KR101854016B1 - Feed additive including organic compounds in biofloc and method for production thereof - Google Patents

Feed additive including organic compounds in biofloc and method for production thereof Download PDF

Info

Publication number
KR101854016B1
KR101854016B1 KR1020150159755A KR20150159755A KR101854016B1 KR 101854016 B1 KR101854016 B1 KR 101854016B1 KR 1020150159755 A KR1020150159755 A KR 1020150159755A KR 20150159755 A KR20150159755 A KR 20150159755A KR 101854016 B1 KR101854016 B1 KR 101854016B1
Authority
KR
South Korea
Prior art keywords
water
feed additive
feed
breeding
phytoplankton
Prior art date
Application number
KR1020150159755A
Other languages
Korean (ko)
Other versions
KR20170056277A (en
Inventor
이규태
임세진
Original Assignee
주식회사 네오엔비즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 네오엔비즈 filed Critical 주식회사 네오엔비즈
Priority to KR1020150159755A priority Critical patent/KR101854016B1/en
Publication of KR20170056277A publication Critical patent/KR20170056277A/en
Application granted granted Critical
Publication of KR101854016B1 publication Critical patent/KR101854016B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/20Animal feeding-stuffs from material of animal origin
    • A23K10/22Animal feeding-stuffs from material of animal origin from fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/16Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K40/00Shaping or working-up of animal feeding-stuffs
    • A23K40/10Shaping or working-up of animal feeding-stuffs by agglomeration; by granulation, e.g. making powders
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/80Feeding-stuffs specially adapted for particular animals for aquatic animals, e.g. fish, crustaceans or molluscs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/32Foods, ingredients or supplements having a functional effect on health having an effect on the health of the digestive tract
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/324Foods, ingredients or supplements having a functional effect on health having an effect on the immune system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Husbandry (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Environmental Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Food Science & Technology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Biomedical Technology (AREA)
  • Physiology (AREA)
  • Molecular Biology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Birds (AREA)
  • Insects & Arthropods (AREA)
  • Fodder In General (AREA)
  • Feed For Specific Animals (AREA)

Abstract

본 발명은 바이오플락 양식에서 사육수 내에 형성되는 수중 부유물질을 주성분으로 하는 것을 특징으로 하는 바이오플락 유용유기물을 포함하는 사료첨가제를 제공하며, 바이오플락 양식을 위한 사육수를 제작하는 단계(A), 상기 (A)단계에서 제작한 바이오플락 사육수에서 양식어를 사육하는 단계(B), 상기 (B)단계의 사육수에서 바이오플락 고형 부유체를 수집하는 단계(C), 상기 (C)단계에서 수집한 바이오플락 고형 부유체를 건조하는 단계(D), 상기 (D)단계의 건조 바이오플락을 분쇄하여 양식어 사료첨가제를 생산하는 단계(E)를 포함하는 것을 특징으로 하는 바이오플락 유용유기물을 포함하는 사료첨가제의 생산방법을 제공함으로써 바이오플락 양식장에서 생성되는 폐기물 처리에 따른 비용을 감소시키는 한편, 수산 양식에서 고가로 형성되어 있는 기능성 사료첨가제를 생산할 수 있으므로 양식어업인의 소득증대에 기여할 수 있다.The present invention provides a feed additive comprising a bioflavable organic material, wherein the feed additive comprises, as a main component, a suspended material suspended in water formed in the breeding water in a biofract form, A step (B) of cultivating cultured fish in the bioflocculation water produced in the step (A), a step (C) of collecting a bioflak solid adiabatic fluid in the water of step (B), the step (C) (D) a step of drying the bioflavonoid fluid collected in step (D), and (E) a step (E) of pulverizing the dried biofloat in step (D) to produce a culture fish feed additive. The present invention provides a method for producing a feed additive including an organic matter, thereby reducing the cost associated with disposal of wastes generated in a bioflavon farm, It is possible to produce functional feed additive, which can contribute to increase income of aquaculture farmer.

Description

바이오플락 유용유기물을 포함하는 사료첨가제와 그 생산방법{Feed additive including organic compounds in biofloc and method for production thereof}[0001] The present invention relates to a feed additive including bioflavable organic materials and a method for producing the same,

본 발명은 바이오플락 유용유기물을 포함하는 사료첨가제와 그 생산방법에 관한 것으로, 더욱 상세하게는 바이오플락 양식에서 사육수 내에 형성되는 수중 부유물질을 주성분으로 하는 것을 특징으로 하는 바이오플락 유용유기물을 포함하는 사료첨가제와 그 생산방법에 관한 것이다.
The present invention relates to a feed additive comprising a bioflavable organic material and a production method thereof, and more particularly, to a bioflavable organic material comprising a bioflavable organic material as a main component, To a feed additive and a production method thereof.

우리나라의 수산양식은 내수면 양식을 제외하고는 크게 해상가두리양식과 육상수조식 및 축제식으로 구분할 수 있다. 이 가운데 현재까지 해상가두리양식이 규모가 가장 크고 양식어 공급량 또한 큰 비중을 차지한다. 그러나 해상가두리양식법의 경우 태풍, 고수온 또는 저수온 등의 자연환경에 영향을 많이 받는 등, 통제하지 못하는 요소가 많아 대량 폐사의 위험도 크다. 이에 반해 육상수조식은 육상 또는 실내에서 양식하면서 자연환경에 영향을 적게 받으며, 수온, 용존산소, 수질 및 질병 등의 요소들을 통제하기에 용이한 점이 있다.Korea's marine aquaculture can be classified into marine cage culture, onshore water tasting and festival ceremony, except for inland water culture. Of these, marine caged aquaculture is the largest and the supply of fish is also the largest. However, in the case of marine cage culture, there are many factors that can not be controlled, such as typhoons, high temperature or low temperature, which are highly influenced by the natural environment. On the other hand, land-based aquaculture has little impact on the natural environment while cultivating on land or indoors, and is easy to control factors such as water temperature, dissolved oxygen, water quality and disease.

그러나 육상수조식은 해수어 양식의 경우, 사육수 조달에 어려움이 있으며, 사육수의 계속적인 환수 시, 멸균이나 여과에 비용이 많이 소모되거나 여과가 적절히 이루어지지 않은 경우, 유해세균 및 바이러스 유입 등에 노출되는 어려움이 있었다. 따라서 육상수조식 수산양식에서는 사육수를 여과해 재사용하는 순환여과식 시스템(Recirculating Aquaculture System; RAS), 다층 수조에서 사육수를 낮은 수심으로 끊임없이 공급하는 저수유식 시스템(Shallow Raceway System; SRS) 등이 개발되어 왔으며, 최근에는 오염물 분해 능력이 뛰어나고 어류에 유익한 미생물을 양식 수조에서 어류와 함께 기르는 바이오플락 기술이 호평을 얻고 있다.However, on-shore aquaculture is difficult to raise in the case of sea-aquaculture, and in the case of continual return of breeding water, it is costly to sterilize or filter, or if filtration is not done properly, it is exposed to harmful bacteria and virus inflow There was difficulty. Therefore, a recirculating aquaculture system (RAS) for filtrating and reusing the reared water and a Shallow Raceway System (SRS) for constantly feeding the reared water in a multi-layer water tank have been developed in the aquacultural aquaculture system. Biofloat technology, which is capable of decomposing pollutants and cultivating beneficial microorganisms in fish farms with fish, has gained popularity in recent years.

바이오플락 기술(BioFloc Technology)은 종속영양세균(heterotrophic bacteria, 타가영양균) 및 독립영양세균(autotrophic bacteria, 자가영양균)의 유용미생물과 양식어종을 함께 양식하면서 세균이 사육수 내의 암모니아 등의 양식어류에 유해한 유기부산물을 분해하여 양식어류가 섭취 가능한 먹이로 전환시키면서 아울러 사육수를 정화시킬 수 있고, 이로써 양식과정에서 환수나 여과과정이 필요없는 양식방법을 말한다.BioFloc technology is used to cultivate useful microorganisms and cultured species of heterotrophic bacteria and autotrophic bacteria and to cultivate ammonia in breeding water It is a method of cultivation that can decompose harmful organic byproducts into fish and turn them into food that can be consumed by the aquaculture fish, as well as purifying the water, thereby eliminating the need for water or filtration in the aquaculture process.

바이오플락 기술은 1990년대 초 이스라엘에서 틸라파아 양식에 처음 성공하면서 실제 양식에 적용되기 시작하였으며, 우리나라에는 2000년대 중반에 무환수 생태순환 새우 양식 공정 연구를 시작으로 2009년 국립수산과학원 서해특성화연구센터에서 처음 상업적 규모의 하우스 시설을 이용하여 무환수 생태순환 새우 양식에 성공하였다.Biofloat technology was first applied to actual farming in Israel in the early 1990s, and in Korea in the mid-2000s, it started researching the ecosystem of non-recirculating ecological shrimp farming. In 2009, the National Fisheries Research & At the center, the first commercial-scale house facility was used to successfully establish the circulation-free ecological circulation of shrimp.

바이오플락 양식기술은 사육수 내에 탄소와 질소의 비율 조절을 통해 환경유용미생물의 질산화, 탈질화, 광합성화 공정을 유도하여 사육수 내 암모니아를 유기물로 전환시켜 수질을 정화하는 친환경 공법이다. 바이오플락 기술을 이용하면 조류(algea)에 의한 분해보다 약 10~100배 더 빠른 속도로 유기물질을 분해시킬 수 있어 양식에 적합한 수질의 사육수로 유지할 수 있다. 또한, 이 기술은 양식과정 중 환수 등에 의하여 바이러스, 병원균 및 기생충 등이 유입되는 것을 원천적으로 차단할 수 있는 폐쇄 사육시스템을 만들 수 있어, 바이러스 감염 등을 통제할 수 있으며, 이로 인한 항생제 등의 사용을 획기적으로 저감시킬 수 있다. 또한 육상의 사육시설에서 환경조건을 컨트롤하며 양식어류를 사육할 수 있으므로 계절에 상관없이 양식어류를 생산할 수 있다.Biofrok cultivation technology is an eco-friendly method that purifies the water quality by converting ammonia into organic matter in the raising water by inducing nitrification, denitrification, and photosynthesis process of environmentally beneficial microorganisms by controlling the ratio of carbon and nitrogen in the raising water. Using biofloat technology, organic matter can be degraded about 10 to 100 times faster than algae degradation, which makes it possible to keep the water quality suitable for aquaculture. In addition, this technology can create a closed breeding system that can prevent the inflow of viruses, pathogens and parasites, etc., by the return of water during the aquaculture process, so that it can control the viral infection, etc., and the use of antibiotics It can be dramatically reduced. It is also possible to produce aquaculture regardless of the season, because the aquaculture facility can control the environmental conditions and cultivate the aquaculture.

친환경적이면서도 깨끗한 먹거리를 지속적으로 생산할 수 있는 바이오플락 기술은 최근 흰다리새우, 뱀장어, 황복에 이어 미꾸라지, 비단잉어 등으로 그 대상어종을 확대해 가고 있으며, 사시사철 친환경적인 양식어류를 공급할 수 있어 양식농가의 소득증대에도 기여하고 있다.Biofloat technology, which can continuously produce environmentally friendly and clean food, is currently expanding its target species with white prawns, eels, yellow pheasant, mudfish and nidan koi, and it can supply eco- It also contributes to the income increase of the farm household.

