2 (en) 7-SUBSTITUTED PURINE DERIVATIVES FOR IMMUNOSUPPRESSION
FR3052452A1 (en)
KR20150036239A (en) Macrocyclic purines for the treatment of viral infections
EP2331546B1 (en) 2-alkyl-6-cycloamino-3-(pyridin-4-yl)imidazo[1,2-ib]-pyridazine derivatives, preparation thereof, and therapeutic application thereof
JPWO2015008839A1 (en) Antitumor agent for intermittent administration of FGFR inhibitor
WO2013118817A1 (en) Quinolyl pyrrolopyrimidine compound or salt thereof
EP1885725B1 (en) Tricyclic azole derivatives, their manufacture and use as pharmaceutical agents
Lee et al. The discovery of 2, 5-isomers of triazole-pyrrolopyrimidine as selective Janus kinase 2 (JAK2) inhibitors versus JAK1 and JAK3
CA3181209A1 (en) Inhibitors of fibroblast growth factor receptor kinases
AU2017364720A1 (en) Novel oxoisoquinoline derivative
MXPA04008365A (en) 1-[alkyl], 1 -[heteroaryl) alkyl] and 1 -[aryl)alkyl] -7-(pyrimidin -4-yl)- imadazo[1, 2-a] pyrimidin -5(1h) -one derivatives.
US9550796B2 (en) Pyrrolopyrrolone derivatives and their use as BET inhibitors
KR101859170B1 (en) Triazol compounds and Use thereof
KR102645237B1 (en) 7H-pyrrolo[2,3-d]pyrimidin-4-amine derivative
WO2010063929A1 (en) 6-cycloamino-3-(1h-pyrrolo[2,3-b]pyridin-4-yl)imidazo[1,2-b]pyridazine derivatives, preparation thereof and therapeutic use thereof
JP2008514565A (en) Tricyclic compounds, methods for their production and use as pharmaceutical agents

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right