이와 같이 바이오플락 기술을 이용한 수산양식은 밀집사육으로 수확량을 증대시킬 수 있으며, 질병의 피해를 방지하고 사육수의 수질관리를 용이하게 할 수 있을 뿐 아니라, 사료 효율이 높은 장점을 갖고 있는 반면, 양식어종과 환경에 적합한 미생물 정착에 시간이 필요하고 미생물과 양식어류를 위한 산소 공급량이 증가하며, 사육수의 적정 산도 조절이 필요하다. 특히 산소 공급을 위해 지속적으로 사육수 내에 기포를 발생시키게 되는데, 기포 표면에 바이오플락의 유기부산물이 흡착되어 사육수 상부로 따라 올라가 축적된다.As described above, the aquaculture using biofloat technology can increase the yield by densely packed breeding, prevent disease damage, facilitate the management of water quality in breeding water, and have a high feed efficiency, It takes time for microbial settlement suitable for cultured fish species and environment, increases oxygen supply for microorganisms and aquaculture fish, and it is necessary to control titratable acidity of breeding water. Especially, for the oxygen supply, the bubbles are continuously generated in the breeding water. Organic byproducts of bioflak are adsorbed on the surface of the bubbles and accumulate and accumulate along the breeding water.

도 1은 바이오플락 기술을 이용한 양식 중 나타나는 바이오플락 슬러지를 보여주는 사진이다. 바이오플락 부산물은 미생물에 의해 분해되어 사육수로 환원되지만, 적절한 농도 수준으로 제거하여주지 않으면 사육수 상부에 쌓여 두껍게 적체된 케이크를 형성하면서 양식과정에서 불리하게 작용한다. 즉, 대기와 접한 사육수 표면적을 줄여 산소 투입량이 감소하게 되고, 양식하는 식물플랑크톤, 독립영양세균, 어류 등이 적절한 조도의 빛에 노출되는 것을 방해하게 된다. 또한, 케이크 내부는 혐기 환경이 생성되어 부패하는 등 잠재적인 질병 발생원이 될 수 있다. 따라서 바이오플락 양식장에서는 원활한 양식 관리를 위해 상기의 바이오플락 슬러지를 걷어 내어 제거하여 왔고, 이 과정에서 관리비용이 상승할 수밖에 없었다.FIG. 1 is a photograph showing a biofloccullery sludge produced in a biofloat technique. Although bioflavonoids are degraded by microorganisms and reduced to breeding water, if they are not removed at an appropriate concentration level, bioflavonoids will form a thickly packed cake on top of the breeding water, which is disadvantageous in the cultivation process. In other words, the amount of oxygen input is reduced by reducing the surface area of the water in contact with the atmosphere, and it prevents the phytoplankton, the autotrophic bacteria, and the fish from being exposed to the light of appropriate illumination. In addition, the inside of the cake may become a potential source of disease such as an anaerobic environment is formed and decayed. Therefore, bioflavon sludge has been removed and removed in order to manage the aquaculture in the bioflavon farm. In this process, the management cost has increased.

한편, 최근에 이러한 바이오플락 슬러지의 성분을 분석한 결과가 밝혀지고 있는데, 바이오플락 슬러지는 보통 소비되지 않은 사료 찌꺼기, 광합성 박테리아, 부착조류, 타가영양박테리아, 식물성 플랑크톤, 동물성 플랑크톤, 요각류, 선충류 등과 이들의 사체 등이 한데 엉켜있는 덩어리로, 80% 이상이 유기물인 것으로 알려졌다. 성분으로는 조단백질이 25~41%, 조지방 2~3% 조회분 20~30%을 함유하며, 특히, 고도의 불포화지방산, 카로티노이드, 인, 메티오닌, 라이신과 아르기닌 등의 아미노산류까지 어류 양식에 매우 유용한 성분들을 다량 포함한 것으로 나타났다. 이러한 유용성분들은 바이오플락 슬러지가 양식어의 사료 조성물 또는 성장과 면역을 증가시킬 수 있는 사료첨가제로 제공될 가능성을 높이고 있다.In recent years, the results of analyzing the components of biofloat sludge have been revealed. Bioflakes sludge has been widely used in many fields such as feed waste, photosynthetic bacteria, attached algae, phytoplankton, phytoplankton, zooplankton, copepods, It is said that more than 80% of these bodies are organic matter. It contains 25 ~ 41% of crude protein and 20 ~ 30% of crude fat 2 ~ 3%, especially amino acids such as highly unsaturated fatty acids, carotenoids, phosphorus, methionine, lysine and arginine It has been shown that it contains a large amount of useful ingredients. These beneficiaries are increasing the likelihood that bioflavon sludge will be offered as a feed composition for aquaculture fish or as a feed additive to increase growth and immunity.

따라서 종래에는 양식과정에서 생성되어 효율적인 양식에 장애가 되므로 수거하여 폐기하던 바이오플락 슬러지를 적절하게 수집하여 활용하기 위한 연구가 필요하게 되었다.
Therefore, it has been necessary to conduct studies to appropriately collect and utilize biofloat sludge which has been collected and discarded, because it has been generated in the conventional process and obstructs efficient culture.

대한민국 등록특허 10-0400352호에서는 그램 음성의 미생물 균체로부터 얻어지고, 단백질 마커를 사용하여 SDS-PAGE법으로 측정한 분자량이 5000ㅁ2000으로, 고분자량 지질다당류를 실질적으로 포함하지 않는, 저분자량 지질다당류를 유효성분으로 함유하는 것을 특징으로 하는 면역부활, 감염증예방 효과를 갖는 갑각류 또는 어류용 사료첨가제 및 그것을 첨가하는 것을 특징으로 하는 갑각류 또는 어류용 사료.를 개시하고 있다.Korean Patent No. 10-0400352 discloses a low molecular weight lipid which is obtained from microbial cells of gram negative and has a molecular weight of 5000 占 2000 2000 measured by SDS-PAGE using a protein marker and which does not substantially contain a high molecular weight lipopolysaccharide A feed additive for crustaceans or fishes having an immunosuppression and an infectious disease-preventing effect, which comprises a polysaccharide as an active ingredient, and a feed for crustaceans or fishes characterized by adding the feed additive. 대한민국 등록특허 10-0908928호에서는 본 발명은 바실러스 서브틸러스(Bacillus subtilus) KS-3, 바실러스 아밀로리퀘파시엔스(Bacillus amyloliquefaciens) KS-4, 바실러스-아가라다에렌스(Bacillus agaradhaerens) KS-5, 파에니바실러스 렌티모부스(Paenibacillus lentimorbus) KS-6, 바실러스 라에볼락티쿠스(Bacillus laevolacticus) KS-7, 류코노스톡 파라메센테로이드(Leuconostoc paramesenteroides) KS-9, 쿠르시아 시비리카(Kurthia sibirica) KS-13 및 스핑고박테리움 스피리티보럼-GC 서브그룹 B(플라보박테리움)(Sphingobacterium spiritivorum GC subgroup B(Flavobacterium) KS-18로 구성되는 군에서 선택되는 적어도 1종 이상의 미생물을 포함하는 양식어류용 사료첨가제 또는 사료조성물을 개시하고 있다.In Korean Patent No. 10-0908928, the present invention relates to a pharmaceutical composition comprising Bacillus subtilus KS-3, Bacillus amyloliquefaciens KS-4, Bacillus agaradhaerens KS-5 Paenibacillus lentimorbus KS-6, Bacillus laevolacticus KS-7, Leuconostoc paramesenteroides KS-9, Kurthia sibirica, At least one microorganism selected from the group consisting of KS-13 and Sphingobacterium spirificiborum-GG subgroup B (Flavobacterium) K subunit B (Flavobacterium) KS-18 And a feed additive or feed composition for aquaculture. 대한민국 등록특허 10-1420392에서는 먹물버섯 추출물과 표고버섯, 느타리버섯 및 영지버섯 중 둘 이상을 포함한 버섯 혼합물을 혼합한 뒤, 시유 및 탈지분유를 혼합한 유지 혼합물을 첨가한 뒤, 유산균 발효액을 포함한 버섯 함유 유산균 발효유를 제조하는 것을 특징으로 하며, 상기 버섯 함유 유산균 발효유는 먹물버섯 추출물을 0.05 내지 20 중량부일 때, 표고버섯, 느타리버섯 및 영지버섯 중 둘 이상을 포함한 버섯 혼합물 0.05 내지 20 중량부, 시유 및 탈지분유를 혼합한 유지 혼합물 1.0 내지 30 중량부를 첨가하고, 유산균 발효액을 혼합하여 제조하는 것을 특징으로 하고, 상기 버섯 함유 유산균 발효유는 발효유 그 자체 또는 동결 건조시켜 뱀장어 양식 사료의 첨가제로 사용하는 것을 특징으로 하는 양만장 에너지 절감을위한 뱀장어용 사료 및 사료첨가제를 개시하고 있다.In Korean Patent No. 10-1420392, a mushroom mixture containing at least two of mushroom extract, mushroom, mushroom and mushroom is added, and then a mixture of mash and skim milk is added to the mixture, followed by addition of a mushroom containing lactic acid fermentation broth Wherein the mushroom fermented milk contains 0.05 to 20 parts by weight of a mushroom mixture containing at least two of mushroom, oyster mushroom and gingko mushroom when the mushroom extract is 0.05 to 20 parts by weight, Wherein the mushroom-containing fermented milk is prepared by fermenting the fermented milk itself or by freeze-drying the fermented milk as an additive to an eel diet. Eel eel feed and feed for energy savings It discloses a claim. 대한민국 등록특허 10-0860111호에서는 신규 미생물 트라우스토카이트리움 에스피. 케이제이에스-1( Thraustochytrium sp. KJS-1), 바실러스 폴리퍼멘티쿠스 케이제이에스-2(Bacillus polyfermenticus KJS-2), 그리고 상기 2종의 신규 미생물과 바실러스 리케니포르미스(Bacillus licheniformis)를 포함하고 있는 사료첨가제 및 사료를 개시하고 있다.Korean Patent No. 10-0860111 discloses a novel microbial strain, Truce Tokatrium SP. (Bacillus polyfermenticus KJS-2), and two new microorganisms and Bacillus licheniformis (Bacillus < RTI ID = 0.0 > licheniformis) Feed additives and feedstuffs. 그러나 이들 선행 발명은 바이오플락 양식에서 사육수 내에 형성되는 수중 부유물질을 주성분으로 하는 것을 특징으로 하는 바이오플락 사료첨가제와 이를 제작하는 생산방법을 제공하는 본 발명과는 그 구성 및 효과에서 차이가 있다.However, these prior inventions differ from the present invention in that the present invention provides a bioflavable feed additive and a production method for the same, characterized in that the bioflavable feedstock is composed mainly of a floating substance in water formed in the breeding water in the bioflag form .

최근 관심이 높아지고 있는 바이오플락 양식기술은 밀집사육이 가능하고, 사육수의 수질관리를 용이하게 할 수 있을 뿐 아니라, 사료 효율이 높은 장점을 갖고 있어 각광받고 있으며, 이에 따라 그 규모가 계속 확대될 전망이다. 그러나 바이오플락 양식과정 중 사육수에 생성되어 떠다니는 바이오플락 고형 부유물질은 주로 사육수 상부에 쌓여 두껍게 적체된 케이크 형태를 만들어 대기와 접한 사육수 표면적을 줄이고 혐기환경을 만들어 잠재적인 질병발생원이 될 수 있고 산소 투입량을 증가시키는 등 양식에 좋지 않은 작용을 나타내어 종래에는 이러한 바이오플락 슬러지를 걷어 내어 제거하여 왔고, 이 과정에서 관리비용이 상승할 수 밖에 없었다. 그러나 최근 이러한 바이오플락 덩어리는 사료찌꺼기, 각종 미생물, 식물플랑크톤, 동물플랑크톤, 요각류, 원생동물류 등의 유용유기물로 구성되어 수산양식에 필요한 유용 영양 성분이 풍부한 것이 보고되어 왔고, 이에 따라 본 발명은 바이오플락 고형 부유물질을 그대로 투기하지 않고 사료첨가제 등으로 재활용하는 방법을 제공하는 데에 목적이 있다.
Biofloat aquaculture technology, which has recently become increasingly popular, has been attracting attention because it is capable of breeding densely, facilitating the management of water quality in breeding water, and having high feed efficiency. It is forecast. However, biofloat suspended solids floating in the breeding water during biofrost cultivation process are piled up at the top of the breeding water to make a cake shape that is thickly packed, thereby reducing the surface area of the breeding water contacted with the atmosphere and making the anaerobic environment become a potential source of disease The bioflavonable sludge has been removed by removing the bioflavonable sludge and the maintenance cost has increased in the process. Recently, however, it has been reported that these biofloat agglomerations are composed of useful organic materials such as feed residue, various microorganisms, phytoplankton, zooplankton, copepods, protozoa, etc., and are rich in useful nutrients necessary for aquaculture. It is an object of the present invention to provide a method of recycling a floating solid material as feed additive without throwing it as it is.

상기의 문제점을 해결하기 위하여 본 발명은 바이오플락 양식에서 사육수 내에 형성되는 수중 부유물질을 주성분으로 하는 것을 특징으로 하는 바이오플락 유용유기물을 포함하는 사료첨가제를 제공하며, 바이오플락 양식을 위한 사육수를 제작하는 단계(A), 상기 (A)단계에서 제작한 바이오플락 사육수에서 양식어를 사육하는 단계(B), 상기 (B)단계의 사육수에서 바이오플락 고형 부유체를 수집하는 단계(C), 상기 (C)단계에서 수집한 바이오플락 고형 부유체를 건조하는 단계(D), 상기 (D)단계의 건조 바이오플락을 분쇄하여 양식어 사료첨가제를 생산하는 단계(E)를 포함하는 것을 특징으로 하는 바이오플락 유용유기물을 포함하는 사료첨가제의 생산방법을 제공한다.
In order to solve the above problems, the present invention provides a feed additive comprising a bioflavable organic material, wherein the bioflavable organic material comprises as a main component a suspended solids formed in the water for breeding in biofract form, (B) cultivating the cultured fish in the biofloat breeding water produced in the step (A), collecting the bioflag solid flocculant in the breeding water of the step (B) (C), (D) drying the biofuel solid flocculant collected in step (C), and (E) milling the dried bioflak of step (D) to produce a culture fish feed additive The present invention also provides a method for producing a feed additive comprising bioflavable organic materials.

본 발명은 바이오플락 양식과정 중 발생하여 양식을 방해하는 슬러지를 수집하여 수산 양식에서 사료첨가제로 사용할 수 있어 바이오플락 양식장에서 생성되는 폐기물 처리에 따른 비용을 감소시키는 한편, 양식과정 중 배출되는 폐기물 양을 줄여 환경을 보호할 수 있으며, 바이오플락 사료첨가제를 섭취한 양식생물의 생존율 향상, 성장률 향상, 면역력 증진, 생산성 향상에 기여하고 양식어업인의 소득증대에 기여할 수 있다.
The present invention can collect the sludge that occurs during the bioflavicultural process and can be used as a feed additive in aquaculture, thereby reducing the cost associated with the disposal of waste generated in a bioflag farm, while reducing the amount of waste Can contribute to the improvement of survival rate, growth rate, immunity and productivity of aquaculture biotech feed additives and contribute to the increase of income of aquaculture farmers.

도 1은 바이오플락 대량 생산 중 나타나는 바이오플락 슬러지를 보여주는 사진이다.
도 2은 본 발명에 따른 바이오플락 유용유기물을 포함하는 사료첨가제를 제작하는 과정을 나타낸 모식도이다.
도 3은 본 발명의 바이오플락 유용유기물을 포함하는 사료첨가제 제조에 이용되는 바이오플락 수집장치의 분해 사시도이다.
도 4는 칠레산 White Fish Meal과 본 발명에 의한 바이오플락 유용유기물을 포함하는 사료첨가제의 필수 및 비필수 아미노산의 조성을 비교하여 나타낸 그래프이다. 칠레산 어분과 바이오플락 슬러지의 아미노산 조성이 유사하다는 점은 바이오플락 슬러지가 어분을 대체하여 유사한 효과를 줄 수 있음을 보여준다.
도 5는 본 발명에 따른 바이오플락 유용유기물을 포함하는 사료첨가제를 사료에 농도별로 첨가한 후, 성장 요인을 분석한 그래프이다. 바이오플락 사료첨가제를 투여한 모든 처리군에서 바이오플락 사료 첨가제를 투여하지 않은 대조군에 비해 생존율과 성장률이 높은데 이는 바이오플락 사료첨가제가 양식생물의 생존율과 성장률 향상에 기여할 수 있음을 알려준다.
도 6은 본 발명에 따른 바이오플락 유용유기물을 포함하는 사료첨가제를 사료에 농도별로 참가한 후, 사료전환효율 및 사료섭이율을 나타낸 그래프이다. 대조군과 비교해볼 때, 바이오플락 사료첨가제를 급이한 처리구에서의 사료전환효율 및 사료섭이율이 향상되었는데 이는 바이오플락 사료첨가제 사용하는 경우 사료 비용 절감 효과가 있음을 지시한다.
도 7은 본 발명에 따른 바이오플락 유용유기물을 포함하는 사료첨가제를 사료에 농도별로 참가한 후, 이를 8주동안 섭이한 양식생물의 Total haemocyte count(THC), Phenoloxidase activity(PO)를 나타낸 그래프이다. THC와 PO는 면역력을 나타내는 지표중 하나로 본 실험 결과는 바이오플락 사료첨가제를 섭이한 양식생물에서 면역력 향상 효과가 나타났음을 보여준다.
도 8은 본 발명에 따른 바이오플락 유용유기물을 포함하는 사료첨가제를 사료에 농도별로 참가한 후, 이를 8주동안 섭이한 흰다리새우의 Superoxide dismutase(SOD) 활성 및 Immunoglobulin (IG) 농도를 나타낸 그래프이다. 바이오플락 사료첨가제를 섭이한 처리군에서 SOD 및 IG 활성이 높아졌는데 이는 처리군에서 면역력이 향상되었음을 알려준다.
도 9은 본 발명에 따른 바이오플락 유용유기물을 포함하는 사료첨가제를 사료에 농도별로 참가한 후, 이를 8주동안 섭이한 흰다리새우의 Nitro blue tetrazolium(NBT) 환원능을 나타낸 그래프이다. 바이오플락 사료를 섭이한 처리군에서 NBT 환원능이 높아졌음을 보여주는데 이는 처리군에서 면역력이 향상되었음을 지시한다.
FIG. 1 is a photograph showing bioflak sludge that appears during mass production of biofloat.
FIG. 2 is a schematic view showing a process for producing a feed additive containing bioflavable organic materials according to the present invention.
FIG. 3 is an exploded perspective view of a bioflavon collecting apparatus used in the production of a feed additive comprising the bioflavable organic material of the present invention. FIG.
FIG. 4 is a graph comparing the compositions of essential and non-essential amino acids of a white fish meal from Chile with a feed additive comprising bioflavable organic materials according to the present invention. The fact that the amino acid composition of the fish meal in Chile and bioflavon sludge is similar suggests that bioflavon sludge can replace fish meal with similar effect.
FIG. 5 is a graph showing growth factors after addition of a feed additive containing bioflavable organic material according to the present invention to a feed according to concentration; FIG. In all treatment groups treated with bioflavant feed additives, survival rates and growth rates were higher than control groups without bioflavant feed additives, suggesting that bioflavonoid feed additives may contribute to the survival and growth rate of aquaculture.
FIG. 6 is a graph showing feed conversion efficiency and feed conversion ratio after feeding a feed additive containing bioflavable organic material according to the present invention to a feed according to concentration; FIG. Compared with the control group, the feed conversion efficiency and feed conversion ratio of the feed supplemented with bioflavant feed additives were improved, indicating that the use of bioflavant feed additives reduces feed costs.
FIG. 7 is a graph showing the total haemocyte count (THC) and phenoloxidase activity (PO) of the aquatic organisms fed the feed additives containing the bioflavable organic material according to the present invention in the feed according to the concentration for 8 weeks. THC and PO are one of the indicators of immunity. The results of this experiment show that the immune enhancement effect was obtained in aquaculture using bioflack feed additive.
FIG. 8 is a graph showing superoxide dismutase (SOD) activity and immunoglobulin (IG) concentration of P. vannamei fed with feed additives containing bioflavable organic materials according to the present invention for 8 weeks . Increased SOD and IG activity in the treated group treated with bioflavant feed additive suggests improved immunity in the treated group.
FIG. 9 is a graph showing the Nitro blue tetrazolium (NBT) reducing ability of P. vannamei supplemented with feed additives containing bioflavable organic materials according to the present invention for 8 weeks after feeding into feeds at various concentrations. It was shown that the NBT reduction potential was increased in the treated group fed with bioflavag diet, indicating that the immunity was improved in the treated group.

본 발명은 바이오플락 양식방법에 있어서, 양식과정 중 발생하는 유용유기물을 포함하는 사료첨가제와 이의 생산방법에 관한 것이다. 이하 본 발명을 구체적인 실시예를 들어 자세히 설명한다.The present invention relates to a feed additive comprising a useful organic material generated in the aquaculture process and a production method thereof in a bioflocculation method. Hereinafter, the present invention will be described in detail with reference to specific examples.

도 2는 본 발명에 따른 바이오플락 사료첨가제를 제작하는 과정을 나타낸 모식도이다. 본 발명의 바이오플락 사료첨가제는 바이오플락 사육수조에서 수중부유물질의 농도가 높아져 사육수면에 쌓이는 바이오플락 슬러지를 수집하여 건조 및 분쇄를 통하여 제작한다.
FIG. 2 is a schematic view showing a process for producing a bioflavag feed additive according to the present invention. FIG. The bioflavon feed additive of the present invention collects bioflocculant sludge accumulated in the breeding water due to increased concentration of suspended solids in the biofloat breeding tank, and is dried and crushed.

A. 바이오플락 생산 및 제형 공정A. Biofrok production and formulation process

A. 1. 바이오플락 양식을 위한 사육수 제작A. 1. Breeding for biofroking

사육수조에 사육수를 받고 소독을 실시하여 양식생물에 치명적인 바이러스 및 질병균을 예방한다. 소독이 완료된 사육수에 식물플랑크톤 배양액과 식물플랑크톤을 접종하여 3-7일간 번성하게 한다. 접종에 이용하는 식물플랑크톤은 담수 또는 해수 특성에 따라 Raphidocelis subcapitata, Chlorella vulgaris, Spirulina platensis, Spirulina subsalsa, Skeletonema costatum, Isochrysis galbana, Chaetoceros gracilis, Dunnaliella tertiolecta, Tetraselmis suecica, Nannochloropsis oculata 등을 이용할 수 있다.Disinfects the water in the breeding tank after receiving the water to prevent deadly viruses and disease bacteria in the aquaculture. Inoculated with phytoplankton culture solution and phytoplankton in the disinfected water, let it flourish for 3-7 days. Phytoplankton used for inoculation can be selected from Raphidocelis subcapitata, Chlorella vulgaris, Spirulina platensis, Spirulina subsalta, Skeletonema costatum, Isochrysis galbana, Chaetoceros gracilis, Dunnaliella tertiolecta, Tetraselmis suecica and Nannochloropsis oculata depending on freshwater or seawater characteristics.

식물플랑크톤 배양 후 담수 또는 해수 특성에 따라 암모니아, 아질산, 질산염 등의 유해물질 제거 기능성 미생물, 유기물 제거, 황화수소 제거, 소화력 증진, 면역력 증강을 위한 기능성 미생물로 Nitrosomonas europaea , Nitrosococcus oceani, Nitrobacter winogradskyi , Bowmanella denitrificans , Bacillus subtilis, Oceanobacillus sojae , Rhodobacter capsulata , Rhodobacter sphaeroides, Lactobacillus plantarum , Lactobacillus casei , Saccharomyces cerevisiae 등을 접종에 이용할 수 있다.After phytoplankton cultivation, it is a functional microorganism for removal of harmful substances such as ammonia, nitrite and nitrate according to the characteristics of fresh water or seawater. It is a functional microorganism for removing microorganisms, organics, hydrogen sulfide, digestive power and immunity. Nitrosomonas europaea, Nitrosococcus oceani, Nitrobacter winogradskyi , Bowmanella denitrificans , Bacillus subtilis, Oceanobacillus sojae , Rhodobacter capsulata , Rhodobacter sphaeroides, Lactobacillus plantarum , Lactobacillus casei , Saccharomyces cerevisiae and the like can be used for inoculation.

담수 또는 해수 특성에 따라 상위단계의 생태 먹이사슬 형성을 위해 로티퍼류(Brachionus calyciflorus , Brachionus plicatilis 등), 짚신벌레류(Paramecium caudatum), 물벼룩류(Daphnia magna 등), 단각류(Hyarella azteca), 풍년새우류(Branchinella kugenumaensis), 요각류 (Tigriopus japonicus 등), 저서성 단각류 (Haustorioides koreanus , Monocoropium uenoi , grandidierella japonica 등), 알테미아 (Artemia salina 등), 곤쟁이 (Neomysis awatschensis 등) 등을 이용할 수 있다.
For the ecological food chain formation at the upper echelon according to freshwater or seawater characteristics, calyciflorus , Brachionus plicatilis Etc.), Paramecium caudatum , Daphnia ( Daphnia magna, etc.), aquatic plants ( Hyarella azteca ), abundant shrimp ( Branchinella kugenumaensis ), copepods ( Tigriopus japonicus, etc.), benthic algae ( Haustorioides koreanus , Monocoropium uenoi , grandidierella japonica Etc.), Artemia saline , Etc.), the neighbors awatschensis Etc.) can be used.

A. 2. 바이오플락 사육수에서 양식어를 사육하는 방법A. 2. How to breed aquaculture in biofloat breeding water

본 기술은 소독된 사육수에 박테리아-식물플랑크톤-동물플랑크톤-원생동물-양식생물로 이어지는 생태먹이사슬 구조를 인공적으로 구현하여 복잡한 수처리 장치없이 환수하지 않아도 오염물질이 자체 정화되고 생태적으로 안정한 구조를 갖는 생태먹이사슬형 생태순환양식 기술이다.This technology artificially implements ecological food chain structure leading to bacterial - phytoplankton - zooplankton - protozoan - protozoan organism in sterilized breeding water, and it is self-purified and ecologically stable structure without pollution without complicated water treatment system. Ecological food chain ecological circulation technology.

본 기술에서는 다양한 기능성 미생물, 식물플랑크톤, 동물플랑크톤, 원생동물 등으로 구성된 생태먹이사슬 구조를 인공적으로 완성시킨 양식수조에 흰다리새우 등 양식어를 입식하여 먹이사슬의 최상위에 위치하게 하여 생태계의 물질순환계가 자체내에서 순환하도록 한다. 양식어는 공급되는 사료와 수조에 조성된 생먹이들을 섭이하고 성장한다. 먹이를 섭이하고 배설하는 과정에서 발생되는 암모니아, 아질산 등의 오염물질은 다시 박테리아에 의해 분해되거나 다른 유기물로 전환됨으로써 양식계 자체내에서 제거되어 정화된다. In this technology, cultured fish such as P. vannamei are placed at the top of the food chain in an aquaculture water tank that is composed of various functional microorganisms, phytoplankton, zooplankton and protozoa, Allow circulation to circulate within itself. Aquaculture grows and feeds the feed and the livestock in the tank. Contaminants such as ammonia and nitrite, which are generated during feeding and excretion of food, are decomposed by bacteria or converted into other organic materials, and thus are removed and purified in the culture system itself.

양식 생물이 먹이를 섭이하여 성장할수록 더 많은 양의 암모니아 및 아질산이 발생되며, 사전 조성된 암모니아 및 아질산 제거 박테리아들도 증식되어 점차 더 많은 양의 암모니아 및 아질산을 제거할 수 있다. 암모니아 및 아질산 제거 박테리아가 부족하여 암모니아 및 아질산 농도가 증가하는 경우 암모니아 및 아질산을 제거하는 박테리아를 추가로 배양하여 접종한다. 오염물질을 분해하는 기능성 박테리아가 자연발생적으로 생겨나기를 기다리는 기존의 자연천이식 바이오플락 양식방법에서는 양식하는 과정에서 암모니아의 농도가 10mg/L 이상, 아질산 농도가 20mg/L 30-45일 이상 오랫동안 유지되어 양식생물이 스트레스를 받거나 이 과정을 잘 못넘기면 대량폐사할 수 있는 것으로 알려져 있다. As aquaculture grows to feed, more ammonia and nitrite are produced, and pre-formed ammonia and nitrite-removing bacteria are also proliferating, which can remove increasing amounts of ammonia and nitrite. If the ammonia and nitrite removal bacteria are deficient and the ammonia and nitrite concentrations increase, additional bacteria that remove ammonia and nitrous acid are cultured and inoculated. Existing natural transplanting bioprost cultivation methods that wait for functional bacteria to break down pollutants to occur spontaneously. Ammonia concentration over 10mg / L and nitrite concentration 20mg / L for cultivation for longer than 30-45 days It is known that aquaculture can be mass-killed if it is stressed or if it fails to pass this process well.

본 기술은 종래의 자연 천이 방법을 이용할 때와는 달리 분해기능을 가진 기능성 미생물들을 분리 배양하여 언제든 필요한 시기에 투입하는 인공조성 기술이기 때문에 7일 이내에 암모니아 및 아질산 농도 수치를 0.1mg/L 이하로 끌어내려 관리할 수 있고 암모니아 및 아질산 농도 최고치도 1mg/L 이하로 관리할 수 있다. 이는 농도 수치로 볼 때 10배 이상의 효과, 수질 안정화까지 걸리는 기간으로 볼 때 3배 이상의 기간 단축 효과가 있다. This technology is an artificial composition technology that separates and cultivates the functional microorganisms with decomposition function, which is different from the conventional natural transition method, so that the ammonia and nitrite concentration is less than 0.1 mg / L within 7 days And the maximum concentration of ammonia and nitrite can be controlled to 1 mg / L or less. This is more than 10 times the concentration value, and the time required to stabilize the water is 3 times longer.

또한, 종래의 바이오플락 기술에서는 물이 한번 깨져 암모니아나 아질산이 상승하게 되면 다시 되돌리기 어려우나 본 기술은 언제든지 기능성 박테리아를 투입하여 높아진 암모니아나 아질산 농도를 낮추고 다시 수질을 원상태로 되돌릴 수 있는 장점이 있다. 오염물질 분해 기능 이외에 천연 생태먹이사슬 구조에서 자연 형성된 타우린 성분 등의 도움으로 천연면역강화 기능이나 유기물 분해 기능도 제공한다. 바이오플락 조성물의 분석결과에서도 면역강화 기능성물질로 잘 알려진 베타카로틴 성분과 타우린 성분이 각각 20mg/L씩 함유되어 있는 것으로 입증되었다.In addition, in the conventional biofloat technology, when water is once broken and ammonia or nitrite rises, it is difficult to return it again. However, the present technology has the advantage of lowering the ammonia and nitrite concentration and returning the water quality to the original state by injecting functional bacteria at any time. In addition to its ability to degrade pollutants, it also provides natural immune enhancement and organic degradation with the help of taurine, which is naturally formed in the natural ecological food chain structure. The results of bioflack composition analysis also show that the beta carotene and taurine components, which are well known as immunosuppressive substances, contain 20 mg / L each.

식물플랑크톤은 양식계에서 생산자 역할을 담당하면서 양식수내의 질산염, 인산염 등의 과다 생성된 영양염을 제거하여 수질을 정화하고 양식생태계 내에 유기물을 제공한다. 식물플랑크톤보다 먹이사슬 상위 단계에 있는 동물플랑크톤이나 원생동물 등은 박테리아나 식물플랑크톤을 섭취하여 하위단계의 개체수를 자연 조절하고 상위단계에 있는 양식생물의 먹이원이 된다. 양식생물은 하위단계의 박테리아, 식물플랑크톤, 동물플랑크톤을 직접 먹거나 이들의 유기물 집합체인 바이오플락을 섭이하여 하위단계의 먹이생물량을 조절하고 배설과정을 통해 박테리아 및 식물플랑크톤에 필요한 질소원을 제공한다. Phytoplankton acts as a producer in the aquaculture system and purifies the water quality by removing excess nutrients such as nitrate and phosphate in the aquaculture, and provides organic matter in the ecosystem. The zooplankton and protozoa in the upper part of the food chain than the phytoplankton naturally regulate the lower level population by taking bacteria or phytoplankton, and become the food source of the upper echelon. Aquatic organisms directly feed on lower levels of bacteria, phytoplankton, zooplankton, or biofloat, an organic aggregate of these, to regulate the lower biogeochemical biomass and provide nitrogen sources for bacteria and phytoplankton through excretion processes.

양식 생태계에서 질소원은 상대적으로 풍부하며 탄소원은 항상 부족하게 되므로 부족한 탄소원은 당밀, 과당, 주정찌꺼기 등을 투입하여 적절한 탄소/질소 비율을 유지시킨다. 질산화 과정과 같은 생물학적 작용으로 인해 pH가 낮아지는 경우 sodium bicarbonate나 calcium carbonate 등 투입하여 bicarbonate 이온을 늘려 pH 버퍼 역할을 하게 할 수 있다. 시간이 지나면서 양식생태계에 생물량이 많아지고 바이오플락 슬러지 양도 증가한다. In aquaculture ecosystem, the nitrogen source is relatively abundant and the carbon source is always insufficient, so the insufficient carbon source is supplied with molasses, fructose, sludge, etc. to maintain proper carbon / nitrogen ratio. If the pH is lowered due to biological action such as nitrification process, it can be added as sodium bicarbonate or calcium carbonate to increase the bicarbonate ion. Over time, biomass increases in the ecosystem and bioflash sludge increases.

바이오플락 슬러지양을 제거할 필요가 있는 경우 슬러지 제거 장치를 이용하여 제거한다. 통상의 경우, 슬러지 농도를 양식어종 특성에 따라 1-10 mg/L 사이 적절한 농도로 유지될 수 있게 하나, 특별한 목적에 따라 바이오플락 슬러지 농도를 수십 mg/L 이상으로 상승시켜 양식생물이 바이오플락을 섭취하는 양을 늘리거나 바이오플락 슬러지 회수량을 늘릴 수 있다. 회수한 슬러지는 사료, 사료 원료, 사료 첨가제, 수질개선제, 저질개선제, 비료 등 다양한 용도로 활용할 수 있다.
If it is necessary to remove the amount of biofloat sludge, use a sludge removal device to remove it. In general, the sludge concentration can be maintained at an appropriate concentration of 1-10 mg / L depending on the characteristics of the cultured fish species, but the biofloat sludge concentration is increased to several tens mg / Can be increased or bioflak sludge recovery can be increased. The recovered sludge can be used for various purposes such as feed, feedstuff, feed additive, water quality improvement agent, low quality improvement agent, and fertilizer.

A. 3. 바이오플락 수집A. 3. Bioflag collection

바이오플락 사육수조는 수 톤 또는 수십 톤의 작은 규모에서 대량 양식을 위한 수백 톤의 규모로 다양하다. 특히, 에너지효율과 생산성을 제고하기 위하여는 도 1에서 보는 바와 같이 수백 톤 규모의 대형의 바이오플락 사육수조가 유리하다. 그러나 이러한 대규모 사육수조는 공기에 노출되는 사육수면이 넓고, 따라서 사육수면에 침적되는 바이오플락 슬러지가 넓게 분포되기 때문에 바이오플락의 수집이 용이하지 않다. 따라서 수조 안에 들어가지 않고 바이오플락 슬러지 수거 효율을 높이기 위해서는 대규모의 바이오플락 사육수조와 연동된 바이오플락 수집장치를 이용하여 바이오플락을 수집하는 것이 편리하다.Biofrock breeding tanks vary in size from a few tons to tens of tons to hundreds of tons for mass production. Particularly, in order to improve energy efficiency and productivity, a large biofloat tank having a size of several hundred tons is advantageous as shown in Fig. However, such large-scale breeding tanks are not easy to collect biofloat because they are widely exposed to air, and biofloat sludge deposited on rearing water is widely distributed. Therefore, it is convenient to collect biofloat using a biofloack collector connected to large-scale biofloat breeding tanks in order to increase the efficiency of collection of bioflag sludge without entering the tank.

도 3은 본 발명의 바이오플락 사료첨가제 제조에 이용되는 바이오플락 수집장치의 분해 사시도이다. 본 발명의 일실시예에서는 300톤 규모의 장타원형 바이오플락 사육수조와 연동할 수 있는 바이오플락 수집수조를 제작하였다.FIG. 3 is an exploded perspective view of a bioflavack collecting apparatus used in the production of the bioproduct feed additive of the present invention. FIG. In one embodiment of the present invention, a bioflag collection tank capable of interlocking with a 300-ton long oval biofloat breeding tank was manufactured.

흰다리 새우를 사육하는 300톤 규모 바이오플락 사육수조 내 사육수를 측정하여 수중부유물질(Suspended Solid, SS)함량이 1-10 이상이 되었을 때, 바이오플락 수집수조로 사육수를 유입시켰다. 대규모 사육수조의 사육수는 사육수 주입관(100)을 통해 수집수조(100)내로 이동하며, 수조 바닥 가까이에 위치한 기포발생기에서 생성되는 기포와 함께 수집수조 내의 사육수에 포함된 바이오플락이 수집수조 상부로 올라와 사육수면에 슬러지를 형성하며 농축된다. 농축은 12시간 동안 진행하였으며, 사육수면에 케이크 형태로 농축된 바이오플락 슬러지는 수집판으로 수집된다. 이 과정에서 수집판에 형성된 통공을 통하여 사육수가 상당부분 제거되므로 이후 바이오플락의 건조 등의 공정에 효율적이다.When the amount of Suspended Solid (SS) in the 300 - ton biofloat breeding tank was measured, it was introduced into the bioflag collection tank. The breeding water of the large breeding tank moves into the collection tank 100 through the breeding water injection pipe 100 and collects the bioflakes contained in the breeding water in the collection tank together with the bubbles generated in the bubble generator near the tank bottom. It reaches the upper part of the water tank and forms sludge on the breeding water surface and is concentrated. Concentration was carried out for 12 hours, and Bioflakes sludge concentrated in cake form on the breeding surface was collected on collection plate. In this process, since a large amount of the breeding water is removed through the through holes formed in the collecting plate, it is efficient in the process such as drying of bioflag thereafter.

사육수 주입관(120)을 통하여 사육수조에서 유입된 사육수는 바이오플락 슬러지가 상당히 제거된 후, 사육수 회수관(130)을 통하여 바이오플락 사육수조로 환수되며, 양식어 사육에 계속 이용된다. 이렇게 바이오플락 사육수조와 바이오플락 슬러지 수집장치가 연동되므로 바이오플락 사육수조에는 슬러지가 제거된 사육수가 계속 공급되며 한편으로 편리하게 바이오플락을 수집할 수 있다.
The breeding water introduced from the breeding tank through the breeding water inlet pipe 120 is returned to the bioflak breeding tank through the breeding water collection pipe 130 after the bioflare sludge is sufficiently removed and is continuously used for breeding aquaculture . Since biofloat breeding tank and bioflag sludge collecting device are interlocked, biofloack breeding tanks are continuously supplied with slaughtered feed, and bioflag can be conveniently collected.

A. 4. 바이오플락 건조 및 분쇄A. 4. Biofloat drying and grinding

도 2은 본 발명에 따른 바이오플락 유용유기물을 포함하는 사료첨가제를 제작하는 과정을 나타낸 모식도이다. 바이오플락 수집장치를 통하여 수집된 바이오플락은 수분 함량에 따라 4시간-24시간 동안 열풍건조기, 마이크로웨이브 진공건조기, 동결건조기 등의 건조장치를 이용하여 수분함량 13% 이내의 건조 바이오플락을 만들고, 이를 분쇄하여 바이오플락 분말 시료를 제작하였다.
FIG. 2 is a schematic view showing a process for producing a feed additive containing bioflavable organic materials according to the present invention. The biofloat collected through the biofloat collector was dried for 4 to 24 hours with a moisture content of 13% or less by using a drying device such as a hot air dryer, a microwave vacuum dryer or a freeze dryer, This was pulverized to prepare a bioflav powder sample.

B. 바이오플락 성분 분석B. Analysis of bioflavonoid components

B. 1. 바이오플락 일반성분 함량B. 1. Biofloat General ingredient content

바이오플락 생산 및 분말화 공정을 통하여 확보한 바이오플락 분말 샘플을 이용하여 영양학적 및 기능적 물질 분석을 수행하였다. 먼저, 바이오플락 분말의 영양학적 가치를 평가하기 위하여 일반성분을 분석하였다.Nutritional and functional materials were analyzed using bioflavable powder samples obtained through bioflag production and pulverization process. First, general components were analyzed to evaluate the nutritional value of bioflak powder.

바이오플락 수집장치를 통하여 수집된 바이오플락은 동결건조 후 분쇄하여 바이오플락 분말 시료를 제작하였다. 표 1은 바이오플락 분말의 일반성분 함량을 나타낸 것이다. 표 1에서 보는 바와 같이 바이오플락의 일반성분은 무기질 함량이 약 43.5 %이며, 단백질이 30.3 %로 영양학적으로 우수한 구성 성분을 갖고 있는 것을 확인하였다. The biofloat collected through biofloat collector was lyophilized and pulverized to produce a bioflag powder sample. Table 1 shows the general component content of Bioflak powder. As shown in Table 1, it was confirmed that the general component of bioflak had an inorganic content of about 43.5% and a protein of 30.3%.

바이오플락 분말의 일반성분 함량General ingredient content of bioflavonoid powder Biofloc powderBiofloc powder %% Protein (DM)Protein (DM) 30.3±2.130.3 ± 2.1 Lipid (DM)Lipid (DM) 0.3±0.10.3 ± 0.1 Ash (DM)Ash (DM) 43.5±0.543.5 ± 0.5 MoistureMoisture 4.9±0.24.9 ± 0.2 Fiber (DM)Fiber (DM) 6.6±0.36.6 ± 0.3

Values are mean of triplicate groups and presented as mean ± SD.
Values are mean of triplicate groups and presented as mean ± SD.

B. 2. 바이오플락 아미노산 조성B. 2. Bioflavonic amino acid composition

바이오플락 분말의 구성 아미노산의 조성을 필수 및 비필수 아미노산으로 구분하여 분석하였다. 표 2는 바이오플락 분말의 필수 및 비필수 아미노산의 조성을 나타낸 것이다.The composition of the constituent amino acids of bioflak powder was analyzed by dividing it into essential and nonessential amino acids. Table 2 shows the composition of essential and non-essential amino acids of bioflavonoid powder.

표 2에서 보는 바와 같이 바이오플락의 필수 및 비필수 아미노산 조성이 우수하였다. 특히 수산 양식에 있어 중요한 필수아미노산인 메티오닌(Methionine) 라이신(Lysine), 아르기닌(Arginine)의 함유율이 뛰어나, 그동안 바이오플락 양식과정에서 제거되어 폐기되어오던 바이오플락이 양식 어류의 영양공급을 개선할 수 있는 사료첨가제로서 충분한 가치가 있음을 확인하였다.As shown in Table 2, the essential and non-essential amino acid composition of bioflak was excellent. Especially, Methionine lysine and arginine, which are important essential amino acids in aquaculture, are excellent, and bioflavon which has been abolished in the process of bioflavonification can improve nutrition of cultured fish. It was confirmed that it was sufficient value as a feed additive.

도 4는 칠레산 White Fish Meal과 본 발명에 의한 바이오플락 유용유기물을 포함하는 사료첨가제의 필수 및 비필수 아미노산의 조성을 비교하여 나타낸 그래프이다. 도 4에서 보는 바와 같이, 칠레산 어분의 아미노산 조성과 비교하여 본 발명에 따른 바이오플락 분말이 매우 양호한 비율로 필수 및 비필수 아미노산을 함유하고 있는 것으로 확인되었으며, 바이오플락 분말을 사료첨가제로서의 가능성을 확인하였다.FIG. 4 is a graph comparing the compositions of essential and non-essential amino acids of a white fish meal from Chile with a feed additive comprising bioflavable organic materials according to the present invention. As shown in FIG. 4, it was confirmed that the bioflavag powder according to the present invention contained essential and non-essential amino acids in a very good ratio as compared with the amino acid composition of the fish meal from Chile, and the possibility of bioflavag powder as a feed additive Respectively.

바이오플락 분말의 아미노산 조성Amino acid composition of bioflavonoid powder Amino acid compositionAmino acid composition % of sample% of sample % of protein% of protein Essential AAsEssential AAs METMET 0.360.36 1.511.51 ARGARG 1.171.17 4.924.92 PHEPHE 1.161.16 4.884.88 LEULEU 1.811.81 7.607.60 ILEILE 1.021.02 4.294.29 LYSLYS 1.111.11 4.674.67 VALVAL 1.511.51 6.426.42 THRTHR 1.311.31 5.505.50 HISHIS 0.410.41 1.721.72 Non-essential AAsNon-essential AAs ASPASP 2.662.66 11.1911.19 SERSER 1.141.14 4.814.81 GLUGLU 3.403.40 14.3414.34 GLYGLY 1.601.60 6.746.74 ALAALA 1.841.84 7.757.75 PROPRO 0.770.77 3.193.19 CYSCYS 0.230.23 0.950.95 TYRTYR 0.730.73 3.083.08

B. 3. 바이오플락 내 기능성 물질 분석B. 3. Analysis of functional materials in bioflakes

기존에 알려진 양어사료 내 면역활성 물질들을 문헌을 통해 조사하여 바이오플락 분말 내 함유된 기능성물질 함량을 분석하였다. 표 3은 바이오플락 분말 내 total nucleotides, total pigment, beta-carotene, taurine 함량을 분석하여 나타낸 것이다. 표 3에서 보는 바와 같이 바이오플락은 기존에 양어사료 내 기능성 물질로 잘 알려진 nucleotides, pigment, beta-carotene, taurine과 같은 면역활성 물질을 다량 함유하고 있는 것을 확인하였다.Previously known immunological active substances in fish feed were investigated through literature to analyze the content of functional materials contained in Bioflak powder. Table 3 shows total nucleotides, total pigment, beta-carotene, and taurine contents in Bioflack powder. As shown in Table 3, it was confirmed that Bioflack contained a large amount of immunologically active substances such as nucleotides, pigments, beta-carotene, and taurine, which are well known as functional substances in fish feed.

바이오플락 내 기능성 물질 함량Functional content of bioflavons 기능성 물질Functional material 함량content Total nucleotides (%)Total nucleotides (%) 3.793.79 Total pigment (mg/kg)Total pigment (mg / kg) 660660 Beta-carotene (mg/kg)Beta-carotene (mg / kg) 2020 Taurine (mg/kg)Taurine (mg / kg) 2020

C. C. 바이오플락의Bioflack 사료첨가제로서의 기능 확인 Identification of function as feed additive

C. 1. 실험사료의 제작 및 실험 방법C. 1. Preparation and experimental method of experimental feed

C. 1. 1. 실험사료의 제작C. 1. 1. Production of experimental feed

바이오플락의 사료 첨가제로서 이용 가능성을 조사하기 위하여 바이오플락 분말을 각각 0, 0.5, 1.0, 2.0, 4.0, 6.0, 8.0% 함량으로 첨가하여 총 7 개의 실험사료를 제작하였다(표 4). To investigate the feasibility of bioflavag as a feed additive, bioflavag powder was added at 0, 0.5, 1.0, 2.0, 4.0, 6.0, and 8.0%, respectively.

실험사료는 우선 사료원들을 혼합기에 넣어 완전히 섞은 다음, 어유를 첨가한 뒤 사료원 총 중량의 20%에 해당하는 증류수를 첨가하여 사료혼합기로 혼합, 반죽하였다. 혼합반죽물은 소형초파기(SMC-12, Kuposlice, Busan, Korea)를 이용하여 알맞은 크기로 뽑아내었다. 실험사료는 건조기로 24 시간 건조시켜 사료공급 전까지 -20℃ 에 보관하면서 사용하였다.The experimental diets were prepared by mixing the feed materials in a mixer, mixing them, adding fish oil, and adding distilled water equivalent to 20% of the total weight of the feed materials. Mixed dough was extracted to a suitable size using a small-sized digging machine (SMC-12, Kuposlice, Busan, Korea). The experimental diets were dried for 24 hours in a drier and stored at -20 ° C until feeding.

실험사료 조성표 (% dry matter)Experimental feed composition table (% dry matter) IngredientIngredient DietsDiets ConCon BF 0.5%BF 0.5% BF 1.0%BF 1.0% BF 2.0%BF 2.0% BF 4.0%BF 4.0% BF 6.0%BF 6.0% BF 8.0%BF 8.0% Brown fishmealBrown fishmeal 28.028.0 28.028.0 28.028.0 28.028.0 28.028.0 28.028.0 28.028.0 Soy bean mealSoy bean meal 30.030.0 30.030.0 30.030.0 29.529.5 28.528.5 27.527.5 26.526.5 Squid liver mealSquid liver meal 3.003.00 3.003.00 3.003.00 3.003.00 3.003.00 3.003.00 3.003.00 Wheat flourWheat flour 29.029.0 28.528.5 28.028.0 27.527.5 26.526.5 25.525.5 24.524.5 StarchStarch 5.005.00 5.005.00 5.005.00 5.005.00 5.005.00 5.005.00 5.005.00 Squid liver oilSquid liver oil 1.001.00 1.001.00 1.001.00 1.001.00 1.001.00 1.001.00 1.001.00 Mineral mixMineral mix 1.001.00 1.001.00 1.001.00 1.001.00 1.001.00 1.001.00 1.001.00 Vitamin mixVitamin mix 1.001.00 1.001.00 1.001.00 1.001.00 1.001.00 1.001.00 1.001.00 Choline chlorideCholine chloride 1.001.00 1.001.00 1.001.00 1.001.00 1.001.00 1.001.00 1.001.00 LicithinLicithin 1.001.00 1.001.00 1.001.00 1.001.00 1.001.00 1.001.00 1.001.00 Biofloc.Biofloc. 0.000.00 0.500.50 1.001.00 2.002.00 4.004.00 6.006.00 8.008.00 Chemical Composition(% dry matter) Chemical Composition ( % dry matte r) Dry matterDry matter 93.293.2 93.893.8 94.094.0 93.293.2 93.193.1 93.693.6 93.593.5 ProteinProtein 40.840.8 40.940.9 40.740.7 41.641.6 41.041.0 41.041.0 41.041.0 LipidLipid 6.706.70 7.507.50 7.107.10 7.007.00 7.607.60 7.307.30 7.507.50 AshAsh 8.008.00 8.408.40 8.308.30 8.608.60 9.309.30 10.010.0 10.810.8 Energy, MJ/kg dietEnergy, MJ / kg diet 16.616.6 16.616.6 16.616.6 16.516.5 16.416.4 16.216.2 16.116.1

C. 1. 2. 실험방법C. 1. 2. Experimental Method

실험에 사용된 흰다리새우는 2주 동안 시판 상업사료를 공급하면서 실험환경에 적응할 수 있도록 순치시킨 후 사료공급 실험에 사용하였다. 예비사육 후 새우치하(초기평균무게: 1.01±0.01 g)는 총 21개의 75L 수조에 각 18 마리씩 무작위로 선택하여 배치하였다. The P. vannamei shrimp used in the experiments were fed for two weeks to commercial commercial feeds and adapted to the experimental environment. After preliminary breeding, the shrimp (initial mean weight: 1.01 ± 0.01 g) were randomly selected and placed in 21 75L water tanks, 18 each.

모든 실험수조에 용존산소 유지를 위하여 에어스톤을 설치하였고, 전 실험기간 동안 사육수온은 26-29℃ 범위로 유지되었다. 사료공급은 1일 4회(08:00, 12:00, 16:00, 18:00)에 나누어 8주간 제한공급 (어체중의 8~10%)을 하였다.Air stones were installed in all experimental tanks to maintain dissolved oxygen, and the temperature of the reared water was maintained in the range of 26-29 ℃ during the whole experimental period. The feeding was divided into four times (08:00, 12:00, 16:00, 18:00) for 8 weeks (8 ~ 10% of total body weight).

8 주간의 사료공급 실험 후, 새우의 최종 무게와 사료공급량을 측정하여 증체율(Weight gain), 일간성장률(Specific growth rate), 사료전환효율(Feed conversion ratio), 단백질이용효율(Protein efficiency ratio), 사료섭취량(Feed intake) 및 생존율(Survival)을 계산하였다. 최종무게 측정 후, 각 수조당 5마리의 새우를 무작위로 선별하여 얼음물에서 마취 후 항응고제 (Alsever's solution, sigma) 200 ㎕가 들어있는 1mL 주사기를 사용하여 혈액을 채취하였다. 채취한 혈액은 우선 total haemocyte count 와 respiratory burst 분석을 위해 사용되었고, 분석 후 남은 혈액 샘플은 4℃, 700 x g 에서 20분간 원심분리 하였으며 -70℃ 에서 보관 후 면역분석을 위해 사용되었다.
After 8 weeks of feeding experiment, the final weight and feeding rate of shrimp were measured and the weight gain, specific growth rate, feed conversion ratio, protein efficiency ratio, Feed intake and survival rate were calculated. After final weighing, 5 shrimp were randomly selected for each shrimp and anesthetized in ice water. Blood was collected using a 1 mL syringe containing 200 μl of an anti-coagulant (Alsever's solution, Sigma). The collected blood was first used for total haemocyte count and respiratory burst analysis, and the remaining blood samples were centrifuged at 700 ° C for 20 minutes at 4 ° C and stored at -70 ° C for immunological analysis.

C. 2. 바이오플락 분말을 급여한 흰다리새우의 성장요인 분석C. 2. Growth factors of P. vannamei fed with bioflavag powder

C. 2. 1. 성장률, 일간성장률, 단백질전환효율, 생존율 확인C. 2. 1. Identification of growth rate, daily growth rate, protein conversion efficiency, and survival rate

바이오플락 분말이 흰다리새우 성장에 미치는 영향을 알아보기 위하여, 실험사료에 바이오플락 분말을 0%(대조구) 0.5%, 1.0%, 2.0%, 4.0%, 6.0%, 8.0%이 되도록 각각 첨가한 후, 8주간 양식중인 흰다리새우에 급이하면서, 성장률 (weight gain, WG), 일간성장률(specific growth ratio, SGR), 단백질전환효율(protein efficiency ratio, PER) 및 생존율(Survival ratio)을 확인하였다.To investigate the effect of bioflavonoid powder on the growth of P. vannamei, bioflavag powder was added to the experimental diets so as to be 0% (control), 0.5%, 1.0%, 2.0%, 4.0%, 6.0% and 8.0% (WG), specific growth ratio (SGR), protein efficiency ratio (PER), and survival rate of the P. vannamei shrimp during 8 weeks of culture. Respectively.

WG (%) = 100 x (최종무게-최초무게) / 최초무게WG (%) = 100 x (final weight - initial weight) / initial weight

SGR (%) = [(log e 최종무게 - log e 최초무게) / 사육일수] × 100SGR (%) = [(log e final weight - log e initial weight) / days of rearing] × 100

PER = 습 증체량 / 단백질 공급량 PER = wet weight gain / protein feed

도 5는 본 발명에 따른 바이오플락 유용유기물을 포함하는 사료첨가제를 사료에 농도별로 첨가한 후, 성장 요인을 분석한 그래프이다. 성장률 (weight gain, WG), 일간성장률(specific growth ratio, SGR), 단백질전환효율(Protein efficiency ratio, PER)에 있어 바이오플락 4.0% 첨가구는 대조구에 비해 유의적으로 높은 값을 나타내었다. 생존율에 있어서는 0.5% 첨가구가 대조구를 포함한 다른 실험구에 비해 유의적으로 높은 생존율인 98.1%를 나타내었다. 성장률, 일간성장률, 단백질전환효율, 생존율 모두 바이오플락 분말 첨가구들은 대조구에 비해 높은 경향을 확인 할 수 있었다.
FIG. 5 is a graph showing growth factors after addition of a feed additive containing bioflavable organic material according to the present invention to a feed according to concentration; FIG. Protein efficiency ratio (PER), weight gain (WG), specific growth ratio (SGR) and bioflavon (4.0%) were significantly higher than control. The survival rate was 98.1%, which was significantly higher than that of the control group. Growth rate, daily growth rate, protein conversion efficiency, and survival rate were higher in Bioflag powder than in the control.

C. 2. 2. 사료전환효율, 및 사료섭이율 확인C. 2. 2. Identification of feed conversion efficiency and feed conversion rate

도 6은 본 발명에 따른 바이오플락 유용유기물을 포함하는 사료첨가제를 사료에 농도별로 참가한 후, 사료전환효율(feed conversion ratio, FCR) 및 사료섭이율(feed intake, FI)을 나타낸 그래프이다.FIG. 6 is a graph showing the feed conversion ratio (FCR) and feed intake (FI) after the feed additive including the bioflavable organic material according to the present invention is added to the feed according to the concentration.

FCR = 사료 급이량 / 증체량FCR = feed rate / weight gain

FI = 사료 섭취량 / 새우FI = feed intake / shrimp

증체량에 대한 사료의 양을 의미하는 사료전환효율은 그 값이 낮을수록 효율이 좋은 것을 알 수 있다. 8주간의 실험 결과, 성장요인 결과와 유사하게 4.0% 바이오플락 분말 첨가구가 무첨가구에 비해 유의적으로 높은 사료효율을 보였다. 바이오플락 분말을 첨가한 다른 실험구들 또한 유의적인 차이를 보이지는 않았으나 무첨가구에 비해 높은 경향의 사료효율을 나타내었다. 특히 4.0% 첨가구는 대조구에 비하여 사료전환효율이 0.41 증가하였다. 사료섭이율 결과에서는 대조구가 가장 높은 결과 값을 보였으나, 8.0% 바이오플락 분말 첨가구를 제외하면 처리구 전체가 비교적 양호한 섭이율을 나타내었다.
Feed conversion efficiency, which means the amount of feed to the weight gain, shows that the lower the value, the better the efficiency. In the 8 - week experiment, 4.0% bioflavonoid powder showed significantly higher feed efficiency than non - additive, similar to growth factors. Other experimental groups with bioflavon powder did not show any significant difference, but showed higher feed efficiency than non - additive group. Especially, the feed conversion efficiency increased by 0.41 compared to the control. However, except for 8.0% bioflavonoid powder, the treatments showed a relatively good overall yield.

C. 3. 바이오플락 분말을 급여한 흰다리새우의 비특이적 면역능 분석C. 3. Nonspecific immunological analysis of P. vannamei fed with bioflavag powder

C. 3. 1. C. 3.1. TotalTotal HaemocyteHaemocyte CountCount (( THCTHC ), ), PhenoloxidasePhenoloxidase activityactivity (( POPO ) 분석) analysis

Total haemocyte count 는 증류수와 혈액샘플을 9:1 비율로 희석한 후 haemocytometer 에 희석한 혈액 샘플 10 ㎕를 주입하여 광학현미경(Leica DMIL, Leica Microsystems GmbH, Wetzlar, Germany)을 이용하여 측정하였다.Total haemocyte counts were determined by dilution of 9: 1 ratio of distilled water and blood samples, and then 10 μl of a blood sample diluted in a haemocytometer was injected and measured using an optical microscope (Leica DMIL, Leica Microsystems GmbH, Wetzlar, Germany).

Phenoloxidase activity 는 Hernandez-Lopez et al(1996)의 방법으로 분석되었다. 우선 각 혈액 샘플 50 ℃를 96-well plate에 분주하고 trypsin (3mg ml-1 in CAC buffer) 50℃를 넣어 25℃ 에서 30분간 반응시킨다. 그 후 L-dihydroxyphenylalanine (L-DOPA, Sigma) 50 ㎕를 넣는다. CAC buffer를 이용하여 10mMJ sodium cacodylate 와 10mM CaCl2를 만들어 pH 7.0이 되도록 섞어준다. 10분 동안 25℃ 인큐베이터에서 반응 후 microplate reader (UVM 340, Biochrom, Cambridge, UK)에서 490nm로 측정하였다.Phenoloxidase activity was analyzed by the method of Hernandez-Lopez et al (1996). First, each blood sample is dispensed into a 96-well plate at 50 ° C and incubated at 25 ° C for 30 minutes at 50 ° C with trypsin (3 mg ml -1 in CAC buffer). Then add 50 μl of L-dihydroxyphenylalanine (L-DOPA, Sigma). 10 mMJ sodium cacodylate and 10 mM CaCl 2 are prepared by using CAC buffer and mixed to pH 7.0. After incubation in a 25 ° C incubator for 10 min, measurements were taken at 490 nm in a microplate reader (UVM 340, Biochrom, Cambridge, UK).

도 7은 본 발명에 따른 바이오플락 유용유기물을 포함하는 사료첨가제를 사료에 농도별로 참가한 후, 이를 8주동안 섭이한 흰다리새우의 Total haemocyte count(THC), Phenoloxidase activity(PO)를 나타낸 그래프이다. 통계적으로 유의적인 차이는 발견하지는 못하였으나, Total haemocyte count(THC(×103cells/ml))와 Phenoloxidase activity(PO) 모두 대조구에 비해 바이오플락 사료첨가제 처리구에서 높은 경향을 보였다.
FIG. 7 is a graph showing the total haemocyte count (THC) and phenoloxidase activity (PO) of P. vannamei fed with feed additives containing bioflavable organic material according to the present invention for 8 weeks . Total haemocyte count (THC (× 10 3 cells / ml)) and phenoloxidase activity (PO) were higher in the bioflavant feed additive treatments than the control, although no statistically significant difference was found.

C. 3. 2. Superoxide dismutase(SOD), Immunoglobulin (IG) 분석C. 3. 2. Superoxide dismutase (SOD), Immunoglobulin (IG) analysis

Superoxide dismutase (SOD) 활성은 superoxide dismutase assay kit (Sigma, 19160)를 이용하여 분석되었다. 96-well plates에 20 ㎕ radical detector를 첨가한 후 혈액 샘플을 10 ㎕씩 넣는다. 그 후 20 ㎕ xanthine oxidase를 첨가하여 20분간 반응시킨 후, microplate reader (Themo, USA)를 이용하여 450 nm에서 흡광도를 측정하였다.Superoxide dismutase (SOD) activity was analyzed using the superoxide dismutase assay kit (Sigma, 19160). Add 20 μl of radical detector to 96-well plates and add 10 μl of blood sample. After incubation for 20 minutes with 20 μl xanthine oxidase, the absorbance was measured at 450 nm using a microplate reader (Themo, USA).

Total immunoglobulin (Ig)은 Siwicki and Anderson (1993)의 분석방법을 바탕으로 분석하였다. 12%의 Polyethylene glycol (Sigma) 용액을 사용하여 면역 글로불린 분자를 침전시킨 후 plasma 단백질은 마이크로 단백질 정량법(sigma C-690)을 사용하여 측정하였다.Total immunoglobulin (Ig) was analyzed based on the analysis method of Siwicki and Anderson (1993). After immunoglobulin molecules were precipitated using 12% polyethylene glycol (Sigma) solution, plasma proteins were measured using microprotein assay (Sigma C-690).

도 8은 본 발명에 따른 바이오플락 유용유기물을 포함하는 사료첨가제를 사료에 농도별로 참가한 후, 이를 8주동안 섭이한 흰다리새우의 Superoxide dismutase(SOD) 활성 및 Immunoglobulin (IG) 농도를 나타낸 그래프이다. SOD 분석 결과에 있어서는 모든 실험구에서 유의적인 차이를 발견하지는 못하였으나, 바이오플락 분말 첨가구들이 무첨가구에 비해 높은 값을 나타내는 경향을 보였으며, 4.0% 첨가구에서 SOD 활성이 가장 높았다.FIG. 8 is a graph showing superoxide dismutase (SOD) activity and immunoglobulin (IG) concentration of P. vannamei fed with feed additives containing bioflavable organic materials according to the present invention for 8 weeks . In the SOD analysis, no significant difference was found in all experimental groups. However, the addition of Bioflack powder tended to show a higher value than that of the non-additive group, and the SOD activity was the highest in the 4.0% added group.

IG 분석 결과에 있어서도 모든 실험구에서 유의적인 차이를 발견하지 못하였으나, 바이오플락 분말 첨가구들이 무첨가구에 비해 높은 경향을 보였다.
The results of IG analysis showed no significant differences in all experimental groups, but bioflavonoid powder addition groups showed higher tendency than non - supplemented groups.

C. 3. 3. Nitro blue tetrazolium(NBT) 환원 분석C. 3. 3. Nitro blue tetrazolium (NBT) reduction analysis

혈액 샘플의 respiratory burst 는 NBT (Nitroblue Tetrazolium)의 formazan 환원을 정량하는 방법이다. 우선, 200 ㎕ mHBSS solution(sigma)를 2 mL Eppendorf tube 에 넣은 후, 혈액 샘플 50 ㎕를 Eppendorf tube에 옮기고 25℃에서 30 분간 반응시킨다. 다음으로 Zymosan 100 ㎕(0.1% in Hank's solution)(Sigma)를 첨가하여 37℃에서 2 시간 동안 반응시킨다. 그 후 NBT solution (0.3%)(Sigma)을 100 ㎕ 첨가하여 37℃에서 2 시간 동안 반응시킨다. 다음으로 100% methanol 600 ㎕를 넣어 6500 rpm 에서 10 분간 원심 분리한 후 상층액을 버리고 70% methanol 100 ㎕로 3번 세척 후 5 분 동안 건조한다. 마지막으로 Formazan 을 2M KOH 700 ㎕와 800 ㎕ DMSO(Sigma)에 용해시킨 후, microplate reader(UVM 340, Biochrom, Cambridge, UK)에서 620 nm 로 측정하였다.The respiratory burst of blood samples is a method of quantifying formazan reduction of NBT (Nitroblue Tetrazolium). First, 200 μl of mHBSS solution (Sigma) is placed in a 2-mL Eppendorf tube, and 50 μl of the blood sample is transferred to an Eppendorf tube and reacted at 25 ° C for 30 minutes. Next, 100 μl of Zymosan (0.1% in Hank's solution) (Sigma) was added and reacted at 37 ° C for 2 hours. Then, 100 μl of NBT solution (0.3%) (Sigma) was added and reacted at 37 ° C for 2 hours. Next, add 600 μl of 100% methanol, centrifuge at 6500 rpm for 10 minutes, discard the supernatant, wash with 100 μl of 70% methanol for 3 times, and then dry for 5 minutes. Finally, Formazan was dissolved in 700 μl of 2M KOH and 800 μl DMSO (Sigma) and then measured at 620 nm in a microplate reader (UVM 340, Biochrom, Cambridge, UK).

도 9은 본 발명에 따른 바이오플락 유용유기물을 포함하는 사료첨가제를 사료에 농도별로 참가한 후, 이를 8주동안 섭이한 흰다리새우의 Nitro blue tetrazolium(NBT) 환원능을 나타낸 그래프이다.FIG. 9 is a graph showing the Nitro blue tetrazolium (NBT) reducing ability of P. vannamei supplemented with feed additives containing bioflavable organic materials according to the present invention for 8 weeks after feeding into feeds at various concentrations.

NBT 분석결과, 바이오플락 분말 0.5%, 4.0% 첨가구가 대조구에 비해 유의적으로 높은 값을 나타내었으며, 모든 바이오플락 사료첨가제 첨가실험구들에서 무첨가구에 비해 높은 NBT 환원활성을 나타내었다.As a result of NBT analysis, the addition of 0.5% and 4.0% of bioflavag powder was significantly higher than that of the control, and NBT reduction activity was higher in all experimental groups with addition of bioflavant feed additive.

상기와 같은 분석 결과를 통해 그동안 바이오플락 양식 과정에서 생성되어 수거 뒤, 폐기되어 오던 바이오플락 고형 성분을 영양성분이 우수하고 양식어의 영양과 면역력 증강에 도움이 되는 사료첨가제로 완성하였다.
As a result of the above analysis, the bioflavonoid solid component that has been produced in the biofloat culture process and discarded after collection has been completed as a feed additive which is excellent in nutrition and nutritional and immunity enhancement of cultured fish.

본 발명은 바이오플락 양식과정 중 발생하여 양식을 방해하는 슬러지를 수집하여 수산 양식에서 사료첨가제로 사용할 수 있어 바이오플락 양식장에서 생성되는 폐기물 처리에 따른 비용을 감소시키는 한편, 수산 양식에서 고가로 형성되어 있는 기능성 사료첨가제를 생산할 수 있으므로 양식어업인의 소득증대에 기여할 수 있으므로 산업상 이용가능성이 있다.
The present invention can collect sludge that occurs during the bioflavicultural process, and can be used as a feed additive in aquaculture, thereby reducing the cost of disposing waste generated in bioflavicultural farms, Which can contribute to the increase of income of aquaculture farmers, it is possible to be used industrially.

100 : 수집수조 120 : 사육수 주입관
130 : 사육수 회수관 150 : 배수관
160 : 공기공급장치
200 : 수집판 250 : 손잡이
100: Collection tank 120: Breeding water injection tube
130: Breeding water collection pipe 150: Water pipe
160: air supply
200: collecting plate 250: handle

Claims (5)

사육수조에 담수 또는 해수를 저장하여 소독을 실시하고, 소독이 완료된 사육수에 식물플랑크톤 배양액과 식물플랑크톤을 접종하여 3-7일간 번성시키며, 식물플랑크톤 배양 후, 담수 또는 해수에 기능성 미생물을 접종하며,
상기 식물플랑크톤은 Raphidocelis subcapitata, Chlorella vulgaris, Spirulina platensis, Spirulina subsalsa, Skeletonema costatum, Isochrysis galbana, Chaetoceros gracilis, Dunnaliella tertiolecta, Tetraselmis suecica로 이루어진 군 중에서 선택되는 어느 하나 이상이며,
상기 기능성 미생물은 Nitrosomonas europaea, Nitrosococcus oceani, Nitrobacter winogradskyi, Bowmanella denitrificans, Oceanobacillus sojae, Rhodobacter capsulata, Rhodobacter sphaeroides, Lactobacillus plantarum, Lactobacillus casei, Saccharomyces cerevisiae 로 이루어진 군 중에서 선택되는 어느 하나 이상으로 이루어지는 바이오플락 양식을 위한 사육수를 제작하는 단계(A);
상기 (A)단계에서 제작한 바이오플락 사육수에서 양식어를 사육하여 양식하는 단계(B); 상기 (B)단계의 사육수에서 바이오플락 고형 부유체를 수집하여 건조하여, 분말화하는 단계(C);로 이루어진 것을 특징으로 하는 바이오플락 유용유기물을 이용한 사료첨가제 제조방법
Freshwater or seawater is stored in the breeding tanks and disinfected. Phytoplankton cultures and phytoplankton are inoculated into the disinfected water for 3 to 7 days. After phytoplankton cultivation, the microorganisms are inoculated with fresh water or seawater. ,
Wherein the phytoplankton is selected from the group consisting of Raphidocelis subcapitata, Chlorella vulgaris, Spirulina platensis, Spirulina subsalsa, Skeletonema costatum, Isochrysis galbana, Chaetoceros gracilis, Dunnaliella tertiolecta, Tetraselmis suecica ,
Wherein the functional microorganism is selected from the group consisting of Nitrosomonas europaea, Nitrosococcus oceani, Nitrobacter winogradskyi, Bowmanella denitrificans, Oceanobacillus sojae, Rhodobacter capsulata, Rhodobacter sphaeroides, Lactobacillus plantarum, Lactobacillus casei, Saccharomyces cerevisiae , (A) producing a number;
(B) culturing and culturing the cultured fish in the bioflocculation water produced in the step (A); And (C) collecting the bioflavonoid fluid from the breeding water in step (B), drying and pulverizing the bioflavonoid fluid in step (B).
제1항의 바이오플락 유용유기물을 이용한 사료첨가제 제조방법에 의하여 제조된 것을 특징으로 하는 바이오플락 유용유기물을 포함하는 사료첨가제A feed additive comprising a bioflavable organic material according to claim 1, which is produced by a method for preparing a feed additive using the biofluck useful organic material 삭제delete 삭제delete 삭제delete
KR1020150159755A 2015-11-13 2015-11-13 Feed additive including organic compounds in biofloc and method for production thereof KR101854016B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150159755A KR101854016B1 (en) 2015-11-13 2015-11-13 Feed additive including organic compounds in biofloc and method for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150159755A KR101854016B1 (en) 2015-11-13 2015-11-13 Feed additive including organic compounds in biofloc and method for production thereof

Publications (2)

Publication Number Publication Date
KR20170056277A KR20170056277A (en) 2017-05-23
KR101854016B1 true KR101854016B1 (en) 2018-06-20

Family

ID=59050645

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150159755A KR101854016B1 (en) 2015-11-13 2015-11-13 Feed additive including organic compounds in biofloc and method for production thereof

Country Status (1)

Country Link
KR (1) KR101854016B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102139527B1 (en) * 2018-07-20 2020-07-31 김성락 Feed and liquid cultured for Marsh snail including Biofloc
KR102181477B1 (en) * 2018-11-23 2020-11-23 주식회사 네오엔비즈 A composition for the eel leptocephalus diets and manufacturing method
CN110255715B (en) * 2019-06-20 2021-08-20 中国水产科学研究院渔业机械仪器研究所 Method for cultivating diatom dominant freshwater biological flocs by using culture tail water
KR102316396B1 (en) * 2020-10-28 2021-10-26 한국식품연구원 Lactobacillus plantarum WiKim0112 having nitrates-scavenging ability and composition comprising the same
KR102651693B1 (en) * 2021-12-17 2024-03-27 주식회사 네오엔비즈 A method of cultivating O. ocellatus using biofloc

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140074451A (en) * 2012-12-08 2014-06-18 박연하 Microbial agent for improving water quality of aquarium

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1082908B1 (en) 1999-03-26 2009-08-26 Genichiro Soma Additives for crustacean or fish feeds and feeds
KR100860111B1 (en) 2006-10-02 2008-09-25 인제대학교 산학협력단 Newly isolated Thraustochytrium sp. KJS-1, Bacillus polyfermenticus KJS-2 and Feed additives for cultivated fish including Thraustochytrium sp. KJS-1, Bacillus polyfermenticus KJS-2 and Bacillus licheniformis, Feed containing above feed additives
KR100908928B1 (en) 2007-09-20 2009-07-23 양승창 Feed additives for farmed fish, feed composition and breeding method of farmed fish using the same
KR101420392B1 (en) 2011-06-17 2014-07-17 주식회사비에이치텍 Eel feed and feed additive for energy savings of aquaculture
KR101323873B1 (en) * 2011-11-03 2013-10-30 부경대학교 산학협력단 Novel Nannochloropsis sp. capable high growth and use thereof
KR20140119850A (en) * 2013-03-27 2014-10-13 전남대학교산학협력단 Bacillus spp., identified from lugworm and microbial cleaning agent.
KR101508055B1 (en) * 2013-06-08 2015-04-07 주식회사 네오엔비즈 Aquaculture tank for bio-floc, using a bio skimmer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140074451A (en) * 2012-12-08 2014-06-18 박연하 Microbial agent for improving water quality of aquarium

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
John A., SRAC Publication No. 4503, "Biofloc production systems for aquaculture", 2013.04 *
John A., SRAC Publication No. 4503, "Biofloc production systems for aquaculture", 2013.04*
John A., SRAC Publication No. 4503, 2013.04. *

Also Published As

Publication number Publication date
KR20170056277A (en) 2017-05-23

Similar Documents

Publication Publication Date Title
KR101857327B1 (en) Feed including organic compounds in biofloc and method for production thereof
CN102719383B (en) Bacillus amyloliquefaciens, inoculant and application thereof
KR101854016B1 (en) Feed additive including organic compounds in biofloc and method for production thereof
Khanjani et al. Study on nursery growth performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) under different feeding levels in zero water exchange system
CN101333499B (en) Complex active bacterial biological water purifying a gent and method for preparing same
KR101449557B1 (en) Feed composition for sea cucumber containing microalgae chlorella as main component
CN106854627B (en) Compound microbial inoculum for promoting growth of hermetia illucens larvae and application
KR101758102B1 (en) Rhodobacter capsulatus sw003 and microbial agent comprising it
Wada et al. Single-cell protein production from purple non-sulphur bacteria-based wastewater treatment
JP2017077186A (en) Tolerance improvement method of aquatic organism to abnormal proliferation of plankton
Becerril-Cortés et al. Nutritional importance for aquaculture and ecological function of microorganisms that make up Biofloc, a review
CN104855692B (en) Extensive, high-density breeding bait in a kind of Copepods room
Abdelhay et al. The use of vermicompost in cultivation and production of Spirulina platensis
KR101822736B1 (en) Feed stuff for sea cucumber including organic compounds in biofloc and method for preparation thereof
CN107841464B (en) Algae culture method
JP2000004800A (en) Feed additive and its production
CN107223812B (en) Slice feed for fish fry cultivation and preparation method and application thereof
CN110800888A (en) Composition for culturing plankton, preparation method and application thereof
Yadav et al. Algal-bacterial intervention as a management tool for next-generation aquaculture sustainability
CN107746809B (en) Method for increasing algae biomass
KR20170021462A (en) Composition of feed stuff using solid waste from aquaculture ground
RU2613424C1 (en) Plankton strain chlorella kessleri, intended for production of biomass
Al Azad et al. Bioconversion of fish hatchery waste as feed in the production of live feed
Vaikosen et al. Yield and chemical composition of Chlorella species cultivated in pig, poultry and cow dungs in Southern Nigeria
KR101323873B1 (en) Novel Nannochloropsis sp. capable high growth and use thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